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ASYMPTOTIC NORMALITY OF PLUG-IN LEVEL
SET ESTIMATES

BY DAVID M. MASON1 AND WOLFGANG POLONIK2

University of Delaware and University of California, Davis

We establish the asymptotic normality of the G-measure of the symmet-
ric difference between the level set and a plug-in-type estimator of it formed
by replacing the density in the definition of the level set by a kernel density
estimator. Our proof will highlight the efficacy of Poissonization methods in
the treatment of large sample theory problems of this kind.

1. Introduction. Let f be a Lebesgue density on R
d , d ≥ 1. Define the level

set of f at level c ≥ 0 as

C(c) = {x :f (x) ≥ c}.
In this paper we are concerned with the estimation of C(c) for a given level c.

Such level sets play a crucial role in various scientific fields, and their estimation
has received significant recent interest in the fields of statistics and machine learn-
ing/pattern recognition (see below for more details). Theoretical research on this
topic is mainly concerned with rates of convergence of level set estimators. While
such results are interesting, they show only limited potential to be useful in practi-
cal applications. The available results do not permit statistical inference or making
quantitative statements about the contour sets themselves. The contribution of this
paper constitutes a significant step forward in this direction, since we establish the
asymptotic normality of a class of level set estimators Cn(c) formed by replac-
ing f by a kernel density estimator fn in the definition of C(c), in a sense that we
shall soon make precise.

Here is our setup. Let X1,X2, . . . be i.i.d. with distribution function F and den-
sity f , and consider the kernel density estimator of f based on X1, . . . ,Xn, n ≥ 1,

fn(x) = 1

nhn

n∑
i=1

K

(
x − Xi

h
1/d
n

)
, x ∈ R

d,

where K is a kernel and hn > 0 is a smoothing parameter. Consider the plug-in
estimator

Cn(c) = {x :fn(x) ≥ c}.
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Let G be a positive measure dominated by Lebesgue measure λ. Our interest is
to establish the asymptotic normality of

dG(Cn(c),C(c)) := G(Cn(c)�C(c))
(1.1)

=
∫

Rd
|I {fn(x) ≥ c} − I {f (x) ≥ c}|dG(x),

where A�B = (A \ B) ∪ (B \ A) denotes the set-theoretic symmetric difference
of two sets. Of particular interest is G being the Lebesgue measure λ, as well
as G = H with H denoting the measure having Lebesgue density |f (x) − c|.
The latter corresponds to the so-called excess-risk which is used frequently in the
classification literature, that is,

dH (Cn(c),C(c)) =
∫

Cn(c)�C(c)
|f (x) − c|dx.(1.2)

It is well known that under mild conditions dλ(Cn(c),C(c)) → 0 in probability
as n → ∞, and also rates of convergence have already been derived [cf. Baíllo,
Cuevas and Justel (2000), Baíllo, Cuestas-Albertos and Cuevas (2001), Cuevas,
Febrero and Fraiman (2000), Baíllo (2003) and Baíllo and Cuevas (2006)]. Even
more is known. Cadre (2006) derived assumptions under which for some μG > 0
we have √

nhndG(Cn(c),C(c)) → μG in probability as n → ∞.(1.3)

However, asymptotic normality of dG(Cn(c),C(c)) has not yet been considered.
Our main result says that under suitable regularity conditions there exist a nor-

malizing sequence {an,G} and a constant 0 < σ 2
G < ∞ such that

an,G{dG(Cn(c),C(c)) − EdG(Cn(c),C(c))} d→ σGZ as n → ∞,(1.4)

where Z denotes a standard normal random variable. In the important special cases
of G = λ the Lebesgue measure, and G = H we shall see that under suitable
regularity conditions

an,λ =
(

n

hn

)1/4

and(1.5)

an,H = (n3hn)
1/4,(1.6)

respectively.
In the next section we shall discuss further related work and relevant literature.

In Section 2 we formulate our main result, provide some heuristics for its validity,
discuss a possible statistical application and then present the proof of our result.
We end Section 2 with an example and some proposals to estimate the limiting
variance σ 2

G.
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1.1. Related work and literature. Before we present our results in detail, we
shall extend our overview of the literature on level set estimation to include regres-
sion level set estimation (with classification as a special case) as well as density
level set estimation.

Observe that there exists a close connection between level set estimation and
binary classification. The optimal (Bayes) classifier corresponds to a level set
Cψ(0) = {x :ψ(x) ≥ 0} of ψ = pf −(1−p)g, where f and g denote the Lebesgue
densities of two underlying class distributions F and G and p ∈ [0,1] defines
the prior probability for f . If an observation X falls into {x :ψ(x) ≥ 0} then
it is classified by the optimal classifier as coming from F , otherwise as com-
ing from distribution G. Hall and Kang (2005) derive large sample results for
this optimal classifier that are very closely related to Cadre’s result (1.3). In
fact, if Err(C) denotes the probability of a misclassification of a binary classi-
fier given by a set C, then Hall and Kong derive rates of convergence results for
the quantity Err(Ĉ(0)) − Err(Cψ(0)) where Ĉ is the plug-in classifier given by
Ĉ(0) = {x :pfn(x) − (1 − p)gn(x) ≥ 0} with fn and gn denoting the kernel esti-
mators for f and g, respectively. It turns out that

Err(Ĉ(0)) − Err(Cψ(0)) =
∫
Ĉ(0)�Cψ(0)

|ψ(x)|dx.

The latter quantity is of exactly the form (1.2). The only difference is, that the
function ψ is not a probability density, but a (weighted) difference of two proba-
bility densities. Similarly, the plug-in estimate is a weighted difference of kernel
estimates. Though the results presented here do not directly apply to this situa-
tion, the methodology used to prove them can be adapted to it in a more or less
straightforward manner.

Hartigan (1975) introduced a notion of clustering via maximally connected
components of density level sets. For more on this approach to clustering [see
Stuetzle (2003)], and for an interesting application of this clustering approach to
astronomical sky surveys refer to Jang (2006). Klemelä (2004, 2006a, 2008) ap-
plies a similar point of view to develop methods for visualizing multivariate density
estimates. Goldenshluger and Zeevi (2004) use level set estimation in the context
of the Hough transform, which is a well-known computer vision algorithm. Cer-
tain problems in flow cytometry involve the statistical problem of estimating a level
set for a difference of two probability densities [Roederer and Hardy (2001); see
also Wand (2005)]. Further relevant applications include detection of minefields
based on arial observations, the analysis of seismic data, as well as certain issues
in image segmentation; see Huo and Lu (2004) and references therein. Another
application of level set estimation is anomaly detection or novelty detection. For
instance, Theiler and Cai (2003) describe how level set estimation and anomaly de-
tection go along in the context of multispectral image analysis, where anomalous
locations (pixels) correspond to unusual spectral signatures in these images. Fur-
ther areas of anomaly detection include intrusion detection [e.g., Fan et al. (2001)
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and Yeung and Chow (2002)], anomalous jet engine vibrations [e.g., Nairac et
al. (1997), Desforges, Jacob and Cooper (1998) and King et al. (2002)] or medical
imaging [e.g., Gerig, Jomier and Chakos (2001) and Prastawa et al. (2003)] and
EEG-based seizure analysis [Gardner et al. (2006)]. For a recent review of this
area see Markou and Singh (2003).

The above list of applications of level set estimation clearly motivates the need
to understand the statistical properties of level set estimators. For this reason there
has been lot of recent investigation into this area. Relevant published work (not
yet mentioned above) include Hartigan (1987), Polonik (1995), Cavalier (1997),
Tsybakov (1997), Walther (1997), Baíllo, Cuevas and Justel (2000), Baíllo,
Cuestas-Albertos and Cuevas (2001), Cuevas, Febrero and Fraiman (2000), Baíllo
(2003), Tsybakov (2004), Steinwart, Hush and Scovel (2004, 2005), Gayraud and
Rousseau (2005), Willett and Novak (2005, 2006), Cuevas, Gonzalez-Manteiga
and Rodriguez-Casal (2006), Scott and Davenport (2006), Scott and Novak (2006),
Vert and Vert (2006) and Rigollet and Vert (2008).

Finally we mention a problem closely related to that of level set estimation.
This is the problem of the estimation of the support of a density, when the support
is assumed to be bounded. It turns out that the methods of estimation and the
techniques used to study the asymptotic properties of the estimator are very similar
to those of level set estimation. Refer especially to Biau, Cadre and Pelletier (2008)
and the references therein.

2. Main result. The rates of convergence in our main result depend on a reg-
ularity parameter 1/γg that describes the behavior of the slope of g at the boundary
set β(c) = {x ∈ R

d :f (x) = c} [see assumption (G) below]. In the important spe-
cial case of G = λ the slope of g is zero, and this implies 1/γg = 0 (or γg = ∞).
For G = H our assumptions imply that the slope of g close to the boundary is
bounded away from zero and infinity which says that 1/γg = 1.

Here is our main result. The indicated assumptions are quite technical to state
and therefore for the sake of convenience they are formulated in Section 2.4 below.
In particular, the integer k ≥ 1 that appears in the statement of our theorem is
defined in (B.ii).

THEOREM 1. Under assumptions (D.i)–(D.ii), (K.i)–(K.ii), (G), (H) and
(B.i)–(B.ii), we have as n → ∞ that

an,G{dG(Cn(c),C(c)) − EdG(Cn(c),C(c))} d→ σGZ,(2.1)

where Z denotes a standard normal random variable, and

an,G =
(

n

hn

)1/4(√
nhn

)1/γg .(2.2)

The constant 0 < σ 2
G < ∞ is defined as in (2.57) in the case d ≥ 2 and k = 1; as

in (2.61) in the case d ≥ 2 and k ≥ 2; and as in (2.62) in the case d = 1 and k ≥ 2.

(The case d = 1 and k = 1 cannot occur under our assumptions.)
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REMARK 1. Write

δn(c) = an,G{dG(Cn(c),C(c)) − EdG(Cn(c),C(c))}.
A slight extension of the proof of our theorem shows that if c1, . . . , cm, m ≥ 1, are
distinct positive numbers, each of which satisfies the assumptions of the theorem,
then

(δn(c1), . . . , δn(cm))
d→ (σ1Z1, . . . , σmZm),

where Z1, . . . ,Zm are independent standard normal random variables and σ1, . . . ,

σm are as defined in the proof of the theorem.

REMARK 2. In Section 2.7 we provide an example when the variance σ 2
G does

have a closed form convenient for calculation. Such a closed form cannot be given
in general, Section 2.7 also discusses some methods to estimate σ 2

G from the data.

2.1. Heuristics. Before we continue with our exposition, we shall provide
some heuristics to indicate why an = ( n

hn
)1/4 is the correct normalizing factor

in (1.5), that is, we consider the case G = λ, or γg = ∞. This should help the
reader to understand why our theorem is true. It is well known that under certain
regularity conditions we have√

nhn{fn(x) − f (x)} = OP (1) as n → ∞.

Therefore the boundary of the set Cn(c) can be expected to fluctuate in a band B
with a width (roughly) of the order OP ( 1√

nhn
) around the boundary set β(c) =

{x :f (x) = c}. For notational simplicity we shall write β = β(c). Partitioning B
by N = O( 1√

nhnhn
) = O( 1√

nh3
n

) regions Rk, k = 1, . . . ,N, of Lebesgue measure

λ(Rk) = hn, we can approximate dλ(Cn(c),C(c)) as

dλ(Cn(c),C(c)) ≈
N∑

k=1

∫
Rk

|I {fn(x) ≥ c} − I {f (x) ≥ c}|dx =:
N∑

k=1

Yn,k.

Here we use the fact that the band B has width 1√
nhn

. Writing

Yn,k =
∫
Rk

	n(x) dx

with

	n(x) = |I {fn(x) ≥ c} − I {f (x) ≥ c}|,(2.3)

we see that

Var(Yn,k) =
∫
Rk

∫
Rk

cov(	n(x),	n(y)) dx dy = O(λ(Rk)
2) = O(h2

n),
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where the O-terms turns out to be exact. Further, due to the nature of the kernel
density estimator the variables Yn,k can be assumed to behave asymptotically like
independent variables, since we can choose the regions Rk to be disjoint. Hence,
the variance of dλ(Cn(c),C(c)) can be expected to be of the order Nh2

n = (hn

n
)1/2,

which motivates the normalizing factor an = ( n
hn

)1/4.

2.2. A connection to Lp-rates of convergence of kernel density estimates. The
following discussion on Lp-rates, p ≥ 1, of convergence of kernel density esti-
mates implicitly provides another heuristic for our result.

Consider the case G = Hp−1, where Hp−1 denotes the measure with Radon–
Nikodym derivative hp−1(x) = |f (x) − c|p−1 with p ≥ 1. Note that H2 = H

with H from above. Then we have the identity∫ ∞
0

Hp−1(Cn(c)�C(c)) dc = 1

p

∫
Rd

|fn(x) − f (x)|p dx, p ≥ 1.(2.4)

The proof is straightforward [see Mason and Polonik (2008), Appendix, Detail 1].
The case p = 1 gives the geometrically intuitive relation∫ ∞

0
λ(Cn(c)�C(c)) dc =

∫ ∞
0

∫
Cn(c)�C(c)

dx dc =
∫

Rd
|fn(x) − f (x)|dx.

Assuming f to be bounded, we split up the vertical axis into successive intervals
�(k), k = 1, . . . ,N of length ≈ 1√

nhn
with midpoints ck . Approximate the inte-

gral (2.4) by

1

p

∫
Rd

|fn(x) − f (x)|p dx =
∫ ∞

0
Hp−1(Cn(c)�C(c)) dc

≈
N∑

k=1

∫
�(k)

Hp−1(Cn(c)�C(c)) dc

≈ 1√
nhn

N∑
k=1

Hp−1(Cn(ck)�C(ck)).

Utilizing the 1/
√

nhn-rate of fn(x) we see that the last sum consists of (roughly)
independent random variables. Assuming further that the variance of each (or of
most) of these random variables is of the same order a−2

n,p = ( n
hn

)−1/2(nhn)
−(p−1)

[to obtain this, apply our theorem with γg = 1/(p−1)] we obtain that the variance
of the sum is of the order

a−2
n√
nhn

=
(

1

nh
1−1/p
n

)p

.

In other words, the normalizing factor of the Lp-norm of the kernel density es-

timator in R
d can be expected to be (nh

1−1/p
n )p/2 = (nhn)

p/2h
−1/2
n . In the case
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p = 2 this gives the normalizing factor nhnh
−1/2
n = nh

1/2
n , and this coincides with

the results from Rosenblatt (1975). In the special case d = 2 these rates can also
be found in Horvath (1991).

2.3. Possible application to online testing. Suppose that when a certain in-
dustrial process is working properly it produces items, which may be considered
as i.i.d. R

d random variables X1,X2, . . . with a known density function f . On
the basis of a sample size n taken from time to time from the production we can
measure the deviation of the sample X1,X2, . . . ,Xn from the desired distribu-
tion by looking at the discrepancy between λ(Cn(c)�C(c)) and its expected value
Eλ(Cn(c)�C(c)). The value c may be chosen so that

P {X ∈ C(c)} =
∫
{f (x)≥c}

f (x) dx = α,

some typical values being α = 0.90,0.95 and 0.99. We may decide to shut down
the process and look for production errors if

σ−1
λ

(
n

hn

)1/4

|λ(Cn(c)�C(c)) − Eλ(Cn(c)�C(c))| > 1.96.(2.5)

Otherwise as long as the estimated level set Cn(c) does not deviate too much from
the target level set C(c) in which fraction α of the data should lie if the process
is functioning properly, we do not disrupt production. Our central limit theorem
tells us that for large enough sample sizes n the probability of the event in (2.5)
would be around 0.05, should, in fact, the process be working as it should. Thus
using this decision rule, we make a type I error with roughly probability 0.05 if we
decide to stop production, when it is actually working fine. Sometimes one might
want to replace the Cn(c) in the first λ(Cn(c)�C(c)) in (2.5) by Cn(cn), where∫

{fn(x)≥cn}
fn(x) dx = α.

A mechanical engineering application where this approach seems to be of some
value is described in Desforges, Jacob and Cooper (1998). This application con-
siders gearbox fault data, the collection of which is described in that paper. In fact,
two classes of data were collected, corresponding to two states: a gear in good
condition and a gear in bad condition, respectively. Desforges, Jacob and Cooper
indicate a data analysis approach based on kernel density estimation to recognize
the faulty condition. The idea is to calculate a kernel density estimator gm based
on the data X1, . . . ,Xm from the gear in good condition, and then this estimator
is evaluated at the data Y1, . . . , Yn that are sampled under a bad gear condition.
Desforges, Jacob and Cooper then examine the level sets of gm in which the faulty
data lie. One of their ideas is to use 1

n

∑n
i=1 gm(Yi), to detect the faulty condition.

Their methodology is ad hoc in nature and no statistical inference procedure is
proposed.
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Our test procedure could be applied as follows by using f = gm (i.e., we
are conditioning on X1, . . . ,Xm). Set C(c) := {x :gm(x) ≥ c}, for an appropriate
value of c, and find the corresponding set Cn(c) based on Y1, . . . , Yn. Then check
whether (2.5) holds. If yes, then we can conclude with at significance level 0.05
that the Y1, . . . , Yn stem from a different distribution than the X1, . . . ,Xm. Observe
that in this setup we calculate Eλ(Cn(c)�C(c)) as well as σ 2

λ by using gm as the
underlying distribution. (In practice we may have to estimate these two quanti-
ties; see Section 2.7.) How this approach would work in practice is the subject of
a separate paper.

2.4. Assumptions and notation.

ASSUMPTIONS ON THE DENSITY f .

(D.i) f is in C2(Rd) and its partial derivatives of order 1 and 2 are bounded;
(D.ii) infx∈Rd f (x) < c < supx∈Rd f (x).
Notice that (D.i) implies the existence of positive constants M and A with

sup
x

f (x) ≤ M < ∞(2.6)

and

1

2

d∑
i=1

d∑
j=1

sup
x∈R

∣∣∣∣∂
2f (x)

∂xi ∂xj

∣∣∣∣ =: A < ∞.(2.7)

[Condition (D.i) implies that f is uniformly continuous on R
d from which (2.6)

follows.]

ASSUMPTIONS ON K .

(K.i) K is a probability density function having support contained in the closed
ball of radius 1/2 centered at zero and is bounded by a constant κ .

(K.ii)
∑d

i=1
∫
Rd tiK(t) dt = 0.

Observe that (K.i) implies that∫
Rd

|t |2|K(t)|dt = κ1 < ∞.(2.8)

ASSUMPTIONS ON THE BOUNDARY β = {x :f (x) = c} FOR d ≥ 2.

(B.i) For all (y1, . . . , yd) ∈ β ,

f ′(y) = f ′(y1, . . . , yd) =
(

∂f (y1, . . . , yd)

∂y1
, . . . ,

∂f (y1, . . . , yd)

∂yd

)
�= 0.

Define

Id =
{ [0,2π), d = 2,

[0, π]d−2 × [0,2π), d > 2.
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The d − 1 sphere

Sd−1 = {x ∈ R
d : |x| = 1}

can be parameterized by [e.g., see Lang (1997)]

x(θ) = (x1(θ), . . . , xd(θ)), θ ∈ Id,

where

x1(θ) = cos(θ1),

x2(θ) = sin(θ1) cos(θ2),

x3(θ) = sin(θ1) sin(θ2) cos(θ3),

...

xd−1(θ) = sin(θ1) · · · sin(θd−2) cos(θd−1),

xd(θ) = sin(θ1) · · · sin(θd−2) sin(θd−1).

(B.ii) We assume that the boundary β can be written as

β =
k⋃

j=1

βj with inf{|x − y| :x ∈ βj , y ∈ βl} > 0, if j �= l,

where each βj is diffeomorphic to Sd−1, meaning it is parameterized by a function

y(θ) = (y1(θ), . . . , yd(θ)), θ ∈ Id,

that is a function (depending on j ) of the above parameterization x(θ) of Sd−1,
which is 1–1 on Jd , the interior of Id , with

∂y(θ)

∂θi

=
(

∂y1(θ)

∂θi

, . . . ,
∂yd(θ)

∂θi

)
�= 0, θ ∈ Jd.

We further assume that for each j = 1, . . . , k and i = 1, . . . , d, the function ∂y(θ)
∂θi

is continuous and uniformly bounded on Jd .

ASSUMPTIONS ON THE BOUNDARY β FOR d = 1.

(B.i) inf
1≤i≤k

|f ′(zi)| =: ρ0 > 0.

(B.ii) β = {z1, . . . , zk}, k ≥ 2.

[Condition (B.i) and f ∈ C2(R) imply that the case k = 1 cannot occur when
d = 1.]
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ASSUMPTIONS ON G. (G) The measure G has a bounded continuous Radon–
Nikodym derivative g w.r.t. Lebesgue measure λ. There exists a constant 0 < γg ≤
∞ such that the following holds.

In the case d ≥ 2 there exists a function g(1)(·, ·) bounded on Id × Sd−1 such
that for each j = 1, . . . , k, for some cj ≥ 0,

sup
|z|=1

sup
θ∈Id

∣∣∣∣g(y(θ) + az)

a1/γg
− cjg

(1)(θ, z)

∣∣∣∣ = o(1) as a ↘ 0,

with 0 < sup|z|=1 supθ∈Id
|g(1)(θ, z)| < ∞, where y(θ) is the parametrization per-

taining to βj , with at least one of the cj strictly positive.
In the case d = 1 there exists a function g(1)(·) with 0 < |g(1)(zj )| < ∞, j =

1, . . . , k such that for each j = 1, . . . , k for some cj ≥ 0,

sup
|z|=1

∣∣∣∣g(zj + az)

a1/γg
− cjg

(1)(zj )

∣∣∣∣ = o(1) as a ↘ 0,

with at least one of the cj strictly positive. By convention, in the above statement
1
∞ = 0.

ASSUMPTIONS ON hn . As n → ∞,

(H)
√

nh
1+2/d
n → γ , with 0 ≤ γ < ∞ and nhn/ logn → ∞, where γ = 0 in the

case d = 1.

Discussion of the assumptions and some implications.

Discussion of assumption (G). Measures G of particular interest that satisfy
assumption (G) are given by g(x) = |f (x) − c|p with p ≥ 0, and also by g(x) =
f (x). The latter of course leads to the F -measure of the symmetric distance. The
former has connections to the Lp-norm of the kernel density estimator (see the
discussion in Section 2.2). As pointed out above in the Introduction, the choice
p = 1 is closely connected to the excess risk from the classification literature. The
choice p = 0 yields the Lebesgue measure of the symmetric difference.

Assumptions (B.i) and (D.i) imply that (G) holds for |f (x)−c|p with 1/γg = p.

For g = f we have 1/γg = 0 [notice that by (D.ii) we have c > 0].

Discussion of smoothness assumptions on f . Our smoothness assumptions
on f imply that f has a γ -exponent with γ = 1 at the level c, that is, we have

F {x ∈ R
d : |f (x) − c| ≤ ε} ≤ Cε.

[This fact follows from Lebesgue–Bosicovich theorem; e.g., see Cadre (2006).]
This type of assumption is common in the literature of level set estimation. It was
used first by Polonik (1995) in the context of density level set estimation.
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Implications of (B) in the case d ≥ 2. In the following we shall record some
conventions and implications of assumption (B), which are needed in the proof of
our theorem. Using the notation introduced in assumption (B), we define ∂y(θ)

∂θi
for

points on the boundary of Id to be the limit taken from points in Jd . In this way,
we see that each vector ∂y(θ)

∂θi
is continuous and bounded on the closure I d of Id .

Notice in the case d ≥ 2 that for each j = 1, . . . , k and i = 1, . . . , d − 1,

df (y(θ))

dθi

= ∂f (y(θ))

∂y1

∂y1(θ)

∂θi

+ · · · + ∂f (y(θ))

∂yd

∂yd(θ)

∂θi

= 0,(2.9)

where y(θ) is the parameterization pertaining to βj . This implies that the unit
vector

u(θ) = (u1(θ), . . . , ud(θ)) := f ′(y(θ))

|f ′(y(θ))|(2.10)

is normal to the tangent space of βj at y(θ).
From assumption (B.ii) we infer that β is compact, which when combined

with (B.i) says that

inf
(y1,...,yd )∈β

|f ′(y1, . . . , yd)| =: ρ0 > 0.(2.11)

In turn, assumptions (D.ii), (B.i) and (B.ii), when combined with (2.11), imply that
for each 1 ≤ i ≤ d − 1, the vector

∂u(θ)

∂θi

=
(

∂u1(θ)

∂θi

, . . . ,
∂ud(θ)

∂θi

)

is uniformly bounded on Id .
Consider for each j = 1, . . . , k, with y(θ) being the parameterization pertaining

to βj , the absolute value of the determinant,

∣∣∣∣∣∣∣∣∣∣∣∣∣
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y(θ)

∂θ1
...

∂y(θ)

∂θd−1
u(θ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
=: ι(θ).(2.12)

We can infer from (B.ii) that we have

sup
θ∈Id

ι(θ) < ∞.(2.13)
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2.5. Proof of Theorem 1 in the case d ≥ 2. We shall only present a detailed
proof for the case k = 1. However, at the end we shall describe how the proof of
the general k ≥ 1 case goes. Thus for ease of notation we shall drop the subscript j

in the above assumptions. Also we shall assume c1 = 1 in assumption (G).
We shall first show that with a suitably defined sequence of centerings bn, we

have

(n/hn)
1/4(√

nhn

)1/γg {dG(Cn(c),C(c)) − bn} d→ σZ(2.14)

for some σ 2 > 0. (For the sake of notational convenience, we write in the proof
σ 2 = σ 2

G.) From this result we shall infer that our central limit theorem (2.1) holds.
The asymptotic variance σ 2 will be defined in the course of the proof. It finally
appears in (2.57) below.

Theorem 1 of Einmahl and Mason (2005) implies that when hn satisfies (H)
and f is bounded that for some constant γ1 > 0

lim sup
n→∞

√
nhn

logn
sup
x∈Rd

|fn(x) − Efn(x)| ≤ γ1, a.s.(2.15)

It is not difficult to see that under the assumptions (D), (K) and (H) for some
γ2 > 0,

sup
n≥2

√
nhn sup

x∈Rd

|Efn(x) − f (x)| ≤ γ2.(2.16)

[See Mason and Polonik (2008), Appendix, Detail 2.]
Set with ς >

√
2 ∨ γ1,

En =
{
x : |f (x) − c| ≤ ς

√
logn√
nhn

}
.(2.17)

We see by (1.1), (2.15) and (2.16) that with probability 1 for all large enough n

G(Cn(c)�C(c)) =
∫
En

|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx

(2.18)
=: Ln(c).

It turns out that rather than considering the truncated quantity Ln(c) directly, it is
more convenient to first study a Poissonized version of Ln(c) formed by replacing
fn(x) by

πn(x) = 1

nhn

Nn∑
i=1

K

(
x − Xi

h
1/d
n

)
,

where Nn is a mean n Poisson random variable independent of X1,X2, . . . . [When
Nn = 0 we set πn(x) = 0.] Notice that

Eπn(x) = Efn(x).
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We shall make repeated use of the fact following from the assumption that K has
support contained in the closed ball of radius 1/2 centered at zero, that πn(x) and
πn(y) are independent whenever |x − y| > h

1/d
n .

Here is the Poissonized version of Ln(c) that we shall treat first. Define

�n(c) =
∫
En

|I {πn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx.(2.19)

Our goal is to infer a central limit theorem for Ln(c) and thus for G(Cn(c)�C(c))

from a central limit theorem for �n(c).

Set

�n(x) = |I {πn(x) ≥ c} − I {f (x) ≥ c}|.(2.20)

The first item on this agenda is to verify that (n/hn)
1/4(

√
nhn)

1/γg is the correct
sequence of norming constants. To do this we must analyze the exact asymptotic
behavior of the variance of �n(c). We see that

Var(�n(c)) = Var
(∫

En

�n(x) dG(x)

)

=
∫
En

∫
En

cov(�n(x),�n(y)) dG(x)dG(y).

Let

Yn(x) =
[ ∑

j≤N1

K

(
x − Xj

h
1/d
n

)
− EK

(
x − X

h
1/d
n

)]/√
EK2

(
x − X

h
1/d
n

)

and Y
(1)
n (x), . . . , Y

(n)
n (x) be i.i.d. Yn(x).

Clearly (
πn(x) − Eπn(x)√

Var(πn(x))
,
πn(y) − Eπn(y)√

Var(πn(x))

)

d=
(∑n

i=1 Y
(i)
n (x)√
n

,

∑n
i=1 Y

(i)
n (y)√
n

)
=: (πn(x),πn(y)).

Set

cn(x) =
√

nhn(c − Efn(x))√
1/hnEK2((x − X)/h

1/d
n )

=
√

nhn(c − ∫
Rd K(y)f (x − yh

1/d
n ) dy)√

1/hnEK2((x − X)/h
1/d
n )

.

Since K has support contained in the closed ball of radius 1/2 around zero, which
implies that �n(x) and �n(y) are independent whenever |x − y| > h

1/d
n , we have

Var
(∫

En

�n(x) dG(x)

)

=
∫
En

∫
En

I (|x − y| ≤ h1/d
n ) cov(�n(x),�n(y)) dG(x)dG(y),
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where now we write

�n(x) =
∣∣∣∣I {πn(x) ≥ cn(x)} − I

{
0 ≥

√
nhn(c − f (x))

(1/hnEK2((x − X)/h
1/d
n ))1/2

}∣∣∣∣.
The change of variables y = x + th

1/d
n , t ∈ B, with

B = {t : |t | ≤ 1},(2.21)

gives

Var
(∫

En

�n(x) dx

)
= hn

∫
En

∫
B

gn(x, t) dt dx,(2.22)

where

gn(x, t) = IEn(x)IEn(x + th1/d
n ) cov

(
�n(x),�n(x + th1/d

n )
)

(2.23)
× g(x)g(x + th1/d

n ).

For ease of notation let an = an,G = ( n
hn

)1/4(
√

nhn)
1/γg . We intend to prove that

lim
n→∞a2

n Var
(∫

En

�n(x) dG(x)

)

= lim
n→∞a2

nhn

∫
En

∫
B

gn(x, t) dt dx

(2.24)
= lim

n→∞(nhn)
1/2+1/γg

∫
En

∫
B

gn(x, t) dt dx

= lim
τ→∞ lim

n→∞(nhn)
1/2+1/γg

∫
Dn(τ)

∫
B

gn(x, t) dt dx =: σ 2 < ∞,

where

Dn(τ) :=
{
z : z = y(θ) + su(θ)√

nhn

, θ ∈ Id , |s| ≤ τ

}
.

The set Dn(τ) forms a band around the surface β of thickness 2τ√
nhn

.

Recall the definition of B in (2.21). Since β is a closed submanifold of R
d with-

out boundary the tubular neighborhood theorem [see Theorem 11.4 on page 93 of
Bredon (1993)] says that for all δ > 0 sufficiently small for each x ∈ β + δB there
is an unique θ ∈ Id and |s| ≤ δ such that x = y(θ) + su(θ). This, in turn, implies
that for all δ > 0 sufficiently small

{y(θ) + su(θ) : θ ∈ Id and |s| ≤ δ} = β + δB.

In particular, we see by using (H) that for all large enough n

Dn(τ) = β + τ√
nhn

B, where B = {z : |z| ≤ 1}.(2.25)
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Moreover, it says that x = y(θ) + su(θ), θ ∈ Id and |s| ≤ δ is a well-defined pa-
rameterization of β + δB, and it validates the change of variables in the integrals
below.

We now turn to the proof of (2.24). Let

ρn(x, x + th1/d
n ) = Cov

(
πn(x),πn(x + th1/d

n )
)

= h−1
n E[K((x − X)/h1d

n )K((x − X)/h1d
n + t)]√

h−1
n EK2((x − X)/h1d

n )h−1
n EK2((x − X)/h1d

n + t)
.

It is routine to show that for each θ ∈ Id , |s| ≤ τ , x = y(θ) + su(θ)√
nhn

and t ∈ B we
have as n → ∞ that

ρn(x, x + th1/d
n ) = ρn

(
y(θ) + su(θ)√

nhn

, y(θ) + su(θ)√
nhn

+ th1/d
n

)
→ ρ(t),

where

ρ(t) :=
∫
Rd K(u)K(u + t) du∫

Rd K2(u) du
.

[See Mason and Polonik (2008), Appendix, Detail 4.] Notice that ρ(t) = ρ(−t).
One can then infer by the central limit theorem that for each θ ∈ Id , |s| ≤ τ and
t ∈ B , (

πn(x),πn(x + th1/d
n )

)
=

(
πn

(
y(θ) + su(θ)√

nhn

)
, πn

(
y(θ) + su(θ)√

nhn

+ th1/d
n

))
(2.26)

d→ (
Z1, ρ(t)Z1 +

√
1 − ρ2(t)Z2

)
,

where Z1 and Z2 are independent standard normal random variables.
We also get by using our assumptions and straightforward Taylor expansions

that for |s| ≤ τ , u = su(θ), x = y(θ) + u√
nhn

and θ ∈ Id

cn(x) = cn

(
y(θ) + u√

nhn

)

=
√

nhn(c − Efn(y(θ) + u/
√

nhn))√
1/hnEK2((y(θ) + u/

√
nhn − X)/h

1/d
n )

(2.27)
n→∞→ − f ′(y(θ)) · u√

f (y(θ))‖K‖2

= −s|f ′(y(θ))|√
c‖K‖2

=: c(s, θ,0)
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and similarly since
√

nh
1+2/d
n → γ ,

cn(x + th1/d
n )

n→∞→ −f ′(y(θ)) · (u + t)√
f (y(θ))‖K‖2

= −s|f ′(y(θ))|√
c‖K‖2

− γf ′(y(θ)) · t√
c‖K‖2

= : c(s, θ, γ t).

We also have √
nhn(c − f (x))√

1/hnEK2((x − X)/h
1/d
n )

n→∞→ c(s, θ,0)

and √
nhn(c − f (x + th

1/d
n ))√

1/hnEK2((x − X)/h
1/d
n )

n→∞→ c(s, θ, γ t).

[See Mason and Polonik (2008), Appendix, Detail 5.] Hence by (2.26) and (G) for
y(θ) ∈ β ,

(nhn)
1/γggn(x, t)

= (nhn)
1/γggn

(
y(θ) + u√

nhn

, t

)

= IEn

(
y(θ) + u√

nhn

)
IEn

(
y(θ) + u√

nhn

+ th1/d
n

)

× cov
(
�n

(
y(θ) + u√

nhn

)
,�n

(
y(θ) + u√

nhn

+ th1/d
n

))

× (nhn)
1/γgg

(
y(θ) + u√

nhn

)
g

(
y(θ) + u√

nhn

+ th1/d
n

)
(2.28)

n→∞→ cov
(|I {Z1 ≥ c(s, θ,0)} − I {0 ≥ c(s, θ,0)}|,
∣∣I{

ρ(t)Z1 +
√

1 − ρ2(t)Z2 ≥ c(s, θ, γ t)
}

− I {0 ≥ c(s, θ, γ t)}∣∣)
× |s|1/γgg(1)(θ, u(θ))|su(θ) + γ t |1/γgg(1)

(
θ,

su(θ) + γ t

|su(θ) + γ t |
)

=: �(θ, s, t).

Using the change of variables

x1 = y1(θ) + su1(θ)√
nhn

, . . . , xd = yd(θ) + sud(θ)√
nhn

,(2.29)
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we get∫
Dn(τ)

∫
B

gn(x, t) dt dx =
∫ τ

−τ

∫
Id

∫
B

gn

(
y(θ) + su(θ)√

nhn

, t

)∣∣Jn(θ, s)|dt dθ ds,

where

|Jn(θ, s)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y(θ)

∂θ1
+ 1√

nhn

∂u(θ)

∂θ1
...

∂y(θ)

∂θd−1
+ 1√

nhn

∂u(θ)

∂θd−1
u(θ)√
nhn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(2.30)

Clearly, with ι(θ) as in (2.12),√
nhn|Jn(θ, s)| → ι(θ).(2.31)

Under our assumptions we have
√

nhn|Jn(θ, s)| is uniformly bounded in n ≥ 1
and (θ, s) ∈ Id × [−τ, τ ]. Also by using (G) we see that for all n large enough
(nhn)

1/γggn is bounded on Id × B . Thus since (nhn)
1/γggn and

√
nhn|Jn| are

eventually bounded on the appropriate domains, and (2.28) and (2.31) hold, we
get by the dominated convergence theorem and (G) that

(nhn)
1/2+1/γg

∫
Dn(τ)

∫
B

gn(x, t) dt dx

= (nhn)
1/2+1/γg

∫ τ

−τ

∫
Id

∫
B

gn

(
y(θ) + su(θ)√

nhn

, t

)
|Jn(θ, s)

∣∣dt dθ ds(2.32)

→
∫ τ

−τ

∫
Id

∫
B

�(θ, s, t)ι(θ) dt dθ ds as n → ∞.

We claim that as τ → ∞ we have∫ τ

−τ

∫
Id

∫
B

�(θ, s, t)ι(θ) dt dθ ds

(2.33)
→

∫ ∞
−∞

∫
Id

∫
B

�(θ, s, t)ι(θ) dt dθ ds =: σ 2 < ∞

and

lim
τ→∞ lim sup

n→∞
(nhn)

1/2+1/γg

∫
DC

n (τ)∩En

∫
B

gn(x, t) dt dx = 0,(2.34)

which in light of (2.32) implies that the limit in (2.24) is equal to σ 2 as defined
in (2.33).



LEVEL SET ESTIMATION 1125

First we show (2.33). Consider

�+(τ ) :=
∫ τ

0

∫
Id

∫
B

�(θ, s, t)ι(θ) dt dθ ds.

We shall show existence and finiteness of the limit limτ→∞ �+(τ ). Similar argu-
ments apply to

lim
τ→∞�−(τ ) := lim

τ→∞

∫ 0

−τ

∫
Id

∫
B

�(θ, s, t)ι(θ) dt dθ ds < ∞.

Observe that when s ≥ 0,

|I {Z1 ≥ c(s, θ,0)} − I {0 ≥ c(s, θ,0)}| = I {Z1 < c(s, θ,0)}
and with � denoting the cdf of a standard normal distribution we write

E
(
I {Z1 < c(s, θ,0)}) = �(c(s, θ,0)).

Hence by taking into account (2.28), the assumed finiteness of sup|z|=1 supθg
(1)(θ,

z), and using the elementary inequality

| cov(X,Y )| ≤ 2E|X|, whenever |Y | ≤ 1,

we get for all s ≥ 0 and some c1 > 0 that

|�(θ, s, t)| ≤ c1|s|1/γg (|s|1/γg + γ 1/γg )�(c(s, θ,0)).(2.35)

The lower bound (2.11) implies the existence of a constant c̃ > 0 such that

�(c(s, θ,0)) = �

(
−s|f ′(y(θ))|√

c‖K‖2

)
≤ �(−c̃s).

Together with (2.35) and (2.13) it follows that for some c > 0 we have

lim
τ→∞�+(τ ) ≤ c lim

τ→∞

∫ τ

0
|s|1/γg (|s|1/γg + γ 1/γg )

(
1 − �(c̃s)

)
ds < ∞.

Similarly,

|�+(∞) − �+(τ )| ≤ c

∫ ∞
τ

|s|1/γg (|s|1/γg + γ 1/γg )
(
1 − �(c̃s)

)
ds → 0

as τ → ∞.

This validates claim (2.33).
Next we turn to the proof of (2.34). Recall the definition of gn(x, t) in (2.23).

Notice that for all n large enough, we have

(nhn)
1/2+1/γg

∫
DC

n (τ)∩En

∫
B

gn(x, t) dt dx

≤ √
nhn

∫
DC

n (τ)∩En

∫
B

∣∣cov
(
�n(x),�n(x + th1/d

n )
)∣∣
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× (nhn)
1/γgg(x)g(x + th1/d

n ) dt dx(2.36)

≤ √
nhn

∫
DC

n (τ)∩En

∫
B
(Var(�n(x)))1/2

× (nhn)
1/γgg(x)g(x + th1/d

n ) dt dx.(2.37)

The last inequality uses the fact that �n(x + th
1/d
n ) ≤ 1 and thus Var(�n(x +

th
1/d
n )) ≤ 1. Applying the inequality

|I {a ≥ b} − I {0 ≥ b}| ≤ I {|a| ≥ |b|},(2.38)

we obtain that

Var(�n(x)) = Var
(|I {πn(x) ≥ c} − I {f (x) ≥ c}|)

≤ E
(
I {|πn(x) − f (x)| ≥ |c − f (x)|})2

= P {|πn(x) − f (x)| ≥ |c − f (x)|}.
Thus we get that√

nhn

∫
DC

n (τ)∩En

∫
B

√
Var(�n(x))(nhn)

1/γgg(x)g(x + th1/d
n ) dt dx

≤ √
nhn

∫
DC

n (τ)∩En

∫
B

√
P {|πn(x) − f (x)| ≥ |c − f (x)|}(2.39)

× (nhn)
1/γgg(x)g(x + th1/d

n ) dt dx.

We must bound the probability inside the integral. For this purpose we need a
lemma.

LEMMA 2.1. Let Y,Y1, Y2, . . . be i.i.d. with mean μ and bounded by 0 < M <

∞. Independent of Y1, Y2, . . . let Nn be a Poisson random variable with mean n.
For any v ≥ 2(e30)2EY 2 and with d = e30M we have for all λ > 0,

P

{
Nn∑
i=1

Yi − nμ ≥ λ

}
≤ exp

(
− λ2/2

nv + dλ

)
.(2.40)

PROOF. Let N be a Poisson random variable with mean 1 independent of
Y1, Y2, . . . and let

ω =
N∑

i=1

Yi.

Clearly if ω1, . . . ,ωn are i.i.d. ω, then

Nn∑
i=1

Yi − nμ
d=

n∑
i=1

(ωi − μ).
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Our aim is to use Bernstein’s inequality to prove (2.40). Notice that for any integer
r ≥ 2,

E|ω − μ|r = E

∣∣∣∣∣
N∑

i=1

Yi − μ

∣∣∣∣∣
r

.(2.41)

At this point we need the following fact, which is Lemma 2.3 of Giné, Mason and
Zaitsev (2003).

FACT 1. If, for each n ≥ 1, ζ, ζ1, ζ2, . . . , ζn, . . . , are independent identically
distributed random variables, ζ0 = 0, and η is a Poisson random variable with mean
γ > 0 and independent of the variables {ζi}∞i=1, then, for every p ≥ 2,

E

∣∣∣∣∣
η∑

i=0

ζi − γEζ

∣∣∣∣∣
p

≤
(

15p

logp

)p

max[(γEζ 2)p/2, γE|ζ |p].(2.42)

Applying inequality (2.42) to (2.41) gives for r ≥ 2

E|ω − μ|r = E

∣∣∣∣∣
N∑

i=1

Yi − μ

∣∣∣∣∣
r

≤
(

15r

log r

)r

max[(EY 2)r/2,E|Y |r ].

Now

max[(EY 2)r/2,E|Y |r ] ≤ max[(EY 2)(EY 2)r/2−1, (EY 2)Mr−2]
≤ EY 2Mr−2.

Moreover, since log 2 ≥ 1/2, we get

E|ω − μ|r ≤ (30r)rEY 2Mr−2.

By Stirling’s formula [see page 864 of Shorack and Wellner (1986)]

rr ≤ err!.
Thus

E|ω − μ|r ≤ (e30r)rEY 2Mr−2 ≤ 2(e30)2EY 2

2
r!(e30M)r−2 ≤ v

2
r!dr−2,

where v ≥ 2(e30)2EY 2 and d = e30M . Thus by Bernstein’s inequality [see
page 855 of Shorack and Wellner (1986)] we get (2.40).

Here is how Lemma 2.1 is used. Let Yi = K(x−Xi

h
1/d
n

). Since by assumption both K

and f are bounded, and K has support contained in the closed ball of radius 1/2
around zero, we obtain that for some D0 > 0 and all n ≥ 1,

sup
x∈Rd

E

[
K

(
x − X

h
1/d
n

)]2

≤ D0hn.
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Consider z ≥ a/
√

nhn for some a > 0. With this choice, and since supx |Efn(x)−
f (x)| ≤ A1h

2/d ≤ a

2
√

nhn
for n large enough by using (H) [see Mason and

Polonik (2008), Appendix, Detail 2], we have

P {πn(x) − f (x) ≥ z} = P
{
πn(x) − Efn(x) ≥ z − (

Efn(x) − f (x)
)}

≤ P

{
πn(x) − Efn(x) ≥ z − 1

2

a√
nhn

}

≤ P

{
πn(x) − Efn(x) ≥ z

2

}

for z ≥ a/
√

nhn and n large enough. We get then from inequality (2.40) that for
n ≥ 1, all z > 0 that for some constants D1 and D2

P

{
πn(x) − Efn(x) ≥ z

2

}
= P

{
Nn∑
i=1

K

(
x − Xi

h
1/d
n

)
− nEK

(
x − X

h
1/d
n

)
≥ nhnz

2

}

≤ exp
(
− (nhn)

2z2

D1nhn + D2nhnz

)
= exp

(
− nhnz

2

D1 + D2z

)
.

We see that for some a > 0 for all z ≥ a/
√

nhn and n large enough,

nhnz
2

D1 + D2z
≥ √

nhnz.

Observe that for 0 ≤ z ≤ a/
√

nhn,

exp(a) exp
(−√

nhnz
) ≥ exp(a) exp(−a) = 1 ≥ P {πn(x) − f (x) ≥ z}.

Therefore by setting A = exp(a) we get for all large enough n ≥ 1, z > 0 and x,

P {πn(x) − f (x) ≥ z} ≤ A exp
(−√

nhnz
)
.

In the same way, for all large enough n ≥ 1, z > 0 and x,

P {πn(x) − f (x) ≤ −z} ≤ A exp
(−√

nhnz
)
.

Notice these inequalities imply that for all large enough n ≥ 1, z > 0 and x,
√

P {|πn(x) − f (x)| ≥ |c − f (x)|} ≤ √
A exp

(
−

√
nhn|c − f (x)|

2

)
.(2.43)

Returning to the proof of (2.34), from (2.36), (2.37), (2.39) and (2.43) we get that
for all large enough n ≥ 1,

(nhn)
1/2+1/γg

∫
DC

n (τ)∩En

∫
B

gn(x, t) dt dx

≤ √
nhn

√
A

∫
DC

n (τ)∩En

∫
B

e−√
nhn|c−f (x)|/2(nhn)

1/γgg(x)g(x + th1/d
n ) dt dx,
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which equals

λ(B)
√

nhn

∫
DC

n (τ)∩En

ϕn(x) dx,

where

ϕn(x) = √
A exp

(
−

√
nhn|c − f (x)|

2

)
(nhn)

1/γgg(x)g(x + th1/d
n ).

Our assumptions imply that for some 0 < η < 1 for all 1 ≤ |s| ≤ ς
√

logn and n

large
√

nhn

2

∣∣∣∣c − f

(
y(θ) + su(θ)√

nhn

)∣∣∣∣ ≥ η|s|.

[See Mason and Polonik (2008), Appendix, Detail 3.] We get using the change of
variables (2.29) that for all τ > 1,∫

DC
n (τ)∩En

ϕn(x) dx =
∫
τ≤|s|≤ς

√
logn

∫
Id

ϕn

(
y(θ) + su(θ)√

nhn

)
|Jn(θ, s)|dθ ds.

Thus, by our assumptions [refer to the remarks after (2.31) and assumption (G)]
there exists a constant C > 0, such that for all large enough τ and n∫

DC
n (τ)∩En

ϕn(x) dx

≤ C√
nhn

×
∫
τ≤|s|≤ς

√
logn

∫
Id

|s|2/γg

× exp
(
−

√
nhn|c − f (y(θ) + su(θ)/

√
nhn)|

2

)
dθ ds

≤ C√
nhn

∫
τ≤|s|≤ς

√
logn

∫
Id

exp
(
−η|s|

2

)
dθ ds.

Thus ∫
DC

n (τ)∩En

∫
B

ϕn(x) dx ≤ 4πd−1C exp(−ητ/2)

η
√

nhn

.(2.44)

Therefore after inserting all of the above bounds we get that

(nhn)
1/2+1/γg

∫
DC

n (τ)∩En

∫
B

gn(x, t) dx dt ≤ 4πd−1C exp(−ητ/2)

η

and hence we readily conclude that (2.34) holds.
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Putting everything together we get that as n → ∞,

a2
n Var(�n(c)) → σ 2(2.45)

with σ 2 defined as in (2.33). For future use, we point out that we can infer by
(2.24), (2.34) and (2.45) that for all ε > 0 there exist a τ0 and an n0 ≥ 1 such that
for all τ ≥ τ0 and n ≥ n0

|σ 2
n (τ ) − σ 2| < ε,(2.46)

where

σ 2
n (τ ) = Var

((
n

hn

)1/4(√
nhn

)1/γg

∫
Dn(τ)

�n(x)g(x) dx

)
.(2.47)

Our next goal is to de-Poissonize by applying the following version of a theorem
in Beirlant and Mason (1995).

LEMMA 2.2. Let N1,n and N2,nbe independent Poisson random variables
with N1,n being Poisson(nβn) and N2,n being Poisson(n(1 − βn)) where βn ∈
(0,1). Denote Nn = N1,n + N2,n and set

Un = N1,n − nβn√
n

and Vn = N2,n − n(1 − βn)√
n

.

Let {Sn}∞n=1 be a sequence of random variables such that:

(i) for each n ≥ 1, the random vector (Sn,Un) is independent of Vn,

(ii) for some σ 2 < ∞, Sn
d→ σZ, as n → ∞,

(iii) βn → 0, as n → ∞.

Then, for all x,

P {Sn ≤ x | Nn = n} → P {σZ ≤ x}.

The proof follows along the same lines as Lemma 2.4 in Beirlant and Ma-
son (1995). [See Mason and Polonik (2008), Appendix, Detail 6.]

We shall now use this de-Poissonization lemma to complete the proof of our the-
orem. Recall the definitions of Ln(c) and �n(c) in (2.18) and (2.19), respectively.
Noting that Dn(τ) ⊂ En for all large enough n ≥ 1, we see that

an

(
Ln(c) − E�n(c)

)
= an

∫
Dn(τ)

{|I {fn(x) ≥ c} − I {f (x) ≥ c}| − E�n(x)
}
g(x) dx

+ an

∫
Dn(τ)C∩En

{|I {fn(x) ≥ c} − I {f (x) ≥ c}| − E�n(x)
}
g(x) dx

=: Tn(τ ) + Rn(τ).
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We can control the Rn(τ) piece of this sum using the inequality, which follows
from Lemma 2.3 below,

E(Rn(τ))2

≤ 2a2
n Var

(∫
Dn(τ)C∩En

|I {πn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx

)
(2.48)

= 2(nhn)
1/2+1/γg

∫
DC

n (τ)∩En

∫
B

gn(x, t) dt dx,

which goes to zero as n → ∞ and τ → ∞ as we proved in (2.34).
The needed inequality is a special case of the following result in Giné, Mason

and Zaitsev (2003). We say that a set D is a (commutative) semigroup if it has
a commutative and associative operation, in our case sum, with a zero element.
If D is equipped with a σ -algebra D for which the sum, + : (D × D,D ⊗ D) �→
(D,D), is measurable, then we say the (D,D) is a measurable semigroup.

LEMMA 2.3. Let (D,D) be a measurable semigroup; let Y0 = 0 ∈ D and
let Yi , i ∈ N, be independent identically distributed D-valued random variables;
for any given n ∈ N, let η be a Poisson random variable with mean n independent
of the sequence {Yi}; and let B ∈ D be such that P {Y1 ∈ B} ≤ 1/2. If G :D �→ R
is nonnegative and D-measurable, then

EG

(
n∑

i=0

I (Yi ∈ B)Yi

)
≤ 2EG

( η∑
i=0

I (Yi ∈ B)Yi

)
.(2.49)

Next we consider Tn(τ ). Observe that

(
Sn(τ )|Nn = n

) d= Tn(τ )

σn(τ )
,(2.50)

where as above Nn denotes a Poisson random variable with mean n,

Sn(τ ) = an

∫
Dn(τ){�n(x) − E�n(x)}g(x) dx

σn(τ )
,

and σ 2
n (τ ) is defined as in (2.47). We shall apply Lemma 2.2 to Sn(τ ) with

N1,n =
Nn∑
i=1

1
{
Xi ∈ Dn

(
τ + √

nhn

)}
,

N2,n =
Nn∑
i=1

1
{
Xi /∈ Dn

(
τ + √

nhn

)}
and

βn = P
{
Xi ∈ Dn

(
τ + √

nhn

)}
.
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We first need to verify that as n → ∞

Sn(τ ) = an

∫
Dn(τ){�n(x) − E�n(x)}g(x) dx

σn(τ )

d→ Z.

To show this we require the following special case of Theorem 1 of Shergin (1990).

FACT 2 [Shergin (1990)]. Let {Xi,n : i ∈ Zd} denote a triangular array of mean
zero m-dependent random fields, and let Jn ⊂ Zd be such that:

(i) Var(
∑

i∈Jn
Xi,n) → 1, as n → ∞, and

(ii) for some 2 < s < 3,
∑

i∈Jn
E|Xi,n|s → 0, as n → ∞.

Then ∑
i∈Jn

Xi,n
d→ Z,

where Z is a standard normal random variable.

We use Shergin’s result as follows. Under our regularity conditions, for each
τ > 0 there exist positive constants d1, . . . , d5 such that for all large enough n,

|Dn(τ)| ≤ d1√
nhn

;(2.51)

d2 ≤ σn(τ ) ≤ d3.(2.52)

Clearly (2.52) follows from (2.46), and it is not difficult to see (2.51). For details
see Mason and Polonik (2008), Appendix, Detail 7. There it is also shown that for
each such integer n ≥ 1 there exists a partition {Ri, i ∈ Jn ⊂ Zd} of Dn(τ) such
that for each i ∈ Jn

|Ri| ≤ d4hn,(2.53)

where

|Jn| =: mn ≤ d5√
nh3

n

.(2.54)

Define

Xi,n = an

∫
Ri

{�n(x) − E�n(x)}g(x) dx

σn(τ )
, i ∈ Jn.

It is straightforward to see that Xi,n can be extended to a 1-dependent random field
on Zd . [See Mason and Polonik (2008), Appendix, Detail 7.]

Notice that by (G) there exists a constant A > 0 such that for all x ∈ Dn(τ),

|g(x)| ≤ A
(√

nhn

)−1/γg .
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Recalling that an = an,G = ( n
hn

)1/4(
√

nhn)
1/γg we thus obtain for all for i ∈ Jn,

|Xi,n| ≤ an2A|Ri|A(
√

nhn)
−1/γg

σn(τ )

≤ 2d4Ahn

d2

(
n

hn

)1/4

= 2Ad4

d2
(nh3

n)
1/4.

Therefore,

∑
i∈Jn

E|Xi,n|5/2 ≤ mn

(
2d4

d2
(nh3

n)
1/4

)5/2

≤ d5

(
2d4

d2

)5/2

(nh3
n)

1/8.

This bound when combined with (H) implies that as n → ∞,∑
i∈Jn

E|Xi,n|5/2 → 0,

which by the Shergin fact (with s = 5/2) yields

Sn(τ ) = ∑
i∈Jn

Xi,n
d→ Z.

Thus, using (2.50) and βn = P {Xi ∈ Dn(τ + √
nhn)} → 0, Lemma 2.2 implies

that

Tn(τ )

σn(τ )

d→ Z.(2.55)

Putting everything together we get from (2.48) that

lim
τ→∞ lim sup

n→∞
E(Rn(τ))2 = 0

and from (2.46) that

lim
τ→∞ lim sup

n→∞
|σ 2

n (τ ) − σ 2| = 0,

which in combination with (2.55) implies that

an

(
Ln(c) − E�n(c)

) d→ σZ,(2.56)

where

σ 2 =
∫ ∞
−∞

∫
Id

∫
B

�(θ, s, t)ι(θ) dt dθ ds(2.57)

with �(θ, s, t) as defined in (2.28). Since by Lemma 2.3

E
(
an

(
Ln(c) − E�n(c)

))2 ≤ 2 Var(an�n(c))
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and

Var(an�n(c)) → σ 2 < ∞,

we can conclude that

an

(
ELn(c) − E�n(c)

) → 0

and thus

an

(
Ln(c) − ELn(c)

) d→ σZ.

This gives that

an

(
G(Cn(c)�C(c)) −

∫
En

E|I {fn(x) ≥ c} − I {f (x) ≥ c}|dG(x)

)
(2.58)

d→ σZ,

which is (2.14). In light of (2.58) and keeping mind that

EG(Cn(c)�C(c)) =
∫

Rd
E|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx,

we see that to complete the proof of (2.1) it remains to show that

anE

∫
Ec

n

|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx → 0.(2.59)

We shall begin by bounding

E|I {fn(x) ≥ c} − I {f (x) ≥ c}|, x ∈ Ec
n.

Applying inequality (2.38) with a = fn(x) − f (x) and b = c − f (x) we have for
x ∈ Ec

n,

E|I {fn(x) ≥ c} − I {f (x) ≥ c}|
≤ EI {|fn(x) − f (x)| ≥ |c − f (x)|}
= P {|fn(x) − f (x)| ≥ |c − f (x)|}
≤ P {|fn(x) − Efn(x)| ≥ |c − f (x)| − |f (x) − Efn(x)|}.

By recalling the definition of En in (2.17) we obtain

E|I {fn(x) ≥ c} − I {f (x) ≥ c}|

≤ P

{
|fn(x) − Efn(x)| ≥ ς(logn)1/2

(nhn)1/2 − |f (x) − Efn(x)|
}

≤ P

{
|fn(x) − Efn(x)| ≥ ς(logn)1/2

(nhn)1/2 − A1h
2/d
n

}
.
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The last inequality uses the fact that (K.i), (K.ii), (2.7) and (2.8) imply after a
change of variables and an application of Taylor’s formula for f (x+h

1/d
n v)−f (x)

that for some constant A1 > 0,

sup
n≥2

h−2/d
n sup

x∈Rd

|Efn(x) − f (x)| ≤ A1.

Thus for all large enough n uniformly in x ∈ Ec
n,

E|I {fn(x) ≥ c} − I {f (x) ≥ c}|

≤ P

{
|fn(x) − Efn(x)| ≥ ς(logn)1/2

(nhn)1/2

(
1 − A1

ς

√
nh

1+2/d
n h

1/d
n√

logn

)}

≤ P

{
|fn(x) − Efn(x)| ≥ ς(logn)1/2

2(nhn)1/2

}
=: pn(x),

where the last inequality uses (H). We shall bound pn(x) using Bernstein’s in-
equality on the i.i.d. sum

fn(x) − Efn(x) = 1

nhn

n∑
i=1

{
K

(
x − Xi

h
1/d
n

)
− EK

(
x − Xi

h
1/d
n

)}
.

Notice that for each i = 1, . . . , n,

Var
(

1

nhn

K

(
x − Xi

h
1/d
n

))
≤ 1

(nhn)2

∫
Rd

K2
(

x − y

h
1/d
n

)
f (y) dy

= 1

n2hn

∫
Rd

K2(u)f (x − h1/d
n u) du ≤ ‖K‖2

2M

n2hn

and by (K.i),

1

nhn

∣∣∣∣K
(

x − Xi

h
1/d
n

)
− EK

(
x − Xi

h
1/d
n

)∣∣∣∣ ≤ 2κ

nhn

.

Therefore by Bernstein’s inequality [i.e., page 855 of Shorack and Wellner (1986)],

pn(x) ≤ 2 exp
( −ς2(logn)/(4nhn)

‖K‖2
2M/(nhn) + 2/3ς(logn)1/2/(2(nhn)1/2)κ/(nhn)

)

= 2 exp
( −ς2(logn)/4

‖K‖2
2M + κς(logn)1/2/(3(nhn)1/2)

)
.

Hence by (H) and keeping in mind that ς >
√

2 in (2.17), we get for some constant
a > 0 that for all large enough n, uniformly in x ∈ Ec

n, we have the bound

pn(x) ≤ 2 exp(−ςa logn).(2.60)

We shall show below that λ(Cn(c)�C(c)) ≤ m < ∞ for some 0 < m < ∞. As-
suming this to be true, we have the following [similar lines of arguments are used
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in Rigollet and Vert (2008)]

E

∫
Ec

n

|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx

= E

∫
Ec

n∩(Cn(c)�C(c))
|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx

≤ sup
A : λ(A)≤m

E

∫
Ec

n∩A
|I {fn(x) ≥ c} − I {f (x) ≥ c}g(x)|dx

≤ sup
A : λ(A)≤m

∫
Ec

n∩A
E|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx

≤ m sup
x

g(x) sup
x∈Ec

n

E|I {fn(x) ≥ c} − I {f (x) ≥ c}|

≤ m sup
x

g(x) sup
x∈Ec

n

pn(x).

With c0 = m supx g(x) and (2.60) this gives the bound

anE

∫
Ec

n

|I {fn(x) ≥ c} − I {f (x) ≥ c}|g(x) dx

≤ 2c0an exp(−ςa logn).

Clearly by (H), we see that for large enough ς > 0

an exp(−ςa logn) → 0

and thus (2.59) follows. It remains to verify that there exists 0 < m < ∞ with

λ(Cn(c)�C(c)) ≤ m.

Notice that

1 ≥
∫

Cn(c)
fn(x) dx ≥ cλ(Cn(c))

and

1 ≥
∫
C(c)

f (x) dx ≥ cλ(C(c)).

Thus

λ(Cn(c)�C(c)) ≤ 2/c =: m.

We see now that the proof of the theorem in the case k = 1 and d ≥ 2 is complete.
The proof for the case k ≥ 2 goes through by an obvious extension of the argu-

ment used in the case k = 1. On account of (B.ii) we can write for large enough n∫
En

�n(x) dG(x) =
n∑

j=1

∫
Ej,n

�n(x) dG(x),
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where the sets Ej,n, j = 1, . . . , k, are disjoint and constructed from the βj just
as En was formed from the boundary set β in the proof for the case k = 1. There-
fore by reason of the Poissonization, the summands are independent. Hence the as-
ymptotic normality readily follows as before, where the limiting variance in (2.1)
becomes

σ 2 =
k∑

i=1

c2
j σ

2
j ,(2.61)

where each σ 2
j is formed just like (2.57).

2.6. Proof of the theorem in the case d = 1. The case d = 1 follows along very
similar ideas as presented above in the case d ≥ 2 and is in fact somewhat simpler
than the case d ≥ 2. We therefore skip all the details and only point out that by
assumption (B.ii) the boundary set β = {x ∈ R :f (x) = c} consists of k points zi ,
i = 1, . . . , k. Therefore, the integral over θ in the definition of σ 2 in (2.57) has to
be replaced by a sum, leading to

σ 2 :=
k∑

i=1

(
g(1)(zi)

)2
∫ ∞
−∞

∫ 1

−1
�(i, s, t)|s|2/γg dt ds,(2.62)

where

�(i, s, t)

= cov
(∣∣∣∣I

{
Z1 ≥ − sf ′(zi)√

c‖K‖2

}
− I

{
0 ≥ − sf ′(zi)√

c‖K‖2

}∣∣∣∣,
∣∣∣∣I

{
ρ(t)Z1 +

√
1 − ρ2(t)Z2 ≥ − sf ′(zi)√

c‖K‖2

}
− I

{
0 ≥ − sf ′(zi)√

c‖K‖2

}∣∣∣∣
)
.

We can drop the absolute value sign on f ′(zi) in our definition of �(i, s, t) for
i = 1, . . . , k and thus σ 2, since ρ(t) = ρ(−t). �

2.7. Remarks on the variance and its estimation. Clearly the variance σ 2
G that

appears in Theorem 1 does not have a nice closed form and in many situations is
not feasible to calculate. Therefore in applications σ 2

G will very likely have to be
estimated either by simulation or from the data itself. In the latter case, an obvious
suggestion is to apply the bootstrap and another is to use the jackknife. A separate
investigation is required to verify that these methods work in this setup. [Similarly
we may also need to estimate EG(Cn(c)�C(c)).]

Here is a quick and dirty way to estimate σ 2
G. Let X1, . . . ,Xn be i.i.d. f . Choose

a sequence of integers 1 ≤ mn ≤ n, such that mn → ∞ and n/mn → ∞. Set ςn =
[n/mn] and take a random sample of the data X1, . . . ,Xn of size mnςn and then
randomly divide this sample into ςn disjoint samples of size mn. Let

ξi = dG

(
C

(i)
mn

(c)�C(c)
)

for i = 1, . . . , ςn,
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where C
(i)
mn(c) is formed from sample i. We propose as our estimator of σ 2

G, the
sample variance of ( mn

hmn
)1/4ξi , i = 1, . . . , ςn,

(
mn

hmn

)1/2 ςn∑
i=1

(ξi − ξ)2/(ςn − 1).

Under suitable regularity conditions it is routine to show that this is a consistent
estimator of σ 2

G, again the details are beyond the scope of this paper.

The variance σ 2
G under a bivariate normal model. In order to obtain a better

understanding about the expression of the variance we consider it in the following
simple bivariate normal example. Assume

f (x, y) = 1

2π
exp

(
−x2 + y2

2

)
, (x, y) ∈ R

2.

A special case of Theorem 1 says that whenever

nh2
n → 0 and nhn/ logn → ∞(2.63)

(here γ = 0), then(
n

hn

)1/4

{λ(Cn(c)�C(c)) − Eλ(Cn(c)�C(c))} d→ σλZ.(2.64)

We shall calculate σλ in this case. We get that

f ′(x, y) = −(x, y)f (x, y).

Notice for any 0 < c < 1
2π

,

β = {(x, y) :x2 + y2 = −2 log(c2π)}.
Setting

r(c) =
√

−2 log(c2π),

we see that β is the circle with center 0 and radius r(c). Choosing the obvious
differmorphism,

y(θ) = (r(c) cos θ, r(c) sin θ) for θ ∈ [0,2π ],
we get that for θ ∈ [0,2π ],

u(θ) = (− cos θ,− sin θ), y ′(θ) = (r(c) sin θ,−r(c) cos θ)

and

ι(θ) =
∣∣∣∣det

∣∣∣∣r(c) sin θ −r(c) cos θ

− cos θ − sin θ

∣∣∣∣
∣∣∣∣ = r(c).
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Here g = 1 and we are assuming γ = 0. We get that

c(s, θ, γ t) = c(s, θ,0) = −s|f ′(y(θ))|√
c‖K‖2

= −sr(c)
√

c

‖K‖2
.

Thus

�(θ, s, t)

= cov
(∣∣∣∣I

{
Z1 ≥ −sr(c)

√
c

‖K‖2

}
− I

{
0 ≥ −sr(c)

√
c

‖K‖2

}∣∣∣∣,
∣∣∣∣I

{
ρ(t)Z1 +

√
1 − ρ2(t)Z2 ≥ −sr(c)

√
c

‖K‖2

}
− I

{
0 ≥ −sr(c)

√
c

‖K‖2

}∣∣∣∣
)
.

This gives

σ 2
λ = r(c)

∫ ∞
−∞

∫ 2π

0

∫
B

�(θ, s, t) dt dθ ds.

Set

ϒ(θ,u, t) = cov
(|I {Z1 ≥ −u} − I {0 ≥ −u}|,
∣∣I{

ρ(t)Z1 +
√

1 − ρ2(t)Z2 ≥ −u
} − I {0 ≥ −u}∣∣).

We see then by the change of variables u = sr(c)
√

c
‖K‖2

that

σ 2
λ = ‖K‖2√

c

∫ ∞
−∞

∫ 2π

0

∫
B

ϒ(θ,u, t) dt dθ du.

For comparison, Theorem 2.1 of Cadre (2006) says that if

nhn/(logn)16 → ∞ and nh3
n(logn)2 → 0,(2.65)

then

√
nhnλ(Cn(c)�C(c))

P→ ‖K‖2

√
2c

π

∫
β

dH

‖∇f ‖ = 2‖K‖2

√
2π

c
.(2.66)

The measure dH denotes the Hausdorff measure on β . In this case H(β) is the
circumference of β .

Observe that since
√

nhn(
hn

n
)1/4 = (nh2

n)
1/4h

1/4
n → 0, (2.64) and (2.66) imply

that whenever (2.63) and (2.65) hold, we get

√
nhnEλ(Cn(c)�C(c)) → 2‖K‖2

√
2π

c
.

[Notice that the choice hn = 1/(
√

n logn) satisfies both (2.63) and (2.65).]
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