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Weak approximations have been developed to calculate the expectation
value of functionals of stochastic differential equations, and various numeri-
cal discretization schemes (Euler, Milshtein) have been studied by many au-
thors. We present a general framework based on semigroup expansions for
the construction of higher-order discretization schemes and analyze its rate of
convergence. We also apply it to approximate general Lévy driven stochastic
differential equations.

1. Introduction. Weak approximation problems play an important role in the
numerical calculation of E[f (Xt(x))] where Xt(x) is the solution of the stochastic
differential equation (SDE)

Xt(x) = x +
∫ t

0
Ṽ0(Xs−(x)) ds +

∫ t

0
V (Xs−(x)) dBs

(1.1)

+
∫ t

0
h(Xs−(x)) dYs

with smooth coefficients Ṽ0 : RN → RN,V = (V1, . . . , Vd), h : RN → RN ⊗ Rd

whose derivatives of any order (≥ 1) are bounded. Here Bt is a d-dimensional
standard Brownian motion and Yt is an d-dimensional Lévy process associated
with the Lévy triplet (b,0, ν) satisfying the condition∫

Rd
0

(1 ∧ |y|p)ν(dy) < ∞
for any p ∈ N.

Our purpose is to find a discretization scheme (X
(n)
t (x))t=0,T /n,...,T for given

T > 0 such that ∣∣E[f (XT (x))] − E
[
f

(
X

(n)
T (x)

)]∣∣ ≤ C(T ,f, x)

nm
.
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We denote briefly by E[f (XT (x))] − E[f (X
(n)
T (x))] = O(1/nm) the above situa-

tion, and say that X
(n)
T is a mth-order discretization scheme for Xt or that X

(n)
T is an

approximation scheme of order m. The Euler scheme is a first-order scheme, and
has been studied by many researchers. Talay and Tubaro [19] show the first-order
convergence of the Euler scheme and second-order convergence with the Romberg
extrapolation for continuous diffusions. The fact that the convergence rate of the
Euler scheme also holds for certain irregular functions f under a Hörmander type
condition has been proved by Bally and Talay [3] using Malliavin calculus. For the
general Lévy driven case, the Euler–Maruyama scheme was first studied in Protter
and Talay [18], see also Jacod and Protter [8] and Jacod et al. [7] (for smooth f ).
The Itô–Taylor (weak-Taylor) high-order scheme is a natural extension of the Euler
scheme although is hard to simulate due to the use of multiple stochastic integrals.
A discussion on the Itô–Taylor scheme with the Romberg extrapolation can be
found in Kloeden and Platen [9].

In the continuous diffusion case, some new discretization schemes (also called
Kusuoka type schemes) which are of order m ≥ 2 without the Romberg extrapola-
tion have been introduced by Kusuoka [11], Lyons and Victoir [13], Ninomiya
and Victoir [16], Kusuoka, Ninomiya and Ninomiya [12], Ninomiya and Ni-
nomiya [15] and Fujiwara [5, 6] (m = 6). The rate of convergence of these schemes
is closely related to the stochastic Taylor expansion, or series expansion of expo-
nential maps on a noncommutative algebra.

The actual simulation is carried out using (quasi) Monte Carlo methods. That
is, one computes 1

N

∑N
i=1 f (X

(n),i
T (x)) where X

(n),i
T (x), i = 1, . . . ,N , denotes N

i.i.d. copies of X
(n)
T (x). Therefore, using the law of large numbers, the final er-

ror 1
N

∑N
i=1 f (X

(n),i
T (x)) − E[f (XT (x))] is of the order O( 1√

N
+ 1

nm ). Then the

optimal asymptotic choice of n is O(nm) = O(
√

N).
The goal of the present article is twofold. First, we introduce a general frame-

work to study weak approximation problems from the standpoint of operator
(semigroup) expansions. That is given two processes that have equal semigroup ex-
pansions up to some order lead after composition to two processes that are closed
in law. This goal is not new. In fact, using PDE techniques, Milshtein and Talay
between others proved various weak approximation results. Although our proof is
essentially the same it gives a new viewpoint that will help in defining new ap-
proximation schemes.

The next idea is to decompose the generator associated with (1.1) in (say) d + 2
components where each component is associated with each component of the
driving process (the whole Lévy process is considered as one component). Then
we prove that if each of these components is approximated with an error of order
m + 1 then the composition gives an error of order m. In the particular case that
each component can be characterized as the semigroup of a flow-type process then
the composition leads to a composition-type approximation scheme.
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Secondly, using the above strategy we provide approximations for solutions
of (1.1). In particular, our approximations are valid for infinite activity Lévy
processes Y . We prove that in fact, if one uses the Asmussen–Rosiński idea of
approximating the jumps of size smaller than ε with a Brownian motion and we
only simulate one jump of size bigger than ε per each time interval in the approx-
imation is enough to provide a first-order approximation procedure. Furthermore
we give the necessary estimate to determine ε as a function of n. For this approxi-
mation, we found it better to decompose the generator in d + 4 components.

This paper is organized as follows. In Section 2, we introduce the main example
and the goal for the first part of this article in explicit mathematical terms. The
general framework is introduced in Section 3. In Section 4 we give the results of
convergence rates of numerical discretization schemes in the general framework.
In Section 5, we give a general result that states how to recombine the approxi-
mations to coordinate processes in order to approximate the semigroup associated
to (1.1). Finally, in Section 6 we approximate each coordinate process and in par-
ticular, we define approximation schemes for Lévy driven SDEs.

2. Weak approximation problem. In order to better understand the abstract
formulation in Section 3, we introduce here our main example. Let (Yt ) be a d-di-
mensional Lévy process characterized by Lévy–Khintchin formula

E
[
ei〈θ,Yt 〉]

(2.1)

= exp t

(
i〈θ, b〉 − 〈θ, cθ〉

2
+

∫
Rd

0

(
ei〈θ,y〉 − 1 − i〈θ, τ (y)〉)ν(dy)

)
,

where b ∈ Rd , c ∈ Rd ⊗ Rd (symmetric, semi-positive definite) and ν is a Borel
measure on Rd

0 := Rd \ {0} satisfying that∫
Rd

0

(1 ∧ |y|p)ν(dy) < ∞.(2.2)

This measure ν is called the Lévy measure. It is well known that (2.2) implies
that Yt ∈ ⋂

p≥1 Lp for all t . We also recall that τ is a truncation function [e.g.,
τ(y) = y1{|y|≤1}, the constant b and τ depend on each other]. The triplet (b, c, ν)

is called the Lévy triplet.
The Lévy driven stochastic differential equation is given by

Xt(x) = x +
∫ t

0
Ṽ0(Xs−(x)) ds +

∫ t

0
V (Xs−(x)) dBs

(2.3)

+
∫ t

0
h(Xs−(x)) dYs

with smooth coefficients Ṽ0 : RN → RN,V = (V1, . . . , Vd), h : RN → RN ⊗ Rd

whose derivatives of any order (≥ 1) are bounded. Here Bt and Yt are independent
d-dimensional standard Brownian motion and Yt is a d-dimensional Lévy process
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associated with the Lévy triplet (b,0, ν) satisfying condition (2.2). Using general
semimartingale theory (see [17]) we have that the above equation has a unique
solution. We define V0 := Ṽ0 − 1

2
∑d

i=1
∑N

j=1
∂Vi

∂xj
V

(j)
i . Then (2.3) can be rewritten

in the following Stratonovich form:

Xt(x) = x +
d∑

i=0

∫ t

0
Vi(Xs−(x)) ◦ dBi

s +
∫ t

0
h(Xs−(x)) dYs,

where B0
t = t .

Before introducing the general framework of approximation, let us explain in
mathematical terms the goal in this article. Our main example corresponds to the
approximation of the semigroup Pt defined as the semigroup associated to the
Markov process Xt :

Ptf (x) = E[f (Xt(x))],
where f : RN → R is a continuous function with polynomial growth at infinity.

Let Qt ≡ Qn
t be an operator such that the semigroup property is satisfied in

{kT /n;k = 0, . . . , n}. Assume that Qt approximates Pt in the sense that it satis-
fies the local error estimate (Pt − Qt)f (x) = O(tm+1). Then using the semigroup
property of both Pt and (QkT/n), we notice that

PT f (x) − (QT/n)
nf (x) =

n−1∑
k=0

(QT/n)
k(PT/n − QT/n)PT −(k+1)/nT f (x).

Therefore if we have good norm estimates of (QT/n)
k and PT −(k+1)/nT in a sense

to be defined later (in particular the norm estimates have to be independent of n)
then we can expect that (QT/n)

n is an approximation of order m to PT . Finally
in order to be able to perform Monte Carlo simulations we assume that Q has
a stochastic representation. That is, there exists a stochastic process M = Mt(x)

starting at x such that Qtf (x) = E[f (Mt(x))]. Then clearly, we have the follow-
ing representation.

QT f (x) = (QT/n)
nf (x) = E

[
f

(
M1

T/n ◦ · · · ◦ Mn
T/n(x)

)]
,

where Mi
T/n are independent copies of MT/n and ◦ is defined as (Mi

t ◦ M
j
t )(x) :=

Mi
t (M

j
t (x)).

The above ideas are well known and have been already used to achieve proofs
of weak convergence (for historical references, see [9]). Nevertheless, it seems
this is the first time it appears in this general framework. For example, if we
take Mt(x) := x + Ṽ0(x)t + V (x)Bt + h(x)Yt for d = 1, one obtains the Euler–
Maruyama scheme.

Next to further simplify the procedure to obtain approximations we write the
operator Pt as a composition of d + 2 operators as follows. First define the fol-
lowing stochastic processes Xi,t (x), i = 0, . . . , d + 1, usually called coordinate
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processes, which are the unique solutions of

X0,t (x) = x +
∫ t

0
V0(X0,s(x)) ds,

Xi,t (x) = x +
∫ t

0
Vi(Xi,s(x)) ◦ dBi

s, 1 ≤ i ≤ d,

Xd+1,t (x) = x +
∫ t

0
h(Xd+1,s−(x)) dYs.

Then we define

Qi,tf (x) := E[f (Xi,t (x))](2.4)

for continuous function f : RN → R with polynomial growth at infinity.
For notational convenience we identify a smooth function V : RN → RN with a

smooth vector field
∑N

i=1 V (i) ∂
∂xi

on RN . Let us define integro-differential opera-

tors Li acting on C2 by

L0f (x) := (V0f )(x), Lif (x) := 1
2(V 2

i f )(x), 1 ≤ i ≤ d,

Ld+1f (x) := ∇f (x)h(x)b(2.5)

+
∫ (

f
(
x + h(x)y

) − f (x) − ∇f (x)h(x)τ (y)
)
ν(dy).

It is well known that L := ∑d+1
i=0 Li is the generator of X and similarly Li is the

generator of Xi,t . Also etL := Pt and etLi := Qi,t , respectively, where we consider
these expressions as exponential maps on a noncommutative algebra. One notices
that these operators have the form

etL =
m∑

k=0

tk

k!L
k + O(tm+1),(2.6)

etLi =
m∑

k=0

tk

k!L
k
i + O(tm+1).(2.7)

To approximate etL, we would like to find some combination of operators sat-
isfying

etL −
k∑

j=1

ξj e
t1,jA1,j · · · et�j ,jA�j ,j = O(tm+1)(2.8)

with some ti,j > 0, Ai,j ∈ {L0,L1, . . . ,Ld+1} and weights {ξj } ⊂ [0,1] with∑k
j=1 ξj = 1. This will correspond to an mth-order discretization scheme.

To find such schemes, one can perform formal Taylor expansions for etA in
each of the terms in (2.8). We remark that the result (2.8) will follow directly
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from (2.6) and (2.7) independent of the specific form of the decomposition L :=∑d+1
i=0 Li . This algebraic calculation has lead to the introduction of the following

approximation schemes:
Ninomiya–Victoir (a):

1
2et/2L0etL1 · · · etLd+1et/2L0 + 1

2et/2L0etLd+1 · · · etL1et/2L0 .(2.9)

Ninomiya–Victoir (b):
1
2etL0etL1 · · · etLd+1 + 1

2etLd+1 · · · etL1etL0 .(2.10)

Splitting method:

et/2L0 · · · et/2Ld etLd+1et/2Ld · · · et/2L0 .(2.11)

The semigroups generated by these operators have a probabilistic representation.
For example, Ninomiya–Victoir (a) corresponds to

1U<1/2X0,t/2 ◦ Xd+1,t · · ·X1,t ◦ X0,t/2(x)

+ 11/2≤UX0,t/2 ◦ X1,t · · ·Xd+1,t ◦ X0,t/2(x),

where U is a uniform random variable taking values in [0,1], independent of Xi,t .
However, since a closed-form solution Xi,t is not always available, one has to
replace Xi,t with other approximations of order m + 1 so that the final approxima-
tion result remains unchanged. Nevertheless the fact that there is only one driving
process simplifies this task. This problem will be discussed in Section 5.

3. Preliminaries.

3.1. Notation and assumptions. In this section, we consider a general frame-
work for weak approximations following the arguments in Section 2, without using
the specific form of the operator. We first define the following functional spaces.

• Cm
p ≡ Cm

p (RN): the set of Cm functions f : RN → R such that for each multi-
index α with 0 ≤ |α| ≤ m, |∂α

x f (x)| ≤ C(α)(1 + |x|p) for some positive con-
stant C(α).

We also let Cp ≡ C0
p . Let us define a norm on Cm

p by

‖f ‖Cm
p

:= inf{C ≥ 0 : |∂α
x f (x)| ≤ C(1 + |x|p),0 ≤ |α| ≤ m,x ∈ RN },

where we denote |α| := α1 + · · · + αN for α = (α1, . . . , αN) ∈ ZN+ .

• C1,m
p ([0, T ] × RN): the set of functions f : [0, T ] × RN → R such that s �→

f (s, x) is continuous differentiable for all x ∈ RN and satisfies that f (s, ·),
∂sf (s, ·) ∈ Cm

p with sups∈[0,T ](‖f (s, ·)‖Cm
p

+ ‖∂sf (s, ·)‖Cm
p
) < ∞.

From now on, we denote by Qt :
⋃

p≥0 Cp(RN) → ⋃
p≥0 Cp(RN) a linear op-

erator for 0 ≤ t ≤ T .
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ASSUMPTION (M0). If f ∈ Cp with p ≥ 2, then Qtf ∈ Cp and

sup
t∈[0,T ]

‖Qtf ‖Cp ≤ K‖f ‖Cp

for some constant K > 0 independent of n. Futhermore, we assume 0 ≤ Qtf (x) ≤
Qtg(x) whenever 0 ≤ f ≤ g.

We now introduce two assumptions which are highly related to the convergence
rate of approximation schemes.

ASSUMPTION (M). Qt satisfies (M0), and for each fp(x) := |x|2p (p ∈ N),

Qtfp(x) ≤ (1 + Kt)fp(x) + K ′t(3.1)

for some constant K = K(T ,p), K ′ = K ′(T ,p) > 0.

For m ∈ N, δm : [0, T ] → R+ denotes a decreasing function which satisfies

lim sup
t→0+

δm(t)

tm−1 = 0.

Usually, we have δm(t) = tm.

ASSUMPTION R(m, δm). For each p ≥ 2, there exists a constant q =
q(m,p) ≥ p and linear operators ek :C2k

p → Cp+2k (k = 0,1, . . . ,m) such that

(A): For every f ∈ C
2(m′+1)
p with 1 ≤ m′ ≤ m, the operator Qt satisfies

Qtf (x) =
m′∑

k=0

(ekf )(x)tk + (
Err(m

′)
t f

)
(x), t ∈ [0, T ],(3.2)

where Err(m
′)

t f ∈ Cq , and satisfies the following condition:

(B): If f ∈ Cm′′
p with m′′ ≥ 2k, then ekf ∈ Cm′′−2k

p+2k and there exists a constant
K = K(T ,m) > 0 such that

‖ekf ‖
Cm′′−2k

p+2k

≤ K‖f ‖
Cm′′

p
, k = 0,1, . . . ,m.(3.3)

Furthermore if f ∈ Cm′′
p with m′′ ≥ 2m′ + 2,

∥∥Err(m
′)

t f
∥∥
Cq

≤
⎧⎨
⎩

Ktm
′+1‖f ‖

Cm′′
p

, if m′ < m,

Ktδm(t)‖f ‖
Cm′′

p
, if m′ = m

for all 0 ≤ t ≤ T .
(C): For every 0 ≤ k ≤ m and j ≥ 2k + 2, if f ∈ C

1,j
p ([0, T ]× RN), then ekf ∈

C
1,j−2k
p+2k ([0, T ] × RN).
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In order to compare the finite power expansions of different operators, we in-
troduce the following notation:

J≤m(Qt) :=
m∑

k=0

tkek,

Jm(Q) := em.

J≤m(Qt) is a linear operator, which is related to the series expansion of t �→ etLi

(cf. Proposition A.6). The following lemma comprises some basic properties re-
lated to the above definition. The proof is straightforward.

LEMMA 3.1. The following properties are satisfied:

R(m + 1, δm+1) ⇒ R(m, tm),

R(m, δm) ⇒ R(m, δ̃m),

whenever δm(t) ≤ Kδ̃m(t) and lim supt→0+ δ̃m(t)/tm−1 = 0.

(i) Let {ξi}1≤i≤� be deterministic positive constants with
∑

i ξi = 1, and as-
sume (M) for Q

(i)
t (i = 1, . . . , �). Then

∑�
i=1 ξiQ

(i)
t also satisfies (M).

(ii) Let {ξi}1≤i≤� ⊂ R and assume R(m, δm) for Q
(i)
t (i = 1, . . . , �). Then∑�

i=1 ξiQ
(i)
t also satisfies R(m, δm).

4. Weak rate of convergence. In this section, we prove the rate of conver-
gence for the approximating operator Q under the Assumptions (M), R(m, δm).
Throughout this section, we assume the following assumption:

ASSUMPTION (MP ). For all f ∈ Cm
p then P·f ∈ C

1,m−2
p+2 and furthermore the

following two properties are satisfied for some positive constant C:
1. supt∈[0,T ] ‖Ptf ‖Cm

p
≤ C‖f ‖Cm

p
,

2. ‖(Pt − Ps)f ‖Cm
p

≤ C|t − s|‖f ‖Cm
p

.

THEOREM 4.1. Assume (M) and R(m, δm) for Pt and Qt with J≤m(Pt −
Qt) = 0. Then for any f ∈ C

2(m+1)
p , there exists a constant K = K(T ,x) > 0 such

that

|PT f (x) − (QT/n)
nf (x)| ≤ Kδm

(
T

n

)
‖f ‖

C
2(m+1)
p

.(4.1)

For the proof, we need the following lemma.

LEMMA 4.1. Under Assumption (M), the operators Pt and Qt satisfy

sup
n

max
0≤k≤n

(
(PT/n)

k + (QT/n)
k)f (x) < ∞

for any positive function f ∈ Cp with p ≥ 0.
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PROOF. Without loss of generality we do the proof for Q. Let fp(x) = |x|2p

for p ∈ N. By the Assumption (M), we have

(QT/n)
kfp(x) = (QT/n)

k−1(QT/nfp)(x)

≤
(

1 + C

n

)
(QT/n)

k−1fp(x) + C′

n

with some constant C,C′ independent of t, x, k, n. Since (1 + C
n
)k ≤ eC , one

proves by induction that

sup
n

max
0≤k≤n

(QT/n)
kfp(x) ≤ eCC′(1 + |x|2p).

This completes the proof. �

PROOF OF THEOREM 4.1. Let f ∈ C
2(m+1)
p . Using the semigroup property

and Assumption R(m, δm), we have

PT f (x) − (QT/n)
nf (x) =

n−1∑
k=0

(QT/n)
k(PT/n − QT/n)PT −(k+1)/nT f (x)

=
n−1∑
k=0

(QT/n)
k(Err(m)

T /nPT −(k+1)/nT f
)
(x),

where Err(m)
t is the error term of (P − Q) defined in (3.2).

We obtain from Assumptions R(m, δm) and (MP )

∣∣(Err(m)
T /nPT −(k+1)/nT f

)
(x)

∣∣ ≤ K1
T

n
δm

(
T

n

)
(1 + |x|q)

∥∥PT −(k+1)/nT f
∥∥
C

2(m+1)
p

≤ K2T

n
δm

(
T

n

)
(1 + |x|q)‖f ‖

C
2(m+1)
p

and hence Lemma 4.1 leads to∣∣(QT/n)
k(Err(m)

T /nPT −(k+1)/nT f
)
(x)

∣∣
≤ K2T

n
δm

(
T

n

)
‖f ‖

C
2(m+1)
p

(QT/n)
k(1 + |x|q)

≤ K

n
δm

(
T

n

)
‖f ‖

C
2(m+1)
p

for some constant K = K(T ,x). This completes the proof. �

The following theorem is an extension of Theorem 4.1, and is analogous to
Talay and Tubaro [19], Theorem 1.
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THEOREM 4.2. Assume (M) and R(m + 1, δm+1) for Qt with J≤m(Pt −
Qt) = 0. Then for each f ∈ C

2(m+3)
p , we have

PT f (x) − (QT/n)
nf (x) = K

nm
+ O

((
T

n

)m+1

∨ δm+1

(
T

n

))
,(4.2)

where K = T m
∫ T

0 PsJm+1(P − Q)PT −sf (x) ds.

PROOF. We start by noting that as in the proof of Theorem 4.1,

(PT/n − QT/n)PT −sf (x)

=
(

T

n

)m+1

Jm+1(P − Q)PT −sf (x) + (
Err(m+1)

T /n PT −sf
)
(x)

and therefore,

PT f (x) − (QT/n)
nf (x)

=
(

T

n

)m+1 n−1∑
k=0

(QT/n)
kJm+1(P − Q)PT −(k+1)/nT f (x)

+ O

(
δm+1

(
T

n

))
.

Now applying the proof of Theorem 4.1 (for m = 1) to Jm+1(P − Q) ×
PT −(k+1)/nT f ∈ C4

p+2(m+1), we obtain

∣∣((QT/n)
k − PkT/n

)
Jm+1(P − Q)PT −(k+1)/nT f (x)

∣∣
≤ C1(T , x)

n

∥∥Jm+1(P − Q)PT −(k+1)/nT f
∥∥
C4

p+2(m+1)

≤ C2(T , x)

n
‖f ‖

C
2(m+3)
p

.

Next, we have by hypothesis (MP ),∣∣PkT/nJm+1(P − Q)PT −(k+1)/nT f (x)

− P(k+1)/nT Jm+1(P − Q)PT −(k+1)/nT f (x)
∣∣

= ∣∣(I − PT/n)PkT/nJm+1(P − Q)PT −(k+1)/nT f (x)
∣∣

≤ C3(T , x)

n

∥∥PkT/nJm+1(P − Q)PT −(k+1)/nT f
∥∥
C4

p+2(m+1)

≤ C4(T , x)

n
‖f ‖

C
2(m+3)
p

.
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Using Lemmas A.1 and A.2 in the Appendix and Jm+1(P − Q)PT −sf (x) ∈
C

1,2
p+2(m+2), we have

∣∣∣∣∣Tn
n−1∑
k=0

P(k+1)/nT Jm+1(P − Q)PT −(k+1)/nT f (x)

−
∫ T

0
PsJm+1(P − Q)PT −sf (x) ds

∣∣∣∣∣
≤ C(T ,f, x)

n
.

As a result, taking K = T m
∫ T

0 PsJm+1(P − Q)PT −sf (x) ds, we conclude that

PT f (x) − (QT/n)
nf (x) = K

nm
+ O

((
T

n

)m+1

∨ δm+1

(
T

n

))
.

This concludes the proof. �

5. Algebraic approximations of semigroup operators using coordinate op-
erators. Throughout this section, we assume that Pt , t ∈ [0, T ], is a semigroup
that satisfies (M), (MP ) and R(m, δm). Furthermore we suppose that

J≤m(Pt ) = I +
m∑

j=1

tj

j !ej

with ej = (
∑d+1

i=0 Li)
j satisfying the properties stated in R(m, δm). Similarly, we

assume that Qi,t :
⋃

p≥0 Cp(RN) → ⋃
p≥0 Cp(RN), i = 0, . . . , d + 1, be a se-

quence of operators such that they satisfy (M), (MP ) and R(m, δm) with

J≤m(Qi,t ) = I +
m∑

j=1

tj

j !L
j
i .

∏�
i=1 ai := a1a2 · · ·a� denotes a noncommutative product.

THEOREM 5.1. Assume m = 2. That is, (M) and R(2, δ2) are satisfied for
Qi,t (i = 0,1, . . . , d + 1). Then all the following operators satisfy (M) and
R(2, δ2):

N–V (a): Q
(a)
t = 1

2Q0,t/2
∏d+1

i=1 Qi,tQ0,t/2 + 1
2Q0,t/2

∏d+1
i=1 Qd+2−i,tQ0,t/2.

N–V (b): Q
(b)
t = 1

2
∏d+1

i=0 Qi,t + 1
2

∏d+1
i=0 Qd+1−i,t .

Splitting: Q
(sp)
t = Q0,t/2 · · ·Qd,t/2Qd+1,tQd,t/2 · · ·Q0,t/2.

Moreover, we have J≤2(Q
(a)
t ) = J≤2(Q

(b)
t ) = J≤2(Q

(sp)
t ) = ∑2

k=0
tk

k!L
k . In par-

ticular, the above schemes define a second-order approximation scheme.
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The proof of Theorem 5.1 is an application of Theorem 4.1. The conditions
follow from the next lemma, together with an algebraic calculation as pointed out
at the end of Section 2.

This theorem can also be stated for third-order approximation schemes.

LEMMA 5.1. Let Q1
t and Q2

t :
⋃

p≥0 Cp(RN) → ⋃
p≥0 Cp(RN) be two linear

operators and let Q1
t Q

2
t be the composite operator. Then:

(i) If (M) holds for Q1
t , Q2

t , then it also holds for Q1
t Q

2
t .

(ii) If R(m, δm) holds for Q1
t , Q2

t , then it also holds for Q1
t Q

2
t .

PROOF. (i) is obvious. We now prove (ii). Let m′ ≤ m. We have by hypothesis
that

Q1
t f (x) =

m′∑
k=0

(JkQ
1
t f )(x)tk + (

Err(m
′,1)

t f
)
(x),

Q2
t f (x) =

m′∑
k=0

(JkQ
2
t f )(x)tk + (

Err(m
′,2)

t f
)
(x)

for f ∈ C
2(m′+1)
p , p ≥ 2. Furthermore there exists q = q(m,p) > 0 such that

Err(m
′,1)

t f , Err(m
′,2)

t f ∈ Cq . Now we prove (A)–(C) in the definition of R(m, δm).

(A): Note that for f ∈ C
2(m′+1)
p (RN),

Q1
t Q

2
t f (x) = Q1

t

(
m′∑

k=0

(JkQ
2
t f )(x)tk + (

Err(m
′,2)

t f
)
(x)

)
.

Since JkQ
2
t f ∈ C

2(m′+1)−2k
p+2k , Q1

t (JkQ
2
t f ) can be written as

(Q1
t (JkQ

2
t f ))(x) =

m′−k∑
�=0

(J�Q
1
t (JkQ

2
t f ))(x)t� + (

Err(m
′−k,1)

t JkQ
2
t f

)
(x).

As a result, we have

Q1
t Q

2
t f (x) =

m′∑
k=0

m′−k∑
�=0

(J�Q
1
t (JkQ

2
t f ))(x)tk+� + (

Err(m
′,1,2)

t f
)
(x),

where

(
Err(m

′,1,2)
t f

)
(x) = (

Q1
t Err(m

′,2)
t f

)
(x) +

m′∑
k=0

(
Err(m

′−k,1)
t JkQ

2
t f

)
(x)tk.(5.1)

We obtain from the properties of the error terms that Err(m
′,1,2)

t f ∈ Cq ′ for some
q ′ = q ′(m,p) > q .
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(B): For f ∈ Cm′′
p with m′′ ≥ 2(m′ + 1), we can derive for k + � ≤ m′,

‖J�Q
1
t (JkQ

2
t f )‖

C
m′′−2(k+�)
p+2(k+�)

≤ K1‖JkQ
2
t f ‖

Cm′′−2k
p+2k

≤ K2‖f ‖
Cm′′

p

and by (5.1),∥∥Err(m
′,1,2)

t f
∥∥
Cq′ ≤ K3

∥∥Err(m
′,2)

t f
∥∥
Cq

+ K4
∥∥Err(m

′,1)
t J0Q

2
t f

∥∥
Cq′

+ K5

m′∑
k=1

‖JkQ
2
t f ‖

Cm′′−2k
p+2k

tm
′+1

≤
⎧⎨
⎩

Ktm
′+1‖f ‖

Cm′′
p

, if m′ < m,

Ktδm(t)‖f ‖
Cm′′

p
, if m′ = m.

Finally, the proof of (C) is straightforward. �

PROOF OF THEOREM 5.1. Using this lemma, we end the proof, calculating
J≤m for each numerical discretization scheme. For instance, in the case of N–V (b)
[i.e., (2.10)], we obtain

J≤2

(
1

2

d+1∏
i=0

Qi,t + 1

2

d+1∏
i=0

Qd+1−i,t

)

= 1

2
J≤2

(
d+1∏
i=0

J≤2(Qit )

)
+ 1

2
J≤2

(
d+1∏
i=0

J≤2(Qd+1−i,t )

)

= 1

2
J≤2

(
d+1∏
i=0

( 2∑
k=0

tk

k!L
k
i

))
+ 1

2
J≤2

(
d+1∏
i=0

( 2∑
k=0

tk

k!L
k
d+1−i

))

= 1

2

(
I + t

d+1∑
i=1

Li + t2

2

d+1∑
i=1

L2
i + t2

∑
i<j

LiLj

)

+ 1

2

(
I + t

d+1∑
i=1

Li + t2

2

d+1∑
i=1

L2
i + t2

∑
i>j

LiLj

)

= J≤2(Pt ). �

Another idea to construct higher-order schemes is to use local Romberg extrap-
olation. In order to do this we need to weaken the assumption {ξi} ⊂ [0,1]. This is
done in the next theorem.

THEOREM 5.2. Let m = 1 or 2. Assume (M) and R(2m, t2m) for Pt and Q
[i]
t

(i = 1, . . . , �) and (MP ) for Pt . Furthermore, we assume:



AN OPERATOR APPROACH FOR MC WEAK APPROXIMATIONS 1039

(1) J≤2m(Pt − ∑�
i=1 ξiQ

[i]
t ) = 0 for some real numbers {ξi}i=1,...,� with∑l

i=1 ξi = 1.
(2) There exists a constant q = q(m,p) > 0 such that for every f ∈ Cm′

p with

m′ ≥ 2(m + 1), (Pt − Q
[i]
t )f ∈ C

m′−2(m+1)
q and

sup
t∈[0,T ]

∥∥(
Pt − Q

[i]
t

)
f

∥∥
C

m′−2(m+1)
p

≤ CT ‖f ‖
Cm′

q
T m+1.

Then we have for any f ∈ C
4(m+1)
p ,∣∣∣∣∣PT f (x) −
�∑

i=1

ξi

(
Q

[i]
T/n

)n
f (x)

∣∣∣∣∣ ≤ C(T ,f, x)

n2m
.

PROOF. We first remark that the operator
∑�

i=1 ξiQ
[i]
t no longer satisfies the

semigroup property, that is,
∑�

i=1 ξi(Q
[i]
T/n)

n �= (
∑�

i=1 ξiQ
[i]
T/n)

n. Thus the proof is
nontrivial.

Note that for f ∈ C
4(m+1)
p ,

E := PT f (x) −
�∑

i=1

ξi

(
Q

[i]
T/n

)n
f (x) =

�∑
i=1

ξi

(
PT − (

Q
[i]
T/n

)n)
f (x).

Using the semigroup property of Pt and Q
[i]
k/nT , we have

E =
�∑

i=1

ξi

n−1∑
k=0

(
Q

[i]
T/n

)k(
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f (x)

=
�∑

i=1

ξi

n−1∑
k=0

PkT/n

(
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f (x)

+
�∑

i=1

ξi

n−1∑
k=0

((
Q

[i]
T/n

)k − PkT/n

)(
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f (x).

We expand (Q
[i]
T/n)

k − PkT/n again, to obtain

E =
n−1∑
k=0

(PT/n)
k

(
PT/n −

�∑
i=1

ξiQ
[i]
T/n

)
PT −(k+1)/nT f (x)

+
�∑

i=1

ξi

n−1∑
k=0

k−1∑
l=0

(
Q

[i]
T/n

)l(
Q

[i]
T/n − PT/n

)

× PT −(l+1)/nT

(
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f (x).
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By the assumption (1), we have∣∣∣∣∣
n−1∑
k=0

(PT/n)
k

(
PT/n −

�∑
i=1

ξiQ
[i]
T/n

)
PT −(k+1)/nT f (x)

∣∣∣∣∣ ≤ C1(T , f, x)

n2m
.

Thus we end the proof by showing that∣∣∣∣∣
�∑

i=1

ξi

n−1∑
k=0

k−1∑
l=0

(
Q

[i]
T/n

)l(
Q

[i]
T/n − PT/n

)
PT −(l+1)/nT

× (
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f (x)

∣∣∣∣∣
≤ C2(T , f, x)

n2m
.

Using here the assumption (2), we obtain∥∥(
Q

[i]
T/n − PT/n

)
PT −(l+1)/nT

(
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f

∥∥
Cq′

≤ C(T )

nm+1

∥∥(
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f

∥∥
C

2(m+1)
q

≤ C′(T )

n2(m+1)
‖f ‖

C
4(m+1)
p

and therefore ∣∣∣∣∣
�∑

i=1

ξi

n−1∑
k=0

k−1∑
l=0

(
Q

[i]
T/n

)l(
Q

[i]
T/n − PT/n

)
PT −(l+1)/nT

× (
PT/n − Q

[i]
T/n

)
PT −(k+1)/nT f (x)

∣∣∣∣∣
≤

n−1∑
k=0

k−1∑
l=0

C2(T , f, x)

n2(m+1)
≤ C2(T , f, x)

n2m
.

This completes the proof. �

EXAMPLE 5.2. It is known that the Ninomiya–Victoir scheme(
1

2
eT/(2n)L0

d+1∏
i=1

eT/nLi eT /(2n)L0 + 1

2
eT/(2n)L0

d+1∏
i=1

eT/nLd+2−i eT /(2n)L0

)n

is of order 2 [m = 2, δ2(t) = t2 in Theorem 4.1]. By Theorem 5.2, the following
modified Ninomiya–Victoir scheme

1

2

(
eT/(2n)L0

d+1∏
i=1

eT/nLi eT /(2n)L0

)n

+ 1

2

(
eT/(2n)L0

d+1∏
i=1

eT/nLd+2−i eT /(2n)L0

)n
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is also of order 2.

EXAMPLE 5.3. Fujiwara [6] gives a proof of a similar version of the above
theorem and some examples of fourth and sixth order. We introduce the examples
of fourth order:

4

3

(
1

2

(
d+1∏
i=0

et/2Li

)2

+ 1

2

(
d+1∏
i=0

et/2Ld+1−i

)2)
− 1

3

(
1

2

d+1∏
i=0

etLi + 1

2

d+1∏
i=0

etLd+1−i

)
.

In order to complete the approximation procedure through (quasi) Monte Carlo
methods we need to find a stochastic characterization of the operators Qi,t .

DEFINITION 5.4. Given a stochastic process Yt (x) ∈ ⋂
p≥1 Lp , we say

that Y is the stochastic characterization of the linear operator Qt if Qtf (x) =
E[f (Yt (x))] for f ∈ ⋃

p≥0 Cp . In such as case we use the notation Qt ≡ QY
t .

REMARK 5.5. Given the operators QZi

t (i = 1, . . . , �) and the determinis-
tic positive weights {ξi}1≤i≤� with

∑l
i=1 ξi = 1. Let U be a uniform random

variable on [0,1] independent of (Zi)i and define Z := ∑�
i=1 1(

∑i−1
j=1 ξj ≤ U <∑i

j=1 ξj )Z
i . Then

QZ
t f (x) ≡ E[f (Zt(x))] =

�∑
i=1

ξiQ
Zi

t f (x).

Therefore by Lemma 3.1 if QZi

t satisfy (M) and R(m, δm) so does QZ
t . This

property will be used repeatedly in what follows.

6. Applications. From this section on, we discuss the application of the
previous approximation results to the case of solutions of the sde (1.1). From
the results in the Appendix (see Corollary A.7), it is clear that the semigroup
Ptf (x) := E[f (Xt(x))] satisfies the hypotheses (M) and R(m, δm). We define
various approximations generated via a stochastic process X̄i with corresponding

operator Q
X̄i
t (i = 0,1, . . . , d + 1).

Due to the previous results and in particular, Theorem 5.1, we see that is enough
to verify local conditions on the approximation operators to conclude global prop-
erties of approximation. In particular, we only need to verify that the operator
associated with X̄i (the approximation to the coordinate process) satisfies (M) and

R(m, δm) and J≤m(Q
X̄i
t ) = I + ∑m

j=1
tj

j !L
j
i for some m ≥ 2 for Li given by (2.5).

This is the goal in most of the applications in this section.
Recall that the stochastic differential equation to be approximated is

Xt(x) = x +
d∑

i=0

∫ t

0
Vi(Xs−(x)) ◦ dBi

s +
∫ t

0
h(Xs−(x)) dYs.



1042 H. TANAKA AND A. KOHATSU-HIGA

In each of the following sections we consider different approximation processes for
the coordinate processes Xi,t . In each section, the notation for the approximating
process is always X̄i,t . We hope that this does not raise confusion as the framework
in each section is clear.

6.1. Continuous diffusion component.

(a) Explicit solution. Let V : RN → RN be a smooth function satisfying the
linear growth condition |V (x)| ≤ C(1 + |x|). The exponential map is defined as
exp(V )x = z1(x) where z denotes the solution of the ordinary differential equation

dzt (x)

dt
= V (zt (x)), z0(x) = x.(6.1)

The solution of the coordinate sde is obtained in the following proposition. The
proof follows from Itô’s formula.

PROPOSITION 6.1. For i = 0,1, . . . , d , the stochastic differential equation

Xi,t (x) = x +
∫ t

0
Vi(Xi,s(x)) ◦ dBi

s(6.2)

has a unique solution given by

Xi,t (x) = exp(Bi
t Vi)x.

Xi,t (x) is called the ith coordinate process and its semigroup is denoted by Qi
t .

This is a trivial example of the approximation of etLi , i = 0,1, . . . , d , satisfy-
ing (M) and R(m, tm). However, sometimes it is not easy to obtain the closed-
form solution to the ODE (6.1). In those cases, we shall approximate exp(tV )x.
Here we will do this with the Taylor expansion first and then the Runge–Kutta
methods denoted by bm and cm, respectively.

(b) Taylor expansion. We first prove the following lemmas which help us to
find the rate of convergence of the scheme to be defined later. The following lemma
follows easily from Gronwall’s lemma.

LEMMA 6.2. Let V be a smooth function which satisfies the linear growth
condition. Then | exp(tV )x| ≤ CeK|t |(1 + |x|) for t ∈ R, x ∈ RN .

From now on we denote by ej : RN → R, the coordinate function ej (x) = xj for
j = 1, . . . ,N . Furthermore, we also denote by V the vector field operator defined
from V .
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LEMMA 6.3. Let f ∈ Cm+1
p . Then we have for i = 0,1, . . . , d ,

f (exp(tVi)x) =
m∑

k=0

tk

k!V
k
i f (x) +

∫ t

0

(t − u)m

m! V m+1
i f (exp(uVi)x) du(6.3)

and∣∣∣∣
∫ t

0

(t − u)m

m! V m+1
i f (exp(uVi)x) du

∣∣∣∣ ≤ Cm‖f ‖
Cm+1

p
eK|t |(1 + |x|p+m+1)|t |m+1

for all t ∈ R.

PROOF. Assertion (6.3) follows application of Taylor expansion to the func-
tion f (exp(tV )x) around t = 0. Next, as |V m+1

i f (x)| ≤ C(1 + |x|p+m+1), we
obtain from Lemma 6.2,∣∣∣∣

∫ t

0

(t − u)m

m! V m+1
i f (exp(uV )x) du

∣∣∣∣
≤ Cm‖f ‖

Cm+1
p

∫ |t |
0

|t |mCeK|u|(1 + |x|p+m+1) du

≤ C′
m‖f ‖

Cm+1
p

eK|t |(1 + |x|p+m+1)|t |m+1. �

Based on this lemma, we define the approximation to the solution of the coor-
dinate equation (6.2) as follows

bj
m(t,V )x =

m∑
k=0

tk

k! (V
kej )(x), j = 1, . . . ,N.

Define

X̄i,t (x) = b2m+1(B
i
t , Vi)x for i = 0, . . . , d.

Then we have the following approximation result.

PROPOSITION 6.4. (i) For every p ≥ 1,

‖Xi,t (x) − X̄i,t (x)‖Lp ≤ C(p,m,T )
(
1 + |x|2(m+1))tm+1.

(ii) Let f ∈ C1
p . Then we have

E[|f (Xi,t (x)) − f (X̄i,t (x))|] ≤ C(m,T )‖f ‖C1
p

(
1 + |x|p+2(m+1))tm+1.

PROOF. (i) Apply Proposition 6.1 and Lemma 6.3 with f = ei . Then we have

‖Xi,t (x) − X̄i,t (x)‖Lp ≤ E
[∣∣CmeK|Bt |(1 + |x|2(m+1))|Bt |2(m+1)

∣∣p]1/p

≤ C
(
1 + |x|2(m+1))tm+1
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for some constant C = C(p,m,T ).
(ii) We first apply the mean value theorem to obtain

E[|f (Xi,t (x)) − f (X̄i,t (x))|]
≤ ‖f ‖C1

p
‖1 + |θXi,t (x) + (1 − θ)X̄i,t (x)|p‖L2‖Xi,t (x) − X̄i,t (x)‖L2

≤ C‖f ‖C1
p
‖1 + |Xi,t (x)|p + |X̄i,t (x)|p‖L2

(
1 + |x|2(m+1))tm+1.

We see by Lemma 6.2 that

sup
t∈[0,T ]

‖1 + |Xi,t (x)|p + |X̄i,t (x)|p‖L2 ≤ C′(1 + |x|p)

from which the proof follows. �

As a result of this proposition we can see that R(m, tm) holds for the operators
associated with bm(t,V0)x and b2m+1(B

i
t , Vi)x, 1 ≤ i ≤ d . Indeed, we have for

m′ ≤ m,

E[f (X̄i,t (x))] = E[f (Xi,t (x))] + E[f (X̄i,t (x)) − f (Xi,t (x))]

=
m′∑

k=0

tk

k!L
k
i f (x) + (Em′

t f )(x),

where

(Em′
t f )(x) := (

Err(m
′)

t f
)
(x) + E[f (X̄i,t (x)) − f (Xi,t (x))]

and (Err(m
′)

t f )(x) is defined through the residue appearing in Proposition A.6,
using Li and Qi instead of L and P . Furthermore, using Proposition 6.4(ii), we
have that the error term Em′

t satisfies (B) in Assumption R(m, tm).
It remains to prove that (M) holds for X̄i,t (x). For the proof, we need an addi-

tional growth condition for the vector field Vi .

PROPOSITION 6.5. Assume that (V k
i ej ) (2 ≤ k ≤ m, 0 ≤ i ≤ d , 1 ≤ j ≤ N)

satisfies the linear growth condition then (M) holds for X̄i,t (x), i = 0, . . . , d .

PROOF. The Assumption (M0) follows from the smoothness and the linear
growth property of V k

i ej . We only prove the moment condition (3.1) for X̄i,t (x)

i = 1, . . . , d . Consider the multiplication (p ∈ N)∣∣∣∣∣
m∑

k=0

(Bi
t )

k

k! (V k
i ej )(x)

∣∣∣∣∣
2p

=
∣∣∣∣∣x + Bi

t Vi(x) +
m∑

k=2

(Bi
t )

k

k! (V k
i ej )(x)

∣∣∣∣∣
2p

.

Taking into account that E[(Bi
t )

2k+1] = 0, k ∈ N. Then by the assumption, we
obtain the result. �

Therefore we obtain the main result.
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THEOREM 6.1. Assume that (V k
i ej ) (2 ≤ k ≤ m, 0 ≤ i ≤ d , 1 ≤ j ≤ N) sat-

isfies the linear growth condition. Let X̄i,t (x) be defined by

X̄i,t (x) = b2m+1(B
i
t , Vi)x =

2m+1∑
k=0

1

k!(V
k
i I )(x)

∫
0<t1<···<tk<t

1 ◦ dBi
t1

◦ · · · ◦ dBi
tk
.

Denote by Q
X̄i
t the semigroup associated with X̄i,t (x). Then Q

X̄i
t satisfies (M) and

R(m, tm). Furthermore J≤m(Q
X̄i
t ) = I + ∑m

j=1
tj

j !L
j
i .

(c) Runge–Kutta methods. We say here that cm is an s-stage explicit Runge–
Kutta method of order m for the ODE (6.1) if it can be written in the form

cm(t,V )x = x + t

s∑
i=1

βiki(t, V )x,(6.4)

where ki(t, V )x defined inductively by

k1(t,V )x = V (x),

ki(t, V )x = V

(
x + t

i−1∑
j=1

αi,j kj (t, V )x

)
, 2 ≤ i ≤ s,

and satisfies

| exp(tV )x − cm(t,V )x| ≤ CmeK|t |(1 + |x|m+1)|t |m+1

for some constants ((βi, αi,j )1≤j<i≤s). Runge–Kutta formulas of order less than
or equal to 7 are well known. For details, see, for example, Butcher [4].

The following proposition can be shown by the same argument as in the proof
of Proposition 6.4.

PROPOSITION 6.6 (Stochastic Runge–Kutta). (i) For every p ≥ 1,

‖Xi,t (x) − c2m+1(B
i
t , Vi)x‖Lp ≤ C(p,m,T )

(
1 + |x|2(m+1))tm+1.(6.5)

(ii) Let f ∈ C1
p . Then we have

E[|f (Xi,t (x)) − f (c2m+1(B
i
t , Vi)x)|]

(6.6)
≤ C(m,T )‖f ‖C1

p

(
1 + |x|2(m+1))tm+1.

Next we show that (M) still holds for the Runge–Kutta schemes.

PROPOSITION 6.7. (M) holds for cm(Bi
t , Vi)x, i = 0, . . . , d .
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PROOF. We first note that for every 1 ≤ j ≤ s, there exists a function of the
form pj = ∑j−1

k=0 ajk|t |k such that

|kj (t,V )x| ≤ pj (t)(1 + |x|).
Assumption (M0) follows from the smoothness and the linear growth property
of Vi. We now prove (3.1). In the case i = 0, this is obvious by definition and the
inequality (6.1). In the case 1 ≤ i ≤ d , observe that

cm(t,V )x = x + t

s∑
l=1

βlV (x) + t

s∑
l=2

βl

∫ 1

0

d

dθ
V

(
x + θt

l−1∑
j=1

αl,j kj (t, V )x

)
dθ

=: x + t

s∑
l=1

βlV (x) + Dm(t,V )x.

Expanding multiplications and taking expectations, as in Proposition 6.5, we can
show that the terms containing odd powers of Bi

t have expectation 0. Finally, we
obtain from the boundedness of ∂Vi that

|Dm(Bi
t , Vi)x| ≤ p(Bi

t )(1 + |x|),
where p = p(t) is of the form

∑s
k=2 ak|t |k . Using this, we conclude the proof. �

Consequently, as in the Taylor scheme, R(m, tm) and (M) hold for the opera-
tors associated with cm(t,V0)x and c2m+1(B

i
t , Vi)x, 1 ≤ i ≤ d . For more on this

method, we refer the reader to [12].

(d) Minor extension. In the previous approximation, the assumption that Bt ∼
N(0, Id) can be weakened. In fact, we can use

√
tZ instead of Bt where (Zi)di=1

are independent and

P
(
Zi = ±√

3
) = 1

6 , P (Zi = 0) = 2
3

for each i = 1, . . . , d .

PROPOSITION 6.8. Let Bt be a one-dimensional Brownian motion and Z be
a R-valued random variable such that for all 0 ≤ k ≤ m,

E[(Z)k] = E[(B1)
k]

and

E[exp(c|Z|)] < ∞
for any c > 0. Then, for every f ∈ Cm+1

p ,∣∣E[f (exp(BtV )x)] − E
[
f

(
cm

(√
tZ,V

)
x
)]∣∣ ≤ C(m,T )(1 + |x|p+m+1)t(m+1)/2.
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6.2. Compound Poisson case. Suppose that Yt is a compound Poisson process.
That is,

Yt =
Nt∑
i=1

Ji,

where (Nt) is a Poisson process with intensity λ and (Ji) are i.i.d. Rd -valued
random variables independent of (Nt) with Ji ∈ ⋂

p≥1 Lp .
In this case Yt is a Lévy process with generator of the form∫

Rd
0

(
f (x + y) − f (x)

)
ν(dy),

where τ ≡ 0, b = 0, ν(Rd
0) = λ < ∞ and ν(dy) = λP (J1 ∈ dy).

Then in this case

Xd+1
t (x) = x +

∫ t

0
h(Xd+1

s− (x)) dYs, t ∈ [0, T ],(6.7)

which can be solved explicitly. Indeed, let (Gi(x)) be defined by recursively

G0 = x,

Gi = Gi−1 + h(Gi−1)Ji.

Then the solution can be written as Xd+1
t (x) = GNt (x). Define for fixed M ∈ N,

the approximation process X̄d+1,t = GNt∧M(x). This approximation requires the
simulation of at most M jumps. In fact, the rate of convergence is fast as the fol-
lowing result shows (see also Mordecki et al. [14]).

THEOREM 6.2. Let M ∈ N. Then the process GNt∧M(x) satisfies (M)

and R(M, tM−κ) for arbitrary small κ > 0. Furthermore J≤M(Q
X̄d+1
t ) = I +∑m

j=1
tj

j !L
j
d+1.

PROOF. Note that for f ∈ Cp

Q
X̄d+1
t f (x) − Qd+1

t f (x) = E[f (GNt∧M(x))] − E[f (GNt (x))]
= E

[
(f (GNt∧M(x)) − f (GNt (x)))1{TM+1≤t}

]
,

where TM := inf{t > 0 :Nt = M}. By the Hölder inequality,

|QX̄d+1
t f (x) − Qd+1

t f (x)|

≤ 2E

[
sup

0≤t≤T

|f (GNt (x))|γ /(γ−1)

](γ−1)/γ

P (TM+1 ≤ t)1/γ

= 2E

[
sup

0≤t≤T

|f (GNt (x))|γ /(γ−1)

](γ−1)/γ (∫ t

0

(λs)M

M! λe−λs ds

)1/γ

≤ C(γ,T )‖f ‖Cp(1 + |x|p)(tλ−1)(M+1)/γ .
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Take sufficiently small γ > 1, then R(M, tM−κ) holds for Q
X̄d+1
t where κ := (1 −

1/γ )(M + 1) > 0. Finally, we show (M). Let fp(x) = |x|2p (p ∈ N) and γ < M .
Then using the above calculation and Corollary A.7, we have

Q
X̄d+1
t fp(x) = Qd+1

t fp(x) + (
Q

X̄d+1
t fp(x) − Qd+1

t fp(x)
)

≤ (1 + K1t)fp(x) + K2t + |QX̄d+1
t fp(x) − Qd+1

t fp(x)|
≤ (1 + K3t)fp(x) + K4t. �

6.3. Infinite activity case. In this section, we consider the SDE (2.3) under the
conditions ν(Rd

0) = ∞. Without loss of generality, we assume that c ≡ 0.

(a) Ignoring small jumps. Define for ε > 0 the finite activity (i.e., drift + com-
pound Poisson) Lévy process (Y ε

t ) with Lévy triplet (b,0, νε) where the Lévy
measure is defined by

νε(E) := ν(E ∩ {y : |y| > ε}), E ∈ B(Rd
0).(6.8)

Consider the approximate coordinate SDE

X̄d+1,t (x) = x +
∫ t

0
h
(
X̄d+1,s−(x)

)
dY ε

s ,

result shows (see also Mordecki et al. [14]) whose generator is

L
1,ε
d+1f (x) = ∇f (x)h(x)b +

∫ (
f

(
x + h(x)y

) − f (x) − ∇f (x)h(x)τ (y)
)
νε(dy).

Now we derive the error estimate for X̄d+1,t .

THEOREM 6.3. Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that

σ 2(ε) := ∫
|y|≤ε |y|2ν(dy) ≤ tM+1. Then we have that Q

X̄d+1
t satisfies (M) and

R(M, tM). Furthermore J≤M(Q
X̄d+1
t ) = I + ∑m

j=1
tj

j !L
j
d+1.

PROOF. First, we remark that condition (M0) follows from Proposition 5.2
in [7]. We start by noting that from Proposition A.6, we have

Qd+1
t f (x) − Q

X̄d+1
t f (x)

=
M∑

k=1

tk

k!
(
(Ld+1)

k − (L
1,ε
d+1)

k)f (x)(6.9)

+
∫ t

0

(t − u)M

M!
(
Qd+1

u (Ld+1)
M+1 − Q

X̄d+1
u (L

1,ε
d+1)

M+1)
f (x) du.
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Therefore the proof is achieved if we prove that

|(Ld+1 − L
1,ε
d+1)f (x)| ≤ C‖f ‖C2

p
(1 + |x|p+2)tM+1.

For the proof, we change here the representation of the Lévy triplets of Yt and Y ε
t

as follows:

(b,0, ν), τ ⇒ (bε,0, ν), τε,

(b,0, νε), τ ⇒ (bε,0, νε), τε,

where τε(y) = y1{|y|≤ε}. Then

|(Ld+1 − L
1,ε
d+1)f (x)|

≤
∣∣∣∣
∫

∇f (x)h(x)
(
y − τε(y)

)(
ν(dy) − νε(dy)

)∣∣∣∣(6.10)

+
∣∣∣∣
∫ ∫ 1

0
(1 − θ)

d2

dθ2 f
(
x + θh(x)y

)
dθ

(
ν(dy) − νε(dy)

)∣∣∣∣.
We first obtain that for ε > 0,∫ (

y − τε(y)
)(

ν(dy) − νε(dy)
) = 0

since the support of the measure (ν − νε) is {|y| ≤ ε}. Now we consider the sec-
ond term of (6.10). We can immediately show that due to the polynomial growth
property for f ,∣∣∣∣

∫ ∫ 1

0

d2

dθ2 f
(
x + θh(x)y

)
dθ

(
ν(dy) − νε(dy)

)∣∣∣∣ ≤ C‖f ‖C2
p
(1 + |x|p+2)σ 2(ε)

and hence as σ 2(ε) ≤ tM+1, one obtains that J≤M(Q
X̄d+1
t ) = I + ∑m

j=1
tj

j !L
j
d+1

and that Q
X̄d+1
t satisfies (M) and R(M, tM) follows as in the proof of Proposi-

tion 6.2. �

Using Theorem 5.1, we can incorporate the above approximating process
X̄d+1,t to the whole approximation method. This will require to first simulate the
jump times of the approximating Lévy process Y ε and then solving ODEs between
these times. If the task is time consuming one can also separate the jump compo-
nent from the drift component as indicated by Theorem 5.1 (see also Section 6.4).
The right size of ε is determined by the condition σ 2(ε) ≤ tM+1.

(b) Approximation of small jumps. We apply here the Asmussen–Rosiński’s
approximation for small jumps of Lévy processes. The idea is that the small jumps
ignored in (6.8) are close to a Brownian motion with small variance σ 2(ε) (see
details in [2]).
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Consider the new approximate SDE

X̄d+1,t (x) = x +
∫ t

0
h(X̄d+1,s(x))�1/2

ε dWs +
∫ t

0
h(X̄d+1,s−(x)) dY ε

s ,(6.11)

where Wt is a new d-dimensional Brownian motion independent of Bt and Y ε
t ,

and �ε is the symmetric and semi-positive definite d × d matrix defined as

�ε =
∫
|y|≤ε

yy∗ν(dy).(6.12)

We remark that �ε is of the form A�A∗, where A is an orthogonal matrix and �

is the diagonal matrix with entries λ1, . . . , λd ≥ 0 (eigenvalues). Thus we use the
notation �

1/2
ε = A�1/2. Since the above SDE is also driven by a jump-diffusion

process, we can also simulate it using the second-order discretization schemes in
Theorem 5.1.

Now we prove that rate of convergence in this case is faster than in the case that
we ignore completely the small jumps (see Theorem 6.3).

THEOREM 6.4. Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that∫
|y|≤ε |y|3ν(dy) ≤ tM+1. Then we have that Q

X̄d+1
t satisfies (M) and R(M, tM).

Furthermore J≤M(Q
X̄d+1
t ) = I + ∑m

j=1
tj

j !L
j
d+1.

PROOF. As before, condition (M0) follows from Proposition 5.2 in [7]. The
SDE X̄d+1,t corresponds to the generator

L
2,ε
d+1f (x) := ∇f (x)h(x)b + 1

2

∑
k,l

∂k,lf (x)(h(x)�εh
∗(x))k,l

+
∫ (

f
(
x + h(x)y

) − f (x) − ∇f (x)h(x)τ (y)
)
νε(dy).

Using this representation, we have for f ∈ C3
p ,

(Ld+1 − L
2,ε
d+1)f (x) =

∫ ∫ 1

0
(1 − θ)

d2

dθ2 f
(
x + θh(x)y

)
dθ

(
ν(dy) − νε(dy)

)

− 1

2

∑
k,l

∂k,lf (x)(h(x)�εh
∗(x))k,l

=
∫ ∫ 1

0

(1 − θ)2

2

d3

dθ3 f
(
x + θh(x)y

)
dθ

(
ν(dy) − νε(dy)

)
.

Hence we finish the proof as in the proof of Theorems 6.2 and 6.3. �

If we put all the pieces together, we have the following final result. Here B
ij
t

denote i = 1, . . . , d , j = 1, . . . ,2n denote 2nd independent standard Brownian
motions and B

0j
t ≡ t .
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THEOREM 6.5. Assume that V0, V and h are infinitely differentiable functions
with bounded derivatives with

∫
Rd

0
(1 ∧ |y|p)ν(dy) < ∞ for all p ∈ N. Define ε ≡

ε(T ,n) so that
∫
|y|≤ε |y|3ν(dy) ≤ (T

n
)3. Let X̄

j
i,t (x) = c5(B

ij
t , Vi)x, i = 0, . . . , d ,

j = 1, . . . ,2n, 2n copies of the Runge–Kutta method of order 2 as defined in (6.4)
and X̄

j
d+1,t (x), j = 1, . . . ,2n, independent copies of the approximation defined

in (6.11). Then the following schemes, X
(n)
T = Yn

n ◦Yn−1
n ◦ · · · ◦Y 1

n (x), are second-
order discretization schemes:

N–V (a): Y
j
n (x) = UjX̄

j
0,T /(2n) ◦ X̄

j
1,T /n ◦ · · · ◦ X̄

j
d+1,T /n ◦ X̄

j
0,T /(2n)(x) + (1 −

Uj)X̄
j
0,T /(2n) ◦ X̄

j
d+1,T /n ◦ · · · ◦ X̄

j
1,T /n ◦ X̄

j
0,T /(2n)(x) where Uj is a Bernoulli r.v.

with P(Uj = 1) = 1/2, independent of everything else.

N–V (b): Y
j
n (x) = UjX̄

j
d+1,T /n ◦ · · · ◦ X̄

j
0,T /n(x) + (1 − Uj) X̄

j
0,T /n ◦ · · · ◦

X̄
j
d+1,T /n(x) where Uj is a Bernoulli r.v. with P(Uj = 1) = 1/2, independent of

everything else.
Splitting: Y

j
n (x) = X̄

j
0,T /(2n) ◦ · · · ◦ X̄

j
d,T /(2n) ◦ X̄

j
d+1,T /n ◦ X̄

n+j
d,T /(2n) ◦ · · · ◦

X̄
n+j
0,T /(2n)(x).

One can also write a similar result for higher-order schemes using Theorem 5.2.

6.4. Limiting the number of jumps per interval for approximations of infinite ac-
tivity Lévy driven SDEs. In the previous two approximations although ε ∈ (0,1)

may be relatively large compared with the interval size T/n, one still faces the
possibility of having many jumps in the interval [0, T ]. Therefore we introduce
the idea used in Section 6.2. That is, we propose another approximation that re-
stricts the numbers of possible jumps to at most n. Throughout this section we
assume that

∫
|y|<1 |y|ν(dy) < ∞ and without loss of generality, we assume that

τ(y) = y1|y|<1.
Then we decompose the operator

Ld+1 = L1
d+1 + L2

d+1 + L3
d+1,

L1
d+1f (x) := ∇f (x)h(x)

(
b −

∫
ε<|y|≤1

τ(y)ν(dy)

)
,

L2
d+1f (x) :=

∫
|y|≤ε

(
f

(
x + h(x)y

) − f (x) − ∇f (x)h(x)τ (y)
)
ν(dy),

L3
d+1f (x) :=

∫
ε<|y|

f
(
x + h(x)y

) − f (x)ν(dy).

The operator L1
d+1 can be easily approximated using any Runge–Kutta method for

the ordinary differential equation

X1
d+1,t = x +

(
b −

∫
ε<|y|≤1

τ(y)ν(dy)

)∫ t

0
h(X1

d+1,s) ds.



1052 H. TANAKA AND A. KOHATSU-HIGA

We denote by X̄1
d+1,t , the Euler scheme associated with this ordinary differential

equation. Therefore we only need to approximate L2
d+1 and L3

d+1.
Let l : Rd → R+ be a localization function that may be used for impor-

tance sampling of the Lévy measure. Let F l
ε(dy) = λ−1

ε l(y)1|y|≤εν(dy) with
λε = ∫

|y|≤ε l(y)ν(dy). Let Yε ∼ Fε . Define X̄
2,ε
t (x) = x + h(x)Wt

√
λε , where

W is a d-dimensional Wiener process with covariance matrix given by �ij =
l(Y ε)−1Y ε

i Y ε
j which is independent of everything else.

First we prove that X̄
2,ε
t (x) satisfies Assumption (M).

LEMMA 6.9. Assume that for p ≥ 2, supε∈(0,1]
∫
|y|≤ε |y|pl(y)−(p−2)/2 ×

ν(dy) < ∞, then Assumption (M) is satisfied with

E[|X̄2,ε
d+1(x)|p] ≤ (1 + Kt)|x|p + K ′t.

PROOF. Let f (x) = |x|p , p ≥ 2. Using Itô’s formula for p �= 3 and an approx-
imative argument in the case p = 3 (as in the proof of the Meyer–Itô formula) one
obtains that

E[f (X̄
2,ε
t (x))] − f (x)(6.13)

= p

2
λεE

[
l(Y ε)−1

∫ t

0

(
p

2
− 1

)
|X̄2,ε

s (x)|p−4〈h(x)Y ε, X̄2,ε
s (x)〉2(6.14)

+ |X̄2,ε
s (x)|p−2|h(x)Y ε|2 ds

]
.

We use the Lipschitz property of h to obtain that

|X̄2,ε
s (x)| = ∣∣x + h(x)Ws

√
λε

∣∣
≤ (

1 + C|Ws |
√

λε

)
(1 + |x|).

Then, we have

|E[f (X̄
2,ε
t (x))] − f (x)|

≤ Cpt(1 + |x|p)

∫
|y|<ε

|y|2(
1 + (|y|2l(y)−1λεt)

(p−2)/2)
ν(dy). �

LEMMA 6.10. Assume that for p ≥ 2,

Mp = sup
ε∈(0,1]

∫
|y|≤ε

|y|4l(y)−1(
1 + (|y|2l(y)−1λεt

)(p−2)/2)
ν(dy) < ∞

and
∫
|y|≤ε |y|3ν(dy) ≤ Ct then

|E[f (X̄
2,ε
t )] − f (x) − tL2

d+1f (x)| ≤ C(p)‖f ‖C4
p
(1 + |x|p+4)t2.

That is, X̄
2,ε
t (x) satisfies Assumption R(2, t2).
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PROOF. Let f ∈ C4
p then applying Itô’s formula, one gets

E[f (X̄
2,ε
t )] = f (x) + λε

2
E

[∫ t

0

∑
i,j,k,l

∂ij f (X̄2,ε
s )hikhil(x)l(Y ε)−1Y ε

k Y ε
l ds

]

= f (x) + t

2

∫
|y|≤ε

∑
i,j,k,l

∂ij f (x)hikhil(x)ykylν(dy) + Rε(x),

where by Lemma 6.9, we have

|Rε(x)| ≤ C‖f ‖C4
p
(1 + |x|p+4)t2

×
∫
|y|≤ε

|y|4l(y)−1(
1 + (|y|2l(y)−1λεt)

(p−2)/2)
ν(dy).

Furthermore

L
2,ε
d+1f (x) − 1

2

∫
|y|≤ε

∑
i,j,k,l

∂ij f (x)hikhil(x)ykylν(dy)

= ∑
i,j,k,l

∫
|y|≤ε

∫ 1

0

(
∂ijf

(
x + αh(x)y

) − ∂ijf (x)
)
α dα hikhil(x)ykylν(dy).

Therefore ∣∣∣∣∣L2,ε
d+1f (x) − 1

2

∫
|y|≤ε

∑
i,j,k,l

∂ij f (x)hikhil(x)ykylν(dy)

∣∣∣∣∣
≤ C‖f ‖C4

p
(1 + |x|p+3)

∫
|y|≤ε

|y|3ν(dy).

This finishes the proof. �

In the particular case that l(y) = yr , r = 2, the above scheme corresponds to
a Asmussen–Rosiński type approach.

The approximation for L3
d+1 is defined as follows. Let

Gε,l(dy) = C−1
ε,l l(y)1|y|>εν(dy),

Cε,l =
∫
|y|>ε

l(y)ν(dy)

and let Zε,l ∼ Gε,l and let Sε,l be a Bernoulli random variable independent of Zε,l .
Then consider the following two cases. If Sε,l = 0 define X̄

3,ε
t (x) = x, otherwise

X̄
3,ε
t (x) = x + h(x)l(Zε,l)−1Zε,l . Then we have the following results.
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LEMMA 6.11. Assume that for p ≥ 2, supε∈(0,1]
∫
|y|>ε l(y)−p|y|p+1ν(dy) <

∞ and C−1
ε,l P [Sε = 1] ≤ Ct then Assumption (M) is satisfied with

E[|X̄3,ε
d+1(x)|p] ≤ (1 + Kt)|x|p + K ′t.

PROOF. The result follows clearly from (f (x) = |x|p)

P [Sε = 1]∣∣E[
f

(
x + h(x)l(Zε,l)−1Zε,l) − f (x)

]∣∣
= C−1

ε,l P [Sε = 1]
∫
|y|>ε

(
f

(
x + h(x)l(y)−1y

) − f (x)
)
l(y)ν(dy)

≤ Ct(1 + |x|p)

(
1 +

∫
|y|>ε

l(y)−p|y|p+1ν(dy)

)
. �

LEMMA 6.12. Assume that for f ∈ C2
p , we have that

∫
|y|>ε |y|2(l(y)−1 −1)+

|y|p+2|l(y)−1 − 1|p+1ν(dy) ≤ C and |C−1
ε,l P [Sε,l = 1] − t | ≤ Ct2 then

|E[f (X̄
3,ε
t )] − f (x) − tL3

d+1f (x)| ≤ Ct2‖f ‖C2
p
(1 + |x|p+2).

PROOF. As before let f ∈ C2
p then

E[f (X̄
3,ε
t )] = f (x) + E

[
f

(
x + h(x)l(Zε,l)−1Zε,l) − f (x);Sε,l = 1

]
= f (x) +

∫
|y|>ε

(
f

(
x + h(x)l(y)−1y

) − f (x)
)
l(y)ν(dy)

× C−1
ε,l P [Sε,l = 1].

Then we clearly have that

|E[f (X̄
3,ε
t )] − f (x) − tL3

d+1f (x)|

≤ t

∣∣∣∣∣
∫
|y|>ε

∫ 1

0

∑
i

(
∂if

(
x + αh(x)l(y)−1y

)

− ∂if
(
x + αh(x)y

))
dα h(x)yν(dy)

∣∣∣∣∣
× C−1

ε,l P [Sε,l = 1] +
∣∣∣∣
∫
|y|>ε

f
(
x + h(x)y

) − f (x)ν(dy)

∣∣∣∣
× |C−1

ε,l P [Sε,l = 1] − t |
≤ C‖f ‖C2

p
(1 + |x|p+2)t2.

This finishes the proof. �
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Using the previous results we can propose various schemes of approximation of
order 1 as in Theorem 6.5. We state the simplest type of approximation.

THEOREM 6.6. Assume that V0, V and h are infinitely differentiable functions
with bounded derivatives with

∫
Rd

0
(1 ∧ |y|p)ν(dy) < ∞ for all p ∈ N. Define ε ≡

ε(T ,n) so that the conditions on Lemmas 6.9, 6.10, 6.11 and 6.12 are satisfied
for t = T/n and for appropriate localization functions. Let X̄

j
i,t (x), i = 0, . . . , d ,

j = 1, . . . , n, n copies of the Euler–Maruyama method for Xi,t (x).

Also, let X̄
i,ε,j
d+1,T /n, i = 1,2,3, j = 1, . . . , n, be n independent copies of the

schemes defined above. Then the following scheme, X(n)
T = Yn

n ◦Yn−1
n ◦ · · ·◦Y 1

n (x),

Y
j
n (x) = X̄

j
0,T /n ◦ · · · ◦ X̄

j
d,T /n ◦ X̄

1,ε,j
d+1,T /n ◦ X̄

2,ε,j
d+1,T /n ◦ X̄

3,ε,j
d+1,T /n(x) is a first-order

discretization scheme.

Achieving higher-order schemes for the approximation of L2
d+1 can be easily

obtained from the proof of Lemma 6.10. In fact, the required conditions are as
follows. Assume that for p ≥ 2,∫

|y|≤ε
|y|4l(y)−1(

1 + (|y|2l(y)−1λεt)
(p−2)/2)

ν(dy) ≤ Ct,(6.15)

∫
|y|≤ε

|y|3ν(dy) ≤ Ct2.(6.16)

For L3
d+1, the idea used in the previous scheme is that the probability of having

more than one jump in an interval of size T/n is of order (T /n)2 and therefore
they can be neglected if the goal is to achieve a scheme of order 1. Obviously, in
order to obtain a higher-order scheme, one has to consider the possibility of more
jumps per interval. As an example, we consider the case of at most two jumps per
interval with localization l ≡ 1.

For L3
d+1 one can do the following: let Gε(dy) = C−1

ε 1|y|>εν(dy), Cε =∫
|y|>ε ν(dy) and let Zε

1, Zε
2 ∼ Gε independent between themselves and let Sε

1
and Sε

2 be two independent Bernoulli random variable independent of Zε
1, Zε

2.
Then consider the following cases. If Sε

1 = 0 define X̄
3,ε
t (x) = x, if Sε

1 = 1

and Sε
2 = 0 then X̄

3,ε
t (x) = x + h(x)Zε

1 and finally if Sε
1 = 1 and Sε

2 = 1 then
X̂

3,ε
t (x) = x + h(x)Zε

1 + h(x + h(x)Zε
1)Z

ε
2.

Define

pε = P [Sε
1 = 1](1 + P [Sε

2 = 1]),
qε = P [Sε

1 = 1]P [Sε
2 = 1].

In this case we have the following lemma.
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LEMMA 6.13. If C−1
ε P [Sε

1 = 1, Sε
2 = 0] ≤ Ct and C−2

ε P [Sε
1 = 1, Sε

2 = 1] ≤
Ct then Assumption (M) is satisfied with

E[|X̂3,ε
d+1(x)|p] ≤ (1 + Kt)|x|p + K ′t

for all p ≥ 2.

PROOF. The result follows clearly from (f (x) = |x|p)

P [Sε
1 = 1, Sε

2 = 0]∣∣E[
f

(
x + h(x)Zε) − f (x)

]∣∣
≤ Ct(1 + |x|p)

(
1 +

∫
|y|>ε

|y|pν(dy)

)
,

P [Sε
1 = 1, Sε

2 = 1]∣∣E[
f

(
x + h(x)Zε

1 + h
(
x + h(x)Zε

1
)
Zε

2
) − f (x)

]∣∣
≤ Ct(1 + |x|p)

(
1 +

(∫
|y|>ε

|y|pν(dy)

)2)
. �

LEMMA 6.14. Assume that |C−1
ε pε − t | ≤ Ct3 and |2C−2

ε qε − t2| ≤ Ct3 then

∣∣∣∣E[f (X̂
3,ε
t )] − f (x) − tL3

d+1f (x) − t2

2
(L3

d+1)
2f (x)

∣∣∣∣
≤ Ct3‖f ‖C2

p
(1 + |x|p+2)

(
1 +

(∫
|y|>ε

|y|ν(dy)

)2)
.

PROOF. As before let f ∈ C2
p then

E[f (X̂
3,ε
t )]

= f (x) +
∫
|y|>ε

(
f

(
x + h(x)y

) − f (x)
)
ν(dy)C−1

ε P [Sε
1 = 1, Sε

2 = 0]

+ E

[∫
|y|>ε

f
(
x + h(x)y + h

(
x + h(x)y

)
Zε

2
) − f (x)ν(dy)

]

× C−1
ε P [Sε

1 = 1, Sε
2 = 1]

= f (x) + L3
d+1f (x)C−1

ε P [Sε
1 = 1, Sε

2 = 0]
+

∫
|y|>ε

∫
|y|>ε

f
(
x + h(x)y + h

(
x + h(x)y

)
y1

) − f (x)ν(dy)ν(dy1)

× C−2
ε P [Sε

1 = 1, Sε
2 = 1]

= f (x) + L3
d+1f (x)C−1

ε (P [Sε
1 = 1] + P [Sε

1 = 1, Sε
2 = 1])

+ (L3
d+1)

2f (x)C−2
ε P [Sε

1 = 1, Sε
2 = 1].
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Therefore∣∣∣∣E[f (X̂
3,ε
t )] − f (x) − tL3

d+1f (x) − t2

2
(L3

d+1)
2f (x)

∣∣∣∣
≤ |L3

d+1f (x)||C−1
ε pε − t | + |(L3

d+1)
2f (x)|

∣∣∣∣C−2
ε qε − t2

2

∣∣∣∣.
Finally note that

(L3
d+1)

2f (x)

=
∫
ε<|y|

L3
d+1f

(
x + h(x)y

) − L3
d+1f (x)ν(dy)

=
∫
ε<|y|

∫
ε<|y1|

(
f

(
x + h(x)y + h

(
x + h(x)y

)
y1

)
− 2f

(
x + h(x)y

) + f (x)
)
ν(dy1)ν(dy)

=
∫
ε<|y|

∫
ε<|y1|

∫ 1

0
∇f

(
x + h(x)y + αh

(
x + h(x)y

)
y1

)
h
(
x + h(x)y

)
y1

− ∇f
(
x + αh(x)y

)
h(x)y dα ν(dy1)ν(dy)

=
∫
ε<|y|

∫
ε<|y1|

∫ 1

0
∇f

(
x + h(x)y1 + αh

(
x + h(x)y1

)
y
)

×
∫ 1

0
∇h

(
x + βh(x)y1

)
h(x)y1 dβ y dα ν(dy1)ν(dy)

+
∫
ε<|y|

∫
ε<|y1|

∫ 1

0

∫ 1

0
D2f

(
x + αh(x)y

+ β
(
h(x)y1 + α

(
h
(
x + h(x)y1

) − h(x)
)
y
))

×
[
h(x)y1

+ α

(∫ 1

0
∇h

(
x + γ h(x)y1

)
dγ h(x)y1

)
y,h(x)y

]
dβ dα ν(dy1)ν(dy).

This finishes the proof. �

A similar statement can be achieved if we limit the number of jumps in any
interval. The parallel of Theorem 6.6 can also be stated in this case.

6.5. Example: tempered stable Lévy measure. Now we consider the previous
approximation in the case that the Lévy measure ν defined on R0 is given by

ν(dy) = 1

|y|1+α

(
c+e−λ+|y|1y>0 + c−e−λ−|y|1y<0

)
dy.
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The Lévy process associated with no Brownian term and the above Lévy measure ν

is called by:

• Gamma: λ+, c+ > 0, c− = 0, α = 0.
• Variance gamma: λ+, λ−, c+, c− > 0, α = 0.
• Tempered stable: λ+, λ−, c+, c− > 0, 0 < α < 2.

Then, we have that for α ∈ [0,1)∫
|y|≤ε

|y|kν(dy) ∼ εk−α, k ≥ 1.

Then supε∈(0,1]
∫
|y|≤ε |y|ν(dy) < ∞. For L2

d+1, we consider as localization func-
tion l(y) = |y|r , then the conditions of Lemma 6.10 are satisfied if α < r ≤ 2 and
ε = t1/(3−α).

For L3
d+1, we consider as localization l(y) ≡ 1, then Lemma 6.12 is satisfied,

for example, in the following case. Let P [Sε = 1] = e−Cεa(ε,t) where Cε ∼ ε−α ,
a(ε, t) = −εα log((t2 + t)ε−α) as ε = t1/(3−α) then we have that

a = −tα/(3−α) log
(
(t + 1)t(3−2α)/(3−α)).

In the case of Lemma 6.14, one choice of parameters is

P [Sε
1 = 1] = t (6−3α)/(3−α)(t + 1)

(
1 + tα/(3−α)),

P [Sε
2 = 1] = 1

2(1 + tα/(3−α))
.

The choice of r in the above scheme is related with variance/importance sampling
issues.

Final comment: In this article we have presented a general setup to handle what
maybe called operator decomposition methods. In particular, the method is useful
when considering approximations of expectations of functionals of diffusions (for
another similar approach, see Alfonsi [1]). The approximation problem is divided
in components, each one driven by a single process. This single process, called the
coordinate process can be approximated to a high order using an appropriate (sto-
chastic) Runge–Kutta scheme if the driving process is the Brownian motion. In the
case that the driving process is a Lévy process one can decompose the Lévy mea-
sure in various pieces to facilitate the analysis. Note that sometimes is not needed
to know how to simulate Y but only the functional form of the Lévy measure. In
comparison with the proposal presented in [9], where high-order multiple integrals
driven by different Wiener processes have to be simulated at each step, we believe
that the present methodology is a better scheme.

The issue that local approximations of high order are interesting to study in
comparison with Romberg extrapolations as introduced in [19] is similar to the
discussion of using Runge–Kutta approximations in comparison with Romberg



AN OPERATOR APPROACH FOR MC WEAK APPROXIMATIONS 1059

extrapolations to approximate solutions of ordinary differential equations. We be-
lieve this article helps to open the path in this direction. In fact, it is somewhat
clear from Theorem 4.2 that the leading constants in a Euler+Romberg method
and a Runge–Kutta method do not coincide.

Finally, we used the structure of this construction to easily introduce and ana-
lyze the asymptotic error of an approximating scheme for solutions of stochastic
differential equations driven by Lévy processes with possibly infinite activity.

APPENDIX

In this section we assume condition (MP ).

LEMMA A.1. Let f = fs(x) ∈ C1,2
p ([0, T ] × RN). Then a map s �→ Psfs(x)

is Lipschitz continuous for all x ∈ RN .

PROOF. Note that

|Ptft (x) − Psfs(x)| ≤ |Ptft (x) − Ptfs(x)| + |Ptfs(x) − Psfs(x)|.
Using the Lipschitz properties of t �→ ft (x) and t �→ Ptfs(x), the proof fol-
lows. �

LEMMA A.2. Let g : [0, T ] → R be a Lipschitz continuous function. Then we
have ∣∣∣∣∣Tn

n∑
k=1

g(kT /n) −
∫ T

0
g(s) ds

∣∣∣∣∣ ≤ C(T ,g)

n
.(A.1)

PROOF. From the assumption we immediately obtain∣∣∣∣Tn g(kT /n) −
∫ kT /n

(k−1)T /n
g(s) ds

∣∣∣∣ ≤ C

n2 ,

where C depends on T and the Lipschitz coefficient of g. This implies (A.1). �

A.1. Some properties of Lévy driven SDEs. We start with the differentiabil-
ity properties of Xt(x) in x. The following material can be found in [7, 8, 10, 17]
and [18]. We quote them here for completeness.

LEMMA A.3. There exists a version of Xt(x) such that a map x �→ Xt(x) is
infinite times continuous differentiable almost surely and in the Lp-sense. More-
over, we have for p ≥ 2,

E

[
sup

0≤t≤T

|Xt(x)|p
]

≤ C(p,T )(1 + |x|p)(A.2)
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and

sup
x∈RN

E

[
sup

0≤t≤T

|∂α
x Xt(x)|p

]
< ∞(A.3)

for any multi-index α with |α| ≥ 1.

PROPOSITION A.4. Let f ∈ Cm
p with p ≥ 2.

(i) Then Ptf ∈ Cm
p for all t ≥ 0 and

sup
t∈[0,T ]

‖Ptf ‖Cm
p

≤ C‖f ‖Cm
p
.(A.4)

(ii) If m ≥ 2, then Lf ∈ Cm−2
p+2 and

‖Lf ‖
Cm−2

p+2
≤ C‖f ‖Cm

p
.

(iii) If f ∈ C1,m
p ([0, T ] × RN), then (∂tLf )(t, x) = (L∂tf )(t, x).

PROOF. The proof of (i) follows by interchange of derivation and expectation
together with the moment estimates in Lemma A.3. Recall that L = ∑d+1

i=0 Li as
defined in (2.5).

(ii) We only do the proof for Ld+1. We have∣∣∣∣
∫ (

f
(
x + h(x)y

) − f (x) − ∇f (x)h(x)τ (y)
)
ν(dy)

∣∣∣∣
≤

∣∣∣∣
∫

∇f (x)h(x)
(
y − τ(y)

)
ν(dy)

∣∣∣∣ +
∣∣∣∣
∫ ∫ 1

0

d2

dθ2 f
(
x + θh(x)y

)
dθ ν(dy)

∣∣∣∣
≤ C‖f ‖Cm

p
(1 + |x|p+2). �

PROPOSITION A.5. Let f ∈ C2
p . Then Pt and L are commutative and

uf (t, x) := Ptf (x) is the solution of the integro-differential equation:⎧⎨
⎩

d

dt
uf (t, x) = Luf (t, x),

uf (0, x) = f (x).

Let f ∈ C2m+2
p . Then the commutativity of Pt and L implies that Lmuf

(= uLmf ) is differentiable in t and the solution to similar integro-differential equa-
tions. That is, ⎧⎨

⎩
d

dt
(Lmuf )(t, x) = L(Lmuf )(t, x),

(Lmuf )(0, x) = (Lmf )(x)

for each m ≥ 0. Consequently, applying Taylor’s expansion to uf , we have:
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PROPOSITION A.6. For f ∈ C2m+2
p ,

Ptf (x) =
m∑

k=0

tk

k!L
kf (x) +

∫ t

0

(t − s)m

m! Ps(L
m+1f )(x) ds.

Furthermore, if f ∈ Cm
p with m ≥ 2. Then Ptf ∈ C

1,m−2
p+2 .

Summarizing this section, we have

COROLLARY A.7. Ptf (x) = E[f (Xt(x))] and Qi
tf (x) = E[f (Xi

t (x))] (i =
0,1, . . . , d + 1) satisfy conditions (M) and R(m, tm). That is, for p ∈ N,

E[|Xt(x)|2p] ≤ (1 + Kt)|x|2p + K ′t

for some constant K = K(T ,p), K ′ = K ′(T ,p) > 0 and

J≤m(Pt ) =
m∑

k=0

tk

k!L
k,

J≤m(Qi
t ) =

m∑
k=0

tk

k!L
k
i

for any m ∈ N.
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