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In modeling parasitic diseases, it is natural to distinguish hosts according
to the number of parasites that they carry, leading to a countably infinite type
space. Proving the analogue of the deterministic equations, used in models
with finitely many types as a “law of large numbers” approximation to the
underlying stochastic model, has previously either been done case by case,
using some special structure, or else not attempted. In this paper we prove a
general theorem of this sort, and complement it with a rate of convergence in
the �1-norm.

1. Introduction. This paper is concerned with generalizations of the sto-
chastic models introduced in Barbour and Kafetzaki (1993) and developed in
Luchsinger (2001a, 2001b), which describe the spread of a parasitic disease. With
such diseases, it is natural to distinguish hosts according to the number of parasites
that they carry. Since it is not usually possible to prescribe a fixed upper limit for
the parasite load, this leads to models with countably infinitely many types, one for
each possible number of parasites. The model considered by Kretzschmar (1993)
is also of this kind, though framed in a deterministic, rather than a stochastic form.
Then there are models arising in cell biology, in which, for instance, hosts may be
replaced by cells which are distinguished according to the number of copies of a
particular gene that they carry, a number which is again, in principle, unlimited;
see Kimmel and Axelrod (2002), Chapter 7, for a selection of branching process
examples. The metapopulation model of Arrigoni (2003) also allows for infinitely
many types of patches, here distinguished by the size of the population in the patch.

The fact that there are infinitely many types can cause difficulty in problems
which, for finitely many types, would be quite standard. To take a well known
example, in a super-critical Galton–Watson branching process with finitely many
types, whose mean matrix is irreducible and aperiodic and whose offspring distri-
butions have finite variance, the proportions of individuals of the different types
converge to fixed values if the process grows to infinity: a rather stronger result
is to be found in Kesten and Stigum (1966). If there are infinitely many types,
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little is generally known about the asymptotics of the proportions, except when
the mean matrix is r-positive, a condition which is automatically satisfied in the
finite case; here, Moy (1967) was able to prove convergence under a finite vari-
ance condition. For epidemic models analogous to those above, but with only
finitely many types, there are typically “law of large numbers” approximations,
which hold in the limit of large populations, and are expressed in the form of sys-
tems of differential equations: see, for example, Bailey (1968) or Kurtz (1980).
Proving such limits for models with infinite numbers of types is much more del-
icate. Kretzschmar (1993) begins with the system of differential equations as the
model, and so does not consider the question; in Barbour and Kafetzaki (1993) and
Luchsinger (2001a, 2001b), the arguments are involved, and make use of special
assumptions about the detailed form of the transition rates.

In this paper we prove a law of large numbers approximation with explicit
error rates in some generality. The models that we allow are constructed by
superimposing state-dependent transitions upon a process with otherwise inde-
pendent and well-behaved dynamics within the individuals; the state-dependent
components are required to satisfy certain Lipschitz and growth conditions, to en-
sure that the perturbation of the underlying semi-group governing the independent
dynamics is not too severe. The main approximation is stated in Theorem 3.1,
and bounds the difference between the normalized process N−1XN and a deter-
ministic trajectory x with respect to the �1-norm, uniformly on finite time inter-
vals. Here, N is a “typical” population size, and XN is shorthand for {(Xj

N(t), j ∈
Z+), t ≥ 0}, where X

j
N(t) denotes the number of hosts at time t having j parasites.

The theorem is sufficiently general to cover all the epidemic models mentioned
above, except for that of Kretzschmar (1993), where only a modified version can
be treated.

The processes that we consider can be viewed in different ways. One is to inter-
pret them as mean-field interacting particle systems. Léonard (1990) has used this
approach to study the large population behavior of a number of epidemic models,
though he requires the generators to be bounded, which is an unnatural assump-
tion in our parasite systems. Alternatively, the value N−1XN(t) of the normalized
process at time t can be seen as a measure on Z+, establishing connections with
the theory of measure-valued processes. Eibeck and Wagner (2003) prove law of
large numbers limit theorems in a rather general setting, aimed principally at co-
agulation and fragmentation models, and allowing infinite numbers of types and
unbounded generators; however, they do not establish error bounds.

Our argument proceeds by way of an intermediate approximation, based on
a system X̃N consisting of independent particles, which has dynamics reflect-
ing the average behavior of XN . The deterministic trajectory x is discussed
in Section 3, the approximation of N−1X̃N by x in Section 4, culminating in The-
orem 4.5, and the final approximation of N−1XN by x in Section 5.
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2. Specifying the model. Our model is expressed in terms of a sequence of
processes XN having state space X := {ξ ∈ Z

∞+ :
∑

i≥0 ξ i < ∞}, where Z+ de-
notes the nonnegative integers and ξ i the ith component of ξ ; we also use e(i) to
denote the ith coordinate vector. The process XN(t) := (X

j
N(t) : j ∈ Z+), t ≥ 0,

has
∑

j≥0 X
j
N(0) = N , and evolves as a pure jump Markov process with transition

rates given by

ξ → ξ + e(j) − e(i) at rate ξ i{ᾱij + αij (N
−1ξ)}, i ≥ 0, j ≥ 0, j �= i;

ξ → ξ + e(i) at rate Nβi(N
−1ξ), i ≥ 0;

ξ → ξ − e(i) at rate ξ i{δ̄i + δi(N
−1ξ)}, i ≥ 0,

for any ξ ∈ X, where the nonnegative quantities ᾱij , αij , βi, δ̄i and δi are used to
model different aspects of the underlying parasite life cycle.

We interpret Xi
N(t) as the number of hosts who carry i parasites at time t . If only

the constant terms in the transitions were present, parasite communities would
develop independently within different hosts, according to a pure jump Markov
process with infinitesimal matrix ᾱ, also including the possibility of host death at
rate δ̄i for hosts with i parasites.

The remaining terms in the transitions are used to model interactions, and hence
vary as a function of the levels x = N−1ξ ∈ N−1X of infection in the host pop-
ulation. The αij are associated with transitions in which the number of parasites
within a particular host changes, and can be used to model interactions involv-
ing both infection with new parasites and loss of infection through parasite death.
The remaining transitions allow one to model state varying rates of births, deaths
and immigration of hosts, in the latter case possibly themselves infective.

The components of the transitions rates are required to satisfy a number of con-
ditions. First, we address the ᾱij and δ̄i . Letting � denote an absorbing “cemetery”
state, reached if a host dies, set

ᾱi� := δ̄i , ᾱii := −α∗(i) − δ̄i , i ≥ 0,(2.1)

where we assume that α∗(i) := ∑
j≥0,j �=i ᾱij < ∞. Then ᾱ is the infinitesimal

matrix of a time homogeneous pure jump Markov process W on Z+ ∪ �. Writing

pij (t) := P[W(t) = j | W(0) = i],(2.2)

for i ≥ 0 and j ∈ Z ∪ �, we shall assume that ᾱ is such that W is nonexplosive
and that

E0
i

{(
W(t) + 1

)} = ∑
j≥0

(j + 1)pij (t) ≤ (i + 1)ewt , i ≥ 0,(2.3)

for some w ≥ 0, where we use the notation

E0
i (f (W(t))) := E{f (W(t))I [W(t) /∈ �] | W(0) = i}.



EPIDEMICS WITH COUNTABLY MANY TYPES 2211

We shall further require that, for some 1 ≤ m1,m2 < ∞,

α∗(i) + δ̄i ≤ m1(i + 1)m2 for all i ≥ 0,(2.4)

and also that, for each j ≥ 0,

lim sup
l→∞

ᾱlj < ∞.(2.5)

The remaining elements depend on the state of the system through the argument
x := N−1ξ . In the random model, x ∈ N−1X has only finitely many nonzero el-
ements, but when passing to a law of large numbers approximation, this need not
be appropriate in the limit. We shall instead work within the larger spaces

�11 :=
{
x ∈ R

∞:
∑
i≥0

(i + 1)|xi| < ∞
}
,(2.6)

with norm ‖x‖11 := ∑
i≥0(i + 1)|xi|, and the usual �1 with norm ‖x‖1 :=∑

i≥0 |xi|. We then assume that αil, βi and δi are all locally bounded and locally
Lipschitz, in the following senses. First, for i ≥ 0 and x, y ∈ �11, we assume that∑

l≥0,l �=i

αil(0) ≤ a00,
∑

l≥0,l �=i

(l + 1)αil(0) ≤ (i + 1)a10,(2.7)

∑
l≥0,l �=i

|αil(x) − αil(y)| ≤ a01(x, y)‖x − y‖1,(2.8)

∑
l≥0,l �=i

(l + 1)|αil(x) − αil(y)| ≤ (i + 1)a11(x, y)‖x − y‖11,(2.9)

where the ar0 are finite,

ar1(x, y) ≤ ãr1(‖x‖11 ∧ ‖y‖11), r = 0,1,

and the ãr1 are bounded on bounded intervals. Then we assume that, for all
x, y ∈ �11, ∑

i≥0

(i + 1)βi(0) ≤ b10,(2.10)

∑
i≥0

|βi(x) − βi(y)| ≤ b01(x, y)‖x − y‖1,(2.11)

∑
i≥0

(i + 1)|βi(x) − βi(y)| ≤ b11(x, y)‖x − y‖11,(2.12)

where the br0 are finite,

br1(x, y) ≤ b̃r1(‖x‖11 ∧ ‖y‖11), r = 0,1,
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and the b̃r1 are bounded on bounded intervals; and finally that

sup
i≥0

δi(0) ≤ d0,(2.13)

sup
i≥0

|δi(x) − δi(y)| ≤ d1(x, y)‖x − y‖1,(2.14)

where d0 is finite and

d1(x, y) ≤ d̃1(‖x‖11 ∧ ‖y‖11),

with d̃1 bounded on finite intervals.
The various assumptions can be understood in the biological context. First, the

two norms ‖ · ‖1 and ‖ · ‖11 have natural interpretations. The quantity ‖ξ − η‖1
is the sum of the differences |ξ i − ηi| between the numbers of hosts in states
i = 0,1,2, . . . in two host populations ξ and η; this can be thought of as the nat-
ural measure of difference as seen from the hosts’ point of view. The correspond-
ing “parasite norm” is then ‖ξ − η‖11, which weights each difference |ξ i − ηi|
by the factor (i + 1), the number of parasites plus one; in a similar way, writing
x = N−1ξ , one can interpret ‖x‖11 as a measure of “parasite density.”

The simplest conditions are (2.7) and (2.13), which, together with conditions
(2.8) and (2.14) with y = 0, ensure that the per capita rates of events involving
infection and death are all finite, and bounded by constant multiples of the host
density ‖x‖1 + 1. This is frequently biologically reasonable. For instance, a graz-
ing animal, however hungry, can only consume a limited number of mouthfuls per
unit time, an infection event occurring when a mouthful contains infective stages
of the parasite (of which there may be many, subject to the remaining conditions).
Conditions (2.10) and (2.11) with y = 0 can then be interpreted as limiting the
overall immigration rate of hosts and the per capita host birth rate. Analogously,
conditions (2.8), (2.11) and (2.14) for general y imply that cumulative differences
in the above rates between population infection states x and y are limited by mul-
tiples of the host norm ‖x − y‖1 of the difference between x and y, and also that
these multiples remain bounded provided that the smaller of ‖x‖11 and ‖y‖11 re-
mains bounded. In Kretzschmar’s (1993) model, and in others in which the per
capita infection rate grows as a constant K times the parasite density ‖x‖11, these
conditions are violated, and, without them, the coupling argument of Section 5
fails; however, realistic modifications of these models are covered; see Section 6.

The remaining conditions concern parasite weighted analogues of the preceding
conditions. Conditions (2.10) and (2.12) with y = 0 constrain the overall rate of
flow of parasites into the system through immigration to be finite, and bounded
if the parasite density remains bounded; condition (2.12) also limits the way in
which this influx may depend on the infection state. Conditions (2.7) and (2.9)
impose analogous restrictions on the rates at which individual parasites can cause
further infection, limiting the output per parasite. Bounds on the parasite weighted
quantities are needed to establish the accuracy of approximation that we prove;
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see the remark following Lemma 4.3. Our choice of bounds allows considerable
freedom.

Note that the above discussion relates only to the state-dependent elements in
the transition rates. The conditions on the state-independent rates (2.3) and (2.4)
have similar effects, but are less restrictive. For instance, the state-independent
element in the death rates may increase rather rapidly with parasite burden (2.4),
whereas the state-dependent elements are more strongly restricted (2.13), (2.14).
The particular form of the conditions on the state-dependent rates is in part dictated
by the coupling argument of Section 5, and may well not be the weakest possible
for results such as ours to be true. Similarly, the condition (2.5) is of a purely
technical nature, though presumably always satisfied in practice.

REMARK. The assumptions made about the αij (x) and βi(x) have certain
general consequences. One is that the total number of hosts has to be finite almost
surely for all t . This can be seen by comparison with a pure birth process, since
the number of hosts ‖X‖1 only increases through immigration, and the total rate
of immigration N

∑
i≥0 βi(N

−1X) does not exceed Nb10 + b̃01(0)‖X‖1. Hence,
for any T > 0,

E‖X(T )‖1 ≤ N(1 + b10/b̃01) exp{T b̃01}(2.15)

and

lim
M→∞ P

[
sup

0≤t≤T

‖XN(t)‖1 > NM

]
= 0.(2.16)

Now, if N−1‖X‖1 ≤ M , it follows from (2.8) that∑
l≥0

αil(N
−1X) ≤ a00 + ã01(0)M,

for all i ≥ 0. Hence, and because W is nonexplosive, it follows that, on the event
{sup0≤t≤T ‖XN(t)‖1 ≤ NM}, the X-chain makes a.s. only finitely many transi-
tions in [0, T ]. Letting M → ∞, it follows from (2.16) that a.s. only finitely many
transitions can occur in the X-chain in any finite time interval.

3. The differential equations. We assume deterministic initial conditions
XN(0) for each N ; in fact, because of the Markov property, we could equally
well let XN(0) be measurable with respect to events up to time zero. Our aim is
to approximate the evolution of the process N−1XN(t) when N is large. A natural
candidate approximation is given by the solution xN to the “average drift” infinite
dimensional differential equation

dxi(t)

dt
= ∑

l≥0

xl(t)ᾱli + ∑
l �=i

xl(t)αli(x(t)) − xi(t)
∑
l �=i

αil(x(t))

(3.1)
+ βi(x(t)) − xi(t)δi(x(t)), i ≥ 0,



2214 A. D. BARBOUR AND M. J. LUCZAK

with initial condition xN(0) = N−1XN(0). The following theorem, the main re-
sult of the paper, shows that xN indeed provides a suitable approximation, and
quantifies the �1-error in the approximation. For convenience, we consider initial
conditions that are close to a fixed element x0 ∈ �11.

THEOREM 3.1. Suppose that (2.3)–(2.14) hold, and that xN(0) := N−1XN(0)

satisfies ‖xN(0) − x0‖11 → 0 as N → ∞ for some x0 ∈ �11. Let [0, tmax) denote
the interval on which the equation (3.1) with x0 as initial condition has a solu-
tion x belonging to �11. Then, for any T < tmax, there exists a constant K(T ) such
that, as N → ∞,

P
[
N−1 sup

0≤t≤T

‖XN(t) − NxN(t)‖1 > K(T )N−1/2 log3/2 N

]
= O(N−1/2),

where xN solves (3.1) with xN(0) = N−1XN(0).

Proving this theorem is the substance of this and the next two sections.
First, it is by no means obvious that equation (3.1) has a solution, something

that is only proved in Theorem 4.2. And even if a solution exists, it is not perhaps
immediate that it has to belong to the nonnegative cone, in contrast to the case of
the stochastic model. To temporarily accommodate this possibility, we extend the
definitions of αil , βi and δi , setting

αil(u) = αil(u+), βi(u) = βi(u+), δi(u) = δi(u+), u ∈ R
∞+ ,

where ui+ := max(ui,0), i ≥ 0, and observing that conditions (2.8)–(2.14) are
still satisfied, with x and y replaced by x+ and y+, respectively, as arguments
of a01, a11, b01, b11 and d1.

Temporarily suppressing the N -dependence, note that equation (3.1), as in
Arrigoni (2003), can be compactly expressed in the form

dx

dt
= Ax + F(x), x(0) = N−1XN(0),(3.2)

where A is a linear operator given by

(Ax)i = ∑
l≥0

xlᾱli , i ≥ 0,(3.3)

and F is an operator given by

F(x)i = ∑
l �=i

xlαli(x) − xi
∑
l �=i

αil(x) + βi(x) − xiδi(x), i ≥ 0.(3.4)

If A generates a C0 (strongly continuous) semigroup T (·) on a Banach space S,
then every solution x of (3.2) with x(0) ∈ S also satisfies the integral equation

x(t) = T (t)x(0) +
∫ t

0
T (t − s)F (x(s)) ds.(3.5)
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A continuous solution x of the integral equation (3.5) is called a mild solution
of the initial value problem (3.2), and if F is locally Lipschitz continuous and
x(0) ∈ S, then (3.5) has a unique continuous solution on some nonempty interval
[0, tmax) [Pazy (1983), Theorem 1.4, Chapter 6]. In our case, AT is the infinitesimal
matrix of the Markov process W , and by standard Markov theory [Kendall and
Reuter (1957), pages 111 and 114–115], we can identify T (t)x with P(t)T x for
any x ∈ �1, T being strongly continuous on �1. However, in order to establish the
bounds that we have claimed, we need to take S to be the space �11. We therefore
show that T is also strongly continuous in �11, and that F is locally �11-Lipschitz
continuous, from which the existence and uniqueness of a continuous solution
in �11 to the integral equation (3.5) then follows.

LEMMA 3.2. T is strongly continuous in �11.

PROOF. To prove this lemma, note that every sequence x such that ‖x‖11 < ∞
can be approximated in �11 by sequences with bounded support, which are all
in the domain of A, so D(A) is dense in �11. We now need to check that
T (t) �11 ⊆ �11, and that T is �11-strongly continuous at 0. First, for every x with
‖x‖11 < ∞, we have ‖P(t)T x‖11 < ∞ for all times t from (2.3), since

‖P(t)T x‖11 = ∑
j≥0

(j + 1)

∣∣∣∣∣∑
i≥0

xipij (t)

∣∣∣∣∣
(3.6)

≤ ∑
i≥0

|xi |(i + 1)ewt = ewt‖x‖11 < ∞.

For strong continuity, taking any x ∈ �11, we have

‖P(t)T x − x‖11

≤ ∑
j≥0

(j + 1)

{∑
i �=j

|xi|pij (t) + |xj|(1 − pjj (t)
)}

=
{∑

i≥0

|xi|{E0
i

(
W(t) + 1

) − (i + 1)Pi[W(t) = i]}

+ ∑
j≥0

(j + 1)|xj|(1 − pjj (t)
)}

.

Now limt↓0 pjj (t) = 1 for all j , and, by (2.3),

0 ≤ E0
i

(
W(t) + 1

) − (i + 1)Pi[W(t) = i] ≤ (i + 1)ewt
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and

lim sup
t↓0

E0
i

(
W(t) + 1

) ≤ lim
t↓0

(i + 1)ewt = i + 1;

lim inf
t↓0

E0
i

(
W(t) + 1

) ≥ lim inf
t↓0

i∑
j=0

pij (t)(j + 1) = i + 1.

Hence, since ‖x‖11 < ∞, limt↓0 ‖P(t)T x − x‖11 = 0 by dominated conver-
gence. �

LEMMA 3.3. The function F defined in (3.4) is locally Lipschitz continuous
in the �11-norm.

PROOF. For x, y ≥ 0 such that ‖x‖11,‖y‖11 ≤ M , using assumptions
(2.7)–(2.14), we have

‖F(x) − F(y)‖11

≤ ∑
i≥0

(i + 1)
∑
l �=i

|xlαli(x) − ylαli(y)|

+ ∑
i≥0

(i + 1)

∣∣∣∣∣xi
∑
l �=i

αil(x) − yi
∑
l �=i

αil(y)

∣∣∣∣∣
+ ∑

i≥0

(i + 1)|βi(x) − βi(y)| + ∑
i≥0

(i + 1)|xiδi(x) − yiδi(y)|

≤ ∑
l≥0

|xl − yl|∑
i �=l

(i + 1)αli(x) + ∑
l≥0

yl
∑
i �=l

(i + 1)|αli(x) − αli(y)|

+ ∑
i≥0

(i + 1)|xi − yi|∑
l �=i

αil(x) + ∑
i≥0

(i + 1)yi
∑
l �=i

|αil(x) − αil(y)|

+b11(x, y)‖x − y‖11 + ∑
i≥0

(i + 1)|xi − yi |δi(x)

+ ∑
i≥0

(i + 1)yi |δi(x) − δi(y)|

≤ {a10 + ã11(0)‖x‖11}‖x − y‖11 + ã11(M)‖x − y‖11 ‖y‖11

+{a00 + ã01(0)}‖x‖1 ‖x − y‖11 + ã01(M)‖y‖11 ‖x − y‖1

+ b̃11(M)‖x − y‖11

+{d0 + d̃1(0)}‖x‖1 ‖x − y‖11 + d̃1(M)‖x − y‖1 ‖y‖11

≤ FM‖x − y‖11,
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where

FM := a10 + ã11(0)M + Mã11(M)

+a00 + ã01(0)M + Mã01(M)(3.7)

+ b̃11(M) + d0 + d̃1(0)M + Md̃1(M). �

From these two lemmas, it follows that the differential equation system (3.1) has
a unique weak solution, so that we at least have a function xN to give substance
to the statement of Theorem 3.1. It is later shown in Theorem 4.2 that, under our
conditions, xN is in fact a classical solution to the system (3.1).

Our main aim is to approximate a single random process N−1XN by the solu-
tion xN of (3.5) with initial condition xN(0) = N−1XN(0), and to give an error
bound that is, in principle, computable. However, in order to fix the definitions of
the constants appearing in the error bounds, we have framed Theorem 3.1 in terms
of a sequence of processes indexed by N , assuming that N−1XN(0) → x0 in �11
as N → ∞, for some x0 ∈ �11. It is then natural to be able to approximate all of the
processes N−1XN by the single solution x to (3.5) which has x(0) = x0. The next
lemma shows that this poses no problems, because the solution of (3.5) depends in
locally Lipschitz fashion on the initial conditions, within its interval of existence.

LEMMA 3.4. Fix a solution x to the integral equation (3.5) with x(0) ∈ �11,
and suppose that T < tmax. Then there is an ε > 0 such that, if y is a solution with
initial condition y(0) satisfying ‖y(0) − x(0)‖11 ≤ ε, then

sup
0≤t≤T

‖x(t) − y(t)‖11 ≤ ‖x(0) − y(0)‖11CT ,

for a constant CT < ∞.

PROOF. From the integral equation (3.5) together with (3.6), it follows that, if
‖x(0) − y(0)‖11 ≤ ε, then

‖x(t) − y(t)‖11 ≤ εewt +
∫ t

0
F2MT

‖x(s) − y(s)‖11e
w(t−s) ds,

where FM is defined in (3.7) and

MT := sup
0≤t≤T

‖x(t)‖11,

provided also that sup0≤t≤T ‖y(t)‖11 ≤ 2MT . By Gronwall’s inequality, it then
follows that

sup
0≤t≤T

‖x(t) − y(t)‖11 ≤ ‖x(0) − y(0)‖11CT ≤ εCT ,

for a constant CT < ∞. This implies that sup0≤t≤T ‖y(t)‖11 ≤ 2MT is indeed
satisfied if ε < MT /CT , and the lemma follows. �
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COROLLARY 3.5. Under the conditions of Theorem 3.1, if also ‖xN(0) −
x0‖11 = O(N−1/2), then xN can be replaced by x in the statement, without alter-
ing the order of the approximation.

PROOF. Combine Theorem 3.1 with Lemma 3.4. �

It also follows from Lemma 3.4 that, if ‖xN(0) − x0‖11 → 0, then for all N

large enough ∣∣∣∣ sup
0≤t≤T

‖xN(t)‖11 − MT

∣∣∣∣ ≤ ‖xN(0) − x0‖11CT ,(3.8)

provided that T < tmax. In particular, if tNmax denotes the maximum time such that
xN is uniquely defined on [0, tNmax), then lim infN→∞ tNmax ≥ tmax.

4. The independent sum approximation. The next step in proving Theo-
rem 3.1 is to consider an approximating model X̃N(·), starting with
X̃N(0) = XN(0), and consisting of independent individuals. Each individual’s
parasite load evolves according to a time inhomogeneous Markov process W̃ on
Z+ ∪ � with infinitesimal matrix defined by

qlj (t) = ᾱlj + α̃lj (t), j �= l,�, l ≥ 0,

qll(t) = −∑
j �=l

qlj (t) − δ̄l − δ̃l(t), l ≥ 0,(4.1)

ql�(t) = δ̄l + δ̃l(t), l ≥ 0,

where

α̃il(t) := αil(xN(t)); δ̃i (t) := δi(xN(t));(4.2)

and, for i, j ∈ Z+ ∪ �, we shall write

p̃ij (s, t) := P[W̃ (t) = j | W̃ (s) = i], s < t.(4.3)

In addition, individuals may immigrate, with rates Nβ̃i(t), where

β̃i(t) := βi(xN(t)).(4.4)

The process X̃N differs from XN in having the nonlinear elements of the transi-
tion rates made linear, by replacing the Lipschitz state-dependent elements αij (x),
βi(x) and δi(x) at any time t by their “typical” values α̃ij (t), β̃i(t) and δ̃i(t). Our
strategy will be first to show that the process X̃N stays close to the deterministic
process NxN(t) with high probability, and then to show that, if this is the case, then
XN also stays close to X̃N , again with high probability. However, we shall first use
the process X̃N to improve our knowledge about the weak solution x to (3.2).
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Let us start by introducing some further notation. Fixing T < tmax, define

MT := MT (x) := sup
0≤t≤T

∑
i≥1

(i + 1)|xi(t)|;(4.5)

GT := GT (x) := sup
0≤t≤T

∑
i≥0

|xi(t)|,(4.6)

and write MN
T := MT (xN), GN

T := GT (xN). Note that MT is finite if x(0) ∈ �11,
because the mild solution x is �11-continuous, and that MN

T ≥ 1 and GN
T ≥ 1 when-

ever ‖xN(0)‖1 = 1, as is always the case here.
It is immediate from Lemma 3.4 that if ‖xN(0) − x(0)‖11 → 0, then

MN
T ≤ MT + 1 for all N large enough. Furthermore, it then follows that

GN
T ≤ MN

T ≤ MT + 1(4.7)

for all N sufficiently large. Hence, using also dominated convergence, we deduce
that GN

T ≤ GT + 1 for all N sufficiently large.
Our first result of the section controls the mean of the process N−1X̃N in the

�11-norm.

LEMMA 4.1. Under conditions (2.3)–(2.14), for any XN(0) ∈ �11 and any
T < tNmax, we have

sup
0≤t≤T

N−1
∑
l≥0

(l + 1)EX̃l
N (t)

≤ {
N−1‖XN(0)‖11 + T

(
b10 + b̃11(0)MN

T

)}
e(w+a∗

0+a∗
1MN

T )T < ∞,

where w is as in assumption (2.3), a∗
0 := a10 − a00 and a∗

1 := ã11(0) − ã01(0).

PROOF. Neglecting the individuals in the cemetery state �, the process X̃N

can be represented by setting

X̃N(t) = ∑
i≥0

Xi
N(0)∑
j=1

e(W̃ij (t)) + ∑
i≥0

Ri(t)∑
j=1

e
(
W̃ ′

ij (t − τij )
)
,(4.8)

where W̃ij and W̃ ′
ij , i ≥ 0, j ≥ 1, are independent copies of W̃ , with W̃ij and W̃ ′

ij
starting at i, and the τij , j ≥ 1, are the successive event times of independent time
inhomogeneous Poisson (counting) processes Ri with rates Nβ̃i(t), which are also
independent of all the W̃ij and W̃ ′

ij ; as usual, e(l) denotes the lth coordinate vector.
Hence, it follows that, given XN(0),∑

l≥0

(l + 1)EX̃l
N (t)

= ∑
i≥0

{
Xi

N(0)E0
i {W̃ (t) + 1} + N

∫ t

0
β̃i(u)E0

i {W̃ (t − u) + 1}du

}
,
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where E0
i is as defined for (2.3).

Now W̃ has paths which are piecewise paths of W , but with extra killing because
of the δ̃i(u) components of the rates, and with extra jumps, α-jumps, say, because
of the α̃ij (u) components. The killing we can neglect, since it serves only to reduce
E0

i W̃ (t). For the remainder, by assumption (2.8), the rate of occurrence is at most
χ := {a00 + ã01(0)MN

T }, irrespective of state and time. So, defining

cij (u) := α̃ij (u)/χ, i, j ≥ 0, j �= i;
cii(u) := 1 − ∑

j �=i

cij (u), i ≥ 0,

we can construct the α-jumps by taking them to occur at the event times of a Pois-
son process R of rate χ , with jump distribution for a jump at time u given by ci .(u)

if W̃ (u−) = i. Note that, in this case, no jump is realized with probability cii(u).
Conditional on R having events at times 0 < t1 < · · · < tr < t between 0 and t , we
thus have

E0
i {W̃ (t) + 1 | t1, . . . , tr}

≤ ∑
j1≥0

pij1(t1)
∑
l1≥0

cj1l1(t1)
∑
j2≥0

pl1j2(t2 − t1)
∑
l2≥0

cj2l2(t2) · · ·

· · · ∑
jr≥0

plr−1jr (tr − tr−1)
∑
lr≥0

cjr lr (tr )
∑
j≥0

(j + 1)plr j (t − tr ),

where, as before, pij (t) = P[W(t) = j | W(0) = i]. Applying assumptions (2.3),
(2.7) and (2.9) to the last two sums, we have∑

lr≥0

cjr lr (tr )
∑
j≥0

(j + 1)plr j (t − tr ) ≤ ∑
lr≥0

cjr lr (tr )(lr + 1)ew(t−tr )

≤ aN
3 (jr + 1)ew(t−tr ),

where aN
3 := {a10 + ã11(0)MN

T }/χ . It thus follows that

E0
i {W̃ (t) + 1 | t1, . . . , tr} ≤ aN

3 E0
i {W̃ (tr ) + 1 | t1, . . . , tr−1}ew(t−tr ).

Arguing inductively, this implies that

E0
i {W̃ (t) + 1 | t1, . . . , tr} ≤ (i + 1){aN

3 }rewt ,

and hence, unconditionally, that

E0
i {W̃ (t) + 1} ≤ (i + 1)ewtE

{
(aN

3 )R(t)}
(4.9)

≤ (i + 1) exp
{(

w + (aN
3 − 1)χ

)
t
}
.

The remainder of the proof is immediate. �
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Armed with this estimate, we can now proceed to identify N−1EX̃N(t)

with xN(t), at the same time proving that the mild solution xN is in fact a classical
solution to the infinite differential equation (3.1) with initial condition N−1XN(0).

First, define the “linearized” version of (3.1):

dyi(t)

dt
= ∑

l≥1

yl(t)ᾱli + ∑
l≥0

yl(t)α̃li(t) − yi(t)
∑
l≥0

α̃il(t)

(4.10)
+ β̃i(t) − yi(t)δ̃i(t), i ≥ 0,

where α̃, β̃ and δ̃ are as in (4.2) and (4.4), to be solved in t ∈ [0, T ] for an unknown
function y. Clearly these equations have xN itself as a mild solution in �11, and,
by Pazy (1983), Theorem 3.2, Chapter 6, the mild solution is unique under our
assumptions, since now

F̃ (t, u)i := ∑
l≥0

ulα̃li(t) − ui
∑
l≥0

α̃il(t) + β̃i(t) − ui δ̃i(t)

is �11 locally Lipschitz in u ∈ S with constant

a00 + a10 + d0 + MN
T {ã01(0) + ã11(0) + d̃1(0)}

and

‖F̃ (s, u) − F̃ (t, u)‖11

≤ (
MN

T {ã11(M
N
T ) + ã01(M

N
T ) + d̃1(M

N
T )} + b̃11(M

N
T )

)‖xN(s) − xN(t)‖11,

whenever ‖u‖11 ≤ MN
T , so that F̃ is t-uniformly continuous on bounded intervals

(contained in [0, tNmax)), because xN is. We now show that y(t) = N−1EX̃N(t)

solves (4.10), and indeed as a classical solution. Since it also therefore solves
(3.5), and since this equation has a unique solution, it follows that y is the same
as xN , and that it is the classical solution to equation (3.1) with initial condition
N−1XN(0).

THEOREM 4.2. Under conditions (2.3)–(2.14), for any fixed XN(0) ∈ �11,
the function y(t) := N−1EX̃N(t) satisfies the system (4.10) with initial condition
N−1XN(0) on any interval [0, T ] with T < tNmax. It is hence the unique classical
solution xN to (3.1) for this initial condition.

PROOF. Let X̃
j
N1(t) denote the number of particles present at time 0 that are

still present and in state j at time t ; let X̃
j
N2(t) denote the number of particles that

immigrated after time 0 and are present and in state j at time t . Then

EX̃
j
N(t) = EX̃

j
N1(t) + EX̃

j
N2(t)

(4.11)

= ∑
i≥0

Xi
N(0)p̃ij (0, t) + N

∫ t

0

∑
i≥0

β̃i(u)p̃ij (u, t) du,
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where p̃ij (u, v) is as defined in (4.3). Note that the expectations are finite, since,
from conditions (2.10) and (2.11) and by (4.7), uniformly in u ∈ [0, T ],∑

i≥0

β̃i(u) ≤ b10 + b̃01(0)GN
T < ∞.(4.12)

Then, defining qjl(t) as in (4.1), it follows for each j ≥ 0 that the quantities
−qjj (t) are bounded, uniformly in t , since by conditions (2.13), (2.14) and (2.8),

δ̃j (t) ≤ d0 + d̃1(0)GN
T ; ∑

l≥0

α̃j l(t) ≤ a00 + ã01(0)GN
T ,(4.13)

and since α∗(j) = ∑
l �=j ᾱj l is finite. Note further that, from the forward equations,

∂

∂t
p̃ij (u, t) = ∑

l≥0

p̃il(u, t)qlj (t);

see Iosifescu and Tautu (1973), Corollary to Theorem 2.3.8, page 214.
Now we have

EX̃
j
N1(t) = ∑

i≥0

Xi
N(0)p̃ij (0, t)

= X
j
N(0) + ∑

i≥0

Xi
N(0)

∫ t

0

∑
l≥0

p̃il(0, u)qlj (u) du(4.14)

= X
j
N(0) +

∫ t

0

∑
l≥0

EX̃l
N1(u)qlj (u) du,

with no problems about reordering, because of the uniform boundedness discussed
above, and since only one of the qlj is negative. Then also, with rearrangements
similarly justified, we define

Qt := N

∫ t

0

{∫ v

0

∑
i≥0

β̃i(u)
∑
l≥0

p̃il(u, v)qlj (v) du

}
dv;

taking the i-sum first, and then the u-integral, we obtain

Qt =
∫ t

0

∑
l≥0

EX̃l
N2(v)qlj (v) dv;

taking the l-sum first, we have

Qt = N

∫ t

0

{∫ t

0

∑
i≥0

β̃i(u)
∂

∂v
p̃ij (u, v)1[0,v](u) du

}
dv

= N

∫ t

0

∑
i≥0

β̃i(u){p̃ij (u, t) − p̃ij (u,u)}du

= EX̃
j
N2(t) − N

∫ t

0
β̃j (u) du.
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From these two representations of Qt , it follows that

EX̃
j
N2(t) =

∫ t

0

{
Nβ̃j (u) + ∑

l≥0

EX̃l
N2(u)qlj (u)

}
du;(4.15)

combining (4.15) and (4.15), we thus have

N−1EX̃
j
N(t)

(4.16)

= N−1X
j
N(0) +

∫ t

0

{
β̃j (u) + ∑

l≥0

N−1EX̃l
N(u)qlj (u)

}
du.

Since the right-hand side is an indefinite integral up to t , it follows that
N−1EX̃

j
N(t) is continuous in t , for each j . The quantities qjl(t) are all contin-

uous, because xN is �11-continuous in t and the αil(x) and δl(x) are �11-Lipschitz,
and also, for qll(t), from assumption (2.8). Then, from Lemma 4.1, we also have∑
j≥J

EX̃
j
N(t) ≤ (J + 1)−1{‖XN(0)‖11 + NT

(
b10 + b̃11(0)MN

T

)}
e(w+a∗

0+a∗
1MN

T )T ,

so that, in view of assumption (2.5) and of (4.13), the sum on the right-hand
side of (4.16) is uniformly convergent, and its sum continuous. Hence (4.16)
can be differentiated with respect to t to recover the system (4.10), proving
the theorem. �

Our next result shows that, under appropriate conditions, N−1X̃N(t) and x(t)

are close in �1-norm at any fixed t , with very high probability.

LEMMA 4.3. Suppose that conditions (2.3)–(2.14) are satisfied, that
XN(0) ∈ �11 and that N ≥ 9. Then, for any t ∈ [0, T ] with T < tNmax,

E‖X̃N(t) − NxN(t)‖1 ≤ 3(MN
T + 1)

√
N logN.

Furthermore, for any r > 0, there exist constants K
(1)
r > 1 and K

(2)
r such that

P
[‖X̃N(t) − NxN(t)‖1 > K(1)

r (MN
T + 1)N1/2 log3/2 N

] ≤ K(2)
r GN

T N−r .

PROOF. For a sum W of independent indicator random variables with
mean M , and for any δ > 0, it follows from the Chernoff inequalities that

max{P[W > M(1 + δ)],P[W < M(1 − δ)]} ≤ exp{−Mδ2/(2 + δ)};(4.17)

see Chung and Lu (2006), Theorem 4. Now the quantity X̃
j
N(t) can be expressed

as a sum of independent random variables Y
j
1 , . . . , Y

j
N and Y ′, where Y

j
k is the

indicator of the event that the kth initial individual is in state j at time t , and Y ′ is
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a Poisson random variable with mean N
∫ t

0
∑

i≥0 βi(s)p̃ij (s, t) ds. Hence, by the
simple observation that Var(X̃i

N (t)) ≤ E(X̃i
N(t)) = Nxi

N(t), we have

E|X̃i
N(t) − Nxi

N(t)| ≤
√

Nxi
N(t) ∧ {2Nxi

N(t)},(4.18)

and, by (4.17), for any a ≥ 2 and N ≥ 3, we have

P
[|X̃i

N(t) − Nxi
N(t)| > a

√
Nxi

N(t) logN
] ≤ 2N−a/2,

so long as Nxi
N(t) ≥ 1. By Lemma A.1(iii), in view of (4.18), it now follows

immediately that

E‖X̃N(t) − NxN(t)‖1 ≤ 3(MN
T + 1)

√
N logN,

giving the first statement.
For the second, let IN(t) := {i :xi

N(t) ≥ 1/N}. Then it is immediate that
|IN(t)| ≤ NGN

T , so that, if

BN(t) := ⋂
i∈IN (t)

{|X̃i
N(t) − Nxi

N(t)| ≤ a

√
Nxi

N(t) logN
}
,

then

P[BC
N(t)] ≤ 2GN

T N1−a/2.(4.19)

On the other hand, on the event BN(t), it follows from Lemma A.1 (i) that∑
i∈IN (t)

|X̃i
N (t) − Nxi

N(t)| ≤ a logN
∑

i∈I (t)

√
Nxi

N(t)

(4.20)
≤ a logN (MN

T + 1)
√

N logN.

For the remaining indices, we note that SN(t) := ∑
i /∈IN (t) X̃

i
N (t) is also a sum

of many independent indicator random variables plus an independent Poisson com-
ponent. Using (4.17), we thus have

P

[
SN(t) >

∑
i /∈IN (t)

Nxi
N(t) + N1/2(MN

T + 1)
√

logN

]
(4.21)

≤ exp
{−N1/2(MN

T + 1)
√

logN/3
} ≤ exp{−N1/2/3},

since δ := N1/2(MN
T + 1)

√
logN/

∑
i /∈IN (t) Nxi

N(t) ≥ 1 from Lemma A.1(ii);
otherwise, we have ∑

i /∈IN (t)

X̃i
N (t) ≤ 2N1/2(MN

T + 1)
√

logN,(4.22)

again from Lemma A.1 (ii). Now, fixing any r > 0 and taking a = 2(r + 1), the
second part of the lemma follows from (4.19)–(4.22). �
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REMARK. The argument above makes essential use of the finiteness of MN
T ,

through Lemma A.1. For MN
T < ∞, we needed the solution xN to (3.5) to be

�11-continuous, and hence needed to consider equation (3.5) with respect to �11.
Now, for the accuracy of approximation given in Lemma 4.3, the condition MN

T <

∞ is in fact close to being necessary. To see this, note that, if Zi ∼ Po(Npi) for
i ≥ 1, for some choice of pi , then∑

i:pi≥1/N

E|Zi − Npi | � N1/2
∑

i:pi≥1/N

√
pi.

In the arguments above, we have the xi
N(t) for the pi , with the X̃i

N(t), which
are close to being Poisson distributed, in place of Zi , and we use the fact that∑

i≥1 ipi < ∞. Suppose instead that pi ∼ ci−1−η for some c > 0 and 0 < η < 1,
so that

∑
i≥1 iηpi = ∞. Then it follows that∑

i:pi≥1/N

√
pi � N(1−η)/2(1+η),

and hence, that ∑
i≥1

E|Zi − Npi | ≥ KN1/2N(1−η)/2(1+η).

Thus, for such pi , an approximation as close as that of Lemma 4.3 cannot be
attained, because the mean �1-distance would be at least of order as big as Nγ for
γ = 1/(1 + η) > 1/2. Note that such circumstances would arise in our model, if
we took, for instance, ᾱi,i−1 = i, i ≥ 2, δ̄1 = 1, βi(x) = i−1−η for all x, and set all
other elements of the transition rates equal to zero. The resulting stochastic model
has no interactions, so that the processes X̃N and XN have the same distribution,
that of a particular multitype Markov immigration–death process. At stationarity,
the mean number pi of individuals of type i satisfies pi ∼ ci−1−η as i → ∞, for
c = 1/η. Of course, with this choice, the βi(0) violate condition (2.10).

The next lemma is used to control the fluctuations of X̃N between close time
points. We define the quantity

HN
T := 2m2−1m1 + {

b10 + a00 + b̃01(0)

+d0 + GN
T

(
ã01(0) + d̃1(0)

)}
/�NMN

T �m2−1
,

which will be used as part of an upper bound for the transition rates of the
process X̃N on [0, T ], noting that

1 ≤ HN
T ≤ H ∗MN

T ,(4.23)

where H ∗ does not depend on T or N .
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LEMMA 4.4. Suppose that conditions (2.3)–(2.14) are satisfied. Then, if h ≤
1/(2�NMN

T �m2
HN

T ), t ≤ T − h, and if ‖X̃N(t) − NxN(t)‖1 ≤ KN1/2 log3/2 N , it
follows that

P
[

sup
0≤u≤h

‖X̃N(t + u) − X̃N(t)‖1 > KN1/2 log3/2 N + a logN

]
≤ N−a/6,

for any a ≥ 2 and N ≥ 3.

PROOF. At time t , there are ‖X̃N(t)‖1 individuals in the system, each of which
evolves independently of the others over the interval s ∈ [t, t +h]; in addition, new
immigrants may arrive. During the interval [t, t + h], an individual in state i ≥ 0
at time t has probability

exp

{
−

(
h
(
α∗(i) + δ̄i

) +
∫ h

0
δi

(
x(t + u)

)
du +

∫ h

0

∑
l �=i

αil

(
x(t + u)

)
du

)}
of not changing state; and the expected number of immigrants is Poisson distrib-
uted with mean

N
∑
i≥0

∫ h

0
βi

(
x(t + u)

)
du.

Now consider the total number R(t, h) of individuals that either change state or
immigrate during the interval [t, t + h]. For each i ≥ 0, the individuals in state i at
time t can be split into two groups, the first containing X̃i

N(t) ∧ Nxi
N(t) randomly

chosen individuals, and the second containing the remainder. Adding over i, the
numbers in the second group add up to at most KN1/2 log3/2 N , by assumption.
Then, from the observations above, the mean number of individuals in the first
group that change state in [t, t + h] is at most

2�NMN
T �−1∑

i=0

hNxi
N(t)m1(i + 1)m2 + ∑

i≥2�NMN
T �

Nxi
N(t)

(4.24)
+ ∑

i≥0

hNxi
N(t){d0 + d̃1(0)GN

T + a00 + ã01(0)GN
T }

from (2.4) and (2.7)–(2.14). Finally, the expected number of immigrants in
[t, t + h] is at most

hN{b10 + b̃01(0)GN
T }.(4.25)

Adding (4.24) and (4.25), and recalling the assumption on h, we obtain an expected
number of events in these categories of at most

hNMN
T m1{2�NMN

T �}m2−1 + 1
2

+ hN
{
b10 + GN

T

(
d0 + a00 + b̃01(0)

) + [GN
T ]2(

d̃1(0) + ã01(0)
)}

(4.26)

≤ 1
2 + h�NMN

T �m2
HN

T ≤ 1.
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Applying the Chernoff bounds (4.17), the probability that more than a logN ≥ 2
events of these kinds occur in [t, t + h] is thus at most N−a/6, implying in sum
that

P[R(t, h) ≥ KN1/2 log3/2 N + a logN ] ≤ N−a/6.

Since sup0≤u≤h ‖X̃N(t + u) − X̃N(t)‖1 ≤ R(t, h), the lemma follows. �

We are now in a position to prove the main result of the section, showing that
the independent sum process N−1X̃N is a good approximation to xN , uniformly
in [0, T ].

THEOREM 4.5. Under conditions (2.3)–(2.14), and for T < tNmax, there exist

constants 1 ≤ K
(3)
r ,K

(4)
r < ∞ for each r > 0 such that, for N large enough,

P
[

sup
0≤t≤T

‖N−1X̃N(t) − xN(t)‖1 > K(4)
r (MN

T + FMN
T
)N−1/2 log3/2 N

]
≤ K(3)

r (MN
T )m2+2N−r ,

where FM is as in (3.7).

PROOF. Suppose that N ≥ 9. Divide the interval [0, T ] into �2T �NMN
T �m2 ×

HN
T � intervals [tl, tl+1] of lengths hl = tl+1 − tl ≤ 1/(2�NMN

T �m2
HN

T ). Apply
Lemma 4.3 with r +m2 for r and with t = tl for each l, and apply Lemma 4.4 with
a = 6(r + m2) and with t = tl and h = hl for each l; except on a set of probability
at most

�2T �NMN
T �m2

HN
T �(K(2)

r+m2
GN

T N−r−m2 + N−r−m2
)
,

we have

sup
0≤t≤T

‖N−1X̃N(t) − xN(t)‖1

≤ 2K
(1)
r+m2

(MN
T + 1)N−1/2 log3/2 N + 6(r + m2)N

−1 logN(4.27)

+ sup
0≤s,t≤T ;|s−t |≤1/(2�NMN

T �m2HN
T )

‖xN(s) − xN(t)‖1.

Now, since xN satisfies (3.5), it follows that, for 0 ≤ u ≤ h,

‖xN(t + u) − xN(t)‖1 ≤ ‖xN(t)P (u) − xN(t)‖1

+
∫ u

0

∥∥F (
xN(t + v)

)
P(h − v)

∥∥
1 dv.

By (3.6), we have∥∥F (
xN(t + v)

)
P(h − v)

∥∥
11 ≤ ewu

∥∥F (
xN(t + v)

)∥∥
11 ≤ ewhMN

T FMN
T
,
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the last inequality following from Lemma 3.3, so that therefore∫ u

0

∥∥F (
xN(t + v)

)
P(h − v)

∥∥
1 dv ≤ hewhMN

T FMN
T

≤
ewT FMN

T

2N

for h ≤ 1/{2�NMN
T �m2

HN
T }, since m2 ≥ 1 and HN

T ≥ 1. Then

‖xN(t)P (u) − xN(t)‖1 ≤ 2
∑
j≥0

|xj
N(t)|(1 − pjj (u)

)
,

and, by part of the calculation in (4.26), we find that

∑
j≥0

|xj
N(t)|(1 − pjj (u)

) ≤ u

2�NMN
T �−1∑

j=0

|xj
N(t)|m1(j + 1)m2 + ∑

j≥2�NMN
T �

|xj
N(t)|

≤ hm1(2�NMN
T �m2−1

)MN
T + 1

2N
,

which is at most 3/(2N) if h ≤ 1/(2�NMN
T �m2

HN
T ).

Hence, the third term in (4.27) is of order (1 + FMN
T
)N−1 under the conditions

of the theorem, and the result follows. �

5. The main approximation. We now turn to estimating the deviations of
the process X̃N from the actual process XN of interest. We do so by coupling the
processes in such a way that the “distance” between them cannot increase too much
over any finite time interval. In our coupling, we pair each individual in state i ≥ 1
in XN(0) with a corresponding individual in state i in X̃N(0) so that all their μ-
and δ̄-transitions are identical. This process entails an implicit labeling, which we
suppress from the notation. Now the remaining transitions have rates which are
not quite the same in the two processes, and hence, the two can gradually drift
apart. Our strategy is to make their transitions identical as far as we can, but, once
a transition in one process is not matched in the other, the individuals are decou-
pled thereafter. For our purposes, it is simply enough to show that the number of
decoupled pairs is sufficiently small; what pairs of states these individuals occupy
is immaterial.

We realize the coupling between XN and X̃N in terms of a four component
process Z(·) with

Z(t) = ((
Zi

l (t), i ≥ 0, 1 ≤ l ≤ 3
)
,Z4(t)

) ∈ X3 × Z+,

constructed in such a way that we can define XN(·) = Z1(·) + Z2(·) and
X̃N(·) = Z1(·) + Z3(·), and starting with Z1(0) = XN(0) = X̃N(0),
Z2(0) = Z3(0) = 0 ∈ X, and Z4(0) = 0. The component Z4 is used only to keep
count of certain uncoupled individuals: either unmatched Z2-immigrants, or Z3
individuals that die, or Z2 individuals created at the death of (one member of) a
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coupled pair. The transition rates of Z are given as follows, using the notation el(i)

for the ith coordinate vector in the lth copy of X, and writing X = Z1 + Z2. For
the ᾱ- and α-transitions, at time t and for any i �= l, we have

Z → Z + (
e1(l) − e1(i)

)
at rate Zi

1
{
ᾱil + (

αil(N
−1X) ∧ αil(xN(t))

)};
Z → Z + (

e2(l) + e3(i) − e1(i)
)

at rate Zi
1{αil(N

−1X) − αil(xN(t))}+;
Z → Z + (

e2(i) + e3(l) − e1(i)
)

at rate Zi
1{αil(N

−1X) − αil(xN(t))}−;
Z → Z + (

e2(l) − e2(i)
)

at rate Zi
2{ᾱil + αil(N

−1X)};
Z → Z + (

e3(l) − e3(i)
)

at rate Zi
3{ᾱil + αil(xN(t))},

with possibilities for individuals in the two processes to become uncoupled, when
N−1X �= x(t). For the immigration transitions, we have

Z → Z + e1(i) at rate N{βi(N
−1X) ∧ βi(xN(t))}, i ≥ 0;

Z → Z + e2(i) + e4 at rate N{βi(N
−1X) − βi(xN(t))}+, i ≥ 0;

Z → Z + e3(i) at rate N{βi(N
−1X) − βi(xN(t))}−, i ≥ 0,

with some immigrations not being precisely matched; the second transition in-
cludes an e4 to ensure that each individual in Z2 has a counterpart in either Z3 or
Z4. For the deaths, we have

Z → Z − e1(i) at rate Zi
1
{
δ̄i + (

δi(N
−1X) ∧ δi(xN(t))

)}
, i ≥ 0;

Z → Z − e1(i) + e3(i) at rate Zi
1{δi(N

−1X) − δi(xN(t))}+, i ≥ 0;
Z → Z − e1(i) + e2(i) + e4 at rate Zi

1{δi(N
−1X) − δi(xN(t))}−, i ≥ 0;

Z → Z − e2(i) at rate Zi
2{δ̄i + δi(N

−1X)}, i ≥ 0;
Z → Z − e3(i) + e4 at rate Zi

3{δ̄i + δi(xN(t))}, i ≥ 0,

where Z4(·) is also used to count the deaths of uncoupled Z3-individuals, and
uncoupled deaths in X̃N of coupled Z1 individuals. With this joint construction,
we have arranged that ∑

i≥0

Zi
2(t) ≤ Z4(t) + ∑

i≥0

Zi
3(t)(5.1)

for all t , and that

VN(t) := Z4(t) + ∑
i≥0

Zi
3(t)(5.2)

is a counting process. We allow unmatched deaths in the Z2-process. We thus have
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the bound

‖XN(t) − X̃N(t)‖1 = ∥∥(
Z1(t) + Z2(t)

) − (
Z1(t) + Z3(t)

)∥∥
1

≤ ∑
i≥0

{Zi
2(t) + Zi

3(t)}(5.3)

≤ 2

{
Z4(t) + ∑

i≥0

Z3(t)

}
= 2VN(t),

for all t , by (5.1).
Now VN has a compensator AN with intensity aN , satisfying

aN(t) = ∑
i≥0

Zi
1(t)

∑
l≥0

|αil(N
−1XN(t)) − αil(xN(t))|

+N
∑
i≥0

|βi(N
−1XN(t)) − βi(xN(t))|

+ ∑
i≥0

Zi
1(t)|δi(N

−1XN(t)) − δi(xN(t))|

≤ ∑
i≥0

X̃i
N (t)

∑
l≥0

|αil(N
−1XN(t)) − αil(xN(t))|

+N
∑
i≥0

|βi(N
−1XN(t)) − βi(xN(t))|

+ ∑
i≥0

X̃i
N (t)|δi(N

−1XN(t)) − δi(xN(t))|.

Now, condition (2.8) implies that, uniformly in i,∑
l≥0

|αil(N
−1XN(t)) − αil(xN(t))| ≤ ã01(‖xN(t)‖11)‖N−1XN(t) − xN(t)‖1.

Hence,

N−1aN(t) ≤
(∑

i≥0

xi
N(t)ã01(M

N
T ) + b̃01(M

N
T ) + ∑

i≥0

xi
N(t)d̃1(M

N
T )

)

× ‖N−1XN(t) − xN(t)‖1

+ ‖N−1X̃N(t) − xN(t)‖1
(
ã01

(
MN

T ) + d̃1(M
N
T )

)
× ‖N−1XN(t) − xN(t)‖1

≤ {
H

(1,N)
T + H

(2,N)
T ‖N−1X̃N(t) − xN(t)‖1

}‖N−1XN(t) − xN(t)‖1,

where

H
(1,N)
T = GN

T ã01(M
N
T ) + b̃01(M

N
T ) + GN

T d̃1(M
N
T );

H
(2,N)
T = ã01(M

N
T ) + d̃1(M

N
T ).
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In particular, defining

τN := inf{t ≥ 0 :‖N−1X̃N(t) − xN(t)‖1 ≥ 1},
it follows that

N−1aN(t ∧ τN)
(5.4)

≤ {
H

(1,N)
T + H

(2,N)
T

}‖N−1XN(t ∧ τN) − xN(t ∧ τN)‖1.

For the next two lemmas, we shall restrict the range of N in a way that is as-
ymptotically unimportant. We shall suppose that N satisfies the inequalities

K(4)
r0

(MN
T + FMN

T
)N−1/2 log3/2 N ≤ 1;

(5.5)
N > max

{(
K(3)

r0

)1/(m2+2)
MN

T ,9
}
,

where r0 = m2 + 2, and the quantities K
(3)
r and K

(4)
r are as for Theorem 4.5.

LEMMA 5.1. Under conditions (2.3)–(2.14), for any t ∈ [0, T ] and for all N

satisfying (5.5), we have

N−1E‖XN(t ∧ τN) − X̃N(t ∧ τN)‖1

≤ 14MN
T N−1/2

√
logN t

(
H

(1,N)
T + H

(2,N)
T

)
exp

{
2t

(
H

(1,N)
T + H

(2,N)
T

)}
.

PROOF. Write MN(·) := VN(·) − AN(·). Then, because also

‖N−1XN(t) − xN(t)‖1
(5.6)

≤ ‖N−1XN(t) − N−1X̃N(t)‖1 + ‖N−1X̃N(t) − xN(t)‖1,

and using (5.4), we have

(2N)−1‖XN(t ∧ τN) − X̃N(t ∧ τN)‖1

≤ N−1V (t ∧ τN)

≤ N−1MN(t ∧ τN)

+
∫ t∧τN

0

{
H

(1,N)
T + H

(2,N)
T

}{N−1‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1

(5.7)
+ ‖N−1X̃N(s ∧ τN) − xN(s ∧ τN)‖1}ds

≤ N−1MN(t ∧ τN)

+
∫ t

0

{
H

(1,N)
T + H

(2,N)
T

}{N−1‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1

+‖N−1X̃N(s ∧ τN) − xN(s ∧ τN)‖1}ds.
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Now MN(· ∧ τN) is a martingale, since, by (5.4),

E
{∫ t∧τN

0
aN(s) ds

}
≤ {

H
(1,N)
T + H

(2,N)
T

}
E

{∫ t∧τN

0
‖XN(s) − NxN(s)‖1 ds

}
≤ {

H
(1,N)
T + H

(2,N)
T

} ∫ t

0
{E‖XN(s)‖1 + N‖xN(s)‖1}ds < ∞,

this last using (2.15). Taking expectations, it thus follows that

(2N)−1E‖XN(t ∧ τN) − X̃N(t ∧ τN)‖1

≤
∫ t

0

{
H

(1,N)
T + H

(2,N)
T

}{N−1E‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1(5.8)

+E‖N−1X̃N(s ∧ τN) − xN(s ∧ τN)‖1}ds.

Now we have

E‖N−1X̃N(s ∧ τN) − xN(s ∧ τN)‖1

= E{‖N−1X̃N(s) − xN(s)‖1I [τN ≥ s]}
+ E{‖N−1X̃N(τN) − xN(τN)‖1I [τN < s]}(5.9)

≤ E‖N−1X̃N(s) − xN(s)‖1 + (1 + 1/N)P[τN < s]
≤ E‖N−1X̃N(s) − xN(s)‖1 + (1 + 1/N)P[τN < T ].

For N satisfying (5.5), the first term in (5.9) is bounded by 3(MN
T + 1)N−1/2 ×√

logN by Lemma 4.3. Also, for such N , the event {τN < T } lies in the excep-
tional set for Theorem 4.5 with r = r0, implying that

P[τN < T ] ≤ K(3)
r0

(MN
T )m2+2N−r0,(5.10)

so that the second term is no larger than MN
T N−1/2√logN if

N > max
{(

K(3)
r0

(MN
T )m2+1)1/(r0−1/2)

,9
}
,

which is also true if (5.5) is satisfied. This implies that, for such N ,

E‖N−1X̃N(s ∧ τN) − xN(s ∧ τN)‖1 ≤ 7MN
T N−1/2

√
logN.(5.11)

Using (5.11) in (5.8) and applying Gronwall’s inequality, the lemma follows. �

LEMMA 5.2. Under conditions (2.3)–(2.14), for any t ∈ [0, T ] and y > 0, and
for all N satisfying (5.5), we have

P
[

sup
0≤s≤t

|N−1MN(s ∧ τN)| ≥ y

]
≤ g

(
t
(
H

(1,N)
T + H

(2,N)
T

))
MN

T y−2N−3/2
√

logN,

where g(x) := 7xe2x .
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PROOF. Since VN(·) is a counting process with continuous compensator AN ,
we have from (5.4) and (5.6) that

EM2
N(t ∧ τN) = EAN(t ∧ τN)

≤ {
H

(1,N)
T + H

(2,N)
T

} ∫ t

0
{E‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1

+ E‖X̃N(s ∧ τN) − NxN(s ∧ τN)‖1}ds.

The first expectation is bounded using Lemma 5.1, the second from (5.11), from
which it follows that

EM2
N(t ∧ τN) ≤ g

(
t
(
H

(1,N)
T + H

(2,N)
T

))
MN

T N1/2
√

logN.

The lemma now follows from the Lévy–Kolmogorov inequality. �

We are finally in a position to complete the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. Suppose that N satisfies (5.5). Returning to the
inequality (5.7), we can now write

(2N)−1 sup
0≤s≤t

‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1 ≤ N−1V (t ∧ τN)

≤ N−1MN(t ∧ τN)

+
∫ t

0

{
H

(1,N)
T + H

(2,N)
T

}{N−1‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1

+‖N−1X̃N(s ∧ τN) − xN(s ∧ τN)‖1}ds.

From Lemma 5.2, taking y = yN = MN
T N−1/2√logN , we can bound the martin-

gale contribution uniformly on [0, T ] by MN
T N−1/2√logN , except on an event of

probability at most

g
(
T

(
H

(1,N)
T + H

(2,N)
T

))
N−1/2.

By Theorem 4.5, for any r > 0, we can find a constant Kr such that

sup
0≤t≤T

‖N−1X̃N(t) − xN(t)‖1 ≤ Kr(M
N
T + FMN

T
)N−1/2 log3/2 N,

except on an event of probability O((MN
T )m2+2N−r ). Hence, once again by Gron-

wall’s inequality, it follows that, except on these exceptional events,

N−1 sup
0≤s≤t

‖XN(s ∧ τN) − X̃N(s ∧ τN)‖1

≤ 2N−1/2e2t (H
(1,N)
T +H

(2,N)
T )

× {
MN

T

√
logN + T

(
H

(1,N)
T + H

(2,N)
T

)
Kr(M

N
T + FMN

T
) log3/2 N

}
.
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Combining this with Theorem 4.5, and since also, by (5.10), P[τN < T ] =
O((MN

T )m2+2N−r ) for any r , the theorem follows:

P
[
N−1 sup

0≤t≤T

‖XN(t) − NxN(t)‖1 > K(T )N−1/2 log3/2 N

]
= O(N−1/2).

Note that the inequalities (5.5) are satisfied for all N sufficiently large, and that the
constant K(T ) and the implied constant in O(N−1/2) can be chosen uniformly
in N , because, under the conditions of the theorem, ‖xN(0) − x(0)‖11 → 0 as
N → ∞, with the result that, for all large enough N , GN

T and MN
T can be re-

placed by GT + 1 and MT + 1 respectively, with the corresponding modifications
in H

(1,N)
T , H

(2,N)
T and FMN

T
. �

6. Examples. In this section we show that the assumptions that we have made
are satisfied by a number of epidemic models. These include the models introduced
in Barbour and Kafetzaki (1993) and in Barbour (1994), both of which were gen-
eralized and studied in depth in Luchsinger (1999, 2001a, 2001b).

6.1. Luchsinger’s nonlinear model. In Luchsinger’s nonlinear model, the total
population size is fixed at N at all times, with βi(x) = δi(x) = δ̄i = 0 for all i ≥ 0
and x ∈ �11. The matrix ᾱ is the superposition of the infinitesimal matrices of
a linear pure death process with rate μ > 0 and of a catastrophe process which
jumps from any state to 0 at constant rate κ ≥ 0. The first of the above expresses
the assumption that parasites die independently at rate μ. The second corresponds
to the fact that hosts die independently at rate κ , and their parasites with them;
whenever a host dies, it is instantly replaced by a healthy individual. Thus, the
positive elements of ᾱ are given by

ᾱi,i−1 = iμ, ᾱi0 = κ, i ≥ 2; ᾱ10 = μ + κ,

and ᾱii , i ≥ 1, is determined by (2.1). The elements ᾱ0j are all zero. It is easy
to check that assumptions (2.3)–(2.5) are satisfied, with w = 0, m1 = μ + κ and
m2 = 1.

As regards infection, hosts make potentially infectious contacts at rate λ > 0,
and infection can only occur in a currently uninfected host. If a host carrying i

parasites contacts a healthy one, infection with l parasites is developed by the
healthy host with probability pil , where

∑
l≥0 pil = 1 for all i and p00 = 1. Here,

the distribution Fi = (pil, l ≥ 0) is the i-fold convolution of F1, modeling the
assumption that, at such a contact, the parasites act independently in transmitting
offspring to the previously healthy host. These rules are incorporated by taking

α0l(x) = λ
∑
i≥1

xipil, l ≥ 1, x ∈ �11,
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and the remaining αil(x) are all zero. Thus, for z ≥ 0, we can take a00 = a10 = 0
and

ã01(z) = λ, ã11(z) = λmax{θ,1},
where θ is the mean of F1, the mean number of offspring transmitted by a parasite
during an infectious contact: thus,

∑
l≥0 pil(l + 1) = iθ + 1.

6.2. Luchsinger’s linear model. In Luchsinger’s linear model there is tacitly
assumed to be an infinite pool of potential infectives, so that the 0-coordinate is not
required, and its value may if desired be set to 0; the population of interest consists
of the infected hosts, whose number may vary. The matrix ᾱ is the infinitesimal
matrix of a simple death process with rate μ > 0, but now restricted to the reduced
state space, giving the positive elements

ᾱi,i−1 = iμ, i ≥ 2;
hosts losing infection are now incorporated by using the δ̄i , with

δ̄i = κ, i ≥ 2; δ̄1 = κ + μ,

again with ᾱii , i ≥ 2, determined by (2.1). Assumptions (2.3)–(2.5) are again easily
satisfied. Only a member of the pool of uninfected individuals can be infected, and
infections with i parasites occur at a rate λ

∑
l≥1 Xlpli , so that we have

βi(x) = λ
∑
l≥1

xlpli, i ≥ 1,

with all the αil(x) and δi(x) equal to zero. Here, for z > 0, we can take b10 = 0
and

b̃01(z) = λ, b̃11(z) = λmax{θ,1}.
6.3. Kretzschmar’s model. In Kretzschmar’s model mortality of parasites is

modeled as in Luchsinger’s nonlinear model. In addition, hosts can both die and
give birth, with death rates increasing with parasite load, and birth rates decreasing.
In our formulation, the positive elements of ᾱ are given by

ᾱi,i−1 = iμ, i ≥ 1,

and we take

δ̄i = κ + iα, δi(x) = 0,

for nonnegative constants κ and α; again, the ᾱii are determined by (2.1). As-
sumptions (2.3)–(2.5) are easily satisfied. Hosts are born free of parasites, so that
βi(x) = 0 for i ≥ 1, and

β0(x) = β
∑
i≥0

xiξ i,
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for some β > 0 and 0 ≤ ξ ≤ 1. Here, we can take b10 = 0 and, for z ≥ 0,
b01(z) = b11(z) = β .

Infection only takes place a single parasite at a time, but at a complicated state
dependent rate. The αil(x) are all zero except for l = i + 1, when

αi,i+1(x) = λϕ(x), i ≥ 0, with ϕ(x) = ∑
j≥1

jxj
/{

c + ∑
j≥0

xj

}
.

Unfortunately, for c > 0, we cannot improve substantially on the bound

|ϕ(x) − ϕ(y)| ≤ c−1‖x − y‖11 + c−2(‖x‖11 ∧ ‖y‖11)‖x − y‖1,

which does not yield a suitable bound for a01(x, y), because of the appearance
of ‖x − y‖11. However, the same average rate of parasite transmission is obtained
if we define

αi,i+j (x) = λxj
/{

c + ∑
l≥0

xl

}
, j ≥ 1, i ≥ 0,(6.1)

or, more generally, much as in Luchsinger’s models,

αi,i+j (x) = ν
∑
l≥1

xlplj

/{
c + ∑

l≥0

xl

}
, j ≥ 1, i ≥ 0,(6.2)

where
∑

j≥1 jplj = lθ for each l ≥ 1, and νθ = λ. With these rates, for c > 0, our
conditions are satisfied with

a00 = a10 = 0,

a01(x, y) = 2νc−1,

a11(x, y) = 2λ{c−1 + c−2(‖x‖11 ∧ ‖y‖11)}.
In Kretzschmar’s model parasites are assumed to be ingested singly, but poten-

tially arbitrarily fast. In our variant there is a fixed rate ν of taking mouthfuls. Each
mouthful leads to the ingestion of j parasites with probability related to the relative
frequencies of l-hosts, l ≥ 1, in the population, and to the chance plj that an l-host
transmits j parasites in the mouthful. At least for grazing animals, this would seem
to be a more plausible description of what might happen. Kretzschmar’s model
can, for instance, be interpreted as the limit of this model as ν → ∞, with θ = λ/ν

for fixed λ and {plj , j ≥ 1} the probabilities from the Poisson distribution Po(lθ).
Note that, as is to be expected, the value of a01(x, y) tends to infinity in this limit.

APPENDIX

In this section we prove a lemma used in the proof of Lemma 4.3.
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LEMMA A.1. Suppose that ui ≥ 0 for i ≥ 0, and that
∑

i≥0(i + 1)ui ≤
M < ∞ for some M ≥ 1. Let IN := {i ≥ 0 : ui ≥ 1/N}. Then, for any N ≥ 9,
we have the following:

(i)
∑
i∈IN

√
ui ≤ (M + 1)

√
logN,

(ii)
∑
i /∈IN

ui ≤ (M + 1)N−1/2
√

logN,

(iii)
∑
i≥0

{√
Nui ∧ (2Nui)

} ≤ 3(M + 1)
√

N logN.

PROOF. Define JN := {i ≥ 0 : (i + 1)
√

ui logN ≥ 1} and KN := {i :
0 ≤ i <

√
N}. Then we have∑

i∈IN

√
ui = ∑

i∈IN\JN

√
ui + ∑

i∈IN∩JN

√
ui

≤ ∑
(i+1)≤√

N/ logN

1

(i + 1)
√

logN
+ ∑

i≥0

(i + 1)ui

√
logN

≤ (M + 1)
√

logN.

A similar calculation then gives∑
i /∈IN

ui = ∑
i∈KN\IN

ui + ∑
i /∈(IN∪KN)

ui

≤
�√N�∑
i=0

N−1 + ∑
i>�√N�

N−1/2iui

≤ N−1/2 + N−1 + MN−1/2 ≤ N−1/2(M + 1)
√

logN

in N ≥ 9. Part (iii) combines the two results. �
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