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LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS
FOR HIGH-DIMENSIONAL DATA

BY NICOLAI MEINSHAUSEN1 AND BIN YU2

University of Oxford and University of California, Berkeley

The Lasso is an attractive technique for regularization and variable selec-
tion for high-dimensional data, where the number of predictor variables pn

is potentially much larger than the number of samples n. However, it was re-
cently discovered that the sparsity pattern of the Lasso estimator can only be
asymptotically identical to the true sparsity pattern if the design matrix satis-
fies the so-called irrepresentable condition. The latter condition can easily be
violated in the presence of highly correlated variables.

Here we examine the behavior of the Lasso estimators if the irrepre-
sentable condition is relaxed. Even though the Lasso cannot recover the cor-
rect sparsity pattern, we show that the estimator is still consistent in the
�2-norm sense for fixed designs under conditions on (a) the number sn of
nonzero components of the vector βn and (b) the minimal singular values
of design matrices that are induced by selecting small subsets of variables.
Furthermore, a rate of convergence result is obtained on the �2 error with
an appropriate choice of the smoothing parameter. The rate is shown to be
optimal under the condition of bounded maximal and minimal sparse eigen-
values. Our results imply that, with high probability, all important variables
are selected. The set of selected variables is a meaningful reduction on the
original set of variables. Finally, our results are illustrated with the detection
of closely adjacent frequencies, a problem encountered in astrophysics.

1. Introduction. The Lasso was introduced by [29] and has since been proven
to be very popular and well studied [18, 35, 41, 42]. Some reasons for the popu-
larity might be that the entire regularization path of the Lasso can be computed
efficiently [11, 25], that Lasso is able to handle more predictor variables than sam-
ples and produces sparse models which are easy to interpret. Several extensions
and variations have been proposed [5, 21, 36, 40, 42].

1.1. Lasso-type estimation. The Lasso estimator, as introduced by [29], is
given by

β̂λ = arg min
β

‖Y − Xβ‖2
�2

+ λ‖β‖�1,(1)
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where X = (X1, . . . ,Xp) is the n × p matrix whose columns consist of the
n-dimensional fixed predictor variables Xk , k = 1, . . . , p. The vector Y contains
the n-dimensional set of real-valued observations of the response variable.

The distribution of Lasso-type estimators has been studied in Knight and
Fu [18]. Variable selection and prediction properties of the Lasso have been stud-
ied extensively for high-dimensional data with pn � n, a frequently encountered
challenge in modern statistical applications. Some studies Bunea, Tsybakov and
Wegkamp, for example, [2], Greenshtein and Ritov, for example, [13], van de Geer,
for example, [34] have focused mainly on the behavior of prediction loss. Much
recent work aims at understanding the Lasso estimates from the point of view of
model selection, including Candes and Tao [5], Donoho, Elad and Temlyakov [10],
Meinshausen and Bühlmann [23], Tropp [30], Wainwright [35], Zhao and Yu [41],
Zou [42]. For the Lasso estimates to be close to the model selection estimates
when the data dimensions grow, all the aforementioned papers assumed a sparse
model and used various conditions that require the irrelevant variables to be not
too correlated with the relevant ones. Incoherence is the terminology used in the
deterministic setting of Donoho, Elad and Temlyakov [10] and “irrepresentability”
is used in the stochastic setting (linear model) of Zhao and Yu [41]. Here we focus
exclusively on the properties of the estimate of the coefficient vector under squared
error loss and try to understand the behavior of the estimate under a relaxed irrep-
resentable condition (hence we are in the stochastic or linear model setting). The
aim is to see whether the Lasso still gives meaningful models in this case.

More discussions on the connections with other works will be covered in Sec-
tion 1.5 after notions are introduced to state explicitly what the irrepresentable
condition is so that the discussions are clearer.

1.2. Linear regression model. We assume a linear model for the observations
of the response variable Y = (Y1, . . . , Yn)

T ,

Y = Xβ + ε,(2)

where ε = (ε1, . . . , εn)
T is a vector containing independently and identically dis-

tributed noise with εi ∼ N (0, σ 2) for all i = 1, . . . , n. The assumption of Gaus-
sianity could be relaxed and replaced with exponential tail bounds on the noise if,
additionally, predictor variables are assumed to be bounded. When there is a ques-
tion of nonidentifiability for β , for pn > n, we define β as

β = arg min
{β : EY=Xβ}

‖β‖�1 .(3)

The aim is to recover the vector β as well as possible from noisy observa-
tions Y . For the equivalence between �1- and �0-sparse solutions see, for exam-
ple, Donoho [8], Donoho and Elad [9], Fuchs [12], Gribonval and Nielsen [14],
Tropp [30, 31].
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1.3. Recovery of the sparsity pattern and the irrepresentable condition. There
is empirical evidence that many signals in high-dimensional spaces allow for a
sparse representation. As an example, wavelet coefficients of images often exhibit
exponential decay, and a relatively small subset of all wavelet coefficients allow
a good approximation to the original image [17, 19, 20]. For conceptual simplicity,
we assume in our regression setting that the vector β is sparse in the �0-sense and
many coefficients of β are identically zero. The corresponding variables have thus
no influence on the response variable and could be safely removed. The sparsity
pattern of β is understood to be the sign function of its entries, with sign(x) = 0
if x = 0, sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. The sparsity pattern of
a vector might thus look like

sign(β) = (+1,−1, 0, 0,+1,+1,−1,+1, 0, 0, . . .),

distinguishing whether variables have a positive, negative or no influence at all
on the response variable. It is of interest whether the sparsity pattern of the Lasso
estimator is a good approximation to the true sparsity pattern. If these sparsity
patterns agree asymptotically, the estimator is said to be sign consistent [41].

DEFINITION 1 (Sign consistency). An estimator β̂λ is sign consistent if and
only if

P {sign(β) = sign(β̂)} → 1 as n → ∞.

It was shown independently in Zhao and Yu [41] and Zou [42] in the linear
model case and [23] in a Gaussian Graphical Model setting that sign consistency
requires a condition on the design matrix. The assumption was termed neighbor-
hood stability in Meinshausen and Bühlmann [23] and irrepresentable condition
in Zhao and Yu [41]. Let C = n−1XT X. The dependence on n is neglected nota-
tionally.

DEFINITION 2 (Irrepresentable condition). Let K = {k :βk �= 0} be the set of
relevant variables and let N = {1, . . . , p}\K be the set of noise variables. The sub-
matrix CHK is understood as the matrix obtained from C by keeping rows with
index in the set H and columns with index in K . The irrepresentable condition is
fulfilled if

‖CNKC−1
KK sign(βK)‖�∞ < 1.

In Zhao and Yu [41], an additional strong irrepresentable condition is defined
which requires that the above elements are not merely smaller than 1 but are uni-
formly bounded away from 1. Zhao and Yu [41], Zou [42] and Meinshausen and
Bühlmann [23] show that the Lasso is sign consistent only if the irrepresentable
condition holds.
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PROPOSITION 1 (Sign consistency). Assume that the irrepresentable condi-
tion or neighborhood stability is not fulfilled. Then there exists no sequence λ = λn

such that the estimator β̂λ is sign consistent.

It is worth noting that a slightly stronger condition has been used in Tropp [30,
31] in a deterministic study of Lasso’s model selection properties where 1 −
CNKC−1

KK is called ERC (exact recovery coefficient). A positive ERC implies the
irrepresentable condition for all β values.

In practice, it might be difficult to verify whether the condition is fulfilled. This
led various authors to propose interesting extensions to the Lasso [22, 39, 42]. Be-
fore giving up on the Lasso altogether, however, we want to examine in this paper
in what sense the original Lasso procedure still gives sensible results, even if the
irrepresentable condition or, equivalently, neighborhood stability is not fulfilled.

1.4. �2-consistency. The aforementioned studies showed that if the irrepre-
sentable condition is not fulfilled, the Lasso cannot select the correct sparsity pat-
tern. In this paper we show that the Lasso selects in these cases the nonzero entries
of β and some not-too-many additional zero entries of β under relaxed condi-
tions than the irrepresentable condition. The nonzero entries of β are in any case
included in the selected model. Moreover, the size of the estimated coefficients al-
lows to separate the few truly zero and the many nonzero coefficients. However, we
note that in extreme cases, when the variables are linearly dependent, even these
relaxed conditions will be violated. In these situations, it is not sensible to use the
�2-metric on β to assess Lasso.

Our main result shows the �2-consistency of the Lasso, even if the irrepre-
sentable condition is violated. To be precise, an estimator is said to be �2-consistent
if

‖β̂ − β‖�2 → 0 as n → ∞.(4)

Rates of convergence results will also be derived and under the condition of
bounded maximal and minimal sparse eigenvalues, the rate is seen optimal. An
�2-consistent estimator is attractive, as important variables are chosen with high
probability and falsely chosen variables have very small coefficients. The bottom
line will be that even if the sparsity pattern of β cannot be recovered by the Lasso,
we can still obtain a good approximation.

1.5. Related work. Prediction loss for high-dimensional regression under an
�1-penalty has been studied for quadratic loss function in Greenshtein and Ri-
tov [13] and for general Lipschitz loss functions in van de Geer [34]. With a focus
on aggregation, similarly interesting results are derived in Bunea, Tsybakov and
Wegkamp [3]. Both van de Geer [34] and Bunea, Tsybakov and Wegkamp [3]
obtain impressive results for random design and sharp bounds for the �1-distance
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between the vector β and its Lasso estimate β̂λ. In the current manuscript, we fo-
cus on the �2-estimation loss on β . As a consequence, we can derive consistency
in the sense of (4) under the condition that sn logpn/n → 0 for n → ∞ (ignoring
logn factors). An implication of our work is thus that the sparsity sn is allowed to
grow almost as fast as the sample size if one is interested to obtain convergence
in �2-norm. In contrast, the results in [3, 34] require sn = o(

√
n) to obtain conver-

gence in �1-norm.
The recent independent work of Zhang and Huang [38] shows that the subspace

spanned by the variables selected by Lasso is close to an optimal subspace. The
results also imply that important variables are chosen with high probability and
provides a tight bound on the �2-distance between the vector β and its Lasso esti-
mator. A “partial Riesz condition” is employed in [38], which is rather similar to
our notion of incoherent design, defined further below in (6).

We would like to compare the results of this manuscript briefly with results
in Donoho [8] and Candes and Tao [5], as both of these papers derive bounds
on the �2-norm distance between β and β̂ for �1-norm constrained estimators.
In Donoho [8] the design is random and the random predictor variables are as-
sumed to be independent. The results are thus not directly comparable to the results
derived here for general fixed designs. Nevertheless, results in Meinshausen and
Bühlmann [23] suggest that the irrepresentable condition is with high probability
fulfilled for independently normal distributed predictor variables. The results in
Donoho [8] can thus not directly be used to study the behavior of the Lasso under
a violated irrepresentable condition, which is our goal in the current manuscript.

Candes and Tao [5] study the properties of the so-called “Dantzig selector,”
which is very similar to the Lasso, and derive bounds on the �2-distance between
the vector β and the proposed estimator β̂ . The results are derived under the con-
dition of a Uniform Uncertainty Principle (UUP), which was introduced in Can-
des and Tao [4]. The UUP is related to our assumptions on sparse eigenvalues
in this manuscript. A comparison between these two assumptions is given after
the formulation (10) of the UUP. The bounds on the �2-distance between the true
coefficient vector β and its Lasso estimator (obtained in the current manuscript)
or, respectively, “Dantzig selector” (obtained in [5]) are quite similar in nature.
This comes maybe as no surprise since the formulation of the “Dantzig selector”
is quite similar to the Lasso [24]. However, it does not seem straightforward to
translate the bounds obtained for the “Dantzig selector” into bounds for the Lasso
estimator and vice versa. We employ also somewhat different conditions because
there could be situations of design matrix arising in statistical practice where the
dependence between the predictors is stronger than what is allowed by the UUP,
but would satisfy our condition of “incoherent design” to be defined in the next
section. It would certainly be of interest to study the connection between the Lasso
and “Dantzig selector” further, as the solutions share many similarities.

Final note: a recent follow-up work [1] provides similar bounds as in this paper
for both Lasso and Dantzig selectors.
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2. Main assumptions and results. First, we introduce the notion of sparse
eigenvalues, which will play a crucial role in providing bounds for the convergence
rates of the Lasso estimator. Thereafter, the assumptions are explained in detail and
the main results are given.

2.1. Sparse eigenvalues. The notion of sparse eigenvalues is not new and has
been used before [8]; we merely intend to fixate notation. The m-sparse minimal
eigenvalue of a matrix is the minimal eigenvalue of any m × m-dimensional sub-
matrix.

DEFINITION 3. The m-sparse minimal eigenvalue and m-sparse maximal
eigenvalue of C are defined as

φmin(m) = min
β : ‖β‖�0≤
m�

βT Cβ

βT β
and φmax(m) = max

β : ‖β‖�0≤
m�
βT Cβ

βT β
.(5)

The minimal eigenvalue of the unrestricted matrix C is equivalent to φmin(p).
If the number of predictor variables pn is larger than sample size, pn > n, this
eigenvalue is zero, as φmin(m) = 0 for any m > n.

A crucial factor contributing to the convergence of the Lasso estimator is the
behavior of the smallest m-sparse eigenvalue, where the number m of variables
over which the minimal eigenvalues is computed is roughly the same order as the
sparsity sn, or the number of nonzero components, of the true underlying vector β .

2.2. Sparsity multipliers and incoherent designs. As apparent from the inter-
esting discussion in Candes and Tao [5], one cannot allow arbitrarily large “coher-
ence” between variables if one still hopes to recover the correct sparsity pattern.
Assume that there are two vectors β and β̃ so that the signal can be represented by
either vector Xβ = Xβ̃ and both vectors are equally sparse, say ‖β‖�0 = ‖β̃‖0 = sn

and are not identical. We have no hope of distinguishing between β and β̃ in such a
case: if indeed Xβ = Xβ̃ and β and β̃ are not identical, it follows that the minimal
sparse eigenvalue φmin(2sn) = 0 vanishes as X(β − β̃) = 0 and ‖β − β̃‖�0 ≤ 2sn.
If the minimal sparse eigenvalue of a selection of 2sn variables is zero, we have no
hope of recovering the true sparse underlying vector from noisy observations.

To define our assumption about sufficient conditions for recovery, we need the
definition of incoherent design. As motivated by the example above, we would
need a lower bound on the minimal eigenvalue of at least 2sn variables, where sn
is again the number of nonzero coefficients. We now introduce the concepts of
sparsity multiplier ad incoherent design to make this requirement a bit more gen-
eral, as minimal eigenvalues are allowed to converge to zero slowly.

A design is called incoherent in the following if minimal sparse eigenvalues are
not decaying too fast, in a sense made precise in the definition below. For notational
simplicity, let in the following

φmax = φmax(sn + min{n,pn})
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be the maximal eigenvalue of a selection of at most sn + min{n,pn} variables. At
the cost of more involved proofs, one could also work with the maximal eigen-
value of a smaller selection of variables instead. Even though we do not assume
an upper bound for the quantity φmax, it would not be very restrictive to do so
for the pn � n setting. To be specific, assume multivariate normal predictors. If
the maximal eigenvalue of the population covariance matrix, which is induced by
selecting 2n variables, is bounded from above by an arbitrarily large constant, it
follows by Theorem 2.13 in Davidson and Szarek [7] or Lemma A3.1 in Paul [26]
that the condition number of the induced sample covariance matrix observes a
Gaussian tail bound. Using an entropy bound for the possible number of subsets
when choosing n out of pn variables. The maximal eigenvalue of a selection of
2 min{n,p} variables is thus bounded from above by some constant, with prob-
ability converging to 1 for n → ∞ under the condition that logpn = o(nκ) for
some κ < 1, and the assumption of a bounded φmax, even though not needed, is
thus maybe not overly restrictive.

As the maximal sparse eigenvalue is typically growing only very slowly as a
function of the number of variables, the focus will be on the decay of the smallest
sparse eigenvalue, which is a much more pressing problem for high-dimensional
data.

DEFINITION 4 (Incoherent designs). A design is called incoherent if there
exists a positive sequence en, the so-called sparsity multiplier sequence, such that

lim inf
n→∞

enφmin(e
2
nsn)

φmax(sn + min{n,pn}) ≥ 18.(6)

Our main result will require incoherent design. The constant 18 could quite
possibly be improved upon. We will assume for the following that the multiplier
sequence is the smallest. Below, we give some simple examples under which the
condition of incoherent design is fulfilled.

2.2.1. Example: block designs. The first example is maybe not overly realistic
but gives, hopefully, some intuition for the condition. A “block design” is under-
stood to have the structure

n−1XT X =

⎛
⎜⎜⎝

	(1) 0 · · · 0
0 	(2) · · · 0
· · · · · · · · · · · ·
0 0 · · · 	(d)

⎞
⎟⎟⎠ ,(7)

where the matrices 	(1), . . . ,	(d) are of dimension b(1), . . . , b(d), respectively.
The minimal and maximal eigenvalues over all d sub-matrices are denoted by

φblock
min := min

k
min

u∈Rb(k)

uT 	(k)u

uT u
, φblock

max := max
k

max
u∈Rb(k)

uT 	(k)u

uT u
.
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In our setup, all constants are allowed to depend on the sample size n. The question
arises if simple bounds can be found under which the design is incoherent in the
sense of (6). The blocked sparse eigenvalues are trivial lower and upper bounds,
respectively, for φmin(u) and φmax(u) for all values of u. Choosing en such that
e2
nsn = o(n), the condition (6) of incoherent design requires then enφmin(e

2
nsn) �

φmax(sn + min{n,pn}). Using φmin(e
2
nsn) ≥ φblock

min and φmax ≤ φblock
max , it is suffi-

cient if there exists a sequence en with en = o(φblock
max /φblock

min ). Together with the
requirement e2

nsn = o(n), the condition of incoherent design is fulfilled if, for
n → ∞,

sn = o

(
n

c2
n

)
,(8)

where the condition number cn is given by

cn := φblock
max /φblock

min .(9)

Under increasingly stronger assumption on the sparsity, the condition number cn

can thus grow almost as fast as
√

n, while still allowing for incoherent design.

2.2.2. More examples of incoherent designs. Consider two more examples of
incoherent design:

• The condition (6) of incoherent design is fulfilled if the minimal eigenvalue of
a selection of sn(logn)2 variables is vanishing slowly for n → ∞ so that

φmin{sn(logn)2} � 1

logn
φmax(sn + min{pn,n}).

• The condition is also fulfilled if the minimal eigenvalue of a selection of nαsn
variables is vanishing slowly for n → ∞ so that

φmin(n
αsn) � n−α/2φmax.

These results can be derived from (6) by choosing the sparse multiplier sequences
en = logn and en = nα/2, respectively. Some more scenarios of incoherent design
can be seen to satisfy (6).

2.2.3. Comparison with the uniform uncertainty principle. Candes and Tao [5]
use a Uniform Uncertainty Principle (UUP) to discuss the convergence of the so-
called Dantzig selector. The UUP can only be fulfilled if the minimal eigenvalue
of a selection of sn variables is bounded from below by a constant, where sn is
again the number of nonzero coefficients of β . In the original version, a necessary
condition for UUP is

φmin(sn) + φmin(2sn) + φmin(3sn) > 2.(10)
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At the same time, a bound on the maximal eigenvalue is a condition for the UUP
in [5],

φmax(sn) + φmax(2sn) + φmax(3sn) < 4.(11)

This UUP condition is different from our incoherent design condition. In some
sense, the UUP is weaker than incoherent design, as the minimal eigenvalues are
calculated over only 3sn variables. In another sense, UUP is quite strong as it
demands, in form (10) and assuming sn ≥ 2, that all pairwise correlations between
variables be less than 1/3! The condition of incoherent design is weaker as the
eigenvalue can be bounded from below by an arbitrarily small constant (as opposed
to the large value implied by the UUP). Sparse eigenvalues can even converge
slowly to zero in our setting.

Taking the example of block designs from further above, incoherent design al-
lowed for the condition number (9) to grow almost as fast as

√
n. In contrast, if the

sparsity sn is larger than the maximal block-size, the UUP requires that the condi-
tion number cn be bounded from above by a positive constant. Using its form (10)
and the corresponding bound (11) for the maximal eigenvalue, it implies specifi-
cally that cn ≤ 2, which is clearly stricter than the condition (8).

2.2.4. Incoherent designs and the irrepresentable condition. One might ask in
what sense the notion of incoherent design is more general than the irrepresentable
condition. At first, it might seem like we are simply replacing the strict condition
of irrepresentable condition by a similarly strong condition on the design matrix.

Consider first the classical case of a fixed number pn of variables. If the covari-
ance matrix C = Cn is converging to a positive definite matrix for large sample
sizes, the design is automatically incoherent. On the other hand, it is easy to vio-
late the irrepresentable condition in this case; for examples, see Zou [42].

The notion of incoherent designs is only a real restriction in the high-
dimensional case with pn > n. Even then, it is clear that the notion of incoherence
is a relaxation from irrepresentable condition, as the irrepresentable condition can
easily be violated even though all sparse eigenvalues are bounded well away from
zero.

2.3. Main result for high-dimensional data (pn > n). We first state our main
result.

THEOREM 1 (Convergence in �2-norm). Assume the incoherent design condi-
tion (6) with a sparsity multiplier sequence en. If λ ∝ σen

√
n logpn, there exists

a constant M > 0 such that, with probability converging to 1 for n → ∞,

‖β − β̂λn‖2
�2

≤ Mσ 2 sn logpn

n

e2
n

φ2
min(e

2
nsn)

.(12)
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A proof is given in Section 3. It can be seen from the proofs that nonasymptotic
bounds could be obtained with essentially the same results.

If we choose the smallest possible multiplier sequence en, one obtains not only
the required lower bound en ≥ 18φmax/φmin(e

2
nsn) from (6) but also an upper

bound en ≤ Kφmax/φmin(e
2
nsn). Plugging this into (12) yields the probabilistic

bound, for some positive M ,

‖β − β̂λn‖2
�2

≤ Mσ 2 sn logpn

n

φ2
max

φ4
min(e

2
nsn)

.

It is now easy to see that the convergence rate is essentially optimal as long as
the relevant eigenvalues are bounded.

COROLLARY 1. Assume that there exist constants 0 < κmin ≤ κmax < ∞ such
that

lim inf
n→∞ φmin(sn logn) ≥ κmin and

(13)
lim sup
n→∞

φmax(sn + min{n,pn}) ≤ κmax.

Then, for λ ∝ σ
√

n logpn, there exists a constant M > 0 such that, with probabil-
ity converging to 1 for n → ∞,

‖β − β̂λn‖2
�2

≤ Mσ 2 sn logpn

n
.

The proof of this follows from Theorem 1 by choosing a constant sparsity mul-
tiplier sequence, for example, 20κmax/κmin.

The rate of convergence achieved is essentially optimal. Ignoring the logpn

factor, it corresponds to the rate that could be achieved with maximum likelihood
estimation if the true underlying sparse model would be known.

It is perhaps also worthwhile to make a remark about the penalty parameter se-
quence λ and its, maybe unusual, reliance on the sparsity multiplier sequence en.
If both the relevant minimal and maximal sparse eigenvalues in (6) are bounded
from below and above, as in Corollary 1 above, the sequence en is simply a con-
stant. Any deviation from the usually optimal sequence λ ∝ σ

√
n logpn occurs

thus only if the minimal sparse eigenvalues are decaying to zero for n → ∞, in
which case the penalty parameter is increased slightly. The value of λ can be com-
puted, in theory, without knowledge about the true β . Doing so in practice would
not be a trivial task, however, as the sparse eigenvalues would have to be known.
Moreover, the noise level σ would have to be estimated from data, a difficult task
for high-dimensional data with pn > n. From a practical perspective, we mostly
see the results as implying that the �2-distance can be small for some value of the
penalty parameter λ along the solution path.
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2.4. Number of selected variables. As a result of separate interest, it is perhaps
noteworthy that bounds on the number of selected variables are derived for the
proof of Theorem 1. For the setting of Corollary 1 above, where a constant sparsity
multiplier can be chosen, Lemma 5 implies that, with high probability, at most
O(sn) variables are selected by the Lasso estimator. The selected subset is hence of
the same order of magnitude as the set of “truly nonzero” coefficients. In general,
with high probability, no more than e2

nsn variables are selected.

2.5. Sign consistency with two-step procedures. It follows from our results
above that the Lasso estimator can be modified to be sign consistent in a two-step
procedure even if the irrepresentable condition is relaxed. All one needs is the
assumption that nonzero coefficients of β are “sufficiently” large. One possibility
is hard-thresholding of the obtained coefficients, neglecting variables with very
small coefficients. This effect has already been observed empirically in [33]. Other
possibilities include soft-thresholding and relaxation methods such as the Gauss–
Dantzig selector [5], the relaxed Lasso [22] with an additional thresholding step or
the adaptive Lasso of Zou [42].

DEFINITION 5 (Hard-thresholded Lasso estimator). Let, for each x ∈ R
p , the

quantity 1{|x| ≥ c} be a pn-dimensional vector which is, componentwise, equal
to 1 if |xk| ≥ c and 0 otherwise. For a given sequence tn, the hard-thresholded
Lasso estimator β̂ht,λ is defined as

β̂ht,λ = β̂λ1
{
β̂λ ≥ σ tn

√
logpn/n

}
.

The sequence tn can be chosen freely. We start with a corollary that follows
directly from Theorem 1, stating that the hard-thresholded Lasso estimator (unlike
the un-thresholded estimator) is sign consistent under regularity assumptions that
are weaker than the irrepresentable condition needed for sign-consistency of the
ordinary Lasso estimator.

COROLLARY 2 (Sign consistency by hard thresholding). Assume the incoher-
ent design assumption (6) holds and the sparsity of β fulfills sn = o(t2

ne−4
n ) for

n → ∞. Assume furthermore

min
k : βk �=0

|βk| � σ tn

√
logpn/n, n → ∞.

Under a choice λ ∝ σen

√
n logpn, the hard-thresholded Lasso estimator of Defi-

nition 5 is then sign-consistent and

P {sign(β̂ht,λ) = sign(β)} → 1 as n → ∞.
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The proof follows from the results of Theorem 1. The bound (12) on the
�2-distance, derived from Theorem 1, gives then trivially the identical bound on
the squared �∞-distance between β̂λ and β . The result follows by observing that
1/φmax = O(1) and the fact that �∞ error is a smaller order of the lower bound on
the size of nonzero β’s due to assumptions of incoherent design and sn = o(t2

ne−4
n ).

When choosing a suitable value of the cut-off parameter tn, one is faced with a
trade-off. Choosing larger values of the cut-off tn places a stricter condition on the
minimal nonzero value of β , while smaller values of tn relax this assumption, yet
require the vector β to be sparser.

The result mainly implies that sign-consistency can be achieved with the hard-
thresholded Lasso estimator under much weaker consistency requirements than
with the ordinary Lasso estimator. As discussed previously, the ordinary Lasso
estimator is only sign consistent if the irrepresentable condition or, equivalently,
neighborhood stability is fulfilled [23, 41, 42]. This is a considerably stronger
assumption than the incoherence assumption above. In either case, a similar as-
sumption on the rate of decay of the minimal nonzero components is needed.

In conclusion, even though one cannot achieve sign consistency in general with
just a single Lasso estimation, it can be achieved in a two-stage procedure.

3. Proof of Theorem 1. Let βλ be the estimator under the absence of noise,
that is, βλ = β̂λ,0, where β̂λ,ξ is defined as in (15). The �2-distance can then be
bounded by ‖β̂λ − β‖2

�2
≤ 2‖β̂λ − βλ‖2

�2
+ 2‖βλ − β‖2

�2
. The first term on the

right-hand side represents the variance of the estimation, while the second term
represents the bias. The bias contribution follows directly from Lemma 2 below.
The bound on the variance term follows by Lemma 6 below.

De-noised response. Before starting, it is useful to define a de-noised re-
sponse. Define for 0 < ξ < 1 the de-noised version of the response variable,

Y(ξ) = Xβ + ξε.(14)

We can regulate the amount of noise with the parameter ξ . For ξ = 0, only the
signal is retained. The original observations with the full amount of noise are re-
covered for ξ = 1. Now consider for 0 ≤ ξ ≤ 1 the estimator β̂λ,ξ ,

β̂λ,ξ = arg min
β

‖Y(ξ) − Xβ‖2
�2

+ λ‖β‖�1 .(15)

The ordinary Lasso estimate is recovered under the full amount of noise so that
β̂λ,1 = β̂λ. Using the notation from the previous results, we can write for the es-
timate in the absence of noise, β̂λ,0 = βλ. The definition of the de-noised version
of the Lasso estimator will be helpful for the proof as it allows to characterize the
variance of the estimator.
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3.1. Part I of proof: bias. Let K be the set of nonzero elements of β , that
is, K = {k :βk �= 0}. The cardinality of K is again denoted by s = sn. For the
following, let βλ be the estimator β̂λ,0 under the absence of noise, as defined
in (15). The solution βλ can, for each value of λ, be written as βλ = β + γ λ,
where

γ λ = arg min
ζ∈Rp

f (ζ ).(16)

The function f (ζ ) is given by

f (ζ ) = nζT Cζ + λ
∑

k∈Kc

|ζk| + λ
∑
k∈K

(|βk + ζk| − |βk|).(17)

The vector γ λ is the bias of the Lasso estimator. We derive first a bound on the
�2-norm of γ λ.

LEMMA 1. Assume incoherent design as in (6) with a sparsity multiplier se-
quence en. The �2-norm of γ λ, as defined in (16), is then bounded for sufficiently
large values of n by

‖γ λ‖�2 ≤ 17.5
λ

n

√
sn

φmin(ensn)
.(18)

PROOF. We write in the following γ instead of γ λ for notational simplicity.
Let γ (K) be the vector with coefficients γk(K) = γk1{k ∈ K}, that is, γ (K) is the
bias of the truly nonzero coefficients. Analogously, let γ (Kc) be the bias of the
truly zero coefficients with γk(K

c) = γk1{k /∈ K}. Clearly, γ = γ (K) + γ (Kc).
The value of the function f (ζ ), as defined in (17), is 0 if setting ζ = 0. For the
true solution γ λ, it follows hence that f (γ λ) ≤ 0. Hence, using that ζ T Cζ ≥ 0 for
any ζ ,

‖γ (Kc)‖�1 = ∑
k∈Kc

|ζk| ≤
∣∣∣∣∣
∑
k∈K

(|βk + ζk| − |βk|)
∣∣∣∣∣ ≤ ‖γ (K)‖�1 .(19)

As ‖γ (K)‖�0 ≤ sn, it follows that ‖γ (K)‖�1 ≤ √
sn‖γ (K)‖�2 ≤ √

sn‖γ ‖�2 and
hence, using (19),

‖γ ‖�1 ≤ 2
√

sn‖γ ‖�2 .(20)

This result will be used further below. We use now again that f (γ λ) ≤ 0 [as ζ =
0 yields the upper bound f (ζ ) = 0]. Using the previous result that ‖γ (K)‖�1 ≤√

sn‖γ ‖�2 , and ignoring the nonnegative term ‖γ (Kc)‖�1 , it follows that

nγ T Cγ ≤ λ
√

sn‖γ ‖�2 .(21)

Consider now the term γ T Cγ . Bounding this term from below and plugging
the result into (21) will yield the desired upper bound on the �2-norm of γ . Let
|γ(1)| ≥ |γ(2)| ≥ · · · ≥ |γ(p)| be the ordered entries of γ .
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Let un for n ∈ N be a sequence of positive integers, to be chosen later, and
define the set of the “un-largest coefficients” as U = {k : |γk| ≥ |γ(un)|}. Define
analogously to above the vectors γ (U) and γ (Uc) by γk(U) = γk1{k ∈ U} and
γk(U

c) = γk1{k /∈ U}. The quantity γ T Cγ can be written as γ T Cγ = ‖a + b‖2
�2

,

where a := n−1/2Xγ (U) and b := n−1/2Xγ (Uc). Then

γ T Cγ = ‖a + b‖2
�2

≥ (‖a‖�2 − ‖b‖�2)
2.(22)

Before proceeding, we need to bound the norm ‖γ (Uc)‖�2 as a function of un.
Assume for the moment that the �1-norm ‖γ ‖�1 is identical to some � > 0. Then it
holds for every k = 1, . . . , p that γ(k) ≤ �/k. Hence,

‖γ (Uc)‖2
�2

≤ ‖γ ‖2
�1

p∑
k=un+1

1

k2 ≤ (4sn‖γ ‖2
�2

)
1

un

,(23)

having used the result (20) from above that ‖γ ‖�1 ≤ 2
√

sn‖γ ‖�2 . As γ (U) has by
definition only un nonzero coefficients,

‖a‖2
�2

= ‖γ (U)T Cγ (U)‖2
�2

≥ φmin(un)‖γ (U)‖2
�2

(24)

≥ φmin(un)

(
1 − 4sn

un

)
‖γ ‖2

�2
,

having used (23) and ‖γ (U)‖2
�2

= ‖γ ‖2
�2

− ‖γ (Uc)‖2
�2

. As γ (Uc) has at most
min{n,p} nonzero coefficients and using again (23),

‖b‖2
�2

= ‖γ (Uc)T Cγ (Uc)‖2
�2

≤ φmax‖γ (Uc)‖2
�2

≤ φmax
4sn

un

‖γ ‖2
�2

.(25)

Using (24) and (25) in (22), together with φmax ≥ φmin(un),

γ T Cγ ≥ φmin(un)‖γ ‖2
�2

(
1 − 4

√
snφmax

unφmin(un)

)
.(26)

Choosing for un the sparsity multiplier sequence, as defined in (6), times the spar-
sity sn, so that un = ensn it holds that snφmax/(ensnφmin(ensn)) < 1/18 and hence
also that snφmax/(ensnφmin(e

2
nsn)) < 1/18, since φmin(e

2
nsn) ≤ φmin(ensn). Thus

the right-hand side in (26) is bounded from below by 18φmin(ensn)‖γ ‖2
�2

since

(1 − 4/
√

18) ≤ 17.5. Using the last result together with (21), which says that
γ T Cγ ≤ n−1λ

√
sn‖γ ‖�2 , it follows that for large n,

‖γ ‖�2 ≤ 17.5
λ

n

√
sn

φmin(ensn)
,

which completes the proof. �
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LEMMA 2. Under the assumptions of Theorem 1, the bias ‖γ λ‖2
�2

is bounded
by

‖γ λ‖2
�2

≤ (17.5)2σ 2 sn logpn

n

e2
n

φ2
min(e

2
nsn)

.

PROOF. This is an immediate consequence of Lemma 1. Plugging the penalty
sequence λ ∝ σ

√
n logpnen into (18), the results follows by the inequality

φmin(ensn) ≥ φmin(e
2
nsn), having used that, by its definition in (6), en is necessarily

larger than 1. �

3.2. Part II of proof: variance. The proof for the variance part needs two steps.
First, a bound on the variance is derived, which is a function of the number of active
variables. In a second step, the number of active variables will be bounded, taking
into account also the bound on the bias derived above.

Variance of restricted OLS. Before considering the Lasso estimator, a trivial
bound is shown for the variance of a restricted OLS estimation. Let θ̂M ∈ R

p be,
for every subset M ⊆ {1, . . . , p} with |M| ≤ n, the restricted OLS-estimator of the
noise vector ε,

θ̂M = (XT
MXM)−1XT

Mε.(27)

First, we bound the �2-norm of this estimator. The result is useful for bounding the
variance of the final estimator, based on the derived bound on the number of active
variables.

LEMMA 3. Let mn be a sequence with mn = o(n) and mn → ∞ for n → ∞.
If pn → ∞, it holds with probability converging to 1 for n → ∞

max
M : |M|≤mn

‖θ̂M‖2
�2

≤ 2 logpn

n

mn

φ2
min(mn)

σ 2.

The �2-norm of the restricted estimator θ̂M is thus bounded uniformly over all
sets M with |M| ≤ mn.

PROOF OF LEMMA 3. It follows directly from the definition of θ̂M that, for
every M with |M| ≤ mn,

‖θ̂M‖2
�2

≤ 1

n2φ2
min(mn)

‖XT
Mε‖2

�2
.(28)

It remains to be shown that, for n → ∞, with probability converging to 1,

max
M : |M|≤mn

‖XT
Mε‖2

�2
≤ 2 logpnσ

2mnn.
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As εi ∼ N (0, σ 2) for all i = 1, . . . , n, it holds with probability converging to 1 for
n → ∞, by Bonferroni’s inequality that maxk≤pn |XT

k ε|2 is bounded from above
by 2 logpnσ

2n. Hence, with probability converging to 1 for n → ∞,

max
M : |M|≤mn

‖XT
Mε‖2

�2
≤ mn max

k≤pn

|XT
k ε|2 ≤ 2 logpnσ

2nmn,(29)

which completes the proof. �

Variance of estimate is bounded by restricted OLS variance. We show that the
variance of the Lasso estimator can be bounded by the variances of restricted OLS
estimators, using bounds on the number of active variables.

LEMMA 4. If, for a fixed value of λ, the number of active variables of the
de-noised estimators β̂λ,ξ is for every 0 ≤ ξ ≤ 1 bounded by m, then

sup
0≤ξ≤1

‖β̂λ,0 − β̂λ,ξ‖2
�2

≤ max
M : |M|≤m

‖θ̂M‖2
�2

.(30)

PROOF. The key in the proof is that the solution path of β̂λ,ξ , if increasing the
value of ξ from 0 to 1, can be expressed piecewise in terms of the restricted OLS
solution. It will be obvious from the proof that it is sufficient to show the claim for
ξ = 1 in the term on the r.h.s. of (30).

The set M(ξ) of active variables is the set with maximal absolute gradient,

M(ξ) = {k : |Gλ,ξ
k | = λ}.

Note that the estimator β̂λ,ξ and also the gradient G
λ,ξ
k are continuous functions in

both λ and ξ [11]. Let 0 = ξ1 < ξ2 < · · · < ξL+1 = 1 be the points of discontinuity
of M(ξ). At these locations, variables either join the active set or are dropped from
the active set.

Fix some j with 1 ≤ j ≤ J . Denote by Mj the set of active variables M(ξ) for
any ξ ∈ (ξj , ξj+1). We show in the following that the solution β̂λ,ξ is for all ξ in
the interval (ξj , ξj+1) given by

∀ξ ∈ (ξj , ξj+1) : β̂λ,ξ = β̂λ,ξj + (ξ − ξj )θ̂
Mj ,(31)

where θ̂Mj is the restricted OLS estimator of noise, as defined in (27). The local
effect of increased noise (larger value of ξ ) on the estimator is thus to shift the
coefficients of the active set of variables along the least squares direction.

Once (31) is shown, the claim follows by piecing together the piecewise linear
parts and using continuity of the solution as a function of ξ to obtain

‖β̂λ,0 − β̂λ,1‖�2 ≤
J∑

j=1

‖β̂λ,ξj − β̂λ,ξj+1‖�2

≤ max
M : |M|≤m

‖θ̂M‖�2

J∑
j=1

(ξj+1 − ξj ) = max
M : |M|≤m

‖θ̂M‖�2 .
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It thus remains to show (31). A necessary and sufficient condition for β̂λ,ξ with
ξ ∈ (ξj , ξj+1) to be a valid solution is that for all k ∈ Mj with nonzero coefficient

β̂
λ,ξ
k �= 0, the gradient is equal to λ times the negative sign,

G
λ,ξ
k = −λ sign(β̂

λ,ξ
k ),(32)

that for all variables with k ∈ Mj with zero coefficient β̂
λ,ξ
k = 0 the gradient is

equal in absolute value to λ

|Gλ,ξ
k | = λ(33)

and for variables k /∈ Mj not in the active set,

|Gλ,ξ
k | < λ.(34)

These conditions are a consequence of the requirement that the subgradient of the
loss function contains 0 for a valid solution.

Note that the gradient of the active variables in Mj is unchanged if replacing
ξ ∈ (ξj , ξj+1) by some ξ ′ ∈ (ξj , ξj+1) and replacing β̂λ,ξ by β̂λ,ξ + (ξ ′ − ξ)θ̂Mj .
That is, for all k ∈ Mj ,

(
Y(ξ) − Xβ̂λ,ξ )T

Xk = {
Y(ξ ′) − X

(
β̂λ,ξ + (ξ ′ − ξ)θ̂Mj

)}T
Xk,

as the difference of both sides is equal to (ξ ′ − ξ){(ε − Xθ̂Mj )T Xk}, and (ε −
Xθ̂Mj )T Xk = 0 for all k ∈ Mj , as θ̂Mj is the OLS of ε, regressed on the variables
in Mj . Equalities (32) and (33) are thus fulfilled for the solution and it remains to
show that (34) also holds. For sufficiently small values of ξ ′ − ξ , inequality (34)
is clearly fulfilled for continuity reasons. Note that if |ξ ′ − ξ | is large enough such
that for one variable k /∈ Mj inequality (34) becomes an equality, then the set of
active variables changes and thus either ξ ′ = ξj+1 or ξ ′ = ξj . We have thus shown
that the solution β̂λ,ξ can for all ξ ∈ (ξj , ξj+1) be written as

β̂λ,ξ = β̂λ,ξj + (ξ − ξj )θ̂
Mj ,

which proves (31) and thus completes the proof. �

A bound on the number of active variables. A decisive part in the variance of
the estimator is determined by the number of selected variables. Instead of directly
bounding the number of selected variables, we derive bounds for the number of
active variables. As any variable with a nonzero regression coefficient is also an
active variable, these bounds lead trivially to bounds for the number of selected
variables.

Let Aλ be the set of active variables,

Aλ = {k : |Gλ
k | = λ}.
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Let Aλ,ξ be the set of active variables of the de-noised estimator β̂λ,ξ , as defined
in (15). The number of selected variables (variables with a nonzero coefficient) is
at most as large as the number of active variables, as any variable with a nonzero
estimated coefficient has to be an active variable [25].

LEMMA 5. For λ ≥ σen

√
n logpn, the maximal number sup0≤ξ≤1 |Aλ,ξ | of

active variables is bounded, with probability converging to 1 for n → ∞, by

sup
0≤ξ≤1

|Aλ,ξ | ≤ e2
nsn.

PROOF. Let Rλ,ξ be the residuals of the de-noised estimator (15), Rλ,ξ = Y −
Xβ̂λ,ξ . For any k in the |Aλ,ξ |-dimensional space spanned by the active variables,

|XT
k Rλ,ξ | = λ.(35)

Adding up, it follows that for all 0 ≤ ξ ≤ 1,

|Aλ,ξ |λ2 = ‖XT
Aλ,ξ

Rλ,ξ‖2
�2

.(36)

The residuals can for all values 0 ≤ ξ ≤ 1 be written as the sum of two terms,
Rλ,ξ = X(β − β̂λ,ξ ) + ξε. Equality (36) can now be transformed into the inequal-
ity,

|Aλ,ξ |λ2 ≤ (‖XT
Aλ,ξ

X(β − β̂λ,ξ )‖�2 + ξ2‖XT
Aλ,ξ

ε‖�2

)2(37)

≤ (‖XT
Aλ,ξ

X(β − β̂λ,ξ )‖�2 + ‖XT
Aλ,ξ

ε‖�2

)2
.(38)

Denote by m̃ the supremum of |Aλ,ξ | over all values of 0 ≤ ξ ≤ 1. Using the
same argument as in the derivation of (29), the term sup0≤ξ≤1 ‖XT

Aλ,ξ
ε‖2

�2
is of

order op(m̃n logpn) as long as pn → ∞ for n → ∞. For sufficiently large n it
holds thus, using λ ≥ σen

√
n logpn, that sup0≤ξ≤1 ‖XT

Aλ,ξ
ε‖�2/(m̃λ2)1/2 ≤ η for

any η > 0. Dividing by λ2, (37) implies then, with probability converging to 1,

m̃ ≤ sup
0≤ξ≤1

(
λ−1‖XT

Aλ,ξ
X(β − β̂λ,ξ )‖�2 + η

√
m̃

)2
.(39)

Now turning to the right-hand side, it trivially holds for any value of 0 ≤ ξ ≤ 1 that
|Aλ,ξ | ≤ min{n,p}. On the other hand, X(β − β̂λ,ξ ) = XBλ,ξ (β − β̂λ,ξ ), where

Bλ,ξ := Aλ,ξ ∪ {k :βk �= 0}, as the difference vector β − β̂λ,ξ has nonzero entries
only in the set Bλ,ξ . Thus

‖XT
Aλ,ξ

X(β − β̂λ,ξ )‖2
�2

≤ ‖XT
Bλ,ξ

XBλ,ξ (β − β̂λ,ξ )‖2
�2

.

Using additionally |Bλ,ξ | ≤ sn + min{n,p}, it follows that

‖XT
Aλ,ξ

X(β − β̂λ,ξ )‖2
�2

≤ n2φ2
max‖(β − β̂λ,ξ )‖2

�2
.
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Splitting the difference β − β̂λ,ξ into (β − βλ) + (βλ − β̂λ,ξ ), where βλ = β̂λ,0

is again the population version of the Lasso estimator, it holds for any η > 0,
using (39), that with probability converging to 1 for n → ∞,

m̃ ≤
(
nλ−1φmax‖β − βλ‖�2 + nλ−1φmax sup

0≤ξ≤1
‖β̂λ,0 − β̂λ,ξ‖�2 + η

√
m̃

)2

.(40)

Using Lemmas 3 and 4, the variance term n2φ2
max sup0≤ξ≤1 ‖β̂λ,0 − β̂λ,ξ‖2

�2

is bounded by op{nm̃ logpnφ
2
max/φ

2
min(m̃)}. Define, implicitly, a sequence λ̃ =

σ
√

n logpn(φmax/φmin(m̃)). For any sequence λ with lim infn→∞ λ/λ̃ > 0, the
term n2λ−2φ2

max sup0≤ξ≤1 ‖β̂λ,0 − β̂λ,ξ‖2
�2

is then of order op(m̃). Using further-
more the bound on the bias from Lemma 1, it holds with probability converging
to 1, for n → ∞ for any sequence λ with lim infn→∞ λ/λ̃ > 0 and any η > 0 that

m̃ ≤ (
nλ−1φmax‖β − βλ‖�2 + 2η

√
m̃

)2 ≤
(

17.5φmax

√
sn

φmin(ensn)
+ 2η

√
m̃

)2

.

Choosing η = 0.013 implies, for an inequality of the form a2 ≤ (x + 2ηa)2, that
a ≤ (18/17.5)x. Hence, choosing this value of η, it follows from the equation
above that, with probability converging to 1 for n → ∞,

m̃ ≤ 182φ2
max

sn

φ2
min(ensn)

= e2
nsn

(
18φmax

enφmin(ensn)

)2

≤ e2
nsn,

having used the definition of the sparsity multiplier in (6). We can now see that the
requirement on λ, namely lim infn→∞ λ/λ̃ > 0, is fulfilled if λ ≥ σen

√
n logpn,

which completes the proof. �

Finally, we use Lemmas 3, 4 and 5 to show the bound on the variance of the
estimator.

LEMMA 6. Under the conditions of Theorem 1, with probability converging
to 1 for n → ∞,

‖βλ − β̂λ‖2
�2

≤ 2σ 2 sn logpn

n

e2
n

φ2
min(e

2
nsn)

.

The proof follows immediately from Lemmas 3 and 4 when inserting the bound
on the number of active variables obtained in Lemma 5.

4. Numerical illustration: frequency detection. Instead of extensive numer-
ical simulations, we would like to illustrate a few aspects of Lasso-type variable
selection if the irrepresentable condition is not fulfilled. We are not making claims
that the Lasso is superior to other methods for high-dimensional data. We merely
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want to draw attention to the fact that (a) the Lasso might not be able to select the
correct variables but (b) comes nevertheless close to the true vector in an �2-sense.

An illustrative example is frequency detection. It is of interest in some areas
of the physical sciences to accurately detect and resolve frequency components;
two examples are variable stars [27] and detection of gravitational waves [6, 32].
A nonparametric approach is often most suitable for fitting of the involved periodic
functions [15]. However, we assume here for simplicity that the observations Y =
(Y1, . . . , Yn) at time points t = (t1, . . . , tn) are of the form

Yi = ∑
ω∈�

βω sin(2πωti + φω) + εi,

where � contains the set of fundamental frequencies involved, and εi for i =
1, . . . , n is independently and identically distributed noise with εi ∼ N (0, σ 2). To
simplify the problem even more, we assume that the phases are known to be zero,
φω = 0 for all ω ∈ �. Otherwise one might like to employ the Group Lasso [37],
grouping together the sine and cosine part of identical frequencies.

It is of interest to resolve closely adjacent spectral lines [16] and we will work in
this setting in the following. We choose for the experiment n = 200 evenly spaced
observation times. There are supposed to be two closely adjacent frequencies with
ω1 = 0.0545 and ω2 = 0.0555 = ω1 + 1/300, both entering with βω1 = βω2 = 1.
As we have the information that the phase is zero for all frequencies, the predictor
variables are given by all sine-functions with frequencies evenly spaced between
1/200 and 1/2, with a spacing of 1/600 between adjacent frequencies.

In the chosen setting, the irrepresentable condition is violated for the frequency
ωm = (ω1 + ω2)/2. Even in the absence of noise, this resonance frequency is in-
cluded in the Lasso-estimate for all positive penalty parameters, as can be seen
from the results further below. As a consequence of a violated irrepresentable con-
dition, the largest peak in the periodogram is in general obtained for the resonance
frequency. In Figure 1 we show the periodogram [28] under a moderate noise level
σ = 0.2. The periodogram shows the amount of energy in each frequency, and is
defined through the function

�E(ω) = ∑
i

Y 2
i − ∑

i

(
Yi − Ŷ

(ω)
i

)2
,

where Ŷ (ω) is the least squares fit of the observations Y , using only sine and cosine
functions with frequency ω as two predictor variables. There is clearly a peak at
frequency ωm. As can be seen in the close-up around ωm, it is not immediately
obvious from the periodogram that there are two frequencies at frequencies ω1
and ω2. As said above, the irrepresentable condition is violated for the resonance
frequency and it is of interest to see which frequencies are picked up by the Lasso
estimator.

The results are shown in Figures 2 and 3. Figure 3 highlights that the two true
frequencies are with high probability picked up by the Lasso. The resonance fre-
quency is also selected with high probability, no matter how the penalty is chosen.
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FIG. 1. The energy log�E(ω) for a noise level σ = 0.2 is shown on the left for a range of fre-
quencies ω. A close-up of the region around the peak is shown on the right. The two frequencies ω1
and ω2 are marked with solid vertical lines, while the resonance frequency (ω1 + ω2)/2 is shown
with a broken vertical line.

FIG. 2. An example where the Lasso is bound to select wrong variables, while being a good ap-
proximation to the true vector in the �2-sense. Top row: The noise level increases from left to right
as σ = 0,0.1,0.2,1. For one run of the simulation, paths of the estimated coefficients are shown as
a function of the square root

√
λ of the penalty parameter. The actually present signal frequencies

ω1 and ω2 are shown as solid lines, the resonance frequency as a broken line, and all other frequen-
cies are shown as dotted lines. Bottom row: The shaded areas contain, for 90% of all simulations,
the regularization paths of the signal frequencies (region with solid borders), resonance frequency
(area with broken borders) and all other frequencies (area with dotted boundaries). The path of the
resonance frequency displays reverse shrinkage as its coefficient gets, in general, smaller for smaller
values of the penalty. As expected from the theoretical results, if the penalty parameter is chosen
correctly, it is possible to separate the signal and resonance frequencies for sufficiently low noise
levels by just retaining large and neglecting small coefficients. It is also apparent that the coefficient
of the resonance frequency is small for a correct choice of the penalty parameter but very seldom
identically zero.
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FIG. 3. The top row shows the �2-distance between β and β̂λ separately for the signal frequencies
(solid blue line), resonance frequency (broken red line) and all other frequencies (dotted gray line).
It is evident that the distance is quite small for all three categories simultaneously if the noise level is
sufficiently low (the noise level is again increasing from left to right as σ = 0,0.1,0.2,1). The bottom
row shows, on the other hand, the average number of selected variables (with nonzero estimated
regression coefficient) in each of the three categories as a function of the penalty parameter. It is
impossible to choose the correct model, as the resonance frequency is always selected, no matter
how low the noise level and no matter how the penalty parameter is chosen. This illustrates that sign
consistency does not hold if the irrepresentable condition is violated, even though the estimate can
be close to the true vector β in the �2-sense.

This result could be expected as the irrepresentable condition is violated and the
estimator can thus not be sign consistent. We expect from the theoretical results
in this manuscript that the coefficient of the falsely selected resonance frequency
is very small if the penalty parameter is chosen correctly. And it can indeed be
seen in Figure 2 that the coefficients of the true frequencies are much larger than
the coefficient of the resonance frequency for an appropriate choice of the penalty
parameter.

These results reinforce our conclusion that the Lasso might not be able to pick
up the correct sparsity pattern, but delivers nevertheless useful approximations as
falsely selected variables are chosen only with a very small coefficient; this behav-
ior is typical and expected from the results of Theorem 1. Falsely selected coeffi-
cients can thus be removed in a second step, either by thresholding variables with
small coefficients or using other relaxation techniques. In any case, it is reassuring
to know that all important variables are included in the Lasso estimate.

5. Concluding remarks. It has recently been discovered that the Lasso can-
not recover the correct sparsity pattern in certain circumstances, even not asymp-
totically for pn fixed and n → ∞. This sheds a little doubt on whether the Lasso
is a good method for identification of sparse models for both low- and high-
dimensional data.
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Here we have shown that the Lasso can continue to deliver good approximations
to sparse coefficient vectors β in the sense that the �2-difference ‖β − β̂λ‖�2 van-
ishes for large sample sizes n, even if it fails to discover the correct sparsity pattern.
The conditions needed for a good approximation in the �2-sense are weaker than
the irrepresentable condition needed for sign consistency. We pointed out that the
correct sparsity pattern could be recovered in a two-stage procedure when the true
coefficients are not too small. The first step consists in a regular Lasso fit. Variables
with small absolute coefficients are then removed from the model in a second step.

We derived possible scenarios under which �2-consistency in the sense of (4)
can be achieved as a function of the sparsity of the vector β , the number of sam-
ples and the number of variables. Under the condition that sparse minimal eigen-
values are not decaying too fast in some sense, the requirement for �2-consistency
is (ignoring logn factors)

sn logpn

n
→ 0 as n → ∞.

The rate of convergence is actually optimal with an appropriate choice of the tun-
ing parameter λ and under the condition of bounded maximal and minimal sparse
eigenvalues. This rate is, apart from logarithmic factor in pn and n, identical to
what could be achieved if the true sparse model would be known. If �2-consistency
is achieved, the Lasso is selecting all “sufficiently large” coefficients, and possibly
some other unwanted variables. “Sufficiently large” means here that the squared
size of the coefficients is decaying slower than the rate n−1sn logpn, again ig-
noring logarithmic factors in the sample size. The number of variables can thus
be narrowed down considerably with the Lasso in a meaningful way, keeping all
important variables. The size of the reduced subset can be bounded with high prob-
ability by the number of truly important variables times a factor that depends on
the decay of the sparse eigenvalues. This factor is often simply the squared log-
arithm of the sample size. Our conditions are similar in spirit to those in related
aforementioned works, but expand the ground to cover possibly cases with more
dependent predictors than UUP. These results support that the Lasso is a useful
model identification method for high-dimensional data.
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