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1. Introduction

Consider a triple (Y, C,X) of random variables defined in IR+ × IR+ × IRd,
d ≥ 2, where Y is the variable of interest (typically a lifetime variable), C a
censoring variable and X = (X1, . . . , Xd) a vector of concomitant variables. In
most practical applications, such as epidemiology or reliability, the relationship
between Y and X is of particular interest. Denoting by ψ a given measurable
function, we will focus here on the study of the conditional expectation of ψ(Y )
given X = x,

mψ(x) = IE
(
ψ(Y ) | X = x

)
, for all x = (x1, . . . , xd) ∈ IRd. (1.1)

The introduction of the function ψ will allow us to treat simultaneously the stan-
dard regression function and the conditional distribution function (see Remark
2.4 below).

In the right censorship model, the pair (Y, C) is not directly observed and
the corresponding information is given by Z = min{Y, C} and δ = 1I{Y≤C},
1IE standing for the indicator function of the set E. Therefore, we will assume
that a sample Dn = {(Zi, δi,Xi), i = 1, . . . , n} of independent and identically
distributed replicae of the triple (Z, δ,X) is at our disposal. In this setting,
transformations of the observed data Dn are usually needed to estimate func-
tionals of the conditional law of Y (see, e.g., [4, 17, 28–30] and the recent work
of [35]). Estimators based on these transformations are usually referred to as
synthetic data estimators. In this paper, following the ideas initiated by [28], we
use a nonparametric version of particular synthetic data estimators, commonly
referred to as Inverse Probability of Censoring Weighted [I.P.C.W.] estimators
(see [3, 5] and [27] for some results related to nonparametric I.P.C.W. esti-
mates of the censored regression function). It is however noteworthy that the
methodology we propose here for I.P.C.W -type estimators shall apply with mi-
nor modifications to cope with other synthetic data estimators (see Paragraph
3.1 below).

A well-known issue in nonparametric estimation is the so-called curse of di-
mensionality : the rate of convergence of nonparametric estimators generally
decreases as the dimensionality d of the covariate increases. To get round this
problem, one solution is to work, if possible, under the additive model assump-
tion, which allows to write the regression function as follows,

mψ(x) = µ +

d∑

ℓ=1

mψ,ℓ(xℓ). (1.2)
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In (1.2), the real-valued functions mψ,ℓ, ℓ = 1, . . . , d, are defined up to an addi-
tive constant, and the assumption IEmψ,ℓ(Xℓ) = 0, ℓ = 1, . . . , d, is usually made
to ensure identifiability. This assumption implies µ = IEψ(Y ). In the uncensored
case, several methods have been proposed to estimate the additive regression
function. We shall evoke, among others, the methods based on B-splines [36], on
the backfitting algorithm [21, 23, 32] and on marginal integration [34, 40, 31].
In [17], Fan and Gijbels established the asymptotic normality for estimators
obtained via the backfitting algorithm combined with various synthetic data es-
timators. In [3], Brunel and Comte considered additive models as special cases
in their study of adaptive projection I.P.C.W. estimators. Here, following the
ideas introduced in [10], we make use of the marginal integration method, cou-
pled with initial kernel-type I.P.C.W. estimators to provide an estimator for the
additive censored regression function. This combination leads to estimators for
which the theory is easier to derive, which was wanted here, given the technical-
ities in the proof, even in this simplified setting (note however that, as already
mentioned, extensions to other synthetic data estimators can be obtained; see
Paragraph 3.1). In a previous work [10], the mean-square convergence rate was
established for the integrated estimator defined in (2.7) below. In the present
paper, we get the exact corresponding rate of strong uniform consistency (see
Theorem 3.2 below). Our limit law corresponds to the extension of Theorem
2 in [9] to the censored case. Moreover, following the ideas developed in [13],
asymptotic simultaneous 100% confidence bands are derived for the true regres-
sion function. This kind of bands may be complementary to the more classical
(1 − α) × 100% pointwise confidence intervals derived from CLT type results
(see Section 4).

2. Hypotheses-Notations

Before presenting our estimator and stating our results, we shall introduce some
notations as well as our working assumptions. First consider the hypotheses to be
made on the random triple (Y, C,X). Introduce, for all t ∈ IR, F (t) = IP(Y > t),
G(t) = IP(C > t) and H(t) = IP(Z > t), the right continuous survival functions
pertaining to Y , C and Z respectively.

(C.1) C and Y are independent and IP(Y ≤ C|X, Y ) = IP(Y ≤ C|Y ).
(C.2) G is continuous.
(C.3) mψ is s-times continuously differentiable, s ≥ 1, and

sup
x

∣∣ ∂s

∂xs11 . . . ∂xsdd
mψ(x)

∣∣ <∞; s1 + · · ·+ sd = s.

Remark 2.1. Assumption (C.3) will allow to control bias terms. Assumptions
(C.1) and (C.2) are essentially needed when using most synthetic data estima-
tors. (C.2) allows to use convergence results for the Kaplan-Meier [25] estimator
of G. In addition, (C.1) especially allows to derive the result (2.1) below, which
is a fundamental requirement for synthetic data. This assumption was also used
by Stute [38] in another context. It is however noteworthy that Beran [2] (see
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also [8] and [12]) worked under the weaker assumption of conditional indepen-
dence between Y and C given X to derive properties for a local version of the
Kaplan-Meier estimator. On the other hand, to use Beran’s local Kaplan-Meier
estimator the censoring has to be locally fair, i.e., such that IP(C > t|X) > 0
whenever IP(Y > t|X). Here, (see assumption (A)(ii) below), we essentially
suppose that G(t) > 0 whenever F (t) > 0, which is on its turn a weaker as-
sumption. For a nice discussion on the differences between the assumptions to
be made when using either Beran’s estimator or I.P.C.W. type estimators, we
refer to [5].

Denote by f [resp. fℓ, ℓ = 1, . . . , d] the density of X [resp. Xℓ, ℓ = 1, . . . , d].
Further let C1, . . . , Cd, be d compact intervals of IR with non empty interior,
and set C = C1 × · · ·× Cd the corresponding product. For every subset E of IRq,
q ≥ 1, and any α > 0, introduce the α-neighborhood Eα of E ,

Eα = {x : inf
y∈E

|x− y|IRq ≤ α},

with | · |IRq standing for the usual euclidian norm on IRq. The functions f and
fℓ, ℓ = 1, . . . , d, will be supposed to be continuous, and we will assume the
existence of a constant α > 0 such that the following assumptions hold.

(C.4) ∀xℓ ∈ Cαℓ , fℓ(xℓ) > 0, ℓ = 1, . . . , d, and ∀x ∈ Cα, f(x) > 0.
(C.5) f is s′-times continuously differentiable on Cα, s′ > sd.

Remark 2.2. Assumption (C.4) is classical when dealing with kernel type es-
timators of the regression function (see, e.g., [13, 15]). The fact that s′ > sd in
(C.5), when combined with (C.3) above and (K.1-2) and (H.4) below, allows to
derive easily the results pertaining to the case where the density function f is un-
known from the ones obtained in the simpler case where this function is known.
Some refinements in our proofs might allow for relaxing (C.5) (see, e.g., [22]).

Recalling (1.1), we will let ψ vary in a pointwise measurable VC subgraph
class F of measurable real-valued functions defined on IR (for the definitions of
pointwise measurable classes of functions and VC subgraph classes of functions,
we refer to p. 110 and Chapter 2 in [41]). We will also assume that F has a
measurable envelope function Υ(y) ≥ supψ∈F |ψ(y)|, y ∈ IR, such that

(C.6) Υ is uniformly bounded on IR.

Remark 2.3. In the uncensored setting, (C.6) can be replaced by some finiteness
condition on the moment of order 2 of Υ(Y ) (see [13] or [15]). In the censored
setting however, such refinements are useless due to the assumption (A) below.

Remark 2.4. Choices of particular interest for the class F are Freg = {I},
where I denotes the identity function on IR and Fcdf = {1I(−∞,t], t ∈ IR}. Con-

sidering the class Freg allows to treat the case of the classical regression func-
tion. On the other hand, considering the class Fcdf allows to derive the uniform

consistency (especially over t ∈ IR) for estimates of the conditional distribution
function. We refer to [15] for examples in the uncensored case.
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We will further employ sequences of positive constants {hn}n≥1 and {hℓ,n}n≥1,
1 ≤ ℓ ≤ d, satisfying the following conditions.

(H.1) hn ↓ 0, hℓ,n ↓ 0, nhdn ↑ ∞ and nhℓ,n ↑ ∞ as n→ ∞.
(H.2) nhdn/ logn→ ∞ and nhℓ,n/ logn→ ∞ as n→ ∞.

(H.3) nhℓ,n
∏d
j=1 h

2sj
j,n/| loghℓ,n| → 0, for all s1 + · · ·+ sd = s, as n → ∞.

(H.4) hℓ,n logn/(hdn| loghℓ,n|) → 0 as n → ∞.
(H.5) log logn/| loghn| → 0 and log logn/| loghℓ,n| → 0 as n→ ∞.

Remark 2.5. Assumptions (H.1-2-5) are classical in the empirical process
theory, and are often referred to as the Csörgő-Révész-Stute [CRS] conditions
[7, 37]. They especially allow to control variance-type terms. On the other hand,
assumption (H.3) allows to control bias terms (see Lemma 5.8 below). As al-
ready mentioned, assumption (H.4) allows to derive easily the results pertaining
to the case where the density function f is unknown from the ones obtained in
the simpler case where this function is known.

As mentioned in [19], functionals of the (conditional) law can generally not
be estimated on the complete support when the variable of interest is right-
censored. So, to state our results, we will work under the assumption (A),
that will be said to hold if either (A)(i) or (A)(ii) below holds. For any right
continuous survival function L defined on IR, set TL = sup{t ∈ IR : L(t) > 0}.
(A)(i) There exists a ω < TH such that, for all ψ ∈ F , ψ = 0 on (ω,∞).

(A)(ii) (a) For a given 0 < p ≤ 1/2,
∫ TH
0

−F−p/(1−p)dG <∞;
(b) TF < TG;
(c) n2p−1h−1

ℓ,n| log(hℓ,n)| → ∞, as n → ∞, for every ℓ = 1, . . . , d.

It is noteworthy that the assumption (A)(ii) is needed in our proofs when con-
sidering the estimation of the “classical” regression function, which corresponds
to the choice ψ(y) = y. On the other hand, rates of convergence for estimators
of functionals such as the conditional distribution function IP(Y ≤ t|X) can be
obtained under weaker conditions, when restricting ourselves to t ∈ [0, ω] with
ω < TH .

These preliminaries being given, we can recall the procedure we proposed
in [10] to estimate the censored regression function under the additive model
assumption. Let K be a bounded and compactly supported kernel on IRd. By
kernel, we mean as usual a measurable function integrating to one on its support.
We define the kernel density estimator f̂n of f by

f̂n(x) =
1

nhdn

d∑

i=1

K

(
x− Xi

hn

)
.

Now, as was observed notably by Koul et al. [28], we have under (C.1),

IE

{
δψ(Z)

G(Z)

∣∣ X
}

= IE

{
ψ(Y )

G(Y )
IE
(
1I{Y≤C}|X, Y

)∣∣ X
}

= IE(ψ(Y )|X). (2.1)
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Then, denoting by G⋆n the Kaplan-Meier [25] estimator of G, kernel-type estima-
tors of the multivariate regression function mψ(x) defined in (1.1) can be easily
constructed [27]. Here, because marginal integration will further be applied,
the internal estimator idea of Jones [24] has to be used. That leads us to con-
sider the following multivariate I.P.C.W. kernel-type estimator of the regression
function,

m̃⋆
ψ,n(x) =

1

n

n∑

i=1

{
δiψ(Zi)

G⋆n(Zi)f̂n(Xi)

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)}
. (2.2)

Here the kernel functions Kℓ, ℓ = 1, . . . , d, defined in IR are supposed to
be continuous, of bounded variation (i.e. such that 0 <

∫
IR
|dKℓ(t)| < ∞)

and compactly supported. Recalling that a kernel function Γ defined in IRd

is said to be of order γ, for any α ≥ 1, whenever (a) and (b) below holds
jointly,

(a)
∫
IRd
uj11 . . . ujdd Γ(u)du = 0, j1, . . . , jd ≥ 0, j1 + · · ·+ jd = 0, 1, . . . , γ − 1;

(b)
∫
IRd |u

j1
1 . . . ujdd |Γ(u)du <∞, j1, . . . , jd ≥ 0, j1 + · · ·+ jd = γ;

we will also impose the conditions (K.1-2).

(K.1) K :=
∏d
ℓ=1Kℓ is of order s.

(K.2) K is of order s′.

In order to apply the marginal integration method (see [31, 34]), introduce
q1, . . . , qd, d given density functions defined in IR. Further set, for all x =
(x1, .., xd) ∈ IRd, q(x) =

∏d
ℓ=1 qℓ(xℓ) and, for every ℓ = 1, . . . , d, q−ℓ(x−ℓ) =∏

j 6=ℓ qj(xj) with x−ℓ = (x1, .., xℓ−1, xℓ+1, .., xd). Now, we can define

ηψ,ℓ(xℓ) =

∫

IRd−1

mψ(x)q−ℓ(x−ℓ)dx−ℓ −
∫

IRd
mψ(x)q(x)dx, ℓ = 1, . . . , d, (2.3)

in such a way that, recalling (1.2), the two following equalities hold,

ηψ,ℓ(xℓ) = mψ,ℓ(xℓ) −
∫

IR

mψ,ℓ(u)qℓ(u)du, ℓ = 1, . . . , d, (2.4)

mψ(x) =

d∑

ℓ=1

ηψ,ℓ(xℓ) +

∫

IRd
mψ(u)q(u)du. (2.5)

In view of (2.4) and (2.5), for every ℓ = 1, . . . , d, ηψ,ℓ and mψ,ℓ are equal up
to an additive constant, so that the functions ηψ,ℓ are actually some additive
components, which coincide with mψ,ℓ for the choice qℓ = fℓ (which is only
achievable if fℓ is known). From (2.2) and (2.3), a natural estimator of the ℓ-th
component ηψ,ℓ is given, for ℓ = 1, . . . , d, by

η̂⋆ψ,ℓ(xℓ) =

∫

IRd−1

m̃⋆
ψ,n(x)q−ℓ(x−ℓ)dx−ℓ −

∫

IRd
m̃⋆
ψ,n(x)q(x)dx. (2.6)
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From (2.5) and (2.6), an estimator m̂⋆
ψ,add of the additive regression function

can be deduced,

m̂⋆
ψ,add(x) =

d∑

ℓ=1

η̂⋆ψ,ℓ(xℓ) +

∫

IRd
m̃⋆
ψ,n(u)q(u)du. (2.7)

In the sequel, we will assume that the known integration density function qℓ has
a compact support included in Cℓ, ℓ = 1, . . . , d. Moreover, we will impose the
following assumption on the functions q−ℓ, ℓ = 1, . . . , d.

(Q.1) q−ℓ is a bounded and s-times differentiable function such that

sup
x−ℓ

∣∣∣∣
∂s

∂i1x1 . . . ∂idxd
q−ℓ(x−ℓ)

∣∣∣∣ <∞, i1 + · · ·+ id = s, ℓ = 1, . . . , d.

Before stating our main results, some additional notations are needed. For all
ψ ∈ F , all u = (u1, . . . , ud) ∈ C and every ℓ = 1, . . . , d, set

Hψ(u) = IE

(
ψ2(Y )

G(Y )

∣∣X = u

)
(2.8)

and φψ,ℓ(uℓ) =

∫

IRd−1

Hψ(u)

f(u−ℓ|uℓ)
q−ℓ(u−ℓ)du−ℓ. (2.9)

Further set, for all ψ ∈ F and every ℓ = 1, . . . , d,

σψ,ℓ = sup
xℓ∈Cℓ

√
φψ,ℓ(xℓ)

fℓ(xℓ)

∫

IR

K2
ℓ , σℓ = sup

ψ∈F
σψ,ℓ and σ =

d∑

ℓ=1

σℓ. (2.10)

3. Main results

We have now all the ingredients to state our results. From now on,
a.s.−→ will

stand for almost sure convergence. Theorem 3.1 below describes the asymptotic
behavior of the additive component estimates η̂⋆ψ,ℓ, ℓ = 1, . . . , d, defined in (2.6).

Theorem 3.1. Under the hypotheses (A), (C.1-2-3-4-5-6), (H.1-2-3-4-5), (K.1-
2) and (Q.1), we have, for ℓ = 1, . . . , d,

√
nhℓ,n

2| loghℓ,n|
sup
ψ∈F

sup
xℓ∈Cℓ

±{η̂⋆ψ,ℓ(xℓ) − ηψ,ℓ(xℓ)} a.s.−→ σℓ as n→ ∞, (3.1)

where σℓ is as in (2.10).

From Theorem 3.1, we will deduce an analogous result for the additive re-
gression function estimator m̂⋆

ψ,add defined in (2.7).

Theorem 3.2. Assume the hypotheses of Theorem 3.1 hold. If, in addition,
hℓ,n = h1,n for every ℓ = 1, . . . , d, then we have,

√
nh1,n

2| logh1,n|
sup
ψ∈F

sup
x∈C

±{m̂⋆
ψ,add(x) −mψ(x)} a.s.−→ σ as n→ ∞. (3.2)

where σ is as in (2.10).
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Keep in mind that a similar result is readily obtained for the conditional
distribution function by selecting F = {1I[0,t], t ∈ IR+} in Theorem 3.2.

The proofs of Theorems 3.1 and 3.2 are postponed to Section 5. A sketch
of the proof of Theorem 3.1 is as follows. It will be split into two main parts.
First we will assume that both the survival function G of C and the density
function f of X are known. Then, using appropriate approximations lemmas,
we will show how to treat the general case (i.e. the case where neither f nor G
is known). To establish the results in the case where both G and f are known,
we will mostly borrow the arguments developed in [13] and [15] (see also [16]),
which rest on recent developments in empirical process theory, and especially
on an exponential bound due to Talagrand [39] (see also Inequality A.1 in the
Appendix).

In the following Paragraph 3.1, we show how our results may be extended to
the case of more general synthetic data. In Section 4 we present an application
of our results, following the ideas developed in [13].

3.1. Extensions

Here, we will limit ourselves to the case F = {I}, where I stand for the identity
function on IR. The corresponding estimator defined in (2.2), and then the one
defined under the additive assumption in (2.7), rest on the following transfor-
mation, which is due to Koul et al. [28]: for 1 ≤ i ≤ n,

(δi, Zi) −→
δiZi

G⋆n(Zi)
, (3.3)

which, in the case where G is known, reduces to

(δi, Zi) −→
δiZi
G(Zi)

. (3.4)

Note that (3.4) sets a censored observation to 0 and multiplies an uncensored
observation by a factor [G(Zi)]

−1, which can be very large if G(Zi) is near 0.
Alternative, and more general, synthetic data can be constructed in the following
way. For any given ρ ∈ IR, set

Θ1(z) = (1 + ρ)

∫ z

0

dt

G(t)
− ρz

G(z)
,

Θ2(z) = (1 + ρ)

∫ z

0

dt

G(t)
,

(3.5)

with ρ chosen such that Θ1(Z) > 0 almost surely. Now, consider the transfor-
mation, for 1 ≤ i ≤ n,

(δi, Zi) −→ Ỹi := δiΘ1(Zi) + (1 − δi)Θ2(Zi). (3.6)

Observe that (3.4) corresponds to the particular choice ρ = −1. The choice
ρ = 0 is also popular, and was first considered in [30]. Other choices (including
some data-dependent choices) are discussed in [17].
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Consider the following independence assumption.

(C̃.1) C and (Y,X) are independent.

Observe that (C̃.1) naturally implies (C.1). Under the assumption (C̃.1), we
have (see, e.g., [26])

IE(Ỹi|X) = IE(Yi|X).

A close look into the proof presented in Section 5 below reveals that, in the case
where F = {I}, Theorems 3.1 and 3.2 still hold when considering estimators

built on the “general” synthetic data, under the assumption (C̃.1). The only
difference is the term Hψ(u) = HI(u) (since ψ = I) defined in (2.8) that shall
be replaced in the general case by

H̃I(u) = IE
(
Ỹ 2
∣∣X = u

)
,

where Ỹ := δΘ1(Z) + (1 − δ)Θ2(Z).

4. Application

Following the ideas developed in [13], we now present a practical application
of Theorem 3.1. Recall the definition (2.9) of the functions φψ,ℓ. Then, for any
fixed ψ ∈ F , and every ℓ = 1, . . . , d, let τ̂ψ,ℓ,n(xℓ) be a consistent estimator of

τψ,ℓ(xℓ), with τψ,ℓ(xℓ) =
√
φψ,ℓ(xℓ)/fℓ(xℓ). For instance, set

τ̂ψ,ℓ,n(xℓ) =
1

nhℓ,n

n∑

i=1

δiψ
2(Zi)

G⋆2n (Zi)
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)

×
∫

Rd−1

∏
j 6=ℓ h

−1
j,nK

(xj−Xi,j
hj,n

)

f̂n(x)
q−ℓ(x−ℓ)dx−ℓ.

Further set

Ln(xℓ) =

{
2| loghℓ,n|

nhℓ
× τ̂ψ,ℓ,n(xℓ)

}1/2[ ∫

IR

K2
ℓ

]1/2
.

In view of Theorem 3.1, it is straightforward that, for each 0 < ε < 1, there
exists almost surely an n0 = n0(ε) such that, for all n ≥ n0,

ηψ,ℓ(xℓ) ∈
[
η̂⋆ψ,ℓ(xℓ) ± (1 + ε)Ln(x)

]
, uniformly over xℓ ∈ Cℓ,

ηψ,ℓ(xℓ) /∈
[
η̂⋆ψ,ℓ(xℓ) ± (1 − ε)Ln(x)

]
, for some xℓ ∈ Cℓ.

(4.1)

Therefore, under the assumptions of Theorem 3.1, the interval
[
An,ℓ(xℓ), Bn,ℓ(xℓ)

]
:=
[
η̂⋆ψ,ℓ(xℓ) − Ln(xℓ), η̂⋆ψ,ℓ(xℓ) + Ln(xℓ)

]
, (4.2)

provides asymptotic simultaneous confidence bands (at an asymptotic confidence
level of 100 %) for ηψ,ℓ(xℓ) over xℓ ∈ Cℓ (see [13] for more details). It is note-
worthy that our bands do not provide confidence regions in the usual sense,
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since they are not based on a specified confidence level 1−α. Instead, they hold
with probability tending to 1 as n → ∞, and are then more conservative (since
they are simultaneous and with an asymptotic level of 100 %). A comparison
between pointwise (1−α)× 100% confidence intervals and our simultaneous al-
most certainty bands can be found in [11]. In most applications, we recommend
the construction of both types of confidence region to assess the form of the
relationship between ψ(Y ) and X.

Remark 4.1. For finite sample size use, Deheuvels and Mason [13] give some
recommendations on how to ensure that the simultaneous (almost certainty)
confidence bands defined in (4.2) include the pointwise confidence intervals. See
Remark 1.7 (pp. 233–235) in [13] for more details.

Illustration: a simple simulation study

In this paragraph, we present some results from a simulation study. We worked
with a sample size n = 1000, and considered the case where X = (X1, X2) ∈ IR2

(i.e. d = 2) was such that X1 ∼ U(−1, 1) and X2 ∼ U(−1, 1), where U(a, b)
stands for the uniform law on (a,b). Set m1(x) = 0.5 × cos2(x) and m2(x) =
0.5×sin2(x). We selected ψ = 1I{.≤0.9}, and considered the model IE[ψ(Y )|X1 =
x1, X2 = x2] = m1(x1)+m2(x2). Under this model, the variable Y was simulated
as follows. For each integer 1 ≤ i ≤ n, let pi = m1(x1,i) + m2(x2,i) where xj,i
is the i-th observed value of the variable Xj , j = 1, 2. Note that 0 < pi < 1 for
every 1 ≤ i ≤ n. Each Yi was then generated as one U(0.9 − pi, 1 + 0.9 − pi)
variable. Following this procedure ensured that P(Yi ≤ 0.9|Xi = xi) = pi =
m1(x1,i) + m2(x2,i). Regarding the censoring variable, we generated an i.i.d.
sample C1, . . . , Cn such that Ci ∼ U(0, 1). This choice yielded, a posteriori,
IP(δ = 1) ≃ 0.2. We used Epanechnikov kernels (for K, K1 and K2) and selected
q1 = q2 = 0.5× 1I[−1,1] (in such a way that the additive component to estimate
were ηψ,j = mj − 0.25, j = 1, 2). As for the bandwidth choice, we opted a
priori for h1000 = h1,1000 = h2,1000 = 0.1. Results are presented in Figure 1.
The confidence bands appear to be adequate, in the sense that they contain
the true value of the additive component for “almost” every x ∈ [−1, 1]. The
fact that the true function does not belong to our bands for some points was
expected: it is due to the ε term in (4.1). In other respect, the boundary effect
pertaining to kernel estimators is perceptible on the plots of Figure 1. In view
of the assumption (C.4), we shall however recall that our theorems do not allow
to build confidence bands on the entire [−1, 1], and the plots should only be
considered on, typically, [−0.9, 0.9].

5. Proofs

5.1. Proof of Theorem 3.1

Only the proof for the first component is provided. The proof for the d − 1
remaining components follows from similar arguments and is therefore omitted.
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(b) second component

Fig 1. Results of the simulation study: true additive components (solid line), their estimates
(red dashed line), and the associated confidence bands (dotted line).

As already mentioned, we first consider the case where both the survival
function G of C and the density function f of X are known.

5.1.1. The case where both f and G are known

Recall the definitions (2.2) and (2.6) and let ˜̃mψ,n [resp. ̂̂ηψ,1] be the version
of m̃⋆

ψ,n(x) [resp. η̂⋆ψ,1] in the case where both G and f are known. Namely we
have

˜̃mψ,n(x) =
1

n

n∑

i=1

{
δiψ(Zi)

G(Zi)f(Xi)

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)}
, (5.1)

̂̂ηψ,1(x1) =

∫

IRd−1

˜̃mψ,n(x)q−1(x−1)dx−1 −
∫

IRd

˜̃mψ,n(x)q(x)dx. (5.2)

In this paragraph, we intend to prove the following result, which is the version
of Theorem 3.1 in the case where both f and G are known.

Proposition 5.1. Under the hypotheses of Theorem 3.1, we have,

√
nh1,n

2| logh1,n|
sup
ψ∈F

sup
x1∈C1

±{̂̂ηψ,1(x1) − ηψ,1(x1)} a.s.−→ σ1, as n→ ∞, (5.3)

where σ1 is as in (2.10).
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In a first step, we will establish Lemma 5.1 below.

Lemma 5.1. Under the assumptions of Theorem 3.1, we have

√
nh1,n

2| logh1,n|
sup
ψ∈F

sup
x1∈C1

±{̂̂ηψ,1(x1) − IÊ̂ηψ,1(x1)} a.s.−→ σ1, as n → ∞,

where σ1 is as in (2.10).

Let ψ ∈ F be a fixed real-valued, measurable and uniformly bounded function
defined in IR. Following the ideas developed in [15], we will first establish Lemma
5.2 below, which corresponds to Lemma 5.1 in the case where F is reduced to
{ψ}. Then, we will show how to handle the uniformity over the whole class F
(see Lemma 5.6 and 5.7 in the sequel).

Lemma 5.2. Under the assumptions of Theorem 3.1, we have

√
nh1,n

2| logh1,n|
sup
x1∈C1

±{̂̂ηψ,1(x1) − IÊ̂ηψ,1(x1)} a.s.−→ σψ,1, as n → ∞.

where σψ,1 is as in (2.10).

The proof of Lemma 5.2 is built on recent developments in empirical process
theory (see, e.g., [13, 15, 16]). Denote by αn the multivariate empirical process
based upon (X1, Z1, δ1), . . . , (Xn, Zn, δn) and indexed by a class G of mea-
surable functions defined on IRd+2. More formally, for g ∈ G, αn(g) is defined
by

αn(g) =
1√
n

n∑

i=1

(
g(Xi, Zi, δi) − IEg(Xi, Zi, δi)

)
. (5.4)

For Xi = (Xi,1, . . . , Xi,d), 1 ≤ i ≤ n, and x1 ∈ C1, set

gx1

ψ,n(Xi, Zi, δi) =
δiψ(Zi)

G(Zi)
Tn(Xi)K1

(
x1 −Xi,1
h1,n

)
, (5.5)

with Tn(Xi) =
1

f(Xi)

∫

IRd−1

∏

ℓ 6=1

1

hℓ,n
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)
qℓ(xℓ)dx−1. (5.6)

From (5.1), (5.2), (5.4) and (5.5), we successively get the two following equalities

√
nαn(g

x1

ψ,n) = nh1,n

∫

IRd−1

{ ˜̃mψ,n(x) − IE ˜̃mψ,n(x)
}
q−1(x−1)dx−1, (5.7)

nh1,n

{̂̂ηψ,1(x1) − IÊ̂ηψ,1(x1)
}

=
√
n

{
αn(g

x1

ψ,n)−
∫

IR

αn(g
x1

ψ,n)q1(x1)dx1

}
. (5.8)

Lemma 5.3 below enables to evaluate the respective order of each of the terms
in the right hand side of (5.8). Its proof is postponed until Section 5.2.
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Lemma 5.3. Under the conditions of Theorem 3.1, we have, almost surely,

∫

R

αn(g
x1

ψ,n)q1(x1)dx1 = o
(

sup
x1∈C1

αn(g
x1

ψ,n)
)
, as n→ ∞. (5.9)

In view of (5.8) and (5.9), the asymptotic behavior of the left hand side of
(5.8) can be deduced from that of αn(g

x1

ψ,n). Then, following once again the ideas
of [15] (see also [13]), the proof of Lemma 5.2 will be split into an upper bound
part (captured in Lemma 5.4) and a lower bound part (captured in Lemma 5.5).

Upper bound part

Lemma 5.4. Recall the definitions (2.10), (5.4) and (5.5). Under the assump-
tions of Theorem 3.1, we have, for all ε > 0, with probability one,

lim sup
n→∞

supx1∈C1
|αn(gx1

ψ,nk
)|

√
2h1,n| logh1,n|

≤ (1 + 2ε)σψ,1. (5.10)

Proof. We will first examine the behavior of the process αn(g
x1

ψ,n) on an appro-
priately chosen grid of C1 (partitioning). To do so, we will make use of Bernstein’s
maximal inequality. Then, we will evaluate the uniform oscillations of our pro-
cess between the grid points (evaluation of the oscillations). Towards this aim,
we will make use of an inequality due to Mason [33], recalled for convenience in
Inequality A.1 (see the Appendix).

Partitioning. Let a1 and c1 be such that C1 = [a1, c1], and fix 0 < δ < 1. From
now on, set, for some λ > 1, nk = [λk], for all k ≥ 1, and consider the following
partitioning of the compact C1,

x1,j = a1 + jδh1,nk , 0 ≤ j ≤ Jk :=

[
c1 − a1

δh1,nk

]
, (5.11)

where u ≤ [u] < u+ 1 denotes the integer part of u.
Here, we claim that, for all ε > 0, with probability one,

lim sup
k→∞

maxnk−1≤n≤nk max1≤j≤Jk |
√
nαn(g

x1,j

ψ,nk
)|

√
2nkh1,nk| logh1,nk|

≤ (1 + ε)σψ,1. (5.12)

For any real valued function ϕ defined on a set B, we use the notation ‖ϕ‖B =
supx∈B |ϕ(x)|, and in the particular case where B = IRm, for m ≥ 1, we will
write ‖ϕ‖ = ‖ϕ‖B. Recall that Kℓ, ℓ = 1, . . . , d, is of bounded variation, and ψ
is uniformly bounded. Thus, under the hypothesis (A), there exists a constant
0 < κ <∞ such that, for each 0 ≤ j ≤ Jk and any x1 ∈ C1,

‖gx1,j

ψ,nk
‖ + ‖gx1

ψ,n‖ ≤ κ. (5.13)

Moreover, by (C.1), and making use of a classical conditioning argument, it
follows from (2.8), (5.5) and (5.6) that, for all 0 ≤ j ≤ Jk, k ≥ 1, 1 ≤ i ≤ n,
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nk−1 < n ≤ nk,

Var
[
g
x1,j

ψ,nk
(Xi, Zi, δi)

]
≤ IE

{(
g
x1,j

ψ,nk
(Xi, Zi, δi)

)2}

≤ IE

{
δiψ

2(Zi)

G2(Zi)
T 2
nk(Xi)K

2
1

(
x1,j −X1,1

h1,nk

)}

≤ IE

{
IE

(
δiψ

2(Yi)

G2(Yi)
|Yi,Xi

)
T 2
nk(Xi)K

2
1

(
x1,j −Xi,1
h1,nk

)}

≤ IE

{
Hψ(Xi)T

2
nk(Xi)K

2
1

(
x1,j −Xi,1
h1,nk

)}

≤
∫

IRd

Hψ(u)

f(u)

{∫

IRd−1

∏

ℓ 6=1

1

hℓ,nk
Kℓ

(
xℓ − uℓ
hℓ,nk

)
qℓ(xℓ)dx−1

}2

×K2
1

(
x1,j − u1

h1,nk

)
du. (5.14)

But, by setting h−1 = (h2,nk, . . . , hd,nk)
T and making use of classical changes of

variables, it can be derived that, under (K.1) and (Q.1), for a given 0 < θ < 1,

∫

IRd−1

∏

ℓ 6=1

1

hℓ,k
Kℓ

(
xℓ − uℓ
hℓ,nk

)
qℓ(xℓ)dx−1

=

∫

IRd

d∏

ℓ=1

Kℓ(vℓ)

[
q−1(u−1)

+
∑

s2+···+sd=s
vs22 . . . vsdd h

s2
2,nk

. . . hsdd,nk
∂sq−1

∂vk1

2 . . . ∂vkdd
(v−1h−1θ + u−1)

]
dv

= q−1(u−1) + o(1),

in such a way that

(∫

IRd−1

∏

ℓ 6=1

1

hℓ,nk
Kℓ

(
xℓ − uℓ
hℓ,nk

)
qℓ(xℓ)dx−1

)2

= q2−1(u−1) + o(1). (5.15)

Recalling the definition (2.10) of σψ,1, it readily follows, from (5.14) and (5.15),
that, for all ε > 0 and for n large enough,

max
0≤j≤Jk

Var
(
g
x1,j

ψ,k (Xi, Zi, δi)
)
≤ (1 + ε)σ2

ψ,1h1,nk. (5.16)

In view of (5.4), (5.13) and (5.16), we can apply Bernstein’s maximal inequality
(see for instance Lemma 2.2 in [14]) to the sequence of random variables,

g
x1,j

ψ,nk
(Xi, Zi, δi) − IEg

x1,j

ψ,nk
(Xi, Zi, δi), i = 1, . . . , n.
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This yields, for n large enough,

IP
{

max
nk−1≤n≤nk

max
1≤j≤Jk

|αn(gx1,j

ψ,nk
)| ≥ σψ,1(1 + ε)

√
2h1,nk| logh1,nk|

}

≤ 2(Jk + 1) exp

( −2σ2
ψ,1(1 + ε)h1,nk | logh1,nk|

2σ2
ψ,1h1,nk +

2κσψ,1
3
√
nk

√
2h1,nk| logh1,nk|

)

≤ 2(Jk + 1)h
1+ε/2
1,nk

. (5.17)

Keep in mind the definition (5.11) of Jk. Since, under (H.5),
∑

k≥1 h
̺
1,n <∞, for

all ̺ > 0, the result (5.17) combined with the Borel-Cantelli Lemma naturally
implies (5.12).

Evaluation of the oscillations. In the sequel, for any class G of measurable
functions, we will denote by ‖αn‖G = supg∈G |αn(g)|, with αn as in (5.4).

For future use, first consider a slightly wider class of functions than the one
strictly needed in this paragraph. Namely, set

G′

k = {gxaψ1,nk
− gxbψ2,n

, nk−1 < n ≤ nk, xa, xb ∈ C1, ψ1, ψ2 ∈ F}. (5.18)

Arguing exactly as in pages 17 and 18 of [15], it can be shown that, for all
k ≥ 1, G′

k is included in a class G′

of measurable functions, which has a uniform
polynomial covering number, i.e., such that for some C0 > 0 and µ > 0, and
all 0 < ε < 1, N (ε, G′) ≤ C0ε

−µ. Here N (ε, G′) := sup{N (ε, G′, L2(IP)), IP
probability measure} denotes the uniform covering number of the class G′ for
ε and the class of norms {L2(IP)}, with IP varying in the set of all probability
measures on IRd+2 (for more details, see, e.g., pp. 83–84 in [41]).

To study the behavior of the process αn(g
x1

ψ,n) between the grid points x1,j

and x1,j+1, with 0 ≤ j ≤ Jk − 1, we introduce the following class of functions

G′

k,j = {gx1,j

ψ,nk
− gx1

ψ,n, nk−1 < n ≤ nk, x1,j ≤ x1 ≤ x1,j+1}.

Note that, for every 0 ≤ j ≤ Jk − 1, we have G′

k,j ⊆ G′

k ⊆ G′.
Now we claim that, for any ε > 0, there exist almost surely a δε and a λε

such that,

lim sup
k→∞

max
0≤j≤Jk−1

maxnk−1<n≤nk ||n1/2αn||G′

k,j√
2nkh1,nk| logh1,nk|

≤ εσψ,1, (5.19)

whenever (5.11) holds with 0 < δ ≤ δε, 1 < λ ≤ λε and nk = [λ]k.
To establish (5.19), we will make use of Inequality A.1 (see the Appendix).

Towards this aim, first note that, since K1 is of bounded variation, we can write
K1 = K1,1 − K1,2 where K1,1 and K1,2 are two non-decreasing functions of
bounded variation on IR. Clearly, K1,1 and K1,2 are such that |K1|v = |K1,1|v+
|K1,2|v, with |.|v denoting total variation. Then, for all 0 ≤ j ≤ Jk − 1 and
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x1,j ≤ x1 ≤ x1,j+1, it follows that

∣∣∣∣K1

(
x1,j −X1,1

h1,nk

)
−K1

(
x1 −X1,1

h1,n

)∣∣∣∣ =
∣∣∣∣
∫ (x1,j−X1,1)/h1,nk

(x1−X1,1)/h1,n

dK1(y)

∣∣∣∣

≤
∫

IR

∣∣∣∣1I
{
x1,j −X1,1

h1,nk

> y

}
− 1I

{
x1 −X1,1

h1,n
> y

}∣∣∣∣d
(
K1,1(y) +K1,2(y)

)
.

Since |K1(x) −K1(y)| ≤ |K1|v for all x, y ∈ IR, we get

IE

∣∣∣∣K1

(
x1,j −X1,1

h1,nk

)
−K1

(
x1 −X1,1

h1,n

)∣∣∣∣
2

≤ |K|v
∫

IR

∣∣∣∣
∫ x1,j−yh1,nk

x1−yh1,n

f1(u1)du1

∣∣∣∣d
(
K1,1(y) +K1,2(y)

)

≤ ‖f1‖Cα
1
|K|2v

∣∣∣∣
h1,n − h1,nk

h1,nk

+ δ

∣∣∣∣h1,nk. (5.20)

Now setting, for 0 ≤ j ≤ Jk − 1,

σ2
G′

k,j

= sup
g∈G′

k,j

Var(gψ(X, Y, δ)),

and making use of the same arguments as those used to derive (5.16), it is
readily shown that

σ2
G′

k,j

≤ h1,nk

‖f1‖Cα
1
|K|2v∫

IR
K2

1

∣∣∣∣
h1,n − h1,nk

h1,nk

+ δ

∣∣∣∣σ
2
ψ,1.

Set τ = 1/[D1(1 +
√

2/A2)], where D1 and A2 are the constants involved in
Inequality A.1. By selecting δ > 0 sufficiently small, and λ > 1 close enough to
1 to make maxnk−1<n≤nk |hn − hnk|/hnk as small as desired for large k (using
(H.1-2)), we get

σ2
G′

k,j

≤ τ2σ2
ψ,1ε

2h1,nk. (5.21)

Now observe that for all 0 ≤ j ≤ Jk − 1, we have ||gψ|| ≤ κ uniformly over

gψ ∈ G′

k,j ⊂ G′

k, where κ is as in (5.13). Therefore, applying Inequality A.1 with

τ as in (5.21) and ρ = τ
√

2/A2 yields

IP

{
max

0≤j≤Jk−1

maxnk−1<n≤nk ||n1/2αn||G′

k,j√
nkh1,nk log(1/h1,nk)

≥ ε

}
≤ 3Jkh

2
1,nk. (5.22)

Arguing as before, (5.19) now follows under (H.5) from (5.22) and the definition
(5.11) of Jk, in combination with the Borel-Cantelli Lemma.

Conclusion: The proof of Lemma 5.4 is completed by combining (5.12) and
(5.19).
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Lower bound part

Lemma 5.5. Recall the definitions (5.4), (5.5) and (2.10). Under the assump-
tions of Theorem 3.1, we have, with probability one,

lim inf
n→∞

sup
x1∈C1

|αn(gx1

n )|√
2h1,n log (1/h1,n)

≥ σψ,1. (5.23)

Proof. Recall the definition (2.9), and note that, from Scheffe’s Lemma, it
follows under (A) and (C.2-3) that the function

x1 −→
√
φψ,1(x1)

f1(x1)

[ ∫

IR

K2
1

]1/2

is continuous on C1 (see Section A.3 in [13] for a complete proof of such continuity
results). Then, for any ǫ > 0, we can select a sub-interval J = [a′, c′] ⊂ C1, such
that IP{X1 ∈ J} ≤ 1/2 and

inf
u1∈J

√
φψ,1(u1)

f1(u1)

[ ∫

IR

K2
1

]1/2
> σψ,1(1 − ǫ/2).

Now, consider the following partitioning of J

x1,i = A + 2jhn, for i = 1, . . . , [(B −A)/2h1,n] − 1 =: kn.

For each x1,i, 1 ≤ i ≤ kn, define the function

g
(n)
i (x, y, c) =





ψ(y)

G(y)
Tn(x)K1

(
x1,i − x1

h1,n

)
if y ≤ c,

0 if y > c,

where Tn is as in (5.6). Given these notations, the proof of Lemma 5.5 follows
from the same lines as those used to establish Proposition 3 in [15]. For the sake
of brevity, we omit the details of these book-keeping arguments.

From Lemmas 5.3, 5.4 and 5.5, we achieve the proof of Lemma 5.2.
Under the conditions of Theorem 3.1, we readily obtain from Lemma 5.2

that, with probability one, for any finite subclass G ⊂ F ,

√
nh1,n

2| logh1,n|
sup
ψ∈G

sup
x1∈C1

±{̂̂ηψ,1(x1) − IÊ̂ηψ,1(x1)} a.s.−→ σ1 as n → ∞. (5.24)

Therefore, to achieve the proof of Lemma 5.1 we shall show how to extend (5.24)
to the entire class F . The following couple of lemmas are directed towards this
aim.
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Lemma 5.6. Assume the assumptions of Theorem 3.1 hold. For all ε > 0, we
can find a finite subclass Gε ⊂ F , such that, for any ψ1 ∈ F , and for n large
enough,

min
ψ2∈Gε

sup
x1∈C1

IE
{[
gx1

ψ1,n
(X, Z, δ)− gx1

ψ2,n
(X, Z, δ)

]2} ≤ εh1,n,

where, for all ψ ∈ F , gx1

ψ,n is as in (5.5).

Proof. Set ω0 = ω [resp. ω0 = TF < ∞] if (A)(i) [resp. (A)(ii)] holds. Under
(A), it follows from (5.5) and (5.6) that, for ψ1, ψ2 ∈ F and x1 ∈ C1,

IE
{[
gx1

ψ1,n
(X, Z, δ) − gx1

ψ2,n
(X, Z, δ)

]2}

= IE

{[
1I{Y≤C}
G(Y )

Tn(X)K1

(
x1 −X1

h1,n

)(
ψ1(Y ) − ψ2(Y )

)]2}

≤ βh1,n

∫ ω0

0

[
ψ1(y) − ψ2(y)

]2
dy,

where β = G−2(ω0)‖K1‖2 sup(x,y)∈ Cα×[0,ω0]{fX,Y (x, y)Tn(x)} < ∞. Besides,
since F is a V C subgraph class, it is totally bounded with respect to dQ, where
Q is the uniform (0, ω0) distribution. Thus, for any ε > 0, we can find a finite
class Gε such that

sup
ψ1∈F

min
ψ2∈Gε

∫ ω0

0

[
ψ1(y) − ψ2(y)

]2
dy ≤ ε/β.

Fix ε > 0 and select n0 > 0 so large that (5.25) holds for all n ≥ n0. Further
define, for all ψ1, ψ2 ∈ F ,

d2(ψ1, ψ2) = sup
n≥n0

h−1
1,n sup

x1∈C1

IE
{[
gx1

ψ1,n
(X, Z, δ)− gx1

ψ2,n
(X, Z, δ)

]2}
.

Now consider the class of functions

Gn(ε) = {gx1

ψ1,n
− gx1

ψ2,n
, d2(ψ1, ψ2) ≤ ε, x1 ∈ C1}.

Lemma 5.7. Under the assumptions of Theorem 3.1, we have, with probability
one,

lim sup
n→∞

supd2(ψ1,ψ2)≤ε supx1∈C1
‖αn‖Gn(ε)√

2h1,n| logh1,n|
≤ A

√
ε, (5.25)

where A is an absolute constant.

Proof. The proof of (5.25) is similar to that of (5.19). Set nk = 2k and note
that,

max
nk−1<n≤nk

‖αn‖Gn(ε) ≤ max
1≤n≤nk

‖αn‖G̃k(ε),
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where G̃k(ε) = ∪nknk−1+1Gn(ε). It is straightforward that supυ∈G̃k(ε) ‖υ‖ ≤ κ, with

κ as in (5.13). Moreover, keeping in mind the definition (5.18) of G′
k, we have

Gn(ε) ⊂ G′
k. Next, observe that, for all large k, under (H.2),

sup
υ∈G̃k(ε)

Var(υ(X, Z, δ)) ≤ εh1,nk−1
≤ 2εh1,nk.

Arguing as before, Inequality A.1, when applied with τ =
√

2ε and ρ = τ
√

1/A2,
enables to complete the proof of Lemma 5.7.

Recalling (5.8), the proof of Lemma 5.1 is achieved by combining (5.24) with
the results of Lemma 5.6 and 5.7. Now, to conclude the proof of Proposition
5.1, it is clearly enough to establish the following result.

Lemma 5.8. Recall the definition (5.2). Under the assumptions of Theorem
3.1, we have,

sup
x1∈C1

sup
ψ∈F

√
nh1,n

{
IÊ̂ηψ,1(x1) − ηψ,1(x1)

}
√

| logh1,n|
= o(1) as n → ∞.

Proof. From (5.1), and arguing as in (2.1), it holds that

IE ˜̃mψ,n(x) = IE

{
δψ(Z)

G(Z)f(X)

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ −Xℓ
hℓ,n

)}

= IE

{
IE(ψ(Y )| X)

f(X)

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ −Xℓ
hℓ,n

)}

=

∫

IRd
mψ(u)

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ − uℓ
hℓ,n

)
du.

Then, by making use a Taylor development of order s (rendered possible by the
assumptions (K.1) and (C.3)), we get

sup
x∈C

sup
ψ∈F

|IE ˜̃mψ,n(x) −mψ(x)| = O
(

d∏

ℓ=1

hsℓℓ,n

)
. (5.26)

By (H.3), the result of Lemma 5.8 is now a direct consequence of (5.2).

5.1.2. Two useful approximation lemmas

Now, we shall show how to treat the general case (i.e. when neither f nor G is
known). Let m̃ψ,n [resp. η̂ψ,1] be the version of m̃⋆

ψ,n(x) [resp. η̂⋆ψ,1] (see (2.2)
[resp. (2.6)]) in the case where G is known and f is unknown. Namely, we have

m̃ψ,n(x) =
1

n

n∑

i=1

{
δiψ(Zi)

G(Zi)f̂n(Xi)

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)}
, (5.27)

η̂ψ,1(x1) =

∫

IRd−1

m̃ψ,n(x)q−1(x−1)dx−1 −
∫

IRd
m̃ψ,n(x)q(x)dx. (5.28)
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Lemma 5.9. Recall the definition (5.2). Under the assumptions of Theorem
3.1, we have, almost surely,

sup
x1∈C1

sup
ψ∈F

√
nh1,n

{
η̂ψ,1(x1) − ̂̂ηψ,1(x1)

}
√

| logh1,n|
= o(1) as n→ ∞. (5.29)

Proof. Because q(x) =
∏d
ℓ=1 qℓ(xℓ) and because the functions qℓ, ℓ = 1, . . . , d,

are bounded, a classical change of variable yields, for i = 1, . . .n,

∫

IRd−1

∣∣∣∣∣

d∏

ℓ=1

1

hℓ,n
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)
q(x)dx

∣∣∣∣∣ ≤M1,

with 0 < M1 < ∞. Recall the definition (5.1) and set Ψ(y, c) = 1I{y≤c}ψ(y ∧
c)/G(y ∧ c), for all y, c ∈ IR. Then, since, for ℓ = 1, . . . , d, qℓ has a compact
support included in Cℓ and Kℓ is compactly supported, we have under (H.1)
and for n large enough,

∫

IRd

∣∣m̃ψ,n(x) − ˜̃mψ,n(x)
∣∣q(x)dx ≤ M1

n

n∑

i=1

∣∣Ψ(Yi, Ci)
∣∣ sup
x∈Cα

∣∣f̂n(x) − f(x)
∣∣

∣∣f(x)f̂n(x)
∣∣ .

Clearly, by (A), Ψ is uniformly bounded. Therefore, the following result (see,
e.g., [1])

sup
x∈Cα

∣∣f̂n(x) − f(x)
∣∣ = O

(√
logn

nhdn

)
a.s., as n→ ∞,

is enough to conclude under (C.4) that, almost surely as n→ ∞,

∫

IRd

∣∣m̃ψ,n(x) − ˜̃mψ,n(x)
∣∣q(x)dx = O

(√
logn

nhdn

)
.

Similarly, it can be shown that, almost surely as n→ ∞,

sup
x1∈C1

∫

IRd−1

∣∣m̃ψ,n(x1,x−1) − ˜̃mψ,n(x1,x−1)
∣∣q−1(x−1)dx−1 = O

(√
logn

nhdn

)
.

From these two last statements and the definitions (5.2) and (5.28), the proof
of Lemma 5.9 is completed under the assumption (H.4).

Lemma 5.10. Recall the definitions (2.6) and (5.28). Under the assumptions
of Theorem 3.1, we have, almost surely as n→ ∞,

sup
x1∈C1

sup
ψ∈F

√
nh1,n

{
η̂⋆ψ,1(x1) − η̂ψ,1(x1)

}
√
| logh1,n|

= o(1). (5.30)
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Proof. First consider the case where (A)(i) holds. Set b = infx∈Cα f(x). Note
that b > 0 by (C.4). Then, recalling (2.2) and (5.27) and arguing as we did
along the proof of Lemma 5.9, we get

∫

IRd

∣∣m̃⋆
ψ,n(x) − m̃ψ,n(x)

∣∣q(x)dx ≤ M1

b+ o(1)
sup

0≤y≤ω

{ |ψ(y)| · |G⋆n(y) −G(y)|
|G⋆n(y)G(y)|

}
.

Since ω < TH , the iterated law of the logarithm of [18] ensures that

sup
y≤ω

|G⋆n(y) −G(y)| = O((log logn/n)1/2)

almost surely as n → ∞. Therefore, it follows under (C.2-3-4) that, almost
surely as n→ ∞,

∫

IRd

∣∣m̃⋆
ψ,n(x) − m̃ψ,n(x)

∣∣q(x)dx = O
(√

log logn

n

)
. (5.31)

In the same spirit it can be shown that, almost surely as n → ∞,

sup
x1∈C1

∫

IRd−1

∣∣m̃⋆
ψ,n(x) − m̃ψ,n(x)

∣∣q−1(x−1)dx−1 = O
(√

log logn

n

)
, (5.32)

which, by (H.5), completes the proof of Lemma 5.10 under A(i). In the case
where (A)(ii) holds, the proof follows from the same lines as above, making use
of either the iterated law of the logarithm of [20] (if (A)(ii) holds with p = 1/2)
or Theorem 2.1 of [6] (if (A)(ii) holds with 0 < p < 1/2) instead of the iterated
law of the logarithm of [18]. The details are omitted.

By combining Lemmas 5.9 and 5.10 with Proposition 5.1, we conclude the
proof of Theorem 3.1.

5.2. Proof of Lemma 5.3

Set

Ψ(Yi, Ci) = 1I{Yi≤Ci}ψ(Yi ∧ Ci)/G(Yi ∧ Ci) = δiψ(Zi)/G(Zi)

Ψ̃n(Yi, Ci) = Ψ(Yi, Ci)

∫

Rd−1

d∏

ℓ=2

1

hℓ,n
Kℓ

(
xℓ −Xi,ℓ
hℓ,n

)
q−1(x−1)

f(Xi,−1|Xi,1)
dx−1,

g̃(x1) = IE
(
Ψ̃n(Yi, Ci)

∣∣Xi,1 = x1

)
, (5.33)

and β1(x1) =
1

nh1,n

n∑

i=1

Ψ̃n(Yi, Ci)

f1(Xi,1)
K1

(
x1 −Xi,1
h1,n

)
.
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It follows that,

Var(β1(x1)) =
1

n2

n∑

i=1

IE

{
Ψ̃n(Yi, Ci)

f1(Xi,1)h1,n
K1

(
x1 −Xi,1
h1,n

)}2

− 1

n2

n∑

i=1

{
IE

(
Ψ̃n(Yi, Ci)

f1(Xi,1)h1,n
K1

(
x1 −Xi,1
h1,n

))}2

=:
1

n

[
1

h1,n
Φ1,n(x1) − [Γ1,n(x1)]

2

]
.

Observing that g̃ is uniformly bounded under the assumptions of Theorem 3.1
and making use of some conditioning arguments, it can be shown that

1

n
Γ2

1,n(x1) → 0 as n→ ∞. (5.34)

Moreover, by using the change of variable v1h1,n = x1 − u1, we obtain

Φ1,n(x1) =

∫

R

K2
1 (v1)

f1(x1 − h1,nv1)
IE(Ψ̃2

n(Yi, Ci)| Xi,1 = x1 − h1,nv1)dv1

=

∫

R

K2
1 (v1)

(
IE(Ψ̃2

n(Yi, Ci) | Xi,1 = x1 − h1v1)

f1(x1 − h1,nv1)
− φψ,1(x1)

f1(x1)

)
dv1

+
φψ,1(x1)

f1(x1)

∫

R

K2
1 (v1)dv1.

But, recalling the definition (2.9) of the function φψ,1, the quantity

∣∣∣∣
IE(Ψ̃(Yi, Ci)| Xi,1 = x1 − h1,nv1)

f1(x1 − h1,nv1)
− φψ,1(x1)

f1(x1)

∣∣∣∣

is clearly bounded under the assumptions (C.4), (C.6), (K.1) and (Q.1). There-
fore, Lebesgue’s dominated convergence Theorem enables us to conclude that

Φ1,n(x1) →
φψ,1(x1)

f1(x1)

∫

R

K2
1(v1)dv1. (5.35)

Combining (5.34) and (5.35) we obtain, for all x1 ∈ C1,

Var(β1(x1)) = IE
{
β1(x1) − IEβ1(x1)

}2
= O

(
n−2s/(2s+1)

)
.

Then,
∫

C1

Var(β1(x1))dx1 =

∫

C1

IE
{
β1(x1) − IEβ1(x1)

}2
dx1

= IE

(∫

C1

{
β1(x1) − IEβ1(x1)

}2
dx1

)

= O
(
n−2k/(2k+1)

)
. (5.36)
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Recall the definitions (5.1), (5.4), (5.5), (5.6) and (5.33). From (5.7), and using
the Cauchy-Schwartz inequality, we obtain,

∣∣∣∣
∫

R

αn(g
x1

ψ,n)
√

2h1,n| logh1,n|
q1(x1)dx1

∣∣∣∣

=

√
nh1,n

2| log(h1,n)|

∣∣∣∣
∫

Rd

{ ˜̃mψ,n(x) − IE ˜̃mψ,n(x)}q(x)dx

∣∣∣∣

=

√
nh1,n

2| log(h1,n)|

∣∣∣∣
∫

C1

{
β1(x1) − IEβ1(x1)

}
q1(x1)dx1

∣∣∣∣

≤
√

nh1,n

2| log(h1,n)|

√∫

C1

{
β1(x1) − IEβ1(x1)

}2
dx1

∫

C1

q21(x1)dx1. (5.37)

From (5.36) and (5.37), it follows that, almost surely as n → ∞,

∣∣∣∣
∫

R

αn
(
gx1

ψ,n

)
√

2h1,n| logh1,n|
q1(x1)dx1

∣∣∣∣ = O
(√

n1/(2s+1)h1,n

| logh1,n|

)
. (5.38)

But, from (5.23), we have

sup
x1∈C1

αn
(
gx1

ψ,n

)
√

2h1,n| logh1,n|
≥ σψ,1. (5.39)

The proof of Lemma 5.3 is readily achieved by combining (5.38) and (5.39) with
the condition (H.3). ⊔⊓.

5.3. Proof of Theorem 3.2

Recall the definitions (2.6) and (2.7) and observe that,
∣∣∣∣∣

√
nh1,n

2| logh1,n|
sup
ψ∈F

sup
x∈C

±{m̃⋆
ψ,add(x) −mψ(x)} −

d∑

ℓ=1

σℓ

∣∣∣∣∣,

≤
d∑

ℓ=1

∣∣∣∣∣

√
nh1,n

2| logh1,n|
sup
ψ∈F

sup
xℓ∈Cℓ

±{η̂⋆ψ,ℓ(xℓ) − η⋆ψ,ℓ(xℓ)} − σℓ

∣∣∣∣∣

+

√
nh1,n

2| logh1,n|

∣∣∣∣
∫

Rd

{m̃⋆
ψ,n(x) −mψ(x)}q(x)dx

∣∣∣∣.

Under the assumption (H.3) and (H.4), by proceeding as we did along the proof
of Lemma 5.3 (see also (5.26) and (5.37)), we get

√
nh1,n

2| logh1,n|

∫

Rd

{m̃⋆
ψ,n(x) −m(x)}q(x)dx = o(1) a.s.. (5.40)

By combining Theorem 3.1 and the statement (5.40), we complete the proof of
Theorem 3.2.
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Appendix

In this section, we present an inequality which was of particular interest for our
task. It is due to Mason [33], who derived it from an inequality obtained by
Talagrand [39].

Inequality A.1. Let Z, Z1, . . . , Zn be i.i.d. random variables, n ≥ 1. Denote
by F a class of functions such that

sup
f∈F

Var (f(Z)) ≤ τ2h, with τ, h > 0.

Assume there exist constants M , C and ν > 0, fulfilling, for all 0 < ε < 1,

N (ε,F) ≤ Cε−ν and sup
f∈F ,z∈IRd

|f(z)| ≤M.

Choose any ρ > 0. Then there exist a universal constant A2 > 0, and a constant
D1 = D1(ν) > 0, depending only on ν , such that, if h > 0 satisfies

K1 := max

{
4M

√
ν + 1

τ
,
Mρ

τ2

}
≤

√
nh

| logh| ,

K2 := min

{
1

τ2M
, τ2

}
≥ h,

then we have, with Tn(g) =
∑n
j=1 {g(Zj) − IE(g(Z))} for g ∈ F ,

IP
(

sup
1≤m≤n

‖Tm(·)‖F ≥ (τ + ρ)D1

√
nh| logh|

)
≤ 2 exp

(
− A2ρ

2

τ2
| logh|

)
.
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[7] M. Csörgő and P. Révész. Strong Approximation in Probability and Statis-
tics. Acedemic Press, New York, 1981. MR0666546

[8] D.M. Dabrowska. Nonparametric regression with censored covariates. J.
Multivariate Anal., 54(2):253–283, 1995. MR1345539

[9] M. Debbarh. Some uniform limit results in additive regression model. To
appear in Communication in Statistics - Theory and Methods, 2008.

[10] M. Debbarh and V. Viallon. Mean square convergence for an estimator of
the additive regression function under random censorship. C. R. Acad. Sci.
Paris Ser. I, 344(3):205–210, 2007. MR2292289

[11] M. Debbarh and V. Viallon. Asymptotic normality of the additive regres-
sion model components under random censorship. Preprint. Available at
http://arxiv.org/abs/math/0612507, 2008.

[12] P. Deheuvels and G. Derzko. Uniform consistency for conditinal lifetime
distribution estimators under random censorship. In J.L. Auget, N. Balakr-
ishnan, M. Mesbah, and G. Molenberghs, editors, Advances in Statistical
Methods in the Health Sciences: Applications to Cancer and AIDS Stud-
ies, Genome Sequence Analysis and Survival Analysis. Birkhäuser, Boston,
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