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We consider an occupancy scheme in which “balls” are identified with n

points sampled from the standard exponential distribution, while the role of
“boxes” is played by the spacings induced by an independent random walk
with positive and nonlattice steps. We discuss the asymptotic behavior of
five quantities: the index K∗

n of the last occupied box, the number Kn of
occupied boxes, the number Kn,0 of empty boxes whose index is at most K∗

n ,
the index Wn of the first empty box and the number of balls Zn in the last
occupied box. It is shown that the limiting distribution of properly scaled and
centered K∗

n coincides with that of the number of renewals not exceeding
logn. A similar result is shown for Kn and Wn under a side condition that
prevents occurrence of very small boxes. The condition also ensures that Kn,0
converges in distribution. Limiting results for Zn are established under an
assumption of regular variation.

1. Introduction. The Bernoulli sieve is a simple recursive allocation of n

“balls” in infinitely many “boxes” indexed 1,2, . . . . Let ξ1, ξ2, . . . be random val-
ues sampled independently from a given probability distribution on (0,1). At the
first step each of n balls is dropped in box 1 with probability ξ1. At the second
step each of the remaining balls is dropped in box 2 with probability ξ2, and so
on. The procedure is iterated until all n balls get allocated. It is easy to see that the
probability that a particular ball lands in box j is equal to

Pj = ξ̄1 · · · ξ̄j−1ξj , i ∈ N,(1)

here and hereafter x̄ := 1 − x.
Random discrete probability distributions with frequencies (Pj ) of the form (1)

are called residual allocation or stick-breaking models [1, 4, 24]. For instance,
in the most popular and analytically best tractable case (Pj ) follows the GEM
(Griffiths–Engen–McCloskey) distribution, which appears when the law of ξ1 is
beta(1, θ) with some θ > 0.

Note that (Pj ) is a (nonrandom) geometric distribution if the law of ξ1 is a Dirac
mass δx at some point x ∈ (0,1); we shall exclude this and some other cases by
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the assumption that the support of ξ1 is not a set like {1 − xj : j ∈ N0 := N ∪ {0}}.
See [12] for a survey of results on sampling from nonrandom discrete distributions
with infinitely many positive masses.

A random combinatorial structure which captures the occupancy of boxes is
the weak composition C∗

n comprised of nonnegative integer parts summing up
to n. We speak of weak composition meaning that zero parts are allowed, for in-
stance, the sequence (2,3,0,1,0,0,1,0,0,0, . . .) (padded by infinitely many 0’s)
is a possible value of C∗

7 . Two related structures which contain less information are
composition Cn of n obtained by discarding zero parts of C∗

n and a partition of n

obtained by arranging the parts in nonincreasing order [these are (2,3,1,1) and
(3,2,1,1), respectively, in the example]. In the GEM case, the law of the partition
is widely known as Ewens’ sampling formula (ESF), and the law of composition
is a size-biased version of the ESF; see [1, 24].

Functionals of C∗
n studied in this paper are as follows:

Kn the number of boxes occupied by at least one ball,
K∗

n the largest index of occupied box,
Kn,0 = K∗

n − Kn the number of empty boxes with index not exceeding K∗
n ,

Wn the index of the first empty box,
Zn the number of balls in the last box.

For r = 1,2, . . . , n, we also denote by Kn,r the number of boxes occupied by
exactly r balls.

In [10] it was observed that Kn can be studied by tools of the renewal theory,
and it was shown that under certain moment conditions the distribution of Kn is
asymptotically normal. The composition Cn in this case has some common fea-
tures with logarithmic combinatorial structures [1]; in particular, Kn exhibits a
logarithmic growth.

Throughout, we shall also rely on the following alternative construction of C∗
n’s.

Let {Sk :k ∈ N0} be a zero-delayed random walk with a step distributed like
(− log ξ̄1). For E1,E2, . . . an independent random sample from the standard ex-
ponential distribution, also independent of (Sk), think of the event Ej ∈ (Sk−1, Sk)

as a ball dropped in box k. A composition of n is defined as the sequence of
occupancy numbers in the natural order of intervals (Sk−1, Sk), k = 1,2, . . . . In
what follows we will often use E1,n ≤ E2,n ≤ · · · ≤ En,n the order statistics of
E1, . . . ,En.

The equivalence with the Bernoulli sieve construction is established via the
mapping y �→ e−y, y > 0, which allows to identify ξ̄1 · · · ξ̄k (we tacitly assume
that this equals 1 for k = 0) with exp(−Sk), k ∈ N0, transforms (Sk−1, Sk) into in-
terval of size Pk and transforms (E1, . . . ,En) in a uniform [0,1] sample. By this
transformation, the event Ej ∈ (Sk−1, Sk) occurs when the j th coordinate of the
uniform sample falls in the kth interval (exp(−Sk), exp(−Sk−1)). This works, be-
cause a point sampled from the uniform [0,1] distribution falls in the kth interval
with probability Pk .
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As n varies, compositions C∗
n satisfy the following consistency conditions:

(SC) Sampling consistency: if one of n balls is chosen uniformly at random and
removed from the box it occupies, the resulting weak composition has the
same probability law as C∗

n−1.
(DP) Deletion property: if the first box is inspected and it turns out that it con-

tains k balls, then deleting the first box2 yields a weak composition with the
same probability law as C∗

n−k .

Condition (SC) follows from the independence of (Sk) and (Ej ) and exchange-
ability of (Ej ), and condition (DP) follows from the renewal property of (Sk) and
the memoryless property of the exponential distribution. Both conditions also hold
for the associated compositions, which means that the sequence (Cn) is a regener-
ative composition structure, as introduced in [14]. Note that Kn,Kn,r are, in fact,
functionals of the partition structure [4, 24] which is obtained by discarding the
ordering of parts in the Cn’s.

The random walk (Sk) can be viewed as the range of a compound Poisson
process, that is, a subordinator {Ts : s ≥ 0} whose Lévy measure is the distribu-
tion of (− log ξ̄ ). One obtains a larger class of composition structures by consid-
ering a general zero-drift subordinator and using the open gaps comprising the
complement of its range in the role of boxes. It is known that normal limits for the
number of parts Kn are typical for regenerative composition structures whose Lévy
measure is infinite and has the right tail slowly varying at 0 [3, 17], although Kn

exhibits then growth faster than logarithmic. The limits are no longer normal if
the right tail of Lévy measure is regularly varying at 0 with positive index, as, for
example, it is the case for stable subordinators [16].3

In this paper we dwell on the case of the Bernoulli sieve and obtain considerable
extensions of the results of [10]. In particular, we derive an exhaustive criterion
for the existence of limiting distribution of properly normalized and centered K∗

n

(Theorem 2.1). Then, under a side condition, we do the same for Kn and Wn (The-
orem 2.3). Among other things, this condition ensures our most delicate result,
which states that Kn,0 converges in distribution directly, without centering or scal-
ing (Theorem 2.2). A similar result also holds for Kn,0 + Kn,1 (Proposition 5.2).
In the GEM case, the limiting law of Kn,0 is mixed Poisson (Proposition 5.1).
Asymptotic properties of Zn are revealed in Theorem 2.4.

The rest of the paper is organized as follows. In Section 2 we formulate our
principal results and give examples. In Section 3 we extend the idea of representing
a regenerative composition via a Markov chain [14, 15] to the weak compositions.

2In the example, the elimination transforms (2,3,0,1,0,0,1,0,0,0, . . .) to (3,0,1,0,0,1,

0,0,0, . . .).
3It should be noticed that in the case of infinite Lévy measure the closed range of subordinator

is a Cantor set, thus, with positive probability the set of empty boxes between Ej−1,n and Ej,n is
infinite.
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We also collect necessary distributional recursions. Other sections are devoted to
study of particular functionals. The Appendix summarizes some known asymptotic
results about the number of renewals.

2. Main results. Consider the process that counts renewals

Nt := inf{k ≥ 1 :Sk ≥ t}, t ≥ 0.(2)

Our idea is to connect possible convergence in distribution of (Nlogn − bn)/an to
some nondegenerate and proper probability law with the convergence of (K∗

n −
bn)/an, (Kn − bn)/an, (Kn − Kn,1 − bn)/an and (Wn − bn)/an to the same law.
The first connection can be anticipated in the view of identity K∗

n = NEn,n and by
recalling the fact from the extreme-value theory that En,n − logn has a limiting
distribution (of Gumbel type).

Introduce the moments

μ := E(− log ξ̄ ) and σ 2 := var(− log ξ̄ ),

which may be finite or infinite.

THEOREM 2.1. The following assertions are equivalent:

(i) There exist constants {an, bn :n ∈ N} with an > 0 and bn ∈ R such that, as
n → ∞, the variable (K∗

n − bn)/an converges weakly to some nondegenerate and
proper distribution.

(ii) The distribution of (− log ξ̄ ) either belongs to the domain of attraction of
a stable law, or the function P{− log ξ̄ > x} slowly varies at ∞.

Furthermore, this limiting distribution is as follows:

(a) If σ 2 < ∞, then for bn = μ−1 logn and an = (μ−3σ 2 logn)1/2, the limiting
distribution is standard normal.

(b) If σ 2 = ∞ and∫ 1

x
(logy)2

P{ξ̄ ∈ dy} ∼ L(− logx) as x → 0,

for some L slowly varying at ∞, then for

bn = μ−1 logn,an = μ−3/2c[logn]
and cn any sequence satisfying limn→∞ nL(cn)/c

2
n = 1, the limiting distribu-

tion is standard normal.
(c) Assume that the relation

P{ξ̄ ≤ x} ∼ (− logx)−αL(− logx) as x → 0(3)

holds with L slowly varying at ∞ and α ∈ [1,2), and assume that μ < ∞ if
α = 1, then for bn = μ−1 logn, an = μ−(α+1)/αc[logn] and cn any sequence
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satisfying limn→∞ nL(cn)/c
α
n = 1, the limiting distribution is α-stable with

characteristic function

t �→ exp
{−|t |α�(1 − α)

(
cos(πα/2) + i sin(πα/2) sgn(t)

)}
, t ∈ R.

(d) Assume that μ = ∞ and the relation (3) holds with α = 1. Let c be any
positive function satisfying limx→∞ xL(c(x))/c(x) = 1 and set ψ(x) :=
x

∫ 1
exp(−c(x)) P{ξ̄ ≤ y}/y dy. Let b be any positive function satisfying

b(ψ(x)) ∼ ψ(b(x)) ∼ x. Then, with bn = b(logn) and an = b(logn) ×
c(b(logn))/ logn, the limiting distribution is 1-stable with characteristic func-
tion

t �→ exp
{−|t |(π/2 − i log |t | sgn(t)

)}
, t ∈ R.(4)

(e) If the relation (3) holds with α ∈ [0,1), then, for bn = 0 and an :=
logα n/L(logn), the limiting distribution is the scaled Mittag–Leffler law θα

(exponential, if α = 0) characterized by the moments∫ ∞
0

xnθα(dx) = n!
�n(1 − α)�(1 + nα)

, n ∈ N.

Asymptotic analysis of the number of empty boxes Kn,0 involves

ν := E(− log ξ).

Our next result determines explicitly the limiting distribution of Kn,0.

THEOREM 2.2. For n → ∞, Kn,0 has the following asymptotic properties:

(a) If ν < ∞, then Kn,0 converges in distribution to a random variable K∞,0. If
also μ < ∞, then

P{K∞,0 ≥ i} = 1

μ

∞∑
j=1

Eξ̄ j

j
P{Kj,0 = i − 1}, i ∈ N,

and EK∞,0 = ν/μ, but if μ = ∞, then K∞,0 = 0 a.s.
(b) Assume that for some δ > 0 both

Eξ̄−δ < ∞ and Eξ−δ < ∞,(5)

then

lim
n→∞EKn,0 = ν/μ ∈ (0,∞).

On the other hand, if ν = ∞ and μ < ∞, then limn→∞ EKn,0 = ∞.
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If μ < ∞, the limiting variable K0,∞ has interpretation in terms of a model with
infinitely many “balls” and “boxes” [13]. Specifically, one can take gaps between
consecutive points in a stationary renewal process on R in the role of “boxes,”
and points of an independent Poisson process with the intensity measure e−x dx

(x ∈ R) in the role of “balls.” Other functionals of C∗
n like Kn,r the number of

parts equal r also have limiting forms realizable in the infinite model.
By virtue of Kn = K∗

n − Kn,0 and because Theorem 2.1 implies that an → ∞,
one can conclude that boundedness of Kn,0 (Kn,1) in probability would lead to
the following fact: if (K∗

n − bn)/an weakly converges to some proper probability
law, then (Kn − bn)/an ((Kn − Kn,1 − bn)/an) weakly converges to the same law.
According to Theorem 2.2 (Proposition 5.2), the condition ν < ∞ ensures even a
more delicate property that Kn,0 (Kn,0 + Kn,1) converges in distribution. Similar
argument applies to Wn and leads to the next result.

THEOREM 2.3. If ν < ∞, then all the assertions of Theorem 2.1 remain valid
with K∗

n replaced by Kn, Kn − Kn,1 or Wn.

Under the condition σ 2 < ∞, the normal limit for Kn was established in [10],
Proposition 10, by a method which required asymptotic expansion of moments.
A generalization for a larger class of random compositions appeared in [11],
Proposition 8.

THEOREM 2.4. If μ < ∞, then Zn
d→ Z as n → ∞, where Z has distribution

P{Z = k} = Eξk

μk
, k = 1,2, . . . .

If (3) holds with some α ∈ [0,1), then for α ∈ (0,1)

logZn

logn

d→ beta(1 − α,α)

and the degenerate limit distribution δ1 appears for α = 0. If (3) holds with α = 1
and if μ = ∞, then with m(x) := ∫ x

0 P{− log ξ̄ > y}dy we have the convergence

m(logZn)

m(logn)

d→ uniform[0,1].

In the examples to follow Xn stands for any of the variables K∗
n , Kn, Kn −Kn,1

or Wn.

EXAMPLE 2.5. Assume ξ̄ has a beta(c, b) density

P{ξ̄ ∈ dx} = xc−1(1 − x)b−1

B(c, b)
dx, x ∈ [0,1],
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with some c, b > 0 and B(·, ·) denoting the beta function [hence, the law of ξ1 is
beta(b, c)]. In this case the moments are finite and given by

μ = �(c + b) − �(c),

ν = �(c + b) − �(b),

σ 2 = � ′(c) − � ′(c + b),

where �(x) = �′(x)/�(x) denotes the logarithmic derivative of the gamma func-
tion. Therefore, as n → ∞,

Xn − μ−1 logn

(μ−3σ 2 logn)1/2
d→ normal(0,1).

Above that, Zn
d→ Z with Z having distribution

P{Z = k} = �(c + b)

μ�(b)

�(k + b)

k�(k + b + c)
, k = 1,2, . . . .

The number of empty boxes Kn,0 converges in distribution and in the mean to a
random variable K∞,0 with some nondegenerate distribution. For b �= 1 an explicit
form of the limiting distribution is still a challenge. For b = 1 Proposition 5.1 gives
the generating function

EsK∞,0 = �(1 + c)�(1 + c − cs)

�(1 + 2c − cs)
, s ∈ [0,1].

In particular, for integer c the distribution of K∞,0 is the convolution of c geomet-
ric distributions with parameters k−1(k + c), k = 1,2, . . . , c.

EXAMPLE 2.6. Suppose ξ̄ has distribution function

P{ξ̄ ≤ x} = 1

1 − logx
, x ∈ (0,1).

Then the condition (3) holds with α = 1 and μ = ∞. Since

P{− log ξ > x} = − log(1 − e−x)

1 − log(1 − e−x)
, x ≥ 0,

for x → ∞ we have P{− log ξ > x} ∼ e−x , whence ν < ∞. Therefore, as n → ∞,

(log logn)2

logn
Xn − log logn − log log logn(6)

converges in distribution to the spectrally negative 1-stable law with characteristic
function (4). Since P{− log ξ̄ > x} = (x + 1)−1 holds for x > 0, the normalizing
constants in (6) can be calculated in the same way as in [20], Proposition 2. Above
that,

log logZn

log logn

d→ uniform[0,1] and Kn,0
d→ δ0.
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EXAMPLE 2.7. For ξ̄ with distribution

P{ξ̄ ≤ x} = − log(1 − x)

1 − log(1 − x)
, x ∈ (0,1),

we have σ 2 < ∞ but ν = ∞, hence, Theorem 2.3 is not applicable.

3. Compositions, Markov chains and recursions. Weak composition C∗
n

can be identified with a path of a time-homogeneous nonincreasing Markov
chain Q∗

n on integers which start at n, terminate at 0 and have nonnegative in-
teger decrements equal to the parts of C∗

n . Similarly, composition Cn can be iden-
tified with the path of a Markov chain Qn, whose decrements are positive until
absorbtion at state 0. For fixed n, in terms of “balls-in-boxes,” Q∗

n(k) is the num-
ber of exponential points which fall outside the first k spacings induced by (Si),
and Qn(k) is the number of exponential points which fall outside the first k spac-
ings containing at least one of Ej , for k = 0,1, . . . .

Following terminology from [14], the transition probabilities are determined by
the decrement matrices

q∗(n :m) :=
(

n

m

)
E[ξn−mξ̄m], m = 0, . . . , n,(7)

q(n :m) :=
(

n

m

)
E[ξn−mξ̄m]
1 − E[ξ̄ n] , m = 1, . . . , n,(8)

which specify the probability distribution of the first part of C∗
n , respectively, Cn.

By this representation, q∗(n :m) and q(n :m) are the transition probabilities from
n ≥ 0 to n − m for the Markov chains Q∗

n and Qn, respectively.
Introduce the total frequency of boxes whose indices are larger than j ,

ζj := ξ̄1 · · · ξ̄j .

From the construction of C∗
n it is clear that

P{Q∗
n(j) = n − m} =

(
n

m

)
E[ζ n−m

j (1 − ζj )
m],(9)

which is the multistep generalization of (7). Also,

P{K∗
n > k} = P{Q∗

n(k) > 0} = E[1 − (1 − ζk)
n].(10)

The variables we are interested in have obvious interpretation via the Markov
chains. Thus, the absorbtion time Q∗

n, that is, the number of steps the chain needs
to approach 0 is K∗

n , and the absorption time of Qn is Kn.
The Markov property leads to distributional recursions

K∗
0 := 0, K∗

n
d= K∗

A∗
n
+ 1, n ∈ N,(11)



1642 A. V. GNEDIN, A. M. IKSANOV, P. NEGADAJLOV AND U. RÖSLER

and

K0 = 0, Kn
d= KAn + 1, n ∈ N,(12)

where A∗
n is assumed independent of {K∗

j : j ∈ N} and A∗
n

d= Q∗
n(1); An is inde-

pendent of {Kj : j ∈ N} and An
d= Qn(1). So the law of A∗

n is q∗(n : ·) and the law
of An is q(n : ·).

Now let Vn be the number of balls that fall to the right from the first
empty box. For instance, for weak compositions (1,2,1,0,2,0,0,3,0,0, . . .),
(1,2,1,2,3,0,0, . . .) and (0,1,2,1,2,3,0,0, . . .), the value of V9 is 5,0 and 9,
respectively. Then

K0,0 = 0, Kn,0
d= KVn,0 + 1{Vn>0}, n ∈ N,(13)

where on the right-hand side Vn is independent of {Kn,0 :n ∈ N}. Here and below,
1{···} is 1 if · · · holds true and is 0 otherwise. Furthermore,

K∗
0 = 0, K∗

n
d= K∗

Vn
+ Wn − 1{Vn=0}, n ∈ N,(14)

where on the right-hand side (Vn,Wn) are independent of {K∗
n :n ∈ N}. Finally, we

remark that

Kn,0
d= KA∗

n,0 + 1{A∗
n=n}, n ∈ N,(15)

where A∗
n is independent of {Kn,0 :n ∈ N}.

The chain Qn visits a given state m with the same probability as Q∗
n. We denote

this probability by

g(n,m) := P{Q∗
n(0) = m} +

∞∑
j=1

P{Q∗
n(j) = m,Q∗

n(j − 1) �= m}

=
∞∑

j=0

P{Qn(j) = m}.

In principle, g can be computed from (9), but there is a simpler and more general
formula which involves only E[1 − ξ̄ k], k = m, . . . , n; see [14], Theorem 9.2.

It was shown in [10], Proposition 5, that under the assumption μ < ∞

lim
n→∞g(n,m) = 1 − Eξ̄m

μm
(16)

and the same argument4 allows one to show that limn→∞ g(n,m) = 0 if μ = ∞.

4The proof on top of [10], page 86, must be corrected by changing n − m to n − m + 1.
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4. Index of the last occupied box and a proof of Theorem 2.1. By results
of the renewal theory (which we summarize in Proposition A.1), it is enough to
show the equivalence

K∗
n − bn

an

d→ X ⇐⇒ Nlogn − bn

an

d→ X,(17)

where X is a random variable with a proper and nondegenerate probability distri-
bution F , and Nt is as in (2). Assuming that the convergence in the left-hand side
of (17) holds with an → ∞, we have for y > 0

P

{
K∗

n − bn

an

> x

}
= P

{
NEn,n − bn

an

> x

}
≤ P

{
Nlogn+y − bn

an

> x

}
P{En,n − logn ≤ y}

+ P{En,n − logn > y}.
By subadditivity of the number of renewals, Nlogn+y does not exceed stochasti-

cally the sum Nlogn + N ′
y with independent terms and N ′

y
d= Ny , hence, we can

estimate the above further as

≤ P

{
Nlogn − bn

an

+ N ′
y

an

> x

}
P{En,n − logn ≤ y} + P{En,n − logn > y}.

By the selection principle, there exists an increasing subsequence (nk) such that the
variable (Nlognk

− bnk
)/ank

converges weakly to some measure F ′, say. Recalling
the convergence of En,n− logn and sending y to ∞, we have F(x,∞) ≤ F ′(x,∞)

at all joint continuity points of F(x,∞) and F ′(x,∞).
Similarly, for y < 0,

P

{
NEn,n − bn

an

> x

}
≥ P

{
Nlogn+y − bn

an

> x

}
P{En,n − logn > y}

≥ P

{
Nlogn − bn

an

− N ′−y

an

> x

}
P{En,n − logn > y}.

Letting again n → ∞ along (nk) and then sending y to −∞, we have F(x,∞) ≥
F ′(x,∞) at all joint continuity points of F and F ′. Therefore, F = F ′ and since

the limit does not depend on subsequence, we conclude that (Nlogn − bn)/an
d→ X.

Obviously the number of balls outside the first box, A∗
n, goes to ∞ a.s., which

together with an application of (11) implies that K∗
n cannot converge in distribu-

tion if no scaling or centering is imposed. Nor can K∗
n − bn, for any unbounded

sequence bn > 0. Indeed, if the convergence were the case, from the convergence
of En,n − logn and a.s. monotonicity of Nt would follow that Nlogn − bn were
bounded in probability, which is known to be false. Following the same line of
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argument, one can prove that (K∗
n − bn)/an also cannot converge in distribution

if an is either bounded or unbounded but does not go to ∞.
To establish the result in the reverse direction, we prefer to exploit the multi-

plicative form of renewal process. For each ε > 0 define

M(ε)
n := inf{k ≥ 1 :nξ̄1ξ̄2 · · · ξ̄k ≤ ε}, n ∈ N,

and notice that M
(1)
n = Nlogn. Assume that (M

(1)
n −bn)/an

d→ X, where X is a ran-
dom variable with a proper and nondegenerate distribution F . By Proposition A.1
from the Appendix, F is continuous and an slowly varies. Also, Proposition A.1
provides an explicit form of bn. Using this, we conclude that (M

(ε)
n −bn)/an

d→ X,
no matter what ε is.

For fixed x ∈ R and n sufficiently large put kn := �anx + bn�. Since for large n

E[1 − (1 − ζkn)
n] ≥ E[1 − (1 − ζkn)

n1(ζkn > ε/n)]
≥ (

1 − (1 − ε/n)n
)
P

{
M(ε)

n > kn

}
,

letting in (10) first n → ∞ and then ε → 0, we obtain lim infn→∞ P{K∗
n > kn} ≥

F(x,∞). On the other hand, for large n,

E[1 − (1 − ζkn)
n] ≤ (

1 − (1 − ε/n)n
)
P

{
M(ε)

n ≤ kn

} + P
{
M(ε)

n > kn

}
.

Sending in (10) first n → ∞ and then ε → ∞, we obtain lim supn→∞ P{K∗
n >

kn} ≤ F(x,∞). Combining the lower and upper limit, we conclude that (K∗
n −

bn)/an
d→ X, as desired.

5. The number of empty boxes and a proof of Theorem 2.2. In the setting

of GEM distribution, that is, when ξ
d= beta(1, θ), the distribution of the number

Kn,r of boxes occupied by exactly r balls is asymptotically Poisson(θ/r), for every
r > 0. See, for example, [1], Theorem 4.17, where the fact appears in connection
with the cycle structure of random θ -biased permutations. Quite unexpectedly, the
limit law of Kn,0 is not Poisson. In the spirit of discussion after Theorem 2.2,
the limit variable may be interpreted in terms of the Poisson process �1 (boxes)
of intensity (θ/x) dx, x ∈ R+, and another independent rate-1 Poisson process �2
(balls) on R+: K0,∞ is the number of gaps in �1 that are to the right of the leftmost
atom of �2 and do not contain points of �2.

PROPOSITION 5.1. If ξ has beta(1, θ) distribution (θ > 0), then Kn,0 con-
verges in distribution to a variable K∞,0 with

EsK∞,0 = �(1 + θ)�(1 + θ − θs)

�(1 + 2θ − θs)
, s ∈ [0,1],(18)

which is the generating function of a mixed Poisson distribution with random pa-
rameter θ | log ξ |.
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PROOF. For j = 1,2, . . . let Mj
d= geometric(j/(θ + j)) be independent ran-

dom variables. A key fact is the representation

Kn,0
d= (M1 − 1)+ + · · · + (Mn−1 − 1)+ + Mn.(19)

To prove this, one needs to set Mj = #{k :Sk ∈ (En−j,n,En−j+1,n)}, j =
1, . . . , n (with the convention E0,n = 0), which is the number of points of a
rate-θ Poisson process which fall between consecutive order statistics. The asser-
tion about the joint distribution of Mj ’s follows from the independence property
of the Poisson process and the observation that the differences En,n − En−1,n,

En−1,n − En−2,n, . . . ,En,1 − En,0 are independent exponential variables with
rates 1,2, . . . , n. Now, counting the number of empty gaps (Sk, Sk+1) which fit
in (En−j,n,En−j+1,n), we see that this is Mn for j = n, and (Mj − 1)+ for
j = 1, . . . , n − 1.

Passing to generating functions, (19) becomes

EsKn,0 = n

n + θ − θs

n−1∏
j=1

j (j + 2θ − θs)

(j + θ)(j + θ − θs)

and (18) follows by sending n → ∞ and evaluating the infinite product in terms
of the gamma function [25]. The generating function of the stated mixed Poisson
distribution is calculated by recalling that the generating function of Poisson(u) is
e−u(1−s) and that the Mellin transform of beta(1, θ) is Eξv = θB(θ,1+v), whence

E
[
exp

(
θ(1 − s) log ξ

)] = θB(θ,1 + θ − θs),

which is the same as (18). �

The proof of Theorem 2.2 will exploit the poissonization technique, a well-
known approach that goes back at least to Kac [22] (see also [12, 23] for the ap-
plication of this technique to the balls-in-boxes scheme).

We shall first consider a sampling scheme in which exponential points E1,E2,

. . . are thrown at the epochs of an independent Poisson process {�(t) : t ≥ 0}
with intensity one. After establishing convergence of K�(t),0, we shall turn to that
of Kn,0.

PROOF OF THEOREM 2.2. (a) Convergence in the Poisson model. For n,
i ∈ N0 and t ≥ 0 set a

(i)
n := P{Kn,0 = i},

f (i)(t) :=
∞∑

k=1

tk

k!a
(i)
k and g(i)(t) := e−t f (i)(t).

Notice that

g(0)(t) + e−t = P
{
K�(t),0 = 0

}
, g(i)(t) = P

{
K�(t),0 = i

}
.
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The equality of distributions (15) is equivalent to the following equalities:

a
(0)
0 = 1, a(0)

n =
n−1∑
k=0

a
(0)
k P{A∗

n = k}, n ∈ N;

a
(i)
0 = 0, a(i)

n = a(i−1)
n Eξ̄ n +

n−1∑
k=0

a
(i)
k P{A∗

n = k}, i, n ∈ N,

from which we deduce after some calculations

g(0)(t) = E
[
g(0)(t ξ̄ )

] + E[e−t ξ̄ ] − e−t − e−t
E

[
f (0)(t ξ̄ )

] =: E
[
g(0)(t ξ̄ )

] + f (t);
g(i)(t) = E

[
g(i)(t ξ̄ )

] + e−t (
E

[
f (i−1)(t ξ̄ )

] − E
[
f (i)(t ξ̄ )

])
, i ∈ N.

Fix any t0 ∈ R and define

f1(t) := 1(t > t0)
(
E[exp(−et ξ̄ )] − exp(−et )

)
,

f2(t) := 1(t ≤ t0)
(
E[exp(−et ξ̄ )] − exp(−et )

)
,

f3(t) := 1(t > t0) exp(−et )E
[
f (0)(et ξ̄ )

]
,

f4(t) := 1(t ≤ t0) exp(−et )E
[
f (0)(et ξ̄ )

]
.

Since g(0) is bounded and g(0)(0) = 0,

g(0)(et ) =
∫

R

f (et−u) d

( ∞∑
n=0

P{Sn ≤ u}
)
.

If it were shown that fj , j = 1,2,3,4, was directly Riemann integrable (dRi)
on R, then since f (et ) = f1(t) + f2(t) − f3(t) − f4(t), we could apply the key
renewal theorem to conclude that

lim
t→∞P

{
K�(t),0 = 0

} = lim
t→∞g(0)(et )

(20)

= 1

μ

∫ ∞
0

f (t)

t
dt = 1 − 1

μ

∞∑
j=1

Eξ̄ j

j
P{Kj,0 = 0}.

We will only prove that f3 and f4 are dRi, the analysis of f1 and f2 being similar.
Since f3 and f4 are continuous and positive on the sets {t ≤ t0} and {t > t0},
respectively, it suffices to find dRi majorants. We have

f3(t) ≤ 1(t > t0)
(
E

[
exp

(−et (1 − ξ̄ )
)] − exp(−et )

)
≤ 1(t > t0)E

[
exp

(−et (1 − ξ̄ )
)] =: f5(t),

f4(t) ≤ 1(t ≤ t0)
(
E

[
exp

(−et (1 − ξ̄ )
)] − exp(−et )

)
≤ 1(t ≤ t0)

(
1 − exp(−et )

) =: f6(t).
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The functions f5 and f6 are dRi, since they are bounded, monotone on the sets
{t ≤ t0} and {t > t0}, respectively, and integrable. Integrability of f5 follows from
the condition ν < ∞. This completes the proof of (20).

Arguing in the same manner as for the case i = 0, we conclude that for i ∈ N

lim
t→∞P

{
K�(t),0 = i

} = lim
t→∞g(i)(et ) = 1

μ

∫ ∞
0

e−t (Ef (i−1)(t ξ̄ ) − Ef (i)(t ξ̄ ))

t
dt

= 1

μ

∞∑
j=1

Eξ̄ j

j
(P{Kj,0 = i − 1} − P{Kj,0 = i}).

Assume now that μ = ∞ and ν < ∞. It suffices to prove that, as t → ∞,
g(0)(t) = e−t ∑∞

k=0
tk

k!a
(0)
k → 1. Since g(0)(0) = 1, g(0) is bounded and satisfies

g(0)(t) = E
[
g(0)(t ξ̄ )

] − e−t
E

[
f (0)(t ξ̄ )

]
,

we conclude that

g(0)(et ) = 1 −
∫

R

exp(et−u)E
[
f (0)(et−uξ̄ )

]
d

( ∞∑
n=0

P{Sn ≤ u}
)
.

In the same way as in the first part of the proof we check that the key renewal
theorem applies to yield

lim
t→∞g(0)(et ) = 1 − 1

μ

∫ ∞
0

e−u
E[f (0)(uξ̄ )]

u
du = 0

(the last integral converges in view of the condition ν < ∞). Thus, we have already

proved that, as t → ∞, K�(t),0
d→ K∞,0. Notice that, if μ < ∞, then

EK∞,0 =
∞∑
i=1

P{K∞,0 ≥ i} = 1

μ

∞∑
i=1

∞∑
j=1

Eξ̄ j

j
P{Kj,0 = i − 1} = 1

μ

∞∑
j=1

Eξ̄ j

j
= ν

μ
.

(b) Depoissonization. For any fixed ε ∈ (0,1) and x > 0, we have

P
{
K�(t),0 > x

}
≤ P

{
K�(t),0 > x, �(1 − ε)t� ≤ �(t) ≤ �(1 + ε)t�} + P{|�(t) − t | > εt}

≤ P

{
max�(1−ε)t�≤i≤�(1+ε)t�Ki,0 > x

}
+ P{|�(t) − t | > εt}

= P
{
K�(1−ε)t�,0 > x

} + P

{
K�(1−ε)t�,0 ≤ x, max�(1−ε)t�+1≤i≤�(1+ε)t�Ki,0 > x

}
+ P{|�(t) − t | > εt} := I1(t) + I2(t) + I3(t).
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Similarly,

P
{
K�(t),0 ≤ x

}
≤ P

{
K�(1+ε)t�,0 ≤ x

}
(21)

+ P

{
K�(1+ε)t�,0 > x, min�(1−ε)t�≤i≤�(1+ε)t�−1

Ki,0 ≤ x
}

+ P{|�(t) − t | > εt} := J1(t) + J2(t) + I3(t).

If exponential points E[(1−ε)t]+1, . . . ,E�(1+ε)t� fall to the left from the point
E�(1−ε)t�,�(1−ε)t�, then

max�(1−ε)t�+1≤i≤�(1+ε)t�Ki,0 ≤ K�(1−ε)t�,0

and also

K�(1+ε)t�,0 ≤ min�(1−ε)t�≤i≤�(1+ε)t�−1
Ki,0,

which means that neither the event defining I2(t), nor J2(t), can hold. Therefore,

max(I2(t), J2(t)) ≤ P

{
max[(1−ε)t]+1≤i≤[(1+ε)t]Ei > E�(1−ε)t�,�(1−ε)t�

}
= E

(
1 − (

1 − e−E�(1−ε)t�,�(1−ε)t�)�(1+ε)t�−�(1−ε)t�)
= 1 − �(1 − ε)t�

�(1 + ε)t� .

By a large deviation result (see, e.g., [2]), there exist positive constants δ1 and δ2
such that, for all t > 0,

I3(t) ≤ δ1e
−δ2t .

Select now t such that (1 − ε)t = n ∈ N. Then from the calculations above we get

P
{
K�(n/(1−ε)),0 > x

}
≤ P{Kn,0 > x} + 1 − n/[(1 + ε)n/(1 − ε)] + δ1 exp−δ2n/(1−ε) .

Sending first n ↑ ∞ and then ε ↓ 0, we obtain

lim inf
n→∞ P{Kn,0 > x} ≥ P{K∞,0 > x}

at all continuity points x of the right-hand side. The same argument applied to (21)
establishes the converse inequality for the upper limit.

(c) Convergence of the mean value. Denote by H(x) := ∑∞
k=0 P{Sk ≤ x} the

renewal function and notice that∫ ∞
0

e−sx dH(x) = 1

1 − Eξ̄ s
, s > 0.(22)



THE BERNOULLI SIEVE REVISITED 1649

We have

EKn,0 = E

[ ∞∑
k=0

(
(1 − e−Sk + e−Sk+1)n − (1 − e−Sk )n

)]

=
∫ ∞

0

(
E(1 − e−xξ)n − (1 − e−x)n

)
dH(x)

=
∫ ∞

0

(
n∑

k=1

(−1)k+1
(

n

k

)
e−kx(1 − Eξk)

)
dH(x)

(22)=
n∑

k=1

(−1)k+1
(

n

k

)
1 − Eξk

1 − Eξ̄ k
.

The conditions (5) imply that μ < ∞ and ν < ∞. The relation

lim
n→∞EKn,0 = ν/μ(23)

follows by an application of [9], Theorem 2(ii), to the formula for EKn,0. The cited
result relies upon complex analysis and requires a sufficient large domain of defin-
ition of the Mellin transforms of ξ and ξ̄ , which is secured by our assumption (5).
We perceive that (23) holds whenever ν < ∞, but have no proof of this conjecture
so far.

For n ∈ N0 set κn := EKn,0, rn := Eξ̄ n

1−Eξ̄ n . With decrement matrix as in (8), we
have, according to (15),

κ0 = 0, κn =
n∑

m=1

q(n :m)κn−m + rn, n ∈ N,

which is of the same form as [10], (11). Then κn is given by

κn =
n−1∑
m=1

g(n,m)rm + rn, n ∈ N

(compare to [10], (12)), where g(n,m) was defined on page 10. Assuming that
ν = ∞ and μ < ∞ and using (16) along with Fatou’s lemma gives

lim inf
n→∞ κn ≥

∞∑
m=1

1 − Eξ̄m

μm

Eξ̄m

1 − Eξ̄m
= 1

μ

∞∑
m=1

Eξ̄m

m
= ∞,

where the last series diverges in view of the condition ν = ∞. �

Exactly the same argument as above can be exploited for proving that Kn,0 +
· · · + Kn,r converges in distribution. However, for r ≥ 2 calculations get compli-
cated and in Proposition 5.2 we content ourselves with the case r = 1.



1650 A. V. GNEDIN, A. M. IKSANOV, P. NEGADAJLOV AND U. RÖSLER

PROPOSITION 5.2. If ν < ∞, then, as n → ∞, Kn,0 + Kn,1 converges in
distribution to a random variable K01. If also μ < ∞, then

P{K01 ≥ 1} = 1

μ

(
Eξ +

∞∑
j=2

(
Eξ̄ j

j
+ Eξ̄ j ξ

)
P{Kj,0 + Kj,1 = 0}

)
,

P{K01 ≥ i} = 1

μ

(
Eξ̄ i−2

Eξ(1 − Eξ2)

+
∞∑

j=2

(
Eξ̄ j

j
+ Eξ̄ j ξ

)
P{Kj,0 + Kj,1 = i − 1}

)
,

i = 2,3, . . . ,

and EK01 = (ν + 1)/μ, but if μ = ∞, then K01 = 0 a.s.

SKETCH OF THE PROOF. For n, i ∈ N0 and t ≥ 0 set Yn := Kn,0 + Kn,1,

f (i)(t) =
∞∑

k=2

tk

k!P{Yk = i} and g(i)(t) := e−t f (i)(t).

Use the recursion

Y0 = 0, Yn
d= YA∗

n
+ 1(A∗

n ≥ n − 1), n ∈ N,(24)

where A∗
n is independent of {Yk :k ∈ N}, to obtain

g(0)(t) = Eg(0)(t ξ̄ ) + Ee−t ξ̄ − e−t − e−t
Ef (0)(t ξ̄ )

(25)
− te−t

Eξ
(
f (0)(t ξ̄ ) + 1

);
g(i)(t) = e−t

∞∑
n=2

tnP{Yn−1 = i − 1}Eξ̄ n−1ξ

(n − 1)! + e−t g(i−1)(t)

+ E
(
f (i)(t ξ̄ ) + t ξ̄ (Eξ̄ )i−1

Eξ
)
(e−t ξ̄ − e−t − te−t ξ ).(26)

In the same way as in the proof of Theorem 2.2, we can justify using the key
renewal theorem in (25) and (26) to get a poissonized version of the result. Our de-
poissonization argument used in the proof of Theorem 2.2 works without changes.
Justification of the only step that may require explanation is as follows: the inequal-
ity Kn,0 + Kn,1 < Km,0 + Km,1, n < m implies that at least one of the exponential
points En+1, . . . ,Em falls to the right from En,n. �

6. Proof of Theorem 2.3. Assume that ν < ∞ and that (K∗
n − bn)/an con-

verges in distribution to a random variable X with some proper and nondegen-
erate probability law. According to Theorem 2.1, the latter can occur if one of
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five conditions (1)–(5) holds and also an → ∞. Notice that for each of these con-
ditions there exist distributions that satisfy it together with the condition ν < ∞
[as, e.g., in Examples 2.5 and 2.6]. By Theorem 2.2(a) and the Markov inequality,

Kn,0/an = (K∗
n −Kn)/an goes to 0 in probability. Therefore, (Kn − bn)/an

d→ X.
Using Proposition 5.2 and the Markov inequality, we conclude that (Kn − Kn,1 −
bn)/an

d→ X.
To prove the result for Wn, consider (13) and assume that there exists an in-

creasing sequence {nk :k ∈ N} such that Vnk
→ ∞. According to Theorem 2.2, we

get from (13) K∞,0
d= K∞,0 + 1, which is absurd. Thus, the sequence {Vn :n ∈ N}

is bounded in probability, which implies that

{UVn − 1(Vn = 0) :n ∈ N} is bounded in probability,(27)

as well. An appeal to (14) allows us to conclude that (Wn − bn)/an
d→ X.

Assume now that either (Kn − bn)/an, (Kn − Kn,1 − bn)/an, or (Wn − bn)/an

converges in distribution to a random variable X with some proper and nondegen-
erate probability distribution. Essentially in the same way as for K∗

n [but now using
also either the result of Theorem 2.2 or Proposition 5.2 or (27)], we can prove that

an → ∞, and the same argument as above proves that (K∗
n − bn)/an

d→ X. The
proof is complete.

7. Proof of Theorem 2.4.
Case μ < ∞. With g(n,m) defined on page 10, we have

P{Zn = m} = g(n,m)P{Am = 0}.
Since, according to (8),

P{Am = 0} = Eξm

1 − Eξ̄m
,

an appeal to (16) completes the proof of this case.
Case μ = ∞. Denote Ũ (z) := inf{z − Sn :Sn < z,n ∈ N0} the undershoot at

z > 0. For k ∈ {1,2, . . . , n} we have

P{Zn > k} = P{Ũ (En,n) > En,n − En−k,n}.(28)

Assume first that α ∈ [0,1) and for fixed ε ∈ (0,1) set kn := �nε�. Since En,n

is independent of the undershoot and tends to +∞ in probability, an appeal to [6],
Theorem 8.6.3, allows us to conclude that

Ũ (En,n)

En,n

d→ Ẑα,
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where the distribution of Ẑ0 is δ1, degenerate at point 1, and for α ∈ (0,1), Ẑα has
the beta (1 − α,α) distribution. Using the convergence of En.n − logn, we obtain
En,n/ logn → 1 in probability. Since, for x > 0,

P{En,n − En−kn,n ≤ x} = (1 − e−x)kn,

we can easily check that (En,n − En−kn,n)/ logn
d→ ε. Therefore,

En,n − En−kn,n

En,n

d→ ε.

Now the result follows from the relation

P

{
logZn

logn
> ε

}
= P{Zn > kn} (28)= P

{
Ũ (En,n)

En,n

>
En,n − En−kn,n

En,n

}
→ P{Ẑα > ε}.

Indeed, while in the case α ∈ (0,1), each ε ∈ (0,1) is a continuity point of the
distribution of Ẑα , in the case α = 0 the relation establishes the convergence in
probability logZn/ logn → 1 (notice that logZn/ logn ≤ 1 a.s.).

Consider now the remaining case α = 1. For fixed ε ∈ (0,1) set kn :=
�exp(m−1(εm(logn)))�, where m−1(·) is the increasing and continuous inverse
of m(x) = ∫ x

0 P{− log ξ̄ > y}dy, x > 0. Using again the independence of En,n and
the undershoot and exploiting [7], Theorem 6, leads to the conclusion

m(Ũ(En,n))

m(En,n)

d→ Z̃,

where the law of Z̃ is uniform[0,1]. Fix any i ∈ N. It is well known that m(x)

is slowly varying at ∞. Therefore, mi(logx) is also slowly varying at ∞, and
as s ↓ 0, mi(− log(1 − e−s)) ∼ mi(− log s), where f ∼ g means that the ratio
f/g goes to one. Applying Proposition 1.5.8 and Theorem 1.7.1′ from [6] to the
equality

E[mi(En,n)] = n

∫ ∞
0

mi(− log(1 − e−s)
)
e−ns ds

we get E[mi(En,n)] ∼ mi(logn). Similarly,

Emi(En,n − En−kn,n) ∼ mi(log kn)

∼ mi(log exp(m−1(εm(logn)))) = εimi(logn).

The last two relations (with i = 1 and i = 2) together with Chebyshev’s inequality
imply that

m(En,n)/m(logn)
d→ 1 and m(En,n − En−kn,n)/m(logn)

d→ ε.
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Consequently, m(En,n −En−kn,n)/m(En,n)
d→ ε. To finish the proof, it remains to

note that

P

{
m(logZn)

m(logn)
> ε

}
= P{Zn > kn}

(28)= P

{
m(Ũ(En,n))

m(En,n)
>

m(En,n − En−kn,n)

m(En,n)

}
→ P{Z̃ > ε}.

APPENDIX

Asymptotic behavior of the first passage time processes Nt = inf{k ≥ 1 :Sk ≥
t}, for Sk = X1 + · · · + Xk a zero-delayed random walk with positive steps, was
investigated by many authors (see, e.g., [5, 8, 18, 19]). The next proposition is a
summary of results scattered in the literature.

PROPOSITION A.1. Assume that X1 > 0 a.s. and that the distribution of X1
is nonlattice. The following assertions are equivalent:

(i) There exist functions a(t) > 0, b(t) ∈ R such that, as t → ∞, (Nt − b(t))/

a(t) converges weakly to a nondegenerate and proper probability law.
(ii) Either the distribution of X1 belongs to the domain of attraction of a stable

law, or P{X1 > x} slowly varies at ∞.

Set μ = EX1 and σ 2 = DX1.

(a) If σ 2 < ∞, then, with b(t) = μ−1t and a(t) = (μ−3σ 2t)1/2, the limiting law
is standard normal.

(b) If σ 2 = ∞ and ∫ x

0
y2

P{X1 ∈ dy} ∼ L(x) as x → ∞,

for some L slowly varying at ∞, then, with b(t) = μ−1t and a(t) = μ−3/2c(t),
where c(t) is any function satisfying

lim
t→∞ tL(c(t))/c2(t) = 1,

the limiting law is standard normal.
(c) Assume that the relation

P{X1 > x} ∼ x−αL(x) as x → ∞,(29)

where L is some function slowly varying at ∞, holds with α ∈ [1,2), and
that in the case α = 1 also μ < ∞. Then, with b(t) = μ−1t and a(t) =
μ−(α+1)/αc(t), where c(t) is any function satisfying

lim
t→∞ tL(c(t))/cα(t) = 1,
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the limiting law is α-stable with characteristic function

t �→ exp
{−|t |α�(1 − α)

(
cos(πα/2) + i sin(πα/2) sgn(t)

)}
, t ∈ R.

(d) Assume that μ = ∞ and the relation (29) holds with α = 1. Let c be
any positive function satisfying limx→∞ xL(c(x))/c(x) = 1 and set ψ(x) :=
x

∫ 1
exp(−c(x)) P{X1 ≤ y}y−1 dy. Let b(t) be any positive function satisfying

b(ψ(t)) ∼ ψ(b(t)) ∼ t . Then, with a(t) = b(t)c(b(t))/t , the limiting law is
1-stable with characteristic function

t �→ exp
{−|t |(π/2 − i log |t | sgn(t)

)}
, t ∈ R.

(e) If the relation (29) holds with α ∈ [0,1), then, with b(t) ≡ 0 and a(t) =
tα/L(t), the limiting law θα is a scaled Mittag–Leffler (exponential, if α = 0)
with moments∫ ∞

0
xnθα(dx) = n!

�n(1 − α)�(1 + nα)
, n ∈ N.

All the above statements remain valid if the continuous variable t is replaced by
discrete variable logn, n ∈ N, as has been used in this paper.

In the lattice case, when X1 assumes only positive integer values, the whole
range of possible distributional limits follow from Theorems 1.2, 1.5 and Proposi-
tion 3.1 in [21]. Although the first two of these results were formulated for other
variables, they apply to Nt as well. As in [21], the same asymptotic results are
readily extendible to the first passage time processes for random walks with posi-
tive nonlattice steps.
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