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EMPIRICAL LIKELIHOOD FOR ESTIMATING
EQUATIONS WITH MISSING VALUES

BY DONG WANG AND SONG XI CHEN1

University of Nebraska-Lincoln and Iowa State University and Peking University

We consider an empirical likelihood inference for parameters defined by
general estimating equations when some components of the random observa-
tions are subject to missingness. As the nature of the estimating equations is
wide-ranging, we propose a nonparametric imputation of the missing values
from a kernel estimator of the conditional distribution of the missing variable
given the always observable variable. The empirical likelihood is used to con-
struct a profile likelihood for the parameter of interest. We demonstrate that
the proposed nonparametric imputation can remove the selection bias in the
missingness and the empirical likelihood leads to more efficient parameter
estimation. The proposed method is further evaluated by simulation and an
empirical study on a genetic dataset on recombinant inbred mice.

1. Introduction. Missing data are encountered in many statistical applica-
tions. A major undertaking in biological research is to integrate data gener-
ated by different experiments and technologies. Examples include the effort by
genenetwork.org and other data depositories to combine genetics, microarray data
and phenotypes in the study of recombinant inbred mouse lines [34]. One prob-
lem in using measurements from multiple experiments is that different research
projects choose to perform experiments on different subsets of mouse strains. As a
result, only a portion of the strains have all the measurements, while other strains
have missing measurements. The current practice of using only those complete
measurements and ignoring incomplete measurements with missing values is un-
desirable since the selection bias in the missingness can cause the parameter esti-
mators to be inconsistent. Even in the absence of the selection bias (missing com-
pletely at random), the complete measurements-based inference is generally not
efficient as it throws away data with missing values. Substantial research has been
done to deal with missing data problems; see [17] for a comprehensive overview.
Inference based on estimating equations [3, 9] is a general framework for statis-
tical inference, accommodating a wide range of data structure and parameters. It
has been used extensively for conducting semiparametric inference in the context
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of missing values. Robins, Rotnitzky and Zhao [25, 26] proposed using the para-
metrically estimated propensity scores to weigh estimating equations that define
a regression parameter, and Robins and Rotnitzky [24] established the semipara-
metric efficiency bound for parameter estimation. The approach based on the gen-
eral estimating equations has the advantage of being more robust against model
misspecification, although a correct model for the conditional distribution of the
missing variable given the observed variable is needed to attain the semiparametric
efficiency. See [32] for a comprehensive review.

In this paper we consider an empirical likelihood based inference for parameters
defined by general estimating equations in the presence of missing values. Em-
pirical likelihood introduced by Owen [19, 20] is a computer-intensive statistical
method that facilitates a likelihood-type inference in a nonparametric or semipara-
metric setting. It is closely connected to the bootstrap as the empirical likelihood
effectively carries out the resampling implicitly. On certain aspects of inference,
empirical likelihood is more attractive than the bootstrap, for instance its ability
of internal studentizing so as to avoid explicit variance estimation and producing
confidence regions with natural shape and orientation; see [21] for an overview.
In an important development, Qin and Lawless [23] proposed an empirical likeli-
hood for parameters defined by general estimating equations and established the
Wilks theorem for the empirical likelihood ratio. Chen and Cui [5] show that the
empirical likelihood of [23] is Bartlett correctable, indicating that the empirical
likelihood has this delicate second-order property of the conventional likelihood
more generally than previously anticipated. In the context of missing responses,
Wang and Rao [33] studied empirical likelihood for the mean with imputed miss-
ing values from a kernel estimator of the conditional mean, and demonstrated that
some of the attractive features of the empirical likelihood continue to hold.

When the parameter of interest defined by the general estimating equations is
not directly related to a mean, or a regression model is not assumed as the model
structure, the commonly used conditional mean-based imputation via either a para-
metric [36] or nonparametric [7] regression estimator may result in either biased
estimation or reduced efficiency; for instance, when the parameter of interest is
a quantile (conditional or unconditional) or some covariates are subject to miss-
ingness. To suit the general nature of parameters defined by general estimating
equations and to facilitate a nonparametric likelihood inference in the presence of
missing values, we propose a nonparametric imputation procedure that imputes
missing values repeatedly from a kernel estimator of the conditional distribution
of the missing variables given the fully observable variables. To control the vari-
ance of the estimating functions with imputed values, the estimating functions are
averaged based on multiply-imputed values. We show that the maximum empiri-
cal likelihood estimator based on the nonparametric imputation is consistent and
is more efficient than the estimator that ignores missing values. In particular, when
the number of the estimating equations is the same as the dimension of the pa-
rameter, the proposed empirical likelihood estimator attains the semiparametric
efficiency bound.
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The paper is structured as follows. The proposed nonparametric imputation
method is described in Section 2. The formulation of the empirical likelihood is
outlined in Section 3. Section 4 gives theoretical results of the proposed nonpara-
metric imputation-based empirical likelihood estimator. Results from simulation
studies are reported in Section 5. Section 6 analyzes a genetic dataset on recombi-
nant inbred mice. All technical details are provided in the Appendix.

2. Nonparametric imputation. Let Zi = (Xτ
i , Y τ

i )τ , i = 1, . . . , n, be a
set of independent and identically distributed random vectors, where Xi’s are
dx-dimensional and are always observable, and Yi’s are dy -dimensional and are
subject to missingness. In practice, the missing components may vary among in-
complete observations. For ease of presentation, we assume the missing compo-
nents occupy the same components of Zi . Extensions to the general case can be
readily made. Furthermore, our use of Yi for the missing variable does not prevent
it being either a response or covariates in a regression setting.

Let θ be a p-dimensional parameter so that E{g(Zi, θ)} = 0 at a unique θ0,
which is the true parameter value. Here g(Z, θ) = (g1(Z, θ), . . . , gr(Z, θ))τ rep-
resents r estimating functions for an integer r ≥ p. The interest of this paper is in
the inference on θ when some Yi’s are missing.

Define δi = 1 if Yi is observed and δi = 0 if Yi is missing. Like in [7, 33] and
others, we assume that δ and Y are conditionally independent given X, namely the
strongly ignorable missing at random proposed by Rosenbaum and Rubin [27]. As
a result,

P(δ = 1 | Y,X) = P(δ = 1 | X) =: p(X),

where p(x) is the propensity score and prescribes a pattern of selection bias in the
missingness.

Let F(y|Xi) be the conditional distribution of Y given X = Xi , and W(·) be a
dx-dimensional kernel function of the qth order satisfying∫

W(s1, . . . , sdx ) ds1 · · · dsdx = 1,

∫
sl
iW(s1, . . . , sdx ) ds1 · · · dsdx = 0 for any i = 1, . . . , dx and 1 ≤ l < q

and
∫

s
q
i W(s1, . . . , sdx ) ds1 · · · dsdx �= 0. A kernel estimator of F(y|Xi) based on

the sample is

F̂ (y|Xi) =
n∑

l=1

δlW((Xl − Xi)/h)I (Yi ≤ y)∑n
j=1 δjW((Xj − Xi)/h)

.(1)

Here h is a smoothing bandwidth and I (·) is the dy -dimensional indicator function,
which is defined as I (Yi ≤ y) = 1 if all components of Yi are less than or equal
to the corresponding components of y, respectively, and I (Yi ≤ y) = 0 otherwise.
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The property of the kernel estimator when there are no missing values is well un-
derstood in the literature, for instance in [12]. Its properties in the context of the
missing values can be established in a standard fashion. An important property that
mirrors one for unconditional multivariate distribution estimators given in [15] is
that the efficiency of F̂ (y|Xi) is not influenced by the dimension of Yi . Here we
concentrate on the case that Xi is a continuous random vector. Extension to dis-
crete random variables can be readily made; see Section 5 for an implementation
with binary random variables.

We propose to impute a missing Yi with a Ỹi , which is randomly generated
from the estimated conditional distribution F̂ (y|Xi). Effectively Ỹi has a discrete
distribution where the probability of selecting a Yl with δl = 1 is

W {(Xl − Xi)/h}∑n
j=1 δjW {(Xj − Xi)/h} .(2)

To control the variability of the estimating functions with imputed values, we
make κ independent imputations {Ỹiν}κν=1 from F̂ (y|Xi) and use

g̃i(θ) = δig(Xi, Yi, θ) + (1 − δi)κ
−1

κ∑
ν=1

g(Xi, Ỹiν, θ)(3)

as the estimating function for the ith observation. Like the conventional multiple-
imputation procedure of Rubin [28], to attain the best efficiency, κ is required to
converge to ∞. Our numerical experience indicates that setting κ = 20 worked
quite well in our simulation experiments reported in Section 5. A theoretical jus-
tification for this choice can be drawn from a remark to Theorem 2 in the next
section.

The way missing values are imputed depends critically on the nature of the pa-
rameter θ and the underlying statistical model. A popular imputation method is
to impute a missing Yi by the conditional mean of Y given X = Xi as proposed
in [36] under a parametric regression model and in [7] and [33] via the kernel es-
timator for the conditional mean. However, this conditional mean imputation may
not work for a general parameter and a general model structure other than the re-
gression model; for instance, when the parameter is a correlation coefficient or a
conditional or unconditional quantile [1] where the estimating equation is based on
a kernel smoothed distribution function. Nor is it generally applicable to missing
covariates in a regression context. In contrast, the proposed nonparametric imputa-
tion is applicable for any parameter defined by estimating equations, and the way
we impute the missing values is independent of the estimating equations. The latter
is specially attractive as this separation of the imputation and the inference steps
is considered a major advantage of the multiple imputation approach proposed by
Rubin [28].

It should be noted that, when κ → ∞, the proposed method is equivalent to
imputing the estimating functions with missing Yi ’s using the Nadaraya–Watson
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estimator of E{g(Xi, Yi, θ)|Xi},
m̂g(Xi, θ) =

∫
g(Xi, y, θ) dF̂ (y|Xi).(4)

The imputation of the estimating function has the imputation and inference steps
intertwined together except in some special cases, for instance when θ is the
mean of Yi as considered in Cheng [7] and Wang and Rao [33]. In that case,
g(Z, θ) = (Y −θ) and m̂g(Xi, θ) is a simple difference between the kernel estima-
tor of E(Y |Xi) and θ , which effectively separates the imputation and the inference
step. However, for a general estimation equation, the imputation and inference
steps may not be separable. This means that, as the search for an estimator of θ

is made through the parameter space, the imputation has to be repeated whenever
there is a change in the θ value. This computational burden would be particu-
larly severe for the empirical likelihood, and more so when a resampling-based
approach, for instance the bootstrap, is used to profile the empirical likelihood
ratio. In contrast, the proposed approach generates a fixed set of missing values.
Once they are generated, the same algorithm for data without missing values can
be used without reimputation.

The curse of dimension is an issue with the kernel estimator F̂ (y|Xi). How-
ever, as demonstrated in Section 4, since the target of the inference is a finite-
dimensional θ rather than the conditional distribution F(y|Xi), the curse of dimen-
sion does not pose any leading order effects on θ -estimation as long as the bias of
the kernel estimator is controlled. When dx ≥ 4, controlling the bias requires the
order of the kernel q > 2, the so-called high-order kernel, so that

√
nhq → 0 in-

stead of
√

nh2 → 0 when a conventional second order kernel is used. Using a
high-order kernel may occasionally cause F̂ (y|Xi) not being a proper conditional
distribution as the imputation probability weights in (2) may be negative in the
tails. However, the occurrence of this phenomenon is rare for large sample sizes as
F̂ (y|x) is a consistent estimator of F(y|x). In practice, we can readjust the proba-
bility weights in (2) by setting negative weights to zero and rescaling the remaining
weights to assure that all weights sum up to one. This readjustment is similar to the
method used by Hall and Murison [10] for high-order kernel density estimators.

3. Empirical likelihood. The nonparametric imputation produces an ex-
tended sample including (Xi, Yi)

τ for each δi = 1, and (Xi, {Ỹiν}κν=1)
τ for each

δi = 0. With the imputed estimating functions g̃i(θ), the usual estimating equation
approach can be used to make inference on θ . The variance of the general estimat-
ing equation-based estimator for θ can be estimated using a sandwich estimator
and the confidence regions can be obtained by asymptotic normal approximation.
In this article, we would like to carry out a likelihood type inference using empir-
ical likelihood, encouraged by its attractive performance for estimating equations
without missing values, as demonstrated by Qin and Lawless [23] and the work of
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Wang and Rao [33] for inference on a mean with missing responses. An advan-
tage of empirical likelihood is that it has no predetermined shape of the confidence
region; instead, it produces regions that reflect the features of the data set. Our
proposal of using empirical likelihood in conjunction with the nonparametric im-
putation is especially attractive, since it requires only weak assumptions for both
imputation and inference procedures while it also has the flexibility inherent to
empirical likelihood and the estimating equations.

Let pi represent the probability weight allocated to g̃i(θ). The empirical likeli-
hood for θ based on g̃i(θ) is

Ln(θ) = sup

{
n∏

i=1

pi |pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

g̃i(θ) = 0

}
.

By the standard derivation of empirical likelihood [23], the optimal pi is

pi = 1

n

1

1 + tτ (θ)g̃i(θ)
,

where t (θ) is the Lagrange multiplier that satisfies

Qn1(θ) =: 1

n

∑
i

g̃i(θ)

1 + tτ (θ)g̃i(θ)
= 0.(5)

Let �n(θ) = − log{Ln(θ)/n−n} be the log empirical likelihood ratio. The max-
imum empirical likelihood estimator (MELE), θ̂n, can be derived by maximiz-
ing Ln(θ) or minimizing �n(θ).

When the estimating function g(Z, θ) is differentiable with respect to θ , the
MELE can be found via solving the following system of equations [23],

Qn1(θ, t) = 0 and Qn2(θ, t) = 0,(6)

where Qn1(θ, t) is given in (5) and

Qn2(θ, t) = 1

n

∑
i

1

1 + tτ (θ)g̃i(θ)

{
∂g̃i(θ)

∂θ

}τ

t (θ).

Like the conventional parametric maximum likelihood estimation (MLE), there
may be multiple solutions to the likelihood equation (6) depending on the form
of g(Z, θ) and the underlying distribution. It is required that each solution be sub-
stituted back to Ln(θ) to identify the MELE.

4. Main results. In this section, we first present a theorem regarding the con-
sistency of θ̂n, which is a solution of the likelihood equation (6). We then discuss
the estimation efficiency and propose confidence regions for θ based on the empir-
ical likelihood ratio. We use θ0 to denote the true parameter value.
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THEOREM 1. Under the conditions given in the Appendix, as n → ∞ and
κ → ∞, with probability tending to 1 the likelihood equation (6) has a solution θ̂n

within the open ball ‖θ − θ0‖ < Cn−1/3 for a positive constant.

The theorem indicates consistency of θ̂n. The nature of the result corresponds to
Lemma 1 of Qin and Lawless [23] on the consistency of the maximum empirical
likelihood estimator without missing values and is an analogue of Cramér [8] for
parametric MLEs.

Next we consider the efficiency of θ̂n. Write g(Z) =: g(Z, θ0). We define

	 = E[p−1(X)Var{g(Z)|X} + E{g(Z)|X}E{gτ (Z)|X}],(7)

	̃ = E[p(X)Var{g(Z)|X} + E{g(Z)|X}E{gτ (Z)|X}](8)

and V = {E(
∂g
∂θ

)τ 	̃−1E(
∂g
∂θ

)}−1 at θ = θ0.

THEOREM 2. Under the conditions given in the Appendix, as n → ∞ and
κ → ∞,

√
n(θ̂n − θ0)

L→ N(0,
)

with 
 = V E(
∂g
∂θ

)τ 	̃−1		̃−1E(
∂g
∂θ

)V .

The estimator θ̂n is consistent and asymptotically normal for θ0 and the potential
selection bias in the missingness as measured by the propensity score p(x) has
been filtered out. If there are no missing values, 	̃ = 	 = E(ggτ ), which means
that


 =
{
E

(
∂g

∂θ

)τ

(Eggτ )−1E

(
∂g

∂θ

)}−1

.

This is the asymptotic variance of the maximum empirical likelihood estimator
based on full observations given in [23]. Comparing the forms of 
 with and with-
out missing values shows that the efficiency of the maximum empirical likelihood
estimator based on the proposed imputation will be close to that based on full ob-
servations if either the proportion of missing data is low, or if E{p−1(X)Var(g|X)}
is small relative to E{E(g|X)E(gτ |X)}, namely when X is highly “correlated”
with Y .

In the case of θ = EY , 
 = E{σ 2(X)/p(X)} + Var{m(X)}, where σ 2(X) =
Var(Y |X) and m(X) = E(Y |X). Thus, in this case θ̂n is asymptotically equivalent
to the estimator proposed by Cheng [7] and Wang and Rao [33] based on the
conditional mean imputation.

When r = p, namely the number of estimating equations is the same as the
dimension of θ ,


 =
{
E

(
∂g

∂θ

)τ

	−1E

(
∂g

∂θ

)}−1

,
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which is the semiparametric efficiency bound for the estimation of θ as given by
Chen, Hong and Tarozzi [6].

Like the multiple imputation of Rubin [28], our method requires κ → ∞. To
appreciate this proposal, we note that when κ is fixed, the 	 and 	̃ matrices used
to define 
 are

	 = E
[{

p−1(X) + κ−1(
1 − p(X)

)}
Var(g|X) + E(g|X)E(gτ |X)

]
and

	̃ = E
[{

p(X) + κ−1(
1 − p(X)

)}
Var(g|X) + E(g|X)E(gτ |X)

]
.

Hence, a larger κ will reduce the terms in 	 and 	̃, which are due to a single non-
parametric imputation. Our numerical experience suggests that κ = 20 is sufficient
for most situations and would make the κ−1(1 − p(X))-term small enough.

Let us now turn our attention to the log empirical likelihood ratio

Rn(θ0) = 2�n(θ0) − 2�n(θ̂n).

Let Ir be the r-dimensional identity matrix. The next theorem shows that the log
empirical likelihood ratio converges to a linear combination of independent chi-
square distributions.

THEOREM 3. Under the conditions given in the Appendix, as n → ∞ and
κ → ∞,

Rn(θ0)
L→ Qτ�Q,

where Q ∼ N(0, Ir) and � = 	1/2	̃−1E(
∂g
∂θ

)V E(
∂g
∂θ

)τ 	̃−1	1/2.

When there are no missing values, 	 = 	̃ = E(ggτ ) and

� = E(ggτ )
−1/2

E

(
∂g

∂θ

)[
E

(
∂g

∂θ

)τ

{E(ggτ )}−1E

(
∂g

∂θ

)]−1

× E

(
∂g

∂θ

)τ

E(ggτ )
−1/2

,

which is symmetric and idempotent with tr(�) = p. This means that

Rn(θ0)
L→ χ2

p,

which is the nonparametric version of Wilks theorem established in Qin and Law-
less [23].

When there are missing values, Wilks theorem for empirical likelihood is
no longer available due to a mismatch between the variance of the quantity
n−1/2 ∑n

i=1 g̃i(θ0) and the probability limit of n−1 ∑n
i=1 g̃i(θ0)g̃

τ
i (θ0). This phe-

nomenon also appears when a nuisance parameter is replaced by a plugged-in es-
timator as revealed by Hjort, McKeague and Van Keilegom [13].
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When θ = EY , Rn(θ0)
L→ {V1(θ0)/V2(θ0)}χ2

1 , where

V1(θ0) = E{σ 2(X)/p(X)} + Var{m(X)}
and V2(θ0) = E{σ 2(X)p(X)} + Var{m(X)}. This is the limiting distribution given
in [33].

As confidence regions can be readily transformed to test statistics for testing
a hypothesis regarding θ , we shall focus on confidence regions. There are poten-
tially several methods for constructing confidence regions for θ . One is based on
an estimation of the covariance matrix 
 and the asymptotic normality given in
Theorem 2. Another method is to estimate the matrix � in Theorem 3 and then
use Fourier inversion or a Monte Carlo method to simulate the distribution of the
linear combinations of chi-squares. Despite the loss of Wilks theorem, confidence
regions based on the empirical likelihood ratio Rn(θ) still enjoy the attractions of
likelihood-based confidence regions in terms of having natural shape and orienta-
tion and respecting the range of θ .

We propose the following bootstrap procedure to approximate the distribution
of Rn(θ0). Bootstrap for imputed survey data has been discussed in Shao and Sit-
ter [30] in the context of ratio and regression imputations. We use the following
bootstrap procedure in which the bootstrap data set is imputed in the same way as
the original data set:

1. Draw a simple random sample χ∗
n with replacement from the extended

sample χ̄n = {(Xi, Yi)
τ for each δi = 1 and (Xi, {Ỹiν}κν=1)

τ for each δi = 0; i =
1, . . . , n}.

2. Let χ∗
nc be the portion of χ∗

n without imputed values and χ∗
nm be the set

of vectors in the bootstrap sample with imputed values. Then replace all the im-
puted Y values in χ∗

nm using the proposed imputation method where the estimation
of the conditional distribution is based on χ∗

nc.
3. Let �∗(θ̂n) be the empirical likelihood ratio based on the reimputed data

set χ∗
n, θ̂∗

n be the corresponding maximum empirical likelihood estimator and
R∗(θ̂n) = 2�∗(θ̂n) − 2�∗(θ̂∗

n ).
4. Repeat the above steps B-times for a large integer B and obtain B bootstrap

values {R∗
b(θ̂n)}Bb=1.

Let q�
α be the 1 − α sample quantile based on {R∗

b(θ̂n)}Bb=1. Then, an empir-
ical likelihood confidence region with nominal coverage level 1 − α is Iα = {θ |
R(θ) ≤ q�

α}. The following theorem justifies that this confidence region has correct
asymptotic coverage.

THEOREM 4. Suppose the conditions given in the Appendix are satisfied and
Q ∼ N(0, Ir). Then, the conditional distribution of R∗(θ̂n) given the original
sample χn converges to the distribution of Qτ�Q in probability as n → ∞ and
κ → ∞.
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5. Simulation results. We report results from two simulation studies in this
section. In each study, the proposed empirical likelihood inference based on the
proposed nonparametric imputation is compared with the empirical likelihood in-
ference based on (1) the complete observations only by ignoring data with missing
values and (2) the full observations since the missing values are known in a simula-
tion. When there is a selection bias in the missingness, the complete observations-
based estimator may not be consistent. The proposed imputation will remove the
selection bias in the missingness and improve estimation efficiency due to utilizing
more data information. Obtaining the full observations-based estimator allows us
to gauge how far away the proposed imputation based estimator is from the ideal
case.

We also compare the proposed method with a version of the inverse probabil-
ity weighted generalized method of moments (IPW-GMM) described in [6], in
which the estimating functions involving complete observations are inflated by
nonparametrically estimated propensity scores. Based on the usual formulation of
the generalized method of moments (GMM) [11], the weighted-GMM estimator
for θ0 considered in our simulation is

θ̃n = arg min
θ

{
1

nc

n∑
i=1

δig(Zi, θ)
1

p̂(Xi)

}τ

AT

{
1

nc

n∑
i=1

δig(Zi, θ)
1

p̂(Xi)

}
,

where nc is the number of complete observations, AT is a nonnegative definite
weighting matrix and p̂(Xi) is a consistent estimator for p(Xi). The difference
between the weighted-GMM method we use and that of [6] is that we used a
kernel-based estimator for p(Xi), instead of the sieve estimator described in [6].
The bandwidth used to construct p̂(Xi) is obtained by the cross-validation method.
The kernel function W(·) is taken to be the Gaussian and product Gaussian kernels,
respectively, for the two simulation studies. Cross-validation method is also used
to choose the smoothing bandwidth in the kernel estimator F̂ (y|X) given in (1)
for the proposed nonparametric imputation; see [4] for details. Simulation results
not reported here confirm that our proposed method is not sensitive to the choice
of bandwidth. To satisfy the requirement

√
nh2 → 0, we use half of the band-

width produced by the cross-validation procedure. This is only a rule of thumb.
Alternatively, we could use the bandwidth obtained from the cross-validation with
a higher order kernel. That would prescribe a bandwidth satisfying the condition
asymptotically.

5.1. Correlation coefficient. In the first simulation, the parameter θ is the cor-
relation coefficient between two random variables X and Y where X is always ob-
served, but Y is subject to missingness. We first generate bivariate random vector
(Xi,Ui)

τ from a skewed bivariate t-distribution suggested in [2] with five degrees
of freedom, mean (0,0)τ , shape parameter (4,1)τ and dispersion matrix

�̄ =
[

1 0.955
0.955 1

]
.
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Then we let Yi = Ui − 1.2XiI (Xi < 0). These make (Xi, Yi)
τ have mean

(0,0.304) and correlation coefficient 0.676.
We consider three missing mechanisms:
(a) p(x) = (0.3 + 0.175|x|)I (|x| < 4) + I (|x| ≥ 4);
(b) p(x) ≡ 0.65 for all x;
(c) p(x) = 0.5I (x > 0) + I (x ≤ 0).

The mechanism (b) is missing completely at random, whereas the other two are
missing at random and prescribe selection bias in the missingness.

Let μx and μy be the means, and σ 2
x and σ 2

y be the variances of X and Y ,
respectively. In the construction of the empirical likelihood for θ , the correlation
coefficient, λ = (μx,μy, σ

2
x , σ 2

y )τ are treated as nuisance parameters. When all
observations are complete (no missing data), the estimating equation can be written
as n−1 ∑n

i=1 g(Xi, Yi, θ, λ) = 0 with

g(Xi, Yi, θ, λ) =

⎛
⎜⎜⎜⎜⎜⎝

Xi − μx

Yi − μy

(Xi − μx)
2 − σ 2

x

(Yi − μy)
2 − σ 2

y

(Xi − μx)(Yi − μy) − θσxσy

⎞
⎟⎟⎟⎟⎟⎠ .

Table 1 contains the bias and standard deviation of the four estimators consid-
ered based on 1000 simulations with the sample size n = 100 and 200, respec-
tively. It also contains the empirical likelihood confidence intervals using the full
observations, complete observations only and the proposed nonparametric impu-
tation method at a nominal level of 95%. They are all based on the proposed boot-
strap calibration method with B = 1000. When using the nonparametric imputa-
tion method, κ = 20 imputations were made for each missing Yi . The confidence
intervals based on the weighted-GMM are calibrated using the asymptotic normal
approximation with the covariance matrix estimated by the kernel method.

The results in Table 1 can be summarized as follows. The proposed empirical
likelihood estimator based on the nonparametric imputation method significantly
reduced the bias compared to inference based only on complete observations when
the data were missing at random but not missing completely at random. The es-
timator based on the completely observed data suffered severe bias under miss-
ing mechanisms (a) and (c). The proposed estimator had smaller standard de-
viations than the complete observation-based estimator under all three missing
mechanisms, including the case of missing completely at random. The weighted-
GMM method also performed better than the complete observation-based estima-
tor. However, it had larger variance than the proposed estimator. Most strikingly,
the standard deviations of the empirical likelihood estimator based on the pro-
posed imputation method were all quite close to the full observation-based esti-
mator, which confirmed its good theoretical properties. Confidence intervals based
on the complete observations only and the weighted-GMM method could have se-
vere under-coverage: the former is due to the selection bias and the latter is due
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TABLE 1
Inference for the correlation coefficient with missing values. The four methods considered are

empirical likelihood using full observations, empirical likelihood using only complete observations
(Complete obs.), inverse probability weighting based generalized method of moments

(Weighted-GMM), and empirical likelihood using the proposed nonparametric imputation
(N. imputation). The nominal coverage probability of the confidence interval is 0.95

Methods Bias Std. dev. MSE Coverage Length of CI

n = 100

Full observations −0.0026 0.0895 0.0080 0.936 0.3555

Missing mechanism (a)

Complete obs. 0.0562 0.1222 0.0181 0.851 0.4967
Weighted-GMM 0.0108 0.1112 0.0125 0.776 0.2495
N. imputation −0.0092 0.1041 0.0109 0.945 0.4875

Missing mechanism (b)

Complete obs. −0.0080 0.1162 0.0136 0.930 0.4482
Weighted-GMM −0.0150 0.1069 0.0117 0.802 0.2763
N. imputation −0.0138 0.0999 0.0101 0.932 0.4173

Missing mechanism (c)

Complete obs. −0.1085 0.1442 0.0326 0.832 0.5593
Weighted-GMM −0.0266 0.1167 0.0143 0.786 0.2860
N. imputation −0.0383 0.1053 0.0125 0.928 0.4322

n = 200

Full observations 0.0071 0.0610 0.0038 0.958 0.2484

Missing mechanism (a)

Complete obs. 0.0710 0.0776 0.0111 0.824 0.3161
Weighted-GMM 0.0112 0.0734 0.0055 0.799 0.2060
N. imputation 0.0038 0.0709 0.0050 0.955 0.3180

Missing mechanism (b)

Complete obs. −0.0030 0.0799 0.0064 0.937 0.3091
Weighted-GMM −0.0031 0.0719 0.0052 0.832 0.2075
N. imputation −0.0023 0.0668 0.0045 0.942 0.2797

Missing mechanism (c)

Complete obs. −0.0915 0.0979 0.0179 0.788 0.3919
Weighted-GMM −0.0107 0.0745 0.0057 0.820 0.2131
N. imputation −0.0118 0.0680 0.0048 0.936 0.2860

to the normal approximation. The proposed confidence intervals had satisfactory
coverages, which are quite close to the nominal level 0.95.

5.2. Generalized linear models with missing covariates. In the second simu-
lation study we consider missing covariates in a generalized linear model (GLM).
We also take the opportunity to discuss an extension of the proposed imputation
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procedure to binary random variables. Commonly used methods in dealing with
missing data for GLM are reviewed in [14]. Empirical likelihood for GLMs with
no missing data was first studied by Kolaczyk [16]. Application of empirical like-
lihood method to GLMs can help overcome difficulties with parametric likelihood,
especially in the aspect of overdispersion.

To demonstrate how to extend the proposed method to discrete component
in Xi , we consider a logistic regression model with binary response variable X3
and covariates X1, X2 and Y . We choose logit{P(X3i = 1)} = −1 + X1i + X2i −
1.5Yi , X1i ∼ N(0,0.52), X2i ∼ N(3,0.52) and Yi being binary with logit{P(Yi =
1)} = −1 + X1i + 0.5X2i . Here X1i , X2i and X3i are always observable while the
binary Yi is subject to missingness with logit{P(Yi is missing)} = 0.5 + 2X1i +
X2i − 3X3i . This model with dx = 3 also allows us to see if there is a presence
of the curse of dimension due to the use of the kernel estimator in the proposed
imputation procedure.

When no missing data are involved, the empirical likelihood analysis for the
logistic model simply involves the estimating equations

n−1
n∑

i=1

Si{X3i − π(Sτ
i β)} = 0

with Si = (1,X1i ,X2i , Yi)
τ , β being the parameter and π(z) = exp(z)/{1 +

exp(z)}. Although our proposed imputation in Section 2 is formulated directly
for continuous random variables, binary response X3i can be accommodated by
splitting the data into two parts according to the value of X3i , and then apply-
ing the proposed imputation scheme to each part by smoothing on the continuous
X1i and X2i . The maximum empirical likelihood estimator for β uses a modified
version of the fitting procedure described in Chapter 2 of [18].

The results of the simulation study with n = 150 and 250 are shown in Ta-
ble 2. Despite that the dimension of Xi is increased to 3, the standard deviations
of the proposed estimator were still quite close to the full observation-based em-
pirical likelihood estimator, which was very encouraging. For parameters β0, β1
and β2, the mean squared error of the proposed estimator is several folds smaller
than that based on the complete observations only; the proposed method also leads
to a reduction in the mean squared error by as much as one fold relative to the
weighted-GMM. All three methods give similar mean squared errors for the para-
meter β3, while the proposed estimator had the smallest mean squared error. The
confidence intervals based on only complete observations or the weighted-GMM
tend to show notable undercoverage, while the proposed confidence intervals have
satisfactory coverage levels for all parameters.

6. Empirical study. Microarray technology provides a powerful tool in mole-
cular biology by measuring the expression level of thousands of genes simultane-
ously. One problem of interest is to test whether the expression level of genes is re-
lated to a traditional trait like body weight, food consumption or bone density. This
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TABLE 2
Inference for parameters in a logistic regression model with missing values. The four methods

considered are empirical likelihood using full observations (Full obs.), empirical likelihood using
only complete observations (Complete obs.), inverse probability weighting based generalized

method of moments (Weighted-GMM), and empirical likelihood using the proposed nonparametric
imputation (N. imputation). The nominal coverage probability of the confidence interval is 0.95

Methods Bias Std. dev. MSE Coverage Length of CI

n = 150

β0 = −1

Full obs. −0.0296 1.292 1.669 0.964 5.477
Complete obs. −1.715 1.618 5.559 0.920 6.840
Weighted-GMM −0.7835 1.562 3.053 0.891 5.250
N. imputation 0.0349 1.317 1.736 0.967 5.549

β1 = 1

Full obs. 0.0519 0.4384 0.1949 0.964 1.820
Complete obs. 0.7898 0.5603 0.9377 0.796 2.510
Weighted-GMM 0.4302 0.5486 0.4860 0.834 1.811
N. imputation −0.0605 0.4388 0.1962 0.961 1.851

β2 = 1

Full Obs. 0.0367 0.4500 0.2038 0.972 2.007
Complete obs. 0.4205 0.5590 0.4892 0.945 2.599
Weighted-GMM 0.2542 0.5484 0.3653 0.896 1.791
N. imputation −0.0110 0.4576 0.2095 0.966 1.993

β3 = −1.5

Full obs. −0.0531 0.4979 0.2507 0.976 2.137
Complete obs. −0.0684 0.5713 0.3310 0.975 2.592
Weighted-GMM −0.0751 0.5843 0.3471 0.838 1.574
N. imputation 0.0718 0.5521 0.3100 0.966 2.474

is usually the first step in uncovering roles that a gene plays in important pathways.
The BXD recombinant inbred strains of mice were derived from crosses between
C57BL/6J (B6 or B) and DBA/2J (D2 or D) strains [35]. Around 100 BXD strains
have been established by researchers at University of Tennessee and the Jackson
Laboratory. A variety of phenotype data are accumulated for a BXD mouse over
the years [22].

The trait that we consider is the fresh eye weight measured on 83 BXD strains
by Zhai, Lu and Williams (ID 10799, BXD phenotype data base). The Hamilton
Eye Institute Mouse Eye M430v2 RMA Data Set contains measures of expres-
sion in the eye on 39,000 transcripts. It is of interest to test whether the fresh eye
weight is related to the expression level of certain genes. However, the microarray
data are only available for 45 out of the 83 BXD mouse strains for which fresh eye
weights are all available. The most common practice is to use only complete ob-
servations and ignore missing values in the statistical inference. As demonstrated
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TABLE 2
(Continued)

Methods Bias Std. dev. MSE Coverage Length of CI

n = 250

β0 = −1

Full obs. −0.0286 0.9651 0.9321 0.956 3.916
Complete obs. −1.670 1.212 4.255 0.801 4.790
Weighted-GMM −0.6393 1.150 1.7304 0.862 3.832
N. imputation 0.0284 0.9801 0.9615 0.962 3.963

β1 = 1

Full obs. 0.0195 0.3332 0.1114 0.953 1.349
Complete obs. 0.7270 0.4398 0.7220 0.665 1.789
Weighted-GMM 0.3166 0.4223 0.2786 0.782 1.304
N. imputation −0.0660 0.3367 0.1177 0.947 1.380

β2 = 1

Full obs. 0.0305 0.3374 0.1147 0.958 1.400
Complete obs. 0.3902 0.4134 0.3232 0.867 1.729
Weighted-GMM 0.1966 0.3993 0.1981 0.874 1.297
N. imputation −0.0173 0.3406 0.1163 0.967 1.384

β3 = −1.5

Full obs. −0.0611 0.3818 0.1495 0.950 1.529
Complete obs. −0.0351 0.4445 0.1988 0.963 1.797
Weighted-GMM −0.0419 0.4596 0.2130 0.791 1.165
N. imputation 0.0762 0.4377 0.1974 0.944 1.759

in our simulation, this approach can lead to inconsistent parameter estimators if
there is a selection bias in the missingness. Even in the absence of selection bias,
the estimators are not efficient as only those complete observations are used.

We conduct four separate simple linear regression analyses of the eye weight (x)
on the expression level (y) of four genes, respectively. The estimating equation can
be written as n−1 ∑n

i=1 g(Xi, Yi, θ) = 0, where

g(Xi, Yi, θ) =
(

Xi − θ1 − θ2Yi

XiYi − θ1Yi − θ2Y
2
i

)

and θ1 and θ2 represent the intercept and slope, respectively. The genes are
H3071E5, Slc26a8, Tex9 and Rps16. Here we have missing covariates in our analy-
sis. The missing gene expression levels are imputed from a kernel estimator of the
conditional distribution of the gene expression level given the fresh eye weight.
The smoothing bandwidths were selected based on the cross-validation method,
which is 1.5 for the first three genes in Table 3 and 1.8 for gene Rps16.

Table 3 reports empirical likelihood estimates of the intercept and slope para-
meters and their 95% confidence intervals based on the proposed nonparametric
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TABLE 3
Parameter estimates and confidence intervals (shown in parentheses) based on a simple linear

regression model using the parametric method with complete observations only and the empirical
likelihood method using the proposed nonparametric imputation. For the parametric inference, the
confidence intervals for the intercept and slope are obtained using quantiles of the t-distribution,

and the confidence intervals for the correlation coefficient are obtained by Fisher’s z transformation

Complete observations only Nonparametric imputation
Gene (parametric) (with empirical likelihood)

Intercept

H3071E5 −21.99 (−40.97, −2.998) −15.69 (−37.02, 5.209)
Slc26a8 73.59 (49.45, 97.73) 67.28 (38.34, 95.87)
Tex9 −23.81 (−46.12, −1.507) −14.66 (−38.57, 8.776)
Rps16 −13.52 (−31.08, 4.041) −8.090 (−26.76, 10.18)

Slope

H3071E5 10.16 (5.720, 14.59) 8.736 (2.688, 14.21)
Slc26a8 −6.352 (−9.294, −3.411) −5.561 (−9.431, −1.471)
Tex9 5.101 (2.588, 7.613) 4.094 (0.8753, 6.979)
Rps16 6.766 (3.371, 10.16) 5.754 (1.948, 9.236)

Correlation coefficient

H3071E5 0.5757 (0.3395, 0.7436) 0.4426 (0.1321, 0.6977)
Slc26a8 −0.5533 (−0.7285, −0.3102) −0.4319 (−0.6809, −0.0761)
Tex9 0.5296 (0.2996, 0.7124) 0.4024 (0.1013, 0.6846)
Rps16 0.5256 (0.2744, 0.7097) 0.4151 (0.0755, 0.6613)

imputation and empirical likelihood. It also contains results from a conventional
parametric regression analysis using only the complete observations, assuming in-
dependent and identically normally distributed residuals. Table 3 shows that these
two inference methods can produce quite different parameter estimates and con-
fidence intervals. The difference in parameter estimates is as large as 50% for
the intercept and 25% for the slope parameter. Table 3 also reports estimates and
confidence intervals of the correlation coefficients using the proposed method and
Fisher’s z transformation. The latter is based on the complete observations only
and is the method used by genenetwork.org. We observe again differences be-
tween the two methods despite not being significant at the 5% level. The largest
difference of about 30% is registered at gene H3071E5. As indicated earlier, part
of the differences may be the estimation bias of the complete observations-based
estimators as they are unable to filter out selection bias in the missingness.

APPENDIX

Let f (x) be the probability density function of X and

mg(x) = E{g(X,Y, θ0)|X = x}.
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The following conditions are needed in the proofs of the theorems.
C1: The missing propensity function p(x), the X-density f (x) and mg(x) all

have bounded partial derivatives with respect to x up to an order q with q ≥ 2 and
2q > dx , and infx p(x) ≥ c0 for some c0 > 0.

C2: The true parameter value θ0 is the unique solution to E{g(Z, θ) = 0}; the
estimating function g(x, y, θ0) has bounded qth order partial derivatives with re-
spect to x, and E‖g(Z, θ0)‖4 < ∞.

C3: The second partial derivative ∂2g(z, θ)/∂θ ∂θτ is continuous in θ in
a neighborhood of the true value θ0; functions ‖∂g(z, θ)/∂θ‖, ‖g(z, θ)‖3 and
‖∂2g(z, θ)/∂θ ∂θτ‖ are all uniformly bounded by some integrable function M(z)

in the neighborhood of θ0.
C4: The matrices 	 and 	̃ defined in (7) and (8) are, respectively, positive defi-

nite and E[∂g(z, θ)/∂θ] has full column rank p.
C5: The smoothing bandwidth h satisfies nhdx → ∞ and

√
nhq → 0 as n →

∞. Here q is the order of the kernel K .
Assuming p(x) being bounded away from zero in C1 implies that data cannot

be missing with probability 1 anywhere in the domain of the X variable. Condi-
tions C2, C3 and C4 are standard assumption for empirical likelihood-based infer-
ence with estimating equations. In condition C5, that

√
nhq → 0 is to control the

bias induced by the kernel smoothing, whereas that nhdx → ∞ leads to consistent
estimation of the conditional distribution. To simplify the exposition and without
loss of generality, we will only deal with the case that q = 2 in the proof.

LEMMA A.1. Assume that conditions C1–C5 are satisfied, then as n → ∞
and κ → ∞,

n−1/2
n∑

i=1

g̃i(θ0)
L→ N(0,	),

where 	 = E{p−1(X)Var(g|X) + E(g|X)E(gτ |X)}.

For the proof of Lemma A.1, we need the following proposition, which is a di-
rect consequence of Lemma 1 in [29].

PROPOSITION A.1. Let {Vi} be a sequence of random variables such that,

for some function h, as n → ∞, h(V1, . . . , Vn)
L→ �, where � has a distribution

function G. If {Ui} is a sequence of random variables such that

P {Un − h(V1, . . . , Vn) ≤ s | V1, . . . , Vn} → F(s)

almost surely for all s ∈ R, where F is a continuous distribution function, then

P(Un ≤ t) → (G ∗ F)(t)

for all t ∈ R, where “*” denotes the convolution operator.
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PROOF OF LEMMA A.1. Let u ∈ R
r and ‖u‖ = 1. Also let gu(Z, θ0) =

uτg(Z, θ0) and g̃ui(θ0) = uτ g̃i(θ0). First we need to show that

n−1/2
n∑

i=1

g̃ui(θ0)
L→ N(0, uτ	u)

and then use the Cramér–Wold device to prove Lemma A.1. Define

mgu(x) = E
(
gu(X,Y, θ0)|X = x

)
and

m̂gu(x) =
∑n

i=1 δiW((x − Xi)/h)gu(x,Yi, θ0)∑n
i=1 δiW((x − Xi)/h)

.

Now we have

1

n

n∑
i=1

{
δigu(Xi, Yi, θ0) + (1 − δi)κ

−1
κ∑

ν=1

gu(Xi, Ỹiν, θ0)

}

= 1

n

n∑
i=1

δi{gu(Xi, Yi, θ0) − mgu(Xi)}

+ 1

n

n∑
i=1

(1 − δi)

{
κ−1

κ∑
ν=1

gu(Xi, Ỹiν, θ0) − m̂gu(Xi)

}

+ 1

n

n∑
i=1

(1 − δi){m̂gu(Xi) − mgu(Xi)} + 1

n

n∑
i=1

mgu(Xi)

:= Sn + An + Tn + Rn.

Note that Sn and Rn are sums of independent and identically distributed random
variables. Define η(x) = p(x)f (x) and η̂(x) = 1

n

∑n
j=1 δjWh(Xj −x) as its kernel

estimator, where Wh(u) = h−dxW(u/h). Then,

Tn = 1

n

n∑
i=1

(1 − δi)
(1/n)

∑n
j=1 δjWh(Xj − Xi){gu(Xi, Yj , θ0) − mgu(Xj )}

η(Xi)

+ 1

n

n∑
i=1

(1 − δi){m̂gu(Xi) − mgu(Xi)}η(Xi) − η̂(Xi)

η(Xi)

+ 1

n

n∑
i=1

(1 − δi)

{
(1/n)

∑n
j=1 δjWh(Xj − Xi)(mgu(Xj ) − mgu(Xi))

η(Xi)

}

:= Tn1 + Tn2 + Tn3.
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We now derive the asymptotic distribution of Tn1. Note that, by exchanging the
summation operator,

Tn1 = 1

n

n∑
i=1

(1 − δi)
(1/n)

∑n
j=1 δjWh(Xj − Xi){gu(Xi, Yj , θ0) − mgu(Xj )}

η(Xi)

= 1

n2

n∑
j=1

n∑
i=1

δj {gu(Xi, Yj , θ) − mgu(Xj )}(1 − δi)Wh(Xi − Xj)

η(Xi)
.

:= 1

n2

n∑
j=1

n∑
i=1

Qij , say.

Define

Ťn1 = 1

n2

n∑
j=1

n∑
i=1

E{Qij |(Xj ,Yj , δj )}

and write Tn1 = Ťn1 + (Tn1 − Ťn1). The following derivation will show that Tn1
is dominated by Ťn1, while (Tn1 − Ťn1) is of smaller order. We note by ignoring
terms of Op(h2), which are op(n−1/2) under the assumption that

√
nh2 → 0,

Ťn1 = 1

n

n∑
j=1

δjE

[
{gu(Xi, Yj , θ0) − mgu(Xj )}(1 − δi)Wh(Xi − Xj)

η(Xi)

∣∣∣Xj,Yj

]

= 1

n

n∑
j=1

δjEXi |Xj ,Yj

(
E

[
{gu(Xi, Yj , θ0) − mgu(Xj )}

× (1 − δi)Wh(Xi − Xj)

η(Xi)

∣∣∣Xj,Yj ,Xi

])

= 1

n

n∑
j=1

δjEXi |Xj ,Yj

[
{gu(Xi, Yj , θ0) − mgu(Xj )}

× (1 − P(Xi))Wh(Xi − Xj)

η(Xi)

]
,

where EXi |Xj ,Yj
(·) represents conditional expectation on Xi given (Xj ,Yj ). Then,

Ťn1 = 1

n

n∑
j=1

δj

∫ [
{gu(x,Yj , θ0) − mgu(Xj )}{1 − p(x)}Wh(x − Xj)

η(x)

]
f (x) dx

= 1

n

n∑
j=1

δj

∫ [
{gu(x,Yj , θ0) − mgu(Xj )}{1 − p(x)}

p(x)
Wh(x − Xj)

]
dx

= 1

n

n∑
j=1

δj

∫ [
{gu(Xj + hs,Yj , θ0) − mgu(Xj )}{1 − p(Xj + hs)}

p(Xj + hs)
W(s)

]
ds.
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Since both gu and ρ(x) = {1 − p(x)}/p(x) have bounded second derivative on x,
and

√
nh2 → 0 as n → ∞, a Taylor expansion around Xj leads to

Ťn1 = 1

n

n∑
j=1

δj {gu(Xj ,Yj , θ0) − mgu(Xj )}1 − p(Xj )

p(Xj )
+ op(n−1/2).(A.1)

Now we show Tn1 − Ťn1 = op(n−1/2). Let

Tn1i = 1

n

n∑
j=1

Qij

and

Ťn1i = 1

n

n∑
j=1

E{Qij | (Xj ,Yj , δj )}.

By straight forward derivations,

nE(Tn1 − Ťn1)
2

= 1

n

n∑
i=1

E(Tn1i − Ťn1i)
2 + 2

n

∑
i �=k

E{(Tn1i − Ťn1i)(Tn1k − Ťn1k)}(A.2)

= E(Tn1i − Ťn1i )
2.

The last step used the fact that Ei �=j {(Tn1i − Ťn1i )(Tn1j − Ťn1j )} = 0, which can
be shown by conditioning on the completely observed portion of data. Thus,

nE(Tn1 − Ťn1)
2

= ET 2
n1i − EŤ 2

n1i

≤ ET 2
n1i

≤ E

{
(1/n)

∑n
j=1 δjWh(Xj − Xi){gu(Xi, Yj , θ0) − mgu(Xj )}

η(Xi)

}2

→ 0,

by a standard derivation in kernel estimation. This suggests that Tn1 = Ťn1 +
op(n−1/2). By a standard argument, it may be shown that Tn2 = op(n−1/2). For
Tn3, a similar derivation to that for Tn1 shows that Tn3 = op(n−1/2). Thus,

√
nTn

L→ N
[
0,E

{(
1 − p(X)

)2
σ 2

gu
(X)/p(X)

}]
,(A.3)

where σ 2
gu

(X) = Var{gu(X,Y, θ0) | X}.
Note that

√
nSn

L→ N[0,E{p(X)σ 2
gu

(X)}] and
√

nRn
L→ N[0,Var{mgu(X)}]

by the central limit theorem. Furthermore, it can be shown that

nCov(Sn, Tn) = E
{(

1 − p(X)
)
σ 2

gu
(X)

} + o(1),
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nCov(Rn,Sn) = 0 and nCov(Rn,Tn) = o(1). It readily follows that

√
n

⎛
⎝ Sn

Tn

Rn

⎞
⎠ L→ N

(
0,

[
ϒ 0
0 Var(mgu(X))

])
,

where

ϒ =
[

E{p(X)σ 2
gu

(X)} E
{(

1 − p(X)
)
σ 2

gu
(X)

}
E

{(
1 − p(X)

)
σ 2

gu
(X)

}
E

{(
1 − p(X)

)2
σ 2

gu
(X)/p(X)

}
]

.

Hence, we have
√

n(Sn + Tn + Rn)
L→ N [0,E{σ 2

gu
(X)/p(X)} + Var{mgu(X)}].(A.4)

Now we consider the asymptotic distribution of

An = 1

n

n∑
i=1

(1 − δi)

{
κ−1

κ∑
ν=1

gu(Xi, Ỹiν, θ0) − m̂gu(Xi)

}
.

Given all the original observations, n−1/2(1 − δi){κ−1 ∑κ
ν=1 gu(Xi, Ỹiν, θ) −

m̂(Xi)}, i = 1,2, . . . , n, are independent with conditional mean zero and condi-
tional variance (nκ)−1(1 − δi){γ̂gu(Xi) − m̂2

gu
(Xi)}. Here

γ̂gu(x) =
n∑

j=1

δjWh(x − Xj)g
2
u(x,Yj , θ0)/η̂(x)

is a kernel estimator of γgu(x) = E{g2
u(X,Y, θ0)|X = x}. By verifying Lya-

pounov’s condition, we can show that conditioning on the original observa-
tions,

√
nAn has an asymptotic normal distribution with mean zero and variance

(nκ)−1 ∑n
i=1(1 − δi){γ̂gu(Xi) − m̂2

gu
(Xi)}. The conditional variance

(nκ)−1
n∑

i=1

(1 − δi){γ̂gu(Xi) − m̂2
gu

(Xi)} p→ κ−1E[{1 − p(X)}σ 2
gu

(X)].(A.5)

By Proposition A.1, we can show that, as n → ∞ and κ → ∞,
√

n(Sn + Tn +
Rn + An) converges to a normal distribution with mean 0 and variance

Var{mgu(Z, θ0)} + E{p−1(X)σ 2
gu

(X)} = uτ	u.

Hence, n−1/2 ∑n
i=1 g̃u(Xi, θ0)

L→ N(0, uτ	u). And Lemma A.1 is proved by us-
ing the Cramèr–Wold device. �

LEMMA A.2. Under the conditions C1–C5, as n → ∞ and κ → ∞,

1

n

n∑
i=1

g̃i(θ0)g̃
τ
i (θ0)

p→ 	̃,

where 	̃ = E{p(X)Var(g|X) + E(g|X)E(gτ |X)}.
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PROOF. Consider the (j, k)th element of the matrix 1
n

∑n
i=1 g̃i(θ0)g̃

τ
i (θ0), that

is,

1

n

n∑
i=1

g̃i(j)(θ0)g̃i(k)(θ0),

where g̃i(j)(θ0) and g̃i(k)(θ0) represent the j th and kth element of the vector g̃i(θ0),
respectively, for 0 ≤ j, k ≤ r . Similarly, we use g(j) to represent the j th element
of g. Note that

1

n

n∑
i=1

g̃i(j)(θ0)g̃i(k)(θ0)

= 1

n

n∑
i=1

δig(j)(Zi, θ0)g(k)(Zi, θ0)

+ 1

n

n∑
i=1

(1 − δi)

{
κ−1

κ∑
ν=1

g(j)(Xi, Ỹiν, θ0)

}{
κ−1

κ∑
ν=1

g(k)(Xi, Ỹiν, θ0)

}

:= Bn1 + Bn2.

Moreover,

Bn1 = 1

n

n∑
i=1

δi

{
g(j)(Zi, θ0) − mg(j)

(Xi)
}{

g(k)(Zi, θ0) − mg(k)
(Xi)

}

− 1

n

n∑
i=1

δimg(j)
(Xi)mg(k)

(Xi) + 1

n

n∑
i=1

δig(j)(Zi, θ0)mg(k)
(Xi)

+ 1

n

n∑
i=1

δig(k)(Zi, θ0)mg(j)
(Xi)

:= Bn1a + Bn1b + Bn1c + Bn1d .

It is obvious that Bn1a , Bn1b, Bn1c and Bn1d are all sums of independent and iden-
tically distributed random variables. By law of large numbers and the continuous
mapping theorem, we can show that

Bn1
p→ E

[
p(X)Cov

{
g(j)(Z, θ0), g(k)(Z, θ0)|X} + p(X)mg(j)

(X)mg(k)
(X)

]
,

where

Cov
{
g(j)(Z, θ0), g(k)(Z, θ0)|X}
= E

[{
g(j)(Z, θ0) − mg(j)

(Xi)
}{

g(k)(Z, θ0) − mg(k)
(Xi)

}|X]
.
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Note that

Bn2 = 1

n

n∑
i=1

(1 − δi)

[{
κ−1

κ∑
ν=1

g(j)(Xi, Ỹiν, θ0)

}{
κ−1

κ∑
ν=1

g(k)(Xi, Ỹiν, θ0)

}

− m̂g(j)
(Xi)m̂g(k)

(Xi)

]

+ 1

n

n∑
i=1

(1 − δi)
{
m̂g(j)

(Xi)m̂g(k)
(Xi) − mg(j)

(Xi)mg(k)
(Xi)

}

+ 1

n

n∑
i=1

(1 − δi)mg(j)
(Xi)mg(k)

(Xi)

:= Bn2a + Bn2b + Bn2c.

As κ−1 ∑κ
ν=1 g(j)(Xi, Ỹiν, θ0) has conditional mean m̂g(j)

(Xi) given the origi-

nal observations χn, it can be shown that Bn2a
p→ 0 as κ → ∞. By argument

similar to those used for (A.3), Bn2b
p→ 0 as n → ∞. Obviously Bn2c is the

sum of independent and identically distributed random variables, which leads

to Bn2c
p→ E[{1 − p(X)}mg(j)

(Xi)mg(k)
(Xi)]. Hence, we have Bn2

p→ E[{1 −
p(X)}mg(j)

(Xi)mg(k)
(Xi)] as n → ∞ and κ → ∞. Therefore,

Bn1 + Bn2
p→ E

[
p(X)Cov

{
g(j)(Z, θ0), g(k)(Z, θ0)|X} + mg(j)

(X)mg(k)
(X)

]
.

This completes the proof of Lemma A.2. �

PROOF OF THEOREM 1. The proof of Theorem 1 is very similar to that of
Lemma 1 of Qin and Lawless [23]. Briefly, we can show

t (θ) =
{

1

n

n∑
i=1

g̃i(θ)g̃τ
i (θ)

}−1{
1

n

n∑
i=1

g̃i(θ)

}
+ o(n−1/3)

= O(n−1/3)

almost surely uniformly for all θ such that ‖θ − θ0‖ ≤ Cn−1/3 for a positive con-
stant C.

From this and Taylor expansion, we can show �n(θ) = O(n1/3) and �n(θ0) =
O(log logn) almost surely. Noting that �(θ) is a continuous function about θ as θ

belongs to the ball ‖θ − θ0‖ ≤ Cn−1/3, with probability tending to 1, �n(θ) has a
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minimum θ̂n in the interior of the ball, and this θ̂n satisfies

∂�n(θ)

∂θ

∣∣∣∣
θ=θ̂n

= ∑
i

{∂tτ (θ)/∂θ}g̃i(θ) + {∂g̃i(θ)/∂θ}τ t (θ)

1 + tτ (θ)g̃i(θ)

∣∣∣∣
θ=θ̂n

= ∑
i

1

1 + tτ (θ)g̃i(θ)

{
∂g̃i(θ)

∂θ

}τ

t (θ)|
θ=θ̂n

= 0.

Hence, the θ̂n satisfies the second equation of (6). From the algorithm of the empir-
ical likelihood formulation, the θ̂n automatically satisfies the first equation of (6).
This completes the proof of Theorem 1. �

PROOF OF THEOREM 2. Recall that θ̂n and t̂ = t (θ̂n) satisfy

Q1n(θ̂n, t̂) = 0, Q2n(θ̂n, t̂) = 0.

Taking the derivatives with regard to θ and tτ ,

∂Q1n(θ,0)

∂θ
= 1

n

∑
i

∂g̃i(θ)

∂θ
,

∂Q1n(θ,0)

∂tτ
= −1

n

∑
i

g̃i(θ)g̃τ
i (θ),

∂Q2n(θ,0)

∂θ
= 0,

∂Q2n(θ,0)

∂tτ
= 1

n

∑
i

{
∂g̃i(θ)

∂θ

}τ

.

Expanding Q1n(θ̂n, t̂) and Q2n(θ̂n, t̂) at (θ0,0), we have

0 = Q1n(θ̂n, t̂)

= Q1n(θ0,0) + ∂Q1n(θ0,0)

∂θ
(θ̂n − θ0) + ∂Q1n(θ0,0)

∂tτ
(t̂ − 0) + op(ζn),

0 = Q2n(θ̂n, t̂)

= Q2n(θ0,0) + ∂Q2n(θ0,0)

∂θ
(θ̂n − θ0) + ∂Q2n(θ0,0)

∂tτ
(t̂ − 0) + op(ζn),

where ζn = ‖θ̂n − θ0‖ + ‖t̂‖. Then, we have(
t̂

θ̂n − θ0

)
= S−1

n

(−Q1n(θ0,0) + op(ζn)

op(ζn)

)
,

where

Sn =
⎛
⎜⎝

∂Q1n

∂tτ

∂Q1n

∂θ
∂Q2n

∂tτ
0

⎞
⎟⎠

(θ0,0)

p→
(

S11 S12
S21 0

)
=

⎛
⎜⎝ −	̃ E

(
∂g

∂θ

)

E

(
∂g

∂θ

)τ

0

⎞
⎟⎠ .

Here ∂Q1n/∂tτ |(θ0,0)
p→ S11 follows from Lemma A.2, and ∂Q1n/∂θ |(θ0,0)

p→ S12
can be derived by arguments similar to those used for the proof of Lemma A.1.
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Note that Q1n(θ0,0) = 1
n

∑n
i=1 g̃i(θ0) = Op(n−1/2), it follows that ζn =

Op(n−1/2). After some matrix manipulation, we have
√

n(θ̂n − θ0) = S−1
22.1S21S

−1
11

√
nQ1n(θ0,0) + op(1),

where V = S−1
22.1 = {E(

∂g
∂θ

)τ 	̃−1E(
∂g
∂θ

)}−1. By Lemma A.1,
√

nQ1n(θ0,0)
L→

N(0,	), and the theorem follows. �

PROOF OF THEOREM 3. Notice that

R(θ0) = 2

[∑
i

log{1 + tτ0 g̃i(θ0)} − ∑
i

log{1 + t̂ τ g̃i(θ̂n)}
]
,

where t0 = t (θ0), and

�(θ̂n, t̂) = ∑
i

log{1 + t̂ τ g̃i(θ̂n)} = −n

2
Qτ

1n(θ0,0)AQ1n(θ0,0) + op(1),

where A = S−1
11 (I + S12S

−1
22.1S21S

−1
11 ). Under H0,

1

n

∑
i

1

1 + tτ0 g̃i(θ0)
g̃i(θ0) = 0, t0 = −S−1

11 Q1n(θ0,0)S−1
11 Q1n(θ0,0) + op(1)

and
∑

i log{1 + tτ0 g̃i(θ0)} = −n
2Qτ

1n(θ0,0)S−1
11 Q1n(θ0,0) + op(1). Thus,

R(θ0) = nQτ
1n(θ0,0)(A − S−1

11 )Q1n(θ0,0) + op(1)

= √
nQτ

1n(θ0,0)S−1
11 S12S

−1
22.1S21S

−1
11

√
nQ1n(θ0,0) + op(1).

Note that

S−1
11 S12S

−1
22.1S21S

−1
11

p→ 	̃−1E

(
∂g

∂θ

)
V E

(
∂g

∂θ

)τ

	̃−1

and, by Lemma A.1,
√

nQ1n(θ0,0)
L→ N(0,	). This implies the theorem. �

PROOF OF THEOREM 4. The proof of Theorem 4 essentially involves estab-
lishing the bootstrap version of Lemma A.1 to Theorem 3. We only outline the
main steps in proving the bootstrap version of Lemma A.1 here.

Let X∗
i , Y ∗

i , Ỹ ∗
iν , δ∗

i , g̃∗
ui be counter parts of Xi , Yi , Ỹiν , δi , g̃ui in the bootstrap

sample; and Sn(θ̂n), An(θ̂n), Tn(θ̂n) and Rn(θ̂n) be the quantities Sn, An, Tn and Rn

with θ0 replaced by θ̂n, respectively. Furthermore, let S∗
n(θ̂n), A∗

n(θ̂n), T ∗
n (θ̂n) and

R∗
n(θ̂n) be their bootstrap counterparts. First, we will consider the conditional dis-

tribution of
√

n{S∗
n(θ̂n)+ T ∗

n (θ̂n)+R∗
n(θ̂n)− Sn(θ̂n)− Tn(θ̂n)−Rn(θ̂n)} given the

original data. We use E∗(·) and Var∗(·) to represent the conditional expectation
and variance given the original data, respectively. Define

m̂gu(x, θ̂n) =
∑n

i=1 δiW((x − Xi)/h)gu(x,Yi, θ̂n)∑n
i=1 δiW((x − Xi)/h)
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and

m̂∗
gu

(x, θ̂n) =
∑n

i=1 δ∗
i W((x − X∗

i )/h)gu(x,Y ∗
i , θ̂n)∑n

i=1 δ∗
i W((x − X∗

i )/h)
.

Note that Sn(θ̂n) + Tn(θ̂n) + Rn(θ̂n) = 1
n

∑n
i=1{δigu(Zi, θ̂n) + (1 − δi)m̂gu(Xi,

θ̂n)}. Thus,

S∗
n(θ̂n) + T ∗

n (θ̂n) + R∗
n(θ̂n) − Sn(θ̂n) − Tn(θ̂n) − Rn(θ̂n)

= 1

n

n∑
i=1

[δ∗
i gu(Z

∗
i , θ̂n) + (1 − δ∗

i )m̂gu(X
∗
i , θ̂n)

− E∗{δ∗
i gu(Z

∗
i , θ̂n) + (1 − δ∗

i )m̂gu(X
∗
i , θ̂n)}]

+ 1

n

n∑
i=1

(1 − δ∗
i ){m̂∗

gu
(X∗

i , θ̂n) − m̂gu(X
∗
i , θ̂n)}

:= B1 + B2.

It can be shown that B2 = op(n−1/2). For B1, we can apply the central limit the-
orem for bootstrap samples, for example, [31] to show that the conditional distri-
bution of

√
nB1 given χn is asymptotically normal with mean zero and variance

Var∗{δ∗
i gu(Z

∗
i , θ̂n) + (1 − δ∗

i )m̂gu(X
∗
i , θ̂n)}.

Using similar methods for Lemma A.1, we can also derive the conditional dis-
tribution of

√
nA∗

n(θ̂n) given the observations in the bootstrap sample that are not
imputed. Then by employing Proposition A.1, it follows that the conditional dis-
tribution of n−1/2 ∑n

i=1 g̃∗
ui(θ̂n) given χn is asymptotically normal with mean zero

and variance σ̂ 2∗
u = Var∗{δ∗

i gu(Z
∗
i , θ̂n)+ (1− δ∗

i )m̂gu(X
∗
i , θ̂n)}. The bootstrap ver-

sion of Lemma A.1 is justified by noting that σ̂ 2∗
u converges in probability to uτ	u

as n → ∞, then employing the Cramèr–Wold device. �
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