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GIBBS POSTERIOR FOR VARIABLE SELECTION IN
HIGH-DIMENSIONAL CLASSIFICATION AND DATA MINING1

BY WENXIN JIANG AND MARTIN A. TANNER

Northwestern University

In the popular approach of “Bayesian variable selection” (BVS), one uses
prior and posterior distributions to select a subset of candidate variables to en-
ter the model. A completely new direction will be considered here to study
BVS with a Gibbs posterior originating in statistical mechanics. The Gibbs
posterior is constructed from a risk function of practical interest (such as the
classification error) and aims at minimizing a risk function without modeling
the data probabilistically. This can improve the performance over the usual
Bayesian approach, which depends on a probability model which may be
misspecified. Conditions will be provided to achieve good risk performance,
even in the presence of high dimensionality, when the number of candidate
variables “K” can be much larger than the sample size “n.” In addition, we de-
velop a convenient Markov chain Monte Carlo algorithm to implement BVS
with the Gibbs posterior.

1. Introduction. The problem of interest here is to predict y, a {0,1} re-
sponse, based on x, a vector of predictors of dimension dim(x) = K . We have
Dn = (y(i), x(i))n1, the observed data with sample size n, typically assumed to
form n i.i.d. (independent and identically distributed) copies of (y, x).

One is often interested in modeling the relation between y and x, selecting
components of x that are most relevant to y, and predicting y using selected infor-
mation from x.

In the approach of Bayesian variable selection (BVS), one chooses components
of x according to some probability distribution (prior and posterior). The BVS
approach is very popular for handling high-dimensional data (with large dimen-
sion K , sometimes larger than the sample size n), and has had a wide range of
successful applications. See, for example, Smith and Kohn (1996), George and
McCulloch (1997), Gerlach, Bird and Hall (2002), Lee, Sha, Dougherty, Vannucci
and Mallick (2003), Zhou, Liu and Wong (2004) and Dobra, Hans, Jones, Nevins,
Yao and West (2004), among others.
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For classification purpose, a regression model p = p(y|x) (y ∈ {0,1}) is typ-
ically assumed to be logit linear or probit linear and parameterized by a para-

meter β , that is, p(y|x) = μy(1 − μ)1−y , where μ = exp(xT β)

1+exp(xT β)
(for logistic re-

gression) or
∫ xT β
−∞ (2π)−1/2e−u2/2 du (for probit regression). A prior on p is then

induced by placing a prior on parameter β , forcing most of its components to be
zero, such that only a low-dimensional subset of x is selected in regression. The
corresponding posterior follows a standard Bayesian treatment as (posterior) ∝
(likelihood) × (prior) ∝ {∏n

i=1 p(y(i)|x(i))} × (prior). A number of things can be
generated from this posterior: parameter β , conditional density p(y|x), mean func-
tion μ, as well as the classification rule (for y) I [μ > 0.5] = I [xT β > 0]. Jiang
(2007) has shown that under certain regularity conditions, the prior can be spec-
ified to render near-optimal posterior performance for density estimation, mean
estimation and classification.

The current paper introduces a new direction to BVS. Unlike Jiang (2007), we
will construct a modified posterior (called Gibbs posterior) using a risk function
of interest (such as the classification error) directly, instead of using the usual
likelihood-based Bayesian posterior. We will first focus on the statistical prop-
erties (e.g., classification performance) of BVS with a Gibbs posterior. (Section 7
will handle the algorithmic aspects.)

A problem with the usual Bayesian posterior. Below, we first demonstrate by a
simple example that in case of model misspecification, the usual likelihood-based
BVS can provide suboptimal performance. Later our theory will suggest that the
proposed BVS with Gibbs posterior can improve over the usual approach, since
we will show that the proposed method can still achieve near-optimality in some
sense, despite the potential misspecification.

In Jiang (2007), it is assumed that the true model (with density p∗) is of a known
transformed linear form, say, logit linear, so that ln{p∗(y = 1|x)/p∗(y = 0|x)}
is linear in predictors x1, . . . , xK , which can be, for example, expressions of K

candidate genes.
Suppose we denote the true model by p∗ and the set of all logit linear mod-

els by �. Then the assumption says p∗ ∈ �. What if this assumption (e.g., logit
linearity) is not true, so that higher-order terms and interactions are important but
not included? That is, what if the prior proposes densities in �, but the true den-
sity p∗ /∈ �? Then the usual likelihood-based posterior will propose densities that
are consistent for (often close to) pKL = arg minp∈�

∫
p∗ ln(p∗/p), a minimizer of

KL (Kullback–Leibler) difference KL(p∗,p) = ∫
p∗ ln(p∗/p), under some regu-

larity conditions—see Kleijn and van der Vaart (2006). However, this limit pKL (of
the usual Bayesian inference) may have a suboptimal risk performance! That is,
one can have R̃(pKL) > inf R̃p∈�(p) for a risk function of practical interest such
as the classification error R̃(p) = P ∗{y �= I [p(y = 1|x) > 0.5]}. [See Devroye et
al. (1996), Section 4.6 (least squares) and Section 15.2 (maximum likelihood) for
some related comments.]
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An example. Consider the case when P ∗(x = ±1) = λ, P ∗(x = 0) = 1 − 2λ

for some λ ∈ (0,0.25), P ∗(y = 1|x) = 1 − P ∗(y = 0|x) = I [x �= 0], which de-
fine the true density p∗. Let � be the set of densities from logistic regression with
p(y = 1|x) = eα+xβ/(1+ eα+xβ), α,β ∈ �. Note that p∗ /∈ �. The logistic regres-
sion model is misspecified.

According to the KL criterion, the best choice pKL(y = 1|x) = 2λ < 0.5. This
is what the usual posterior-based logistic regression will converge to according
to Kleijn and van der Vaart (2006). The resulting classifier CKL(x) = I [pKL(y =
1|x) > 0.5] = 0 always predicts 0 and the resulting classification error R̃(pKL) =
2λ. On the other hand R̃(p) is minimized to be R̃(pR) = λ at p = pR , where,
for example, pR(y = 1|x) = ex−0.7/(1 + ex−0.7), which corresponds to a linear
classification rule CR = I [pR(y = 1|x) > 0.5] = I [x − 0.7 > 0].

For example, when λ = 0.125, R̃(pKL) = 0.25 > R̃(pR) = 0.125, even though
both pKL,pR ∈ �. So, when the model is misspecified, the usual posterior-based
logistic regression is not reliable; it produces suboptimal classification error even
from among the misspecified logistic regression models �.

In such situations with model misspecification, a modified posterior directly re-
lated to the risk function of interest, called the Gibbs posterior, can still perform
very well, unlike the usual likelihood-based (Bayesian) posterior. In Section 2, we
discuss the Gibbs posterior for risk minimization. What is the Gibbs posterior?
How is it interpreted? In addition, we incorporate a smoothed risk function to the
Gibbs posterior for computing ease. Then we describe how to evaluate the risk
performance of the proposed method in two scenarios in Section 3. In Section 4,
we introduce for the first time the framework of BVS with the Gibbs posterior,
which is intended to effectively handle high-dimensional data. Then we provide
some results on classification performance in Section 5, which show that BVS
with the Gibbs posterior can perform very well in some sense, despite high dimen-
sionality, without assuming that the true model is logit linear. These results use a
special kind of normal-binary prior. The results are proved under a more general
framework in Section 6, using more general conditions on the prior and on the risk
function. In particular, this covers more general risk functions used in data mining
(in addition to classification performance). Some preparatory results for the proofs
will be presented in Section 6.1.

Section 7 will handle the algorithmic aspects of sampling from the Gibbs poste-
rior with variable selection. We will show that a convenient and modular Markov
chain Monte Carlo (MCMC) algorithm is available based on data augmentation
[Tanner and Wong (1987)], so that all sampling steps are based on standard distri-
butions.

2. Risk minimization with Gibbs posterior. The previous example shows
that for the purpose of minimizing the classification error R̃(p) over the logit linear
models p ∈ �, it is preferable not to use p proposed from the usual likelihood-
based (Bayesian) posterior over p ∈ � of the form (posterior) ∝ (likelihood) ×
(prior).
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Note that for logit linear models p ∈ �, the classification rule I [p(y = 1|x) =
0.5] = I [xT β > 0] forms a linear decision rule (indexed by β). We are interested
in minimizing R̃(p) = P ∗{y �= I [p(y = 1|x) > 0.5]} = P ∗{y �= I (xT β > 0)} ≡
R(β). For this purpose, there is really no need to assume a probability model p

and interpret β as a parameter associated with p. Instead, we can think of β as
indexing a linear decision rule I [xT β > 0] and try to minimize a risk function
R(β) = P ∗{y �= I (xT β > 0)}.

For this purpose, it is better to use a Gibbs posterior over β ∈ � for some
parameter space � ⊂ �Kn :

ω(dβ|Dn) = w(dβ|Dn)π(dβ) = e−nψRn(β)π(dβ)
/∫

β∈�
e−nψRn(β)π(dβ),

where π is a prior over β ∈ �, and ψ > 0 is a constant to be explained later in this
section.

Here Rn is a sample version of R depending on (i.i.d.) data Dn. Examples in-
clude:

(i) Rn = n−1 ∑n
i=1 I [y(i) �= Ai] = −ψ−1n−1 ∑n

i=1 log{Aie
ψ(y(i)−1) + (1 −

Ai)e
−ψy(i)}, where Ai = I [p(y(i) = 1|x(i)) > 0.5] = I [(x(i))T β > 0];

(ii) Rn = −ψ−1n−1 ∑n
i=1 log{
ie

ψ(y(i)−1) + (1 − 
i)e
−ψy(i)}, where 
i =


(σ−1
n (x(i))T β), 
 is the standard normal cumulative density function and σn is

a scaling factor.

Choices (ii) and (i) are close when σn → 0 but choice (ii) makes Rn smooth in
β! Later on (in Remark 2 and Section 7) we will see that Rn in (ii) is related to a
mixture model and can be used to simplify the posterior simulation.

The Gibbs posterior density w (with respect to the prior π ) minimizes a combi-
nation of an averaged sample risk and a penalty against the “change in knowledge”
(from prior π to posterior wπ ). Such an interpretation is given in Zhang (2006a),
Proposition 5.1 and Zhang (2006b), Section IV.

PROPOSITION 1 [Zhang (2006a, 2006b)]. The Gibbs posterior density

w = e−nψRn

/∫
β∈�

e−nψRnπ(dβ)

minimizes
∫
β∈� wnRn(β)π(dβ) + ψ−1KL(wπ(dβ),π(dβ)) over all densities w

on � with respect to the prior π . Here KL(wπ(dβ),π(dβ)) = ∫
β∈� w(logw) ×

π(dβ).

The parameter ψ−1 in the Gibbs posterior is related to the temperature in sta-
tistical mechanics and was used, for example, in Geman and Geman (1984) when
studying simulated annealing. The case of zero or very low temperature corre-
sponds to deterministic empirical risk minimization. Allowing nonzero tempera-
tures results in a more general setup of random estimation and allows potential
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improvement over the deterministic approach. The temperature ψ−1 is typically
treated as a given constant [e.g., in Zhang (2006b)], but when necessary, an op-
timal temperature [e.g., Zhang (1999)] may be obtained by, for example, cross
validation, as mentioned in Zhang (2006b).

This framework of the Gibbs posterior has been overlooked by most statisti-
cians for a long time, especially when compared to the long-term popularity of the
(likelihood-based) Bayesian posterior. Recently, however, the sequence of papers
by Zhang (1999, 2006a, 2006b) have laid a foundation for understanding the sta-
tistical behavior of the Gibbs posterior, which we believe will open a productive
new line of research. While Zhang’s (2006b) work concerns fundamental conver-
gence properties of the Gibbs posterior in general, our work focuses on the aspect
of variable selection, which is important for handling high-dimensional data with
the Gibbs posterior (see the counterexample in Section 4.1). In addition, we al-
low a computation-friendly smoothed risk function Rn to be used in a proposed
algorithm later. Also, Zhang (2006b) has considered the case with high tempera-
ture (small ψ), while our result holds for any ψ , even for low temperature, which
might be of interest. It might be of interest to use, for example, a low temperature
to recover the results from empirical risk minimization (or maximize the Gibbs
posterior) using an approach similar to simulated annealing. Also, we expect that
the MCMC algorithm in Section 7 may have better convergence behavior in the
low-temperature case since it will depend on the data more heavily.

3. Critical questions on risk performance: two scenarios. Define Pβ,D as
the joint distribution based on p∗(Dn)w(β|Dn), with Eβ,D being the correspond-
ing expectation. This corresponds to randomly generating data Dn from the true
density p∗ and then selecting β randomly from the Gibbs posterior ω(dβ|Dn).
The word “often” in the following statements refers to a high probability in Pβ,D .

Let R(β) be a risk function such as R(β) = P ∗[y �= I (xT β > 0)]. We will
denote infβ∈B R(B) = infR(B) for a set of decision rules I (xT β > 0) indexed by
β ∈ B . We will address the following question.

With high-dimensional data [K = dim(x) � n], will the Gibbs posterior (with
variable selection) often lead to a good risk performance which is competitive
to all models in B? That is, will the method often propose β such that R(β) ≤
infβ∈B R(β) + (small δ)?

We will answer this question in two scenarios with a trade-off between the
strengths of assumptions and results. Scenario I will involve more assumptions
(including a sparseness assumption) but better risk performance (competitive to
a bigger set of models B). Scenario II will involve fewer assumptions (allowing
nonsparse cases) but will guarantee a less optimal risk performance (competitive
to a smaller set of models B).

The Scenario-I treatment uses a bigger set B = �, which here corresponds to
the set of all linear decision rules (see Section 4.2 for a more precise definition).
We will try to show posterior performance competitive to all linear rules [“often”
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R(β) ≤ infβ∈� R(β) + δ]. We will typically need to assume that a best linear rule
in � satisfies some sparseness conditions: βR ∈ H , where βR is a minimizer of R

over � and H is a “sparse subset” of � satisfying some sparseness conditions.
The Scenario-II treatment will address a smaller set B = H , which corresponds

to some set of sparse linear decision rules. We will try to show posterior perfor-
mance competitive to all sparse linear rules [“often” R(β) ≤ infβ∈H R(β) + δ].
Although the results are competitive to fewer rules, the assumptions needed are
also less restrictive: we no longer need to assume that a best linear rule is sparse
(βR ∈ H ).

This study is about a “nearly best” performance over a set of decision rules
in B , while not assuming a true probability model for data. This is similar to the
“persistence” study for risk minimization by Greenshtein (2006), in a frequentist
approach. We now are considering the Bayesian analog so the use of the prior π

will also matter, which will form part of the regularity conditions.
The questions raised in this section will be answered in the next two sections.

4. BVS with a Gibbs posterior. To answer the questions in Section 3 on risk
performance, we first give an example to show the need of variable selection in
the high-dimensional case. Without variable selection, even if the Gibbs posterior
is used, the risk performance may still be very poor when K = dim(x) � n. With
variable selection (to be described in Sections 4.2 and 4.3), however, we will show
later (in Section 5) that the risk performance can be very good in the two scenarios
described in Section 3.

4.1. An example: high-dimensional classification with Gibbs posterior with-
out variable selection. Suppose the true model P ∗ is specified by y = I [z = 1]
where z is uniform over {1/K, . . . ,K/K}. Define x as the vector with com-
ponents xj = I [z = (K + 1 − j)/K], j = 1, . . . ,K . Note that the best linear
classification rule can be written as I [xT β > 0] where β = (1,0, . . . ,0)T . This
classification rule is equal to I [z = 1] = y and therefore has classification error
R(β) = P ∗[y �= I (xT β > 0)] = P ∗[y �= y] = 0. (Note that xT β = βK+1−Kz.)
Such a perfect performance can be approximately achieved due to the results later
using variable selection with the Gibbs posterior. (See, e.g., Section 5.) However,
without variable selection, the use of the Gibbs posterior alone will not guarantee
a good classification error.

For example, suppose according to the prior π , βj ’s are i.i.d. N(0,1) (or
more generally, any independent symmetric distributions which have π [βj >

0] = π [βj ≤ 0]). Suppose the Gibbs posterior ∝ e−nψRn × π where Rn de-
pends on β through x(i)T β (= βK+1−Kz(i) ), i = 1, . . . , n, where (x(i))j = I [z(i) =
(K + 1 − j)/K], j = 1, . . . ,K , and (y(i), z(i))n1 (data) and (y, z) form an i.i.d.
sample. Note that the posterior for βj will only be updated by data if j ∈  ≡
{K + 1 − Kz(i)}ni=1.
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Consider the expected classification error EP ∗
y,x[y �= I (xT β > 0)] =

EP ∗
y,z[y �= I (βK+1−Kz > 0)] (where E = E∗

(y(i),z(i))n1
Eβ|(y(i),z(i))n1

). This is the

“overall” probability of misclassification P̃ [y �= I (xT β > 0)] = P̃ [y �=
I (βK+1−Kz > 0)], where β is also random, in addition to the random y and z’s.
Here, the distribution P̃ is specified by noting that (y(i), z(i))n1 are i.i.d. from the
true model P ∗, β|(y(i), z(i))n1 follows the Gibbs posterior, and (y, z) denotes an
independent future observation from P ∗.

Suppose z /∈ {z(i)}n1; then the posterior for βK+1−Kz will not be updated by
data (y(i), z(i))n1. So assuming the event z /∈ {z(i)}n1, the conditional probabil-
ity P̃ [y �= I (βK+1−Kz > 0)|z, {z(i)}n1] is 0.5, since it is determined by the (un-
updated) prior of βK+1−Kz which is symmetric about 0. Therefore the probability
P̃ {[y �= I (xT β > 0)] ∩ [z /∈ {z(i)}n1]} is 0.5P ∗[z /∈ {z(i)}n1] ≥ 0.5(1 − n/K), which
can be close to 0.5 for K � n. This also forms a lower bound of P̃ [y �= I (xT β >

0)], which is bounded below by P̃ {[y �= I (xT β > 0)] ∩ [z /∈ {z(i)}n1]}.
Therefore, without variable selection, the expected classification error can be

close to 50% when K � n, even if the Gibbs posterior is used.
We now consider applying BVS with Gibbs posterior for classification, when

subsets of candidate variables are used to effectively handle high-dimensional data.

4.2. A parameterization. Consider a decision rule I (xT β > 0) for β ∈ �Kn (x
can include the constant component 1). The risk can be, for example, the misclassi-
fication probability R(β) = P ∗{y �= I (xT β > 0)}. It is noted that the decision rule
I (xT β > 0) and the risk R(β) are not changed under the rescaling of β . Following
the approach of Horowitz (1992), we suppose it is possible to use a standardiza-
tion with |β1| = 1 or β1 ∈ {±1}, and define βT = (β1, β̃

T ) ∈ {±1} × �Kn−1, and
correspondingly xT = (x1, x̃

T ).
Let �n denote the (standardized) parameter space �n = {±1}×�Kn−1. Charac-

terize β by (γ,βγ ) where γ = (γj )
Kn

1 is the “model” indicator with γj = I [βj �= 0]
(γ1 = 1), telling which components of β are nonzero. For any vector v, the nota-
tion vγ denotes the subset of vj ’s with γj = 1.

Note that in this parameterization, x1 is always contained in the decision rule
with coefficient being ±1. It can be a variable that we always want to keep for
decision-making due to some practical considerations. We can still allow x1 to
have effectively very small impact on classification, by allowing other β̃ coeffi-
cients to be much larger. Adopting such a standardization reduces the redundancy
of parameterization and can improve the convergence of the algorithms when sim-
ulating the Gibbs posterior.

The Gibbs posterior is induced by a prior π on β ∈ �, which could be equiva-
lently specified by putting a prior on the parameters (γ,βγ ). Then a Gibbs poste-
rior is obtained as ω(dβ|Dn) ∝ e−nψRn(β)π(dβ) as described in Section 2. Below
we will first consider a normal-binary prior for (γ,βγ ).
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4.3. A prior specification (normal-binary). For a vector v = (vj )
d
1 , we will

denote its �p norm (p = 1,2, . . .) as |v|p = (
∑d

j=1 v
p
j )1/p , its �∞ norm as |v|∞ =

supd
j=1 |vj |, and its �0 norm as |v|0 = ∑d

j=1 I [|vj | > 0].
Suppose β ∈ �n, with standardization |β1| = 1 as described above. Suppose

for the prior π , (γj )
Kn

j=2 (the “model” indicators) are i.i.d. binary with selection

probability λn and size restriction r̄n. Conceptually, one first generates γ̆ = γ̆
Kn

1

where γ̆1 = 1, and γ̆
Kn

2 are i.i.d. binary with selection probability λn. Then set
γ = γ̆ only when |γ̆ |1 ≤ r̄n. Suppose conditional on γ , β1 is independent of β̃γ

[the subset of (βj )
Kn

2 with γj = 1], β1|γ = ±1 with probability 0.5 each, and
β̃γ |γ ∼ N(0,Vγ ), according to the prior π .

5. Results on risk performance for BVS with Gibbs posterior. This section
will address the risk performance in the two scenarios described in Section 3, when
BVS is applied to the Gibbs posterior as described in Sections 4.2 and 4.3. The
risk function R(β) here is the classification error, while the Gibbs posterior is con-
structed from the smooth sample risk Rn(β) as described in Section 2 [choice (ii)].

Define the following collection of conditions. Different conditions will be used
from this collection for different results, to enable a compressed description of
many results.

0′. The candidate variable xj ’s are standardized to be between ±1 for all j .
0′′. The conditional density p(x1|x̃) with respect to the Lebesgue measure exists

for all x and is bounded above by a constant S > 0.
1′. The rate δn is smaller than 1 and larger than n−1/2 logn in order. (1 � δn �

n−1/2 logn.)
3′. The dimension Kn = dim(x) is high and is polynomial in n. (n ≺ Kn ≺ nα

for some α > 1.)
(σ ). The smoothing parameter σn used in a sample version of Rn decreases to zero

in some way as n increases. [(n/ logn)1/2 ≺∼ σ−1
n ≺ nq ′′

for some q ′′ > 1/2.]
(V ). The eigenvalues of prior variance Vγ and its inverse are bounded as “model”

size |γ |1 grows. [max{ch1(Vγ ), ch1(V
−1
γ )} ≤ B for some constant B > 0,

for all large |γ |1.]
(rδ). The prior size restriction (denoted as r̄n in Section 4.3) and the prior expecta-

tion of “model” size (before size restriction, which is about λnKn) grow with
n in some slow ways: M ′nδ2

n/(logn)2 ≤ λnKn ≤ r̄n = �Mnδ2
n/(logn)2� for

some M > 1 and M ′ > 0. (Here �·� denotes the integer part.)

Finally, we define a collection of “sparse subset” H ’s of the linear decision
rules �, which will be used in a condensed statement of many different results.

Let Hb be a “sparse set of rules” of at most nδ2
n/(logn)2 variables with coeffi-

cients at most C (some constant): Hb = {β ∈ �n :
∑

j I [|β̃j | �= 0] ≤ nδ2
n/(logn)2,

supj |β̃j | ≤ C}.
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Let Hm and HE be sparse sets satisfying some �1 summability conditions with
various types of tail behavior (polynomial with power m and exponential, resp.)
The formal definitions are:

Hm = {β ∈ �n :
∑

j≤Kn
|β̃(j)| ≤ C,

∑
j>r |β̃(j)| ≤ r−m for all r ≥ q} for some

constants m,q,C > 0;
HE = {β ∈ �n : ∑

j≤Kn
|β̃(j)| ≤ C,

∑
j>r |β̃(j)| ≤ e−C′′r for all r ≥ q} for some

constants q,C,C′′ > 0.

(We use β̃(j) to denote the component of β̃ that has the j th largest absolute
value.)

Let H1,2,3 ⊃ Hb be three other sparse sets, which have at most about nδ2
n/

(logn)2 possibly large β-coefficients, while allowing many more other β-co-
efficients to be small and nonzero. The mathematical details are given below:

H1 = {β ∈ �n :
∑

j≤nδ2
n/(logn)2 |β̃(j)|2 ≤ C2nδ2

n/(logn),
∑

j>nδ2
n/(logn)2 |β̃(j)| ≤

C′δn/(logn)};
H2 = {β ∈ �n : supj≤nδ2

n/(logn)2 |β̃(j)| ≤ C
√

logn,
∑

j>nδ2
n/(logn)2 |β̃(j)| ≤

C′δn/(logn)};
H3 = {β ∈ �n :

∑
j≤Kn

|β̃(j)| ≤ C,
∑

j>nδ2
n/(logn)2 |β̃(j)| ≤ C′δn/(logn)} for

some constants C,C′ > 0.

The following proposition addresses the risk performance of BVS (with a Gibbs
posterior) in two scenarios described in Section 3. The results concern the use of
the Gibbs posterior ω(dβ|Dn) based on Rn, under the probability distribution Pβ,D

[based on p∗(Dn)ω(dβ|Dn)] and the corresponding expectation Eβ,D .

PROPOSITION 2 (Risk performance). (i) (Scenario II; “exponentially sparse”
HE .) Assuming conditions 0′, 0′′, 3′, (σ ), (V ) and (rδ), where δn = n−1/2(logn)2,
we have

R − infR(HE) ≤ cn−1/2+ξ with Pβ,D-probability tending to 1 as n → ∞, and
Eβ,DR − infR(HE) ≤ cn−1/2+ξ for all large enough n, for any ξ > 0, for some
c > 0.

(ii) (Scenario I; “exponentially sparse” HE .) Suppose in addition that
infβ∈�n R(β) is reached at some βR ∈ HE (a best rule in �n satisfies the sparsity
condition in HE). Then R − infR(�n) ≤ cn−1/2+ξ with Pβ,D-probability tending
to 1 as n → ∞, and Eβ,DR − infR(�n) ≤ cn−1/2+ξ for all large enough n, for
any ξ > 0, for some c > 0.

(i)′ (Scenario II; “polynomially sparse” Hm.) Assuming conditions 0′, 0′′, 3′,
(σ ), (V ) and (rδ), where δn = n−m/(2m+1)(logn)2, we have R − infR(Hm) ≤
cn−m/(2m+1)+ξ with Pβ,D-probability tending to 1 as n → ∞, and Eβ,DR −
infR(Hm) ≤ cn−m/(2m+1)+ξ for all large enough n, for any ξ > 0, for some c > 0.

(ii)′ (Scenario I; “polynomially sparse” Hm.) Suppose in addition that
infβ∈�n R(β) is reached at some βR ∈ Hm (a best rule in �n satisfies the sparsity
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condition in Hm). Then R − infR(�n) ≤ cn−m/(2m+1)+ξ with Pβ,D-probability
tending to 1 as n → ∞, and Eβ,DR − infR(�n) ≤ cn−m/(2m+1)+ξ for all large
enough n, for any ξ > 0, for some c > 0.

Therefore (i) suggests that the Gibbs posterior will lead to performance in R

that is no worse than the best performance among the sparse linear rules in HE , up
to a rate close to n−1/2, despite the high dimension Kn which can be, for example,
n10. Result (ii) says that if a best linear rule is sparse in HE , then the performance
actually is no worse than the best linear rules in �n, up to the same rate despite the
high dimension.

When the sparsity conditions from HE are relaxed to Hm, the rate becomes
about n−m/(2m+1), which is still not deteriorating as dim(x) = K increases (even
when K � n). This is in contrast to some other situations (such as regression
without variable selection, or piecewise constant models) which have rates deteri-
orating as the dimension K increases.

The above proposition involves sparse rules that require a bounded �1-sum of
the β-coefficients. This limits the number of “potentially important” (or “possibly
large”) coefficients to be bounded (in n). The next proposition generalizes this and
allows some other sparse rules, where the number of “possibly large” coefficients
can grow in n in some way that affects the convergence rate.

PROPOSITION 3 (Risk performance; other sparse cases). (i) (Scenario II;
other sparse cases.) Under conditions 0′, 0′′, 3′, (σ ), (V ), (rδ), with δn satisfying 1′,
we have R − infR(H1,2,3,b) ≤ cδn with Pβ,D-probability tending to 1 as n → ∞,
and Eβ,DR − infR(H1,2,3,b) ≤ cδn for all large enough n, for some c > 0.

(ii) (Scenario I; other sparse cases.) If in addition infβ∈�n R(β) is reached at
some βR ∈ H1,2,3,b (a best model in �n satisfies the sparsity condition in H1,2,3,b,
resp.), then R − infR(�n) ≤ cδn with Pβ,D-probability tending to 1 as n → ∞,
and Eβ,DR − infR(�n) ≤ cδn for all large enough n, for some c > 0.

Note that there is some compromise between the convergence rate δn and the
number vn = nδ2

n/(logn)2 (the integer part of) which is the number of “possibly
large” β̃-coefficients allowed in the “sparse set” H1,2,3,b. When δn is “precise” or
small (such as about n−0.49), then vn is small (about n0.02). When δn is “rough” or
large (such as n−0.01), vn is large (about n0.98).

Propositions 2 and 3 will be proved in a more general context of data mining
(which need not be classification), as Proposition 5 in Section 6 below, where we
also accommodate more general priors (which need not be normal-binary).

6. Proofs and results for more general priors and risk functions. Some of
the proofs below utilize some preparatory results that will be presented in Sec-
tion 6.1.

Define the following conditions and notation. Different subsets of these condi-
tions will be used later when formulating different results.
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(RnR): For h ∈ (0,1) and q > 0, denote p0 = (eψhq − 1)/(eψq − 1), p1 =
(1−e−ψhq)/(1−e−ψq), 
i = 
(x(i)T β/σn), A = I (xT β > 0). Let Rn =
−(nψ)−1 ∑n

i=1 ln{
ip
y(i)

1 (1 − p1)
1−y(i) + (1 − 
i)p

y(i)

0 (1 − p0)
1−y(i)}.

Let R = −ψ−1E ln{Ap
y
1 (1 − p1)

1−y + (1 − A)p
y
0 (1 − p0)

1−y}.
(C2R): Let R′ = Eρ(y,A) where A = I [xT β > 0], y ∈ {0,1}, ρ(0,0) < ρ(0,1)

and ρ(1,1) < ρ(1,0). Define q = ρ(1,0) + ρ(0,1) − ρ(1,1) − ρ(0,0),
and h = [ρ(0,1) − ρ(0,0)]/q .

(Rs): Rn is an i.i.d. average of terms that are bounded between [0,Q] for some
positive constant Q.

(Rp): R is nonstochastic and bounded between [0,Q].
(C2L): (Uniform continuity for R.) There exists a constant W > 0 and a constant

ε > 0 such that

|R(β) − R(β ′)| ≤ W |β − β ′|1,
for all β and β ′ in �n ⊂ �Kn , whenever |β − β ′|1 ≤ ε.

(L): (Lipshitz for Rn.) For some q ′ ≥ 0, for all large enough n,

|Rn(β) − Rn(β
′)| ≤ nq ′ |β − β ′|∞

with probability 1, for all β and β ′ in �Kn .
(B): (Bias.) supβ∈�n

|EDnRn(β) − R(β)| ≺ δn.

(C): Hn is such that π[R − infR(Hn) < δn] ≥ e−nψδn for all large enough n.
(C2b): Hn (⊂ �n) is a compact set of β’s each satisfying the following: β ∈ �n,

and for any small enough η > 0, there exists a large enough Nη, such that
the prior π around a neighborhood of β satisfies π[b : |b − β|1 < ηδn] ≥
e−nψδn for all n > Nη.

(T1): For some M > 1 and u ≥ 0,

π(�c
n) ≺ e−2nψc′

for any constant c′ > 0, where �c
n = �n −�n, �n is the support of π , and

the set �n = {β ∈ �n : |β|0(= |γ |1) ≤ �Mnδ2
n/(logn)2�, |β|∞ ≤ nu}.

0′. |xj | ≤ 1 for all j .
0′′. The conditional density p(x1|x̃) with respect to the Lebesgue measure exists

for all x and is bounded above by a constant S > 0.
1′. 1 � δn � n−1/2 logn.
3′. n ≺ K ≺ nα for some α > 1.

LEMMA 1. R′(β) = R(β) + c where R is the risk function in (RnR), R′ is the
risk function in (C2R), and c is a constant. Both R′ and R are equal to qE(A(h −
Y)) + a constant.
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PROOF. Note that for all a, y ∈ {0,1}, ln{Ap
y
1 (1 − p1)

1−y + (1 − A)p
y
0 (1 −

p0)
1−y} = Ay ln{p1(1 − p0)p

−1
0 (1 − p1)

−1} + A ln{(1 − p1)(1 − p0)
−1} +

y ln{p0(1 − p0)
−1} + ln(1 − p0), which is, using the definitions of p0,1, Ayψq −

Ahψq plus something that does not depend on A. Then due to (RnR), R(β) =
−ψ−1E(Ayψq − Ahψq) = qE[A(h − y)], up to an additive constant.

In (C2R), R′(β) = Eρ(Y,A) = ∑
y,a∈{0,1} ρ(y, a)E[Yy(1 − Y)1−yAa(1 −

A)1−a] = ρ(0,0) + (ρ(1,1) + ρ(0,0) − ρ(1,0) − ρ(0,1))EYA + (ρ(1,0) −
ρ(0,0))EY + (ρ(0,1) − ρ(0,0))EA = ρ(0,0) + (ρ(1,0) − ρ(0,0))EY + (ρ(1,

1)+ρ(0,0)−ρ(1,0)−ρ(0,1))E[A(Y + (ρ(0,1)−ρ(0,0))/(ρ(1,1)+ρ(0,0)−
ρ(1,0) − ρ(0,1)))] = constant + (ρ(1,0) + ρ(0,1) − ρ(1,1) − ρ(0,0)) ×
E[A((ρ(0,1) − ρ(0,0))/(ρ(1,0) + ρ(0,1) − ρ(1,1) − ρ(0,0)) − Y)] =
constant + qE[A(h − Y)], where q = ρ(1,0) + ρ(0,1) − ρ(1,1) − ρ(0,0) > 0
and h = (ρ(0,1)−ρ(0,0))/(ρ(1,0)+ρ(0,1)−ρ(1,1)−ρ(0,0)) ∈ (0,1) due to
ρ(0,1) > ρ(0,0) and ρ(1,0) > ρ(1,1). �

REMARK 1. The risk function R′ in condition (C2R) [or equivalently R in
(RnR)] describes a risk function in data mining that is more general than the
classification error. For one example in a data mining context: A marketing ef-
fort A = I [mail] of mailing out an advertisement with cost c = 1 can be based
on x (including, e.g., gender, age, ethnic group, education, . . .) through a deci-
sion rule A = I (xT β > 0). The outcome will be Y = I [purchase] where a pur-
chase will lead to net income g = 100. Then one would like to maximize the ex-
pected profit E[(gY − c)A] or minimize a risk R = constant − E[(gY − c)A].
Here up to a constant, ρ(Y,A) = −(gY − c)A, so that ρ(0,0) = ρ(1,0) = 0,
ρ(0,1) = c = 1, ρ(1,1) = c − g = −99. Such profit-and-loss decision matrices
are included in popular data mining software such as SAS Enterprise Miner. When
ρ(0,1) = ρ(1,0) = 1 and ρ(1,1) = ρ(0,0) = 0, we obtain the special case of R

being the classification error, in which case q = 2 and h = 0.5.

REMARK 2. Consider the smooth sample risk used for classification [choice
(ii) in Section 2]: Rn = −ψ−1n−1 ∑n

i=1 log{
ie
ψ(y(i)−1) + (1 − 
i)e

−ψy(i)},
where 
i = 
(σ−1

n (x(i))T β), 
 is the standard normal cumulative density func-
tion and σn is a scaling factor.

It is noted that up to a constant of β , e−nψRn = (constant) × ∏n
i=1{
ip

y(i)

1 (1 −
p1)

1−y(i) +(1−
i)p
y(i)

0 (1−p0)
1−y(i)}, where p1 = eψ/(1+eψ) and p0 = 1/(1+

eψ). So this forms a special case of Rn in (RnR) with h = 1/2 and q = 2.

PROPOSITION 4 (General prior). Under (Rs), (Rp), (C2L), (L), (B), (C2b),
(T1), 1′, 3′, we have R − infR(Hn) ≤ 6δn with Pβ,D-probability tending to 1 as
n → ∞, and Eβ,DR − infR(Hn) ≤ 6δn for all large enough n. The same results
hold if risk R is replaced by a translated new risk R′ = R + c for any constant c.
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PROOF. The proposition is proved by combining Lemmas 2 and 3 below. �

LEMMA 2. Under (Rs), (Rp), (L), (B), (C) (in Proposition 7 of Section 6.1),
(T1), 1′, 3′, we have R − infR(Hn) ≤ 6δn with Pβ,D-probability tending to 1 as
n → ∞, and Eβ,DR − infR(Hn) ≤ 6δn for all large enough n. The same results
hold if risk R is replaced by a translated new risk R′ = R + c for any constant c.

PROOF. We will apply Proposition 7 from Section 6.1. Here we can take R̄ =
Q and R̄ − infR(Hn) ∈ [0,Q], due to (Rp). The parameter b is denoted as β here.
The set Fn is denoted as �n here. Note that Rn ≥ 0 due to (Rs), δn ≺ 1 due to
condition 1′. Note that (T1) implies (T).

To prove the bounds in Lemma 2, it suffices to show that the two terms on the
right-hand side of (1) in Proposition 7 are both o(δn). The second term 4e−nψδn ≺
δn due to the condition 1′ for δn. The first term P ∗[supβ∈�n

|Rn(β) − R(β)| > δn]
is bounded above by P ∗[supβ∈�n

|Rn(β) − ERn(β)| > δn/2] for all large n, due
to the bias condition (B) supβ∈�n

|EDnRn(β) − R(β)| ≺ δn. Therefore it suffices
to prove that P ∗[supβ∈�n

|Rn(β) − ERn(β)| > δn/2] ≺ δn.
Note that in general, due to (Rs), P ∗[supb∈�n

|Rn(b) − ERn(b)| > εn] can be
bounded using a covering number for �n, a Lipshitz condition |Rn(b)−Rn(b

′)| ≤
Ln|b − b′|∞, a union bound and a Hoeffding inequality.

Suppose �n can be covered by N balls of radius s, such that for any b ∈ �n,
there exists a bk ∈ �Kn , k ∈ {1, . . . ,N}, such that |b − bk|∞ < s. Then for any
b ∈ �n, one can find one of these N bk’s, say, bj , such that |Rn(b) − ERn(b)| −
|Rn(bj )−ERn(bj )| ≤ 2εn/3 by choosing s = εn/(3Ln), due to the Lipshitz condi-
tion. Therefore supb∈�n

|Rn(b) − ERn(b)| ≤ supj∈{1,...,N} |Rn(bj ) − ERn(bj )| +
2εn/3. Then P ∗[supb∈�n

|Rn(b) − ERn(b)| > εn] ≤ P ∗[supj∈{1,...,N} |Rn(bj ) −
ERn(bj )| > εn/3] which is at most N2e−2n(εn/3)2Q−2

due to the union bound,
condition (Rs), and the Hoeffding inequality.

Note that one can choose N ≤ N̄ = ∑
r≤d Kr(nu/s + 1)r , where d = �Mnδ2

n/

(logn)2�, since the definition of �n implies that there can be at most Kr “model”
indicator γ ’s with size |γ |1 = r (r ≤ d), each of which has a parameter space (of
the nonzero β-components) that can be covered by at most (2nu/(2s)+1)r balls of
size s. Now

∑
r≤d Kr(nu/s + 1)r ≤ (d + 1)Kd(nu/s + 1)d ≤ Kd+1(nu/s + 1)d ≤

K2d(nu/s + 1)d ≤ n2dα(nu/s + 1)d for all large n, since 1 ≺ d ≺ K ≺ nα due
to 1 ≺ d ≺ n (implied by condition 1′) and n ≺ K ≺ nα (by condition 3′). So we
can choose N ≤ n2dα(nu/s + 1)d for all large enough n, where s = εn/(3Ln) as
prescribed before.

Now taking εn = δn/2, Ln = nq ′
[from condition (L)], we get, for all large n,

P ∗
[

sup
b∈�n

|Rn(b) − ERn(b)| > δn/2
]

≤
[
n2α

(
nu

(δn/2)/(3nq ′
)

+ 1
)]�Mnδ2

n/(logn)2�
2e−2n(δn/2/3)2Q−2

,
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which can be proved to be less than δn in order due to the condition 1′: 1 � δn �
n−1/2 logn.

Collecting these steps together leads to the proof. �

LEMMA 3. If the conditions (C2L) and (C2b) are satisfied for some sequence
δn ≺ 1, then (C) is also satisfied for the same δn.

PROOF. Note that infR(Hn) is achieved at some β ∈ Hn (possibly depending
on n) due to the compactness of Hn in (C2b) and the continuity of R implied by
(C2L). Then for any b ∈ �n, we have (*) R(b) − infR(Hn) = R(b) − R(β) ≤
|R(b) − R(β)| ≤ W |b − β|1 for all small enough |b − β|1. Therefore for any se-
quence δn ≺ 1, |b −β|1 < δnW

−1 implies R(b)− infR(Hn) < WδnW
−1 = δn, for

all large n. Therefore π [b : R(b) − infR(Hn) < δn] ≥ π [b : |b − β|1 < δnW
−1],

which is ≥ e−nψδn for all large n, by taking η = W−1 in (C2b). �

REMARK 3. Note that (C2b) is a condition for proving (C) (see Lemma 3
above). Condition (C) describes that the prior π is competitive against the rules
in Hn in some sense [when comparing the generated R(β)’s to infR(Hn)]. Con-
dition (C2b) describes one way to construct such a set of rules Hn over which the
prior π is competitive: a compact set of rules such that around each of these rules
the prior assigns a not too low probability.

LEMMA 4. (i) Condition (RnR) implies (Rs) and (Rp).
(ii) Conditions 0′, 0′′ and (RnR) imply (C2L).

(iii) Conditions 0′, (σ ), 3′ and (RnR) imply (L).
(iv) Conditions 0′′, 1′, (σ ) and (RnR) imply (B).

PROOF. For (i), note that the proofs for (Rs) and (Rp) are similar. Note that
h ∈ (0,1) and q > 0 implies that p0,1 ∈ (0,1). The terms inside ln{ } are averages
of p1 and p0 or averages of (1 −p1) and (1 −p0), which are all between (min,1),
where min = min{p0,1, (1 − p0,1)} ∈ (0,1). This implies that −ψ−1 ln{ } ∈
(0,ψ−1 ln(1/min)). So (Rs) and (Rp) are proved with Q = ψ−1 ln(1/min).

For (ii), note that R = qE[A(h − y)], up to an additive constant, due to
Lemma 1.

For any b and β in {±1}×�K−1 such that |b−β|1 ≤ ε for some small enough ε,
we must have b1 = β1 ∈ {±1}. Let us take b1 = β1 = +1. (The other case is
similar.) Then |R(b) − R(β)| = |qE[(I [xT b > 0] − I [xT β > 0]|)(h − y)]| ≤
qE|I [xT β > 0] − I [xT b > 0]|. Here we are using the representations such as
bT = (b1, b̃

T ) and βT = (β1, β̃
T ).

Now b1 = β1 = 1 implies that (‡) E|I [xT β > 0] − I [xT b > 0]| = Ex̃Ex1|x̃ ×
I [−x̃T b̃ ≥ x1 > −x̃T β̃ or − x̃T β̃ ≥ x1 > −x̃T b̃] ≤ ES|x̃T b̃ − x̃T β̃| ≤ ES ×
|x|∞|b − β|1 ≤ S|b − β|1, where |x|∞ ≤ 1 due to 0′ and S is an upperbound
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of the conditional density of p(x1|x̃) in 0′′. So |R(b) − R(β)| ≤ qE|I [xT β >

0]−I [xT b > 0]| ≤ qS|b−β|1. So we can take W = qS to obtain the proof for (ii).
For (iii), note that (∗) |Rn(b) − Rn(b

′)| ≤ KnCn|b − b′|∞, where Cn is any
upperbound of |∂bj

Rn| over all j and over parameter space. Note that |∂bj
Rn| =

|–(nψ)−1 ∑n
i=1{
ip

y(i)

1 (1 − p1)
1−y(i) + (1 − 
i)p

y(i)

0 (1 − p0)
1−y(i)}−1(∂bj


i) ×
{py(i)

1 (1−p1)
1−y(i) −p

y(i)

0 (1−p0)
1−y(i)}| ≤ (nψ)−1 ∑n

i=1(min)−1(1/
√

2π)σ−1
n ×

1, since |py(i)

1 (1 − p1)
1−y(i) − p

y(i)

0 (1 − p0)
1−y(i)}| ≤ 1, {
ip

y(i)

1 (1 − p1)
1−y(i) +

(1−
i)p
y(i)

0 (1−p0)
1−y(i)} ≥ min = min{p0,1, (1−p0,1)} ∈ (0,1), and |∂bj


i | =
|∂bj


(x(i)T b/σn)| = |x(i)
j |σ−1

n (1/
√

2π)e−0.5(x(i)T b/σn)2 ≤ σ−1
n (1/

√
2π) due to 0′.

So |∂bj
Rn| ≤ ψ−1(min)−1(1/

√
2π)σ−1

n , which can be taken as the upperbound
Cn in (∗), which implies that |Rn(b) − Rn(b

′)| ≤ (constant)Knσ
−1
n |b − b′|∞ ≤

nα+q ′′+1|b − b′|∞ for all large n, due to conditions 3′ and (σ ). Then (C2L) is
proved with q ′ = α + q ′′ + 1.

For (iv), note that |ERn − R| = ψ−1|E ln{
p
y
1 (1 − p1)

1−y + (1 − 
)p
y
0 (1 −

p0)
1−y} − E ln{Ap

y
1 (1 − p1)

1−y + (1 − A)p
y
0 (1 − p0)

1−y}|, where 
 = 
(xT β/

σn) and A = I (xT β > 0). By a first-order Taylor expansion one shows that |ERn−
R| ≤ constantE|
−A| = constantEx̃Ex1|x̃ |
−A|. Now suppose β1 = 1 (the case
of β1 = −1 is similar); then Ex1|x̃ |
 − A| = Ex1|x̃{I (|x1 + x̃T β̃| ≤ u)|
 − A|} +
Ex1|x̃{I (|x1 + x̃T β̃| > u)|
 − A|} ≤ S(2u) + e−0.5(u/σn)2

/
√

2π(u/σn)2 for any
u > 0, due to 0′′ and the Mill’s ratio. The resulting upperbound is uniformly correct
for all β , and becomes O(logn/

√
n) by taking u = σn

√
logn and using (σ ).

So supβ |ERn − R| ≤ O(logn/
√

n) ≺ δn due to 1′. �

LEMMA 5. (i) H1 ⊃ H2.
(ii) H2 ⊃ H3 for all large n.

(iii) H2 ⊃ Hb for all large n.
(iv) H3 �⊃ Hb assuming condition 1′.
(v) Hb �⊃ H3 assuming 1′ and 3′.

(vi) Hm ⊃ HE for all large enough q .
(vii) H3 ⊃ Hm for all large n if δn ≥ n−m/(2m+1)(logn)2, assuming 1′.
(viii) H3 ⊃ HE for all large n if δn ≥ n−1/2(logn)2, assuming 1′.

(ix) Hb �⊃ HE under 3′, for all large enough q .

PROOF. Part (vi) is due to the domination of power law decays over the ex-
ponential decays. Parts (vii) and (viii) can be proved by applying the (polyno-
mial and exponential, resp.) bounds of

∑
j>r |β̃(j)| for r = vn ≡ nδ2

n/(logn)2.
Part (iv) is proved by examining β = (1,C, . . . ,C,0, . . . ,0)T with about vn C’s,
which is a number of Hb but not of H3 due to an �1 norm that is unbounded
as n increases. Part (v) is proved by examining β = (1, (1/2)C′δn/(logn),
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(1/2)2C′δn/(logn), (1/2)3C′δn/(logn), . . .)T which is a member of H3 but not
of Hb. Part (iii) is proved by noting that Hb implies a zero tail for the sum
over j > vn and bounded terms for j ≤ vn. Part (ii) is proved by noting that a
bounded �1 norm implies that all coefficients are bounded. Part (i) is proved by
noting that

∑
j≤vn

|β̃(j)|2 ≤ (supj≤vn
|β̃(j)|)2vn. To prove part (ix), note that β =

(1,ψ0ξ,ψ0ξ
2,ψ0ξ

3, . . .)T is a member of HE for all large q , if ψ0 = C(e2C′′ −1),
ξ = e−2C′′

. On the other hand β /∈ Hb under 3′. �

LEMMA 6. (i) R − inf(H2,3,b) ≤ R − infR(H1).
(ii) If δn ≥ n−m/(2m+1)(logn)2, then R − inf(Hm) ≤ R − infR(H1).

(iii) If δn ≥ n−1/2(logn)2, then R − inf(HE) ≤ R − infR(H1).

PROOF. Note that the previous lemma on the relations among the sparse sets
implies that H1 contains all other sparse sets in all situations of this lemma [with
the specifications of δn for situations (i) and (iii)]. Then infR(H1) is the smallest
among all these infimums and R − infR(H2,3,b,m,E) ≤ R − infR(H1). �

PROPOSITION 5. Propositions 2 and 3 hold for the more general risk func-
tions in a data mining context specified in (RnR).

PROOF. We only need prove the Scenario-II results, since they obviously im-
ply the Scenario-I results. [If we assume that infβ∈�n R(β) is achieved at some
βH ∈ Hn ⊂ �n, then infβ∈�n R(β) = infβ∈Hn R(β).]

Due to Lemma 6(i) it is obvious that we only need to prove Proposition 3
for H1, in order to prove Proposition 3. For getting the upperbounds of the risk
performances in Proposition 2 we start from Proposition 3 and apply Lemma 6(ii)
and (iii), where we take “=” for the choices of δn, and note that the factors (logn)2

in δn are less than the factor nξ for all large enough n, for any ξ > 0.
To prove Proposition 3 for H1 in the general context (RnR), we apply Proposi-

tion 4 and note that all conditions hold, by applying Lemma 4, as well as Lemmas 7
and 8 to be given later. �

LEMMA 7. For δn in condition 1′, assume that Kn satisfies 3′ and that we
use the normal/binary prior for π satisfying (V). Assume condition (rδ). Then the
sparse set H1 satisfies the condition (C2b).

PROOF. The set H1 is obviously compact.
Consider any β ∈ H1. Define “model” γn to be the set of indices for the

(βj )j>1’s that have the top �vn� largest absolute values, in addition to the in-
dex 1 for β1 ∈ {±1} which is always kept in the “model.” Then

∑
j /∈γn

|βj | =∑
j>vn

|β̃(j)| ≤ C′δn/(logn). Here vn = nδ2
n/(logn)2.

Note that for any η > 0, π [b : |b − β|1 < ηδn] ≥ π(γ = γn)π [b : |b − β|1 <

δnη|γ = γn], where γ is the “model” indicator for the set of nonzero components
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of b. Following the notation of Section 4.2, γ = (γj )
Kn

1 , where γj = I (|bj | �= 0).
Here and below, for a Kn-vector ζ (e.g., ζ can be γ or γ̆ ), the notation ζ = γn for
a set γn ⊂ {1, . . . ,Kn} means that ζj = I [j ∈ γn], j = 1, . . . ,Kn.

We will show that π(γ = γn) and π [b : |b − β|1 < δnη|γ = γn] are both not too
small.

Note that given “model” γn, b1 = β1 and |b̃γ − β̃γ |1 ≡ ∑
j>1,j∈γn

|bj − βj | <

δn/ logn will imply that |b − β|1 < δnη (for all large enough n). This is because
b only has nonzero components in γn, so |b − β|1 = |b1 − β1| + ∑

j>1,j∈γn
|bj −

βj | + ∑
j /∈γn

|βj | ≤ 0 + δn/ logn + C′δn/(logn) which is less than δn in order.

So π [b : |b − β|1 < δnη|γ = γn] ≥ π [b1 = β1, |b̃γ − β̃γ |1 < δn/ logn|γ =
γn] = 0.5π [|b̃γ − β̃γ |1 < δn/ logn|γ = γn] for all large n, noting that b1 ∈ ±1
with equal probability and is independent of other things in the prior. The last
probability π [|b̃γ − β̃γ |1 < δn/ logn|γ = γn] is integrating a normal density

|2πVγ |−1/2e−0.5b̃T
γ V −1

γ b̃γ over a set S = [|b̃γ − β̃γ |1 < δn/ logn] ⊃ [vn|b̃γ −
β̃γ |∞ < δn/ logn], which has at least volume (v−1

n δn/ logn)�vn� since the vector
b̃γ is �vn�-dimensional under model γ = γn.

The normal density over is bounded below by exp{−0.5vn log(2πB) −
0.5|b̃γ |22B} using the bounds of the eigenvalues of prior variance in (V ). Note also
that |b̃γ |22 ≤ 2|β̃γ |22 +2|b̃γ − β̃γ |22 ≤ 2|β̃γ |22 +2|b̃γ − β̃γ |21 ≤ 2|β̃γ |22 +2δ2

n/(logn)2

over b̃γ ∈ S, which is ≤ 2C2nδ2
n/(logn) + 2δ2

n/(logn)2 since β ∈ H1.
Collecting all these together we get, for all large n,

π [|b − β|1 < δnη|γ = γn]
≥ 0.5 exp

{−0.5vn log(2πB) − C2nδ2
n/(logn)B

− δ2
n/(logn)2B}(v−1

n δn/ logn)�vn�}
= 0.5 exp{−0.5vn log(2πB) − C2nδ2

n/(logn)B

− δ2
n/(logn)2B − �vn� log(vn logn/δn)},

where vn = nδ2
n/(logn)2. It is then easy to verify that all terms in the exponent are

of the form −o(nδ2
n) under condition 1′ for δn.

Now we consider π(γ = γn) under the (size-restricted) binary prior. Note that
for all large enough n, π(γ = γn) = π(γ̆ = γn||γ̆ |1 ≤ r̄n) ≥ π(γ̆ = γn, |γ̆ |1 ≤
r̄n) = π(γ̆ = γn), where r̄n is the size restriction chosen as (the integer part of)
Mnδ2

n/(logn)2 (M > 1) in condition (rδ), and the “model” γn has size 1 + �vn� =
�nδ2

n/(logn)2� + 1 < r̄n for all large enough n. Note that γ̆ has unrestricted i.i.d.
binary components (except that γ̆1 = 1 always) and the probability π(γ̆ = γn) =
λ

�vn�
n (1 − λn)

Kn−1−�vn�. Note that λn ∼ vn/Kn due to (rδ) and vn ≺ Kn due
to 1′ and 3′. Therefore logπ(γ̆ = γn) = �vn� logλn + (Kn − 1 − �vn�) log(1 −
λn) = �vn� logλn + (Kn − 1 − �vn�)(−λn + o(λn)) = �vn� logλn(1 + o(1)) ≥
(�vn� log(M ′vn) − �vn� logKn)(1 + o(1)) ≥ −vn logKn(1 + o(1)) for all large n
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[since vn = nδ2
n/(logn)2 � 1 due to 1′]. Now vn logKn = nδ2

n/(logn)2 logKn ≤
[nδ2

n/(logn)2] log(nα) = o(nδ2
n).

Collecting these results together we know that π [b : |b − β|1 < ηδn] ≥ π(γ =
γn)π[b : |b − β|1 < δnη|γ = γn] where both factors can be expressed as being at
least e−o(nδ2

n), which will be greater than e−ψnδn , for all large n. (Note that δn ≺ 1
due to 1′ is used.) �

LEMMA 8. With conditions (V), (rδ), 1′, the normal-binary prior π (with size
restriction) satisfies the tail condition (T1).

PROOF. Take M as the one used in condition (rδ) and take u = 1 in (T1). De-
note r̄n = �Mnδ2

n/(logn)2�. Note that π(�c
n) ≤ π(|γ |1 > r̄n) +∑

γ : |γ |1≤r̄n
π [|β|∞ > nu|γ ]π(γ ) ≤ π(|γ |1 > r̄n) + supγ : |γ |1≤r̄n

π [|β|∞ > nu|γ ].
The first term is 0 due to the size restriction. The term supγ :|γ |1≤r̄n

π [|β|∞ >

nu|γ ] = supγ : |γ |1≤r̄n
π [⋃j : γj=1[|βj | > nu]|γ ] ≤ r̄n supγ : |γ |1≤r̄n

supj :γj=1

π [|βj | > nu|γ ], where π [|βj | > nu|γ ] can be bounded above by 2e−0.5n2u/B/√
2πn2u/B using Mill’s ratio and the eigenvalue bound (V ). Collecting all these

together we get π(�c
n) ≤ r̄n2e−0.5n2u/B/

√
2πn2u/B (where u is taken to be 1),

which is at most e−0.5n2/B under conditions (rδ) and 1′, for all large n, and is
therefore ≺ e−2nψc′

for any constant c′ > 0. �

6.1. Supplementary results on risk performance of Gibbs posterior. In this
section we will consider a very general setup. The results here have been applied
in the proofs in Section 6. Here we will consider the performance of a general risk
R(b) [or more generally, rn(b), which is nonstochastic but can depend on n]. Sup-
pose b is sampled from a Gibbs posterior ω(db|Dn), which is constructed from
a sample risk Rn and a prior π(db), and Dn denotes data generated from a true
density p∗.

More formally, in both propositions below, we will assume that the data Dn

(indexed by a sample size n) follows a probability distribution P ∗ with density
p∗(Dn) with respect to some dominant measure dDn. Let b|Dn denote a distrib-
ution (conditional on Dn) with a density w(b|Dn) ∝ e−nψRn(b) with respect to a
prior π(db), where Rn(b) depends on a parameter b and data Dn. Denote by Pb,D

the resulting joint distribution of b and Dn and Eb,D the corresponding expecta-
tion.

PROPOSITION 6. Assume that Rn(b) ≥ 0 for any b and Dn.
If the prior π is such that the support supp(π) = �n = Fn ∪ Fc

n where Fc
n =

�n −Fn, then for any rn(b) nonstochastic (possibly depending on n but not other-
wise on Dn) and any ρn and δn nonstochastic and not depending on p,

Pb,D[rn(p) − ρn > 5δn] ≤ P ∗
[

sup
b∈Fn

|Rn(b) − rn(b)| > δn

]
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+ π(F c
n )enψ(ρn+2δn) + e−nψ(2δn)

(π[rn(b) − ρn < δn] − π(F c
n ))+

.

Here we use the notation A+ = AI (A > 0).

PROOF. The left-hand side is ED� = ∫
P ∗(dDn)[N1+N2

Den
], where ED =∫

P ∗(dDn), � = [N1+N2
Den

], N1 = ∫
Fc

n
e−nψ(Rn−ρn)I [rn − ρn > 5δn]π(db), N2 =∫

Fn
e−nψ(Rn−rn+rn−ρn)I [rn −ρn > 5δn]π(db), Den = ∫

e−nψ(Rn−rn+rn−ρn)π(db).
Note that N1 ≤ π(F c

n )enψρn , N2 ≤ enψn−nψ(5δn), where n = supFn
|Rn(b) −

rn(b)|,
Den ≥

∫
Fn

I [rn − ρn < δn]e−nψn−nψ(rn−ρn)π(db)

≥ e−nψn−nψδnπ([rn − ρn < δn] ∩ Fn)

≥ e−nψn−nψδn
(
π[rn − ρn < δn] − π(F c

n )
)
+.

Therefore � = [N1+N2
Den

] ≤ G(n), where

G(n) =
[
e(n+δn+ρn)nψπ(F c

n ) + e(n+δn+n−5δn)nψ

(π[rn − ρn < δn] − π(F c
n ))+

]
.

Note that � = Pb|Dn[rn − ρn > 5δn] ≤ 1 and G(n) is increasing in n.
Then the left-hand side is

ED� = ED(�I [n > δn]) + ED(�I [n ≤ δn])
≤ P ∗[n > δn] + ED{G(n)I [n ≤ δn]}
≤ P ∗[n > δn] + G(δn)

≤ P ∗[n > δn] +
[
e(2δn+ρn)nψπ(F c

n ) + e(−2δn)nψ

(π[rn − ρn < δn] − π(F c
n ))+

]
. �

PROPOSITION 7. Assume that Rn(b) ≥ 0 for any b and Dn. Consider any
positive sequence δn which is nonstochastic and not dependent on b. Assume that
δn ≺ 1. For all large enough n, if the prior π is such that the support supp(π) =
�n = Fn ∪ Fc

n where Fc
n = �n − Fn, such that

(T) π(F c
n ) ≤ e−2nψR̄ for some constant R̄ > 0,

(C) a subset Hn of the supp(π) is such that π[R(b) − infb∈Hn R(b) < δn] ≥
e−nψδn , for some nonstochastic R(b) ≤ R̄,

then we have, for all large enough n,

Pb,D

[
R(b) − inf

b∈Hn

R(b) > 5δn

]

(1)

≤ P ∗
[

sup
b∈Fn

|Rn(b) − R(b)| > δn

]
+ 4e−nψδn
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and

Eb,D

[
R(b) − inf

b∈Hn

R(b)

]

(2)

≤ 5δn +
(
R̄ − inf

b∈Hn

R(b)

)
Pb,D

[
R(b) − inf

b∈Hn

R(b) > 5δn

]
.

PROOF. Note that the second inequality relates expectation E to a probabil-
ity P , which is bounded in the first inequality. Such a relation is due to the general
relation for a constant g > 0 and a random variable G which is bounded above by
a constant c: EG = EGI [G > g] + EGI [G ≤ g] ≤ cP [G > g] + g. We can then
simply take g = 5δn and G = R(b) − infb∈Hn R(b), which is bounded above by a
constant c = R̄ − infb∈Hn R(b).

Now we prove the first inequality on P . This is proved by applying Proposi-
tion 6. We take rn(b) = R(b), ρn = infb∈Hn R(b), and apply the conditions (T)
and (C) to the long fraction on the right-hand side of the inequality in Proposi-
tion 6, which is shown to be bounded above by 4e−nψδn , by noting that R̄ > 0 and
δn ≺ 1. �

REMARK 4. This proposition simplifies the long fraction in Proposition 6
by applying the conditions (T) and (C) on the prior π and “a scope of compar-
ison” Hn. Then the performance of R(b) is evaluated under Eb,D or Pb,D (as gen-
erated by the data generation mechanism P ∗ for Dn and the Gibbs posterior for
b|Dn). The performance of R(b) is compared to the best performance infb∈Hn R(b)

over the scope Hn. It will be close to this best performance if n−1 ≺ δn ≺ 1 and if
there exists a uniform convergence result for a small P ∗[supb∈Fn

|Rn(b)−R(b)| >
δn]. Such a relation is very general and allows many different situations by invok-
ing different techniques. For example, Vapnik–Chervonenkis theory, or uniform
continuity of Rn(b) − R(b) and covering numbers of Fn, may be used to handle
the P ∗[sup . . .] with a union bound. The probability of large |Rn − R| may also be
bounded by Hoeffding’s or Bernstein’s inequalities for non-i.i.d. data or data that
are dependent in some weak ways (such as α- or φ-mixing, ergodic Markov chain,
etc.).

7. An MCMC algorithm. This section describes some computational aspect
for sampling from the Gibbs posterior ω(dβ|Dn) ∝ e−nψRnπ(dβ), where π is the
normal-binary prior specified in Sections 4.2 and 4.3.

Consider the smoothed sample risk function Rn in (RnR). It is noted that

e−nψRn =
n∏

i=1

{

ip

y(i)

1 (1 − p1)
1−y(i) + (1 − 
i)p

y(i)

0 (1 − p0)
1−y(i)}

,

where 
i = 
(σ−1
n (x(i))T β), 
 is the standard normal cumulative density func-

tion and σn is a scaling factor.
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This can be recognized as the likelihood for a mixture of two binary models
with mixing probability 
i . This suggests a data augmentation method [see, e.g.,
Tanner (1996)] incorporating latent variables Z = (Z(i))n1, where Z(i) are indepen-
dent N((x(i))T β, σn), so that y(i)|Z(i) are independent Bin(1,pI [Z(i)>0]), which
leads to computational advantage. The Gibbs sampler can be used to obtain the
joint distribution of (Z, γ,β), where all full conditional distributions are standard.
Similar to, for example, Lee et al. (2003), we can integrate over βγ and use the
distribution γ |Z instead of γ |Z,βγ in the Gibbs sampler, in order to speed up the
computations.

Define βT = (β1, β̃
T ), γ̃ = (β1, γ2, . . . , γKn), and let β̃γ include β̃j ’s (j =

2, . . . ,Kn) with γj = 1. Consider the following MCMC algorithm starting from
any initial position.

For t = 1,2, . . .:

(Step 1) Sample Zt |β̃t−1
γ , γ̃ t−1.

(Step 2) Sample γ̃ t |Zt .
(Step 3) Sample β̃t

γ |γ̃ t ,Zt .

Below we explain each of the three steps and omit the time index t to simplify
notation.

Step 1. Note that Z = (Z(1), . . . ,Z(n))T . The step is carried out by indepen-
dently sampling Z(i)’s according to a “shifted” normal distribution:

1a: Generate Z∗
i ∼ N((x(i))Tγ βγ , σ 2) independently where vγ denotes the sub-

vector of vj ’s with γ ′
j s being 1.

1b: Generate independent uniform variable U∗
i ∼ Unif [0,1].

1c (Case 1): If Z∗
i > 0, set Z(i) = Z∗

i only when U∗
i ≤ a+ = a1/max{a1, a0},

where a0,1 = p
y(i)

0,1 (1 − p0,1)
1−y(i)

.

1c (Case 2) : If Z∗
i ≤ 0, set Z(i) = Z∗

i only when U∗
i ≤ a− = a0/max{a1, a0}.

Step 2. Iteratively update one component at a time, conditional on all other com-
ponents of γ̃ . Define Z(i)(β1) = Z(i)−x

(i)
1 β1, Z(β1) = (Z(1)(β1), . . . ,Z

(n)(β1))
T ,

X̃γ = (x̃
(1)
γ , . . . , x̃

(n)
γ )T .

2a: Simulate β1|γ Kn

2 ,Z to take value from ±1, with probability

p(β1|Z,γ
Kn

2 ) ∝ 0.5e0.5σ−2Z(β1)
T [X̃γ (σ 2V −1

γ +X̃T
γ X̃γ )−1X̃T

γ −I ]Z(β1).

2b: For j = 2, . . . ,Kn, simulate γj |(γk)k �=j , β1,Z to take value in {0,1}, with
probability

p(γj |{γk :k = 2, . . . ,Kn, k �= j}, β1,Z)

∝ λγj (1 − λ)1−γj I [|γ | ≤ r̄]
× e0.5σ−2Z(β1)

T [X̃γ (σ 2V −1
γ +X̃T

γ X̃γ )−1X̃T
γ −I ]Z(β1)

× {det[I + σ−2X̃T
γ X̃γ Vγ ]}−1/2.
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Step 3. Simulate β̃γ |β1, γ,Z ∼ N{(σ 2V −1
γ +X̃T

γ X̃γ )−1X̃T
γ Z(β1), σ

2(σ 2V −1
γ +

X̃T
γ X̃γ )−1}.
Note that all these conditional distributions are standard. It can be easily

shown that a stationary distribution of the proposed MCMC algorithm [which re-
sults in a Markov chain (γ t , βt

γ ) and its corresponding parameters (βt )] is the de-
sired Gibbs posterior ω(dβ|Dn) ∝ e−nψRnπ(dβ), where Rn is the smoothed em-
pirical risk in (RnR). We conjecture that the proposed MCMC algorithm converges
to the desired Gibbs posterior in total variation distance, as t → ∞, regardless of
the starting position.

8. Discussion. The current paper studies a new Bayesian variable selection
(BVS) method using a Gibbs posterior, which is directly constructed from a sam-
ple risk function of interest. This approach can perform better than the usual ap-
proach that uses a likelihood-based posterior, which in some situations can give
a suboptimal risk performance with model misspecification. A smoothed sam-
ple risk function is used to provide convenient posterior computation in the style
of Markov chain Monte Carlo. With BVS, the procedure can effectively handle
high-dimensional data. We show that the resulting risk performance, even in a
very high-dimensional case (K � n), can resemble the risk performance in a low-
dimensional setting, in the sense that it can approach the best possible risk perfor-
mance (achievable by certain sparse decision rules) at a low-dimensional conver-
gence rate.

The approximately parametric/low-dimensional rate that BVS achieves, despite
the high dimensionality (K � n), seems to defy the “curse of dimensionality.”
The reason is that BVS has used the so-called “bet-on-sparsity” principle [e.g.,
Friedman, Hastie, Rosset, Tibshirani and Zhu (2004)] by fitting effectively low-
dimensional models due to the use of the prior distribution. Such a bet of course
can be wrong: that is, we can be in the nonsparse case where all xj ’s can be im-
portant. However, in such cases not too much will be lost by the wrong bet, since
nothing else seems to work well in such high-dimensional nonsparse case. On the
other hand, when the bet is right, BVS can do much better than a minimax type
rule that tries to protect for the bad cases. Intuitively speaking, a linear regression
model without variable selection would have a large variance K/n to start with,
which is doomed to fail from the beginning, when K � n. On the other hand,
BVS would use lower-dimensional submodels to make sure that the variance part
is not out of control in the first place. When sparseness holds (i.e., only a few out
of K candidate xj ’s are important), the method will perform very well. It is noted
that the sparse case can describe quite practical situations such as how a disease is
mainly affected by only a few genes out of thousands.

A related approach to variable selection is based on Bayesian decision theory,
which was described by Lindley (1968) and more recently extended by, for exam-
ple, Brown, Fearn and Vannucci (1999), to the multivariate case. This approach
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is characterized by assuming normal data and using a friendly loss function (such
as the quadratic loss). Under this framework, various expectations can be analyt-
ically computed and optimization can be simplified to depend only on the model
indicator γ . Our approach cannot have such computational simplification and the
Gibbs posterior needs to generate both γ and βγ (parameter within the model).
This is because we allow more general cases with a nonnormal predictor x and
nonquadratic loss. Our approach can handle classification error as well as realistic
dollar-costs used in data mining. In addition, the current paper studies frequentist
properties of risk performance which were not addressed in previous works using
the Bayesian decision-theoretic approach.

The current approach generates a Gibbs posterior based on which both variable
selection and model averaging can be performed. The theoretical result in the cur-
rent paper is on a good performance of expected risk Eβ,DR(β) = ED[Eβ|DR(β)],
which involves using models obtained randomly from the Gibbs posterior for
β|D. [The parameter β has certain nonzero components selected by a model in-
dicator and determines a decision rule I (xT β > 0).] We argue that how to opti-
mally utilize these good decision rules obtained from the Gibbs posterior (e.g.,
how model averaging can be done) is a nontrivial interesting problem. Model
averaging would involve using rules parameterized by E(β|D) instead of β . By
Jensen’s inequality, if R(β) is convex, model averaging is always beneficial since
ED[R(E(β|D))] ≤ ED[Eβ|DR(β)]. However, the classification error R can be
nonconvex and can have multiple minimums. In such cases the averaged decision
rule can be a poor one even if each individual rule being averaged is good. It may
be that some kind of model average “locally” can still be beneficial, in a limited
region of approximate convexity, roughly speaking. This is worth further investi-
gation.

The current approach uses a general framework allowing model misspecifica-
tion (when the true generating process can be outside of the support of the prior).
Although the proposed approach has an advantage in such a case with misspecifi-
cation, we expect that in the case without misspecification (when the true model
is within the support of the prior), the conventional approach using the likelihood-
based posterior should perform comparably well to our procedure. This is because
the conventional approach essentially minimizes the Kullback–Leibler (KL) diver-
gence, which will lead to a good risk performance due to a relation between the
two, when there is no misspecification. Such a relation is known, for example, be-
tween the classification risk and the KL divergence [see, e.g., Devroye, Györfi and
Lugosi (1996), Problem 15.3].

Although this paper has focused on a smoothed sample risk for constructing the
Gibbs posterior [choice (ii) in Section 2], similar results on good risk performance
can be obtained when the unsmoothed sample risk [choice (i), or a sample ver-
sion for the more general data mining risk described in Remark 1] is used. The
proof will be more conventional and involve probability bounds for uniform devi-
ation of sample risk based on the Vapnik–Chervonenkis theory [see, e.g., Devroye,
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Györfi and Lugosi (1996), Chapters 12 and 13 for a good description]. The poste-
rior simulation can be based on the Metropolis algorithm [see, e.g., Tanner (1996),
Chapter 6, for a description]. It is also noted that although we have focused on the
Gibbs sampler in this paper, the Metropolis algorithm can also be applied to both
cases with the unsmoothed and the smoothed sample risk. In the latter case with a
smoothed sample risk, the Gibbs sampler approach of Section 7 may require a rel-
atively large smoothing parameter (σ ) for improving the algorithmic convergence.
This would lead to some bias which can be corrected by applying the Metropolis
algorithm with less (or no) smoothing.
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