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We consider evaluation of proper posterior distributions obtained from
improper prior distributions. Our context is estimating a bounded function
φ of a parameter when the loss is quadratic. If the posterior mean of φ is
admissible for all bounded φ, the posterior is strongly admissible. We give
sufficient conditions for strong admissibility. These conditions involve the
recurrence of a Markov chain associated with the estimation problem. We
develop general sufficient conditions for recurrence of general state space
Markov chains that are also of independent interest. Our main example con-
cerns the p-dimensional multivariate normal distribution with mean vector θ

when the prior distribution has the form g(‖θ‖2) dθ on the parameter space
R

p . Conditions on g for strong admissibility of the posterior are provided.

1. Introduction. In many standard parametric settings, the use of improper
prior distributions to produce inferential proposals is well established. A variety
of formal rules have been proposed to justify particular improper priors. This is
especially true in invariant problems. The survey article of Kass and Wasserman
[15] provides an excellent overview of many issues that arise in selecting and us-
ing improper priors, including decision theoretic considerations. Indeed, decision
theory provides an appealing framework for the evaluation of improper priors via
the (proper) posterior distributions they produce. A particular decision theoretic
approach was described in [7], but subsequent suggestions have had more appeal.
One of these involves a notion of “strong admissibility” and is the basis of the ap-
proach below. This notion was introduced in [8] and was called P -admissibility in
[14].

The idea behind strong admissibility is the following. Given a sample space
(X,B), suppose a random object X ∈ X is to be observed and assume that the
distribution of X is an element of the parametric model {P(·|θ)|θ ∈ �}. Consider
a σ -finite improper prior distribution ν and define the marginal measure M on
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(X,B) by

M(B) =
∫
�

P (B|θ)ν(dθ), B ∈ B.

Technical issues such as measurability, existence of integrals, etc. are treated care-
fully in the next section. When the measure M is σ -finite, a proper posterior dis-
tribution Q(dθ |x) exists and satisfies

P(dx|θ)ν(dθ) = Q(dθ |x)M(dx),

in the sense that the joint measures on each side of the equality sign are equal.
Interpreting Q(·|x) as summarizing knowledge about θ after seeing X = x, the
probability measure Q(·|x) on � can now be used to solve decision problems.
Namely, one integrates a loss function with respect to Q(·|x) and then picks an
action (depending on x) to minimize the expected posterior loss. This procedure is
ordinarily called the formal Bayes method of solving a decision problem.

As an example, let φ(θ) be a bounded real-valued function on � and consider
a quadratic loss function

L(a, θ) = (
a − φ(θ)

)2
, a ∈ R.(1)

The posterior expected loss is minimized by the posterior mean

φ̂(x) =
∫
�

φ(θ)Q(dθ |x),(2)

and φ̂ is a formal Bayes estimator of φ. Given any estimator t (x) of φ(θ), the risk
function of t is

r(t, θ) =
∫
X

(
t (x) − φ(θ)

)2
P(dx|θ),(3)

and admissibility of estimators is assessed in terms of the risk function.
The formal posterior Q(dθ |x) is strongly admissible if, for every bounded mea-

surable function φ, the formal Bayes estimator φ̂ is admissible (this is defined
more carefully in the next section). Loosely speaking, strong admissibility is re-
garded as an endorsement of Q(·|x) and, hence, of the improper prior ν, for use in
making inferences about θ after seeing X = x.

A sufficient condition for strong admissibility is the recurrence of the Markov
chain with state space � and transition function

R(C|θ) =
∫
X

Q(C|x)P (dx|θ).(4)

In words, (4) is the expectation of the formal posterior when X is sampled from
P(·|θ). There is more than one notion of recurrence that is relevant for strong
admissibility. A discussion of this issue is given in the next section. Here is an
example that illustrates the issues that motivated our research.



EVALUATION OF POSTERIOR DISTRIBUTIONS 2425

EXAMPLE 1.1. Suppose X has a p-dimensional multivariate normal distrib-
ution with mean vector θ ∈ R

p and covariance matrix the p × p identity, Ip . This
we write as X ∼ Np(θ, Ip). Consider Lebesgue measure as the improper prior
distribution: ν(dθ) = dθ on � = R

p . Standard calculations show that the formal
posterior Q(dθ |x) is a Np(x, Ip) distribution on R

p . Further, the transition func-
tion R(·|θ) is a Np(θ,2Ip) distribution on R

p . Therefore, the one step transition
of the Markov chain in this example can be described as follows: Given the chain
is at θ ∈ R

p , the next state of the chain is θ +V , where V is Np(0,2Ip). The chain
is thus a random walk on R

p . For p = 1 or p = 2, the chain is recurrent (see [5] for
p = 1 and [20], Chapter 3, for p = 2). But for p ≥ 3, the chain is transient ([12],
page 579). Therefore, for p = 1,2, the formal posterior Q(·|x) is strongly admis-
sible, but for p ≥ 3, the recurrence argument fails. Of course, one suspects that,
for p ≥ 3, Q(·|x) is in fact not strongly admissible because of the existence of the
James–Stein estimator for θ , but a rigorous proof of a “not strongly admissible”
assertion for Q(·|x) is not known to us.

Now, focus on the case of p ≥ 3. Since the chain induced by the normal model
and the improper prior “dθ” is transient, it seems reasonable to look at a somewhat
broader class of priors of the form

ν(dθ) = g0(‖θ‖2) dθ,(5)

where ‖ · ‖ denotes the Euclidean norm on R
p . It is natural to seek conditions on

the function g0 so that the induced Markov chain is recurrent. It is this and related
issues that give rise to much of the new material herein. The primary difficulties in
addressing this issue are as follows:

(i) The transition function cannot be computed explicitly, so the correspond-
ing Markov chain is difficult to study.

(ii) Even for special and rather simple g0’s, techniques for establishing the
recurrence of the induced chain are not available.

This completes our initial discussion of this example.

Here is an outline of the material in this paper. The next section contains no-
tation and assumptions, a careful definition of strong admissibility, and a discus-
sion of the Markov chain introduced above. In particular, two different notions of
recurrence are described (neither of which involves the notion of irreducibility),
and their relation to strong admissibility is emphasized. Results in [8–10] underlie
much of this material.

Section 3 contains the first of two main results that are of use in establish-
ing strong admissibility. This result was conjectured in [8], pages 1166–1167.
The idea, reminiscent of hierarchical prior proposals, is to give conditions un-
der which the improper prior distribution ν(dθ) on � has a “disintegration” into
π(dθ |β)s(dβ). Here π(·|β) is a probability measure for each β and s is a σ -finite
measure on a set A (typically, much simpler than �). Sufficient conditions for
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strong admissibility are then based on an induced Markov chain whose state space
is A rather than �. The arguments in Section 3 rely on results involving the Dirich-
let forms associated with the Markov chains under consideration (see [10]).

Our second main result, presented in Section 4, concerns sufficient conditions
for the recurrence of a Markov chain with a general state space (a Polish space) Y .
The results in Section 4 are an extension and refinement of results in [16], which
are in turn an extension of the early work in [17]. When Y = [0,∞), sufficient
conditions for the recurrence of a set [0,m) for m sufficiently large are expressed
in terms of the first three moments of the increments of the chain.

In brief, recurrence of the Markov chain with transition function R implies
strong admissibility. This paper provides two results that simplify the task of estab-
lishing recurrence. Application of the results to Example 1.1 illustrates a nontrivial
case that justifies the new methodology in Sections 3 and 4. In particular, these
methods are applied in Section 5 to the problem of Example 1.1 when the prior
has the form given in (5). Conditions on the function g0 (which are necessarily
dimension dependent) that imply strong admissibility are discussed in detail. Our
treatment of Example 1.1 is a rigorous development of work begun in [16].

2. Background. The purpose of this section is to provide assumptions and
rigorous statements that underlie the connection between strong admissibility and
recurrence. The discussion here is an abbreviated version of some material in [10]
and we assume the reader is somewhat familiar with that material. It is useful to
keep Example 1.1 in mind.

2.1. Model, prior and posterior. The sample space (X,B) is assumed to con-
sist of a Polish space X (a complete separable metric space) coupled with the
Borel σ -algebra B. The parameter space (�,C) is also assumed to be Polish with
C the Borel σ -algebra. A statistical model {P(·|θ)|θ ∈ �} for an observable quan-
tity X ∈ X specifies the modeling assumption. We assume the P(·|·) are Markov
transition functions—that is, P(·|θ) is a probability measure on B for each θ , and
for each B ∈ B, P(B|·) is C-measurable.

Now let ν(dθ) be a σ -finite measure on C, and for each B ∈ B, consider the
marginal measure given by

M(B) =
∫
�

P (B|θ)ν(dθ).(6)

Throughout, the marginal measure M is assumed to be σ -finite. Under this as-
sumption, there is a Markov transition function Q(·|x) that satisfies

P(dx|θ)ν(dθ) = Q(dθ |x)M(dx).(7)

This equation means that the two joint measures on X × � given by (7) agree.
For a discussion of the existence and uniqueness (a.e. M) of Q(·|x); see [7]. Of
course, Q(·|x) is called the formal posterior distribution of θ given X = x.
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2.2. Strong admissibility and recurrence. As in Section 1, let φ be a bounded,
measurable, real-valued function defined on � and consider the problem of es-
timating φ(θ) when the loss is (1). Then φ̂(x) given in (2) is the formal Bayes
estimator obtained from the formal posterior Q(·|x). Using the risk function de-
fined in (3), here is an appropriate notion of admissibility, due to C. Stein, for our
setting.

DEFINITION 2.1. The estimator t0(x) for φ(θ) is almost-ν-admissible (a-ν-a)
if for each estimator t that satisfies r(t, θ) ≤ r(t0, θ) for all θ , the set {θ |r(t, θ) <

r(t0, θ)} has ν-measure zero.

DEFINITION 2.2. The improper prior ν, or equivalently, the formal posterior
Q(·|x), is strongly admissible if for each bounded measurable φ, the estimator φ̂

is a-ν-a.

The boundedness assumption on φ greatly simplifies the technical issues sur-
rounding our discussion. For some parallel results regarding the estimation of un-
bounded functions, see [9].

In this section two notions of recurrence are useful. To describe these, recall
the transition function given in (4). This transition function determines a Markov
chain W = (W0,W1, . . .) with each Wi ∈ �, i = 0,1,2, . . . . The path space of W

is �∞ and given that W0 = w0, the probability distribution of W is denoted by
Pw0 . In some situations we will call W the P -ν chain to emphasize its dependence
on the model and the prior.

A measurable subset C ⊆ � is ν-proper if 0 < ν(C) < ∞. Let C be a ν-proper
set and consider the stopping time τC defined on �∞ by

τC =
{∞, if Wn /∈ C for all n ≥ 1,

smallest n ≥ 1 such that Wn ∈ C, otherwise.

Also, let EC = {w|τC(w) < ∞} ⊆ �∞.

DEFINITION 2.3. The ν-proper set C is locally-ν-recurrent (l-ν-r) if the set
{w0 ∈ C|Pw0(EC) < 1} has ν-measure zero. The ν-proper set C is ν-recurrent if
the set {w0|Pw0(EC) < 1} has ν-measure zero.

DEFINITION 2.4. The Markov chain W is locally-ν-recurrent (l-ν-r) if every
ν-proper set is l-ν-r.

The following basic result was established in [8].

THEOREM 2.1. If the Markov chain W is l-ν-r, then Q(·|x) is strongly admis-
sible.
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The above theorem is often difficult to apply since every ν-proper C must be
shown to be l-ν-r. The following result ([10], Theorem 3.1), eases the burden some-
what.

THEOREM 2.2. The following are equivalent: (i) the chain W is l-ν-r and
(ii) there is an increasing sequence of ν-proper sets Ci , i = 1,2, . . . , such that
Ci → � and each Ci is l-ν-r.

The next result facilitates the application of the recurrence ideas to the admissi-
bility issue. It is sometimes called the “one-set criterion.” See [10] for a proof.

THEOREM 2.3. Let C∗ be a ν-proper set and suppose C∗ is ν-recurrent. Then
every ν-proper set C is l-ν-r.

Section 4 is devoted to the problem of finding a single recurrent set so that the
above theorem can be applied to nontrivial examples.

The Markov chain one-set technique of Section 4 and the dimension reduction
method of Section 3 are the basic contributions of this paper. The dimension reduc-
tion method relies on a rather deep connection between l-ν-r and the behavior of
the Dirichlet form associated with the Markov chain W generated by the transition
function R(dθ |η) and the measure ν.

In what follows, L2(ν) denotes the linear space of ν-square integrable functions.
Let h ∈ L2(ν), then the quadratic form

�(h) = 1
2

∫ ∫ (
h(θ) − h(η)

)2
R(dθ |η)ν(dη)(8)

is a Dirichlet form (see [6] and [13] for background material). The relevance of �

for statistical decision problems with quadratic loss is discussed in [10]. Given a
ν-proper set C, let IC denote the indicator function of C and let

V (C) = {h | h ∈ L2(ν), h bounded, h ≥ IC}.(9)

Here is a basic theorem established in [8] that relates the Dirichlet form � to
questions regarding admissibility.

THEOREM 2.4. Fix a ν-proper set C. The following are equivalent: (i) C is
l-ν-r and (ii) infh∈V (C) �(h) = 0.

Theorems 2.2, 2.3 and 2.4 are used in the next section.

3. A reduction argument. Again consider a model {P(dx|θ) | θ ∈ �}, a σ -
finite prior ν(dθ) with M(dx) assumed to be σ -finite. Hence, there is a Markov
kernel Q(dθ |x), a formal posterior for θ given x, so that (7) holds. The transition
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function R(dθ |η) defines the P -ν Markov chain W and the related symmetric
measure

R(dθ |η)ν(dη) =
∫
X

Q(dθ |x)Q(dη|x)M(dx).

This in turn defines the Dirichlet form � given in (8). Next, consider a measurable
mapping t from (�,C) to ([0,∞),B1). The map t induces a measure s on the
Borel subsets B1 of [0,∞) given by s(A) = ν(t−1(A)).

ASSUMPTION 3.1. There is a sequence of disjoint Borel sets Ai ⊆ [0,∞) for
i = 1,2,3, . . . such that

∞⋃
i=1

Ai = [0,∞) and Bi = t−1(Ai) ⊆ � is ν-proper.

THEOREM 3.1. Suppose Assumption 3.1 holds. Then there is a Markov tran-
sition function π(dθ |a) on C × [0,∞) such that

ν(dθ) = π(dθ |a)s(da).(10)

Equation (10) means that for all measurable nonnegative functions f1(θ) and
f2(t (θ)) defined on � and [0,∞) respectively, we have∫

�
f2(t (θ))f1(θ)ν(dθ) =

∫ ∞
0

f2(a)

(∫
�

f1(θ)π(dθ |a)

)
s(da).(11)

If ν is a finite measure, then the assertion of Theorem 3.1 is nothing more than
the existence of a conditional distribution [on � given t (θ) = a] π(dθ |a), where
s is the marginal distribution of t (θ). When ν is allowed to be σ -finite, Assump-
tion 3.1 allows one to argue separately on the spaces Bi ⊆ � and Ai ⊆ [0,∞)

using standard techniques; see [18], pages 43 to 52. The details are omitted.

EXAMPLE 3.1. Consider ν(dθ) = g0(‖θ‖2) dθ on � = R
p with p > 1. As-

sume the measurable function g0 is non-negative and ν is σ -finite. Consider the
mapping t on � defined by t (θ) = ‖θ‖2 ∈ [0,∞). Let π(dθ |β) denote the uniform
probability distribution on {θ |‖θ‖2 = β} with the obvious extension of π(·|β) to
�. A routine argument shows that ν(dθ) = π(dθ |β)s(dβ), where

s(dβ) = [�(1/2)]p
�(p/2)

g0(β)βp/2−1 dβ on [0,∞).(12)

REMARK 3.1. Without Assumption 3.1, Theorem 3.1 is typically false. To see
part of the difficulty, let � = [0,∞) × [0,∞), let ν be Lebesgue measure on �

and let t (θ1, θ2) = θ1 ∈ [0,∞). It is not too hard to show that a π(dθ |a) satisfying
(11) does not exist.
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For the remainder of this section, Assumption 3.1 holds, so the conclusion of
Theorem 3.1 holds. Now, introduce the new model

P̃ (dx|a) =
∫
�

P (dx|θ)π(dθ |a), a ∈ [0,∞).

The “prior” s(da) is σ -finite (this follows from Assumption 3.1) and the marginal
on X is the σ -finite measure M(dx). That M(dx) is still the marginal follows
from ∫ ∞

0
P̃ (dx|a)s(da) =

∫ ∞
0

∫
�

P (dx|θ)π(dθ |a)s(da)

=
∫
�

P (dx|θ)ν(dθ) = M(dx).

Thus, there is a formal posterior Q̃(da|x) that satisfies

P̃ (dx|a)s(da) = Q̃(da|x)M(dx).(13)

The model P̃ (dx|a) together with s determines a Markov chain, the P̃ -s chain,
with transition function

R̃(da|b) =
∫

Q̃(da|x)P̃ (dx|b)

and Dirichlet form

�̃(h̃) = 1
2

∫ ∞
0

∫ ∞
0

(
h̃(a) − h̃(b)

)2
R̃(da|b)s(db).

The rest of this section is devoted to proving that if the P̃ -s chain is locally-s-
recurrent (l-s-r), then the P -ν chain is l-ν-r. This shows that the l-s-r of the P̃ -s
chain implies strong admissibility for the original problem (see Theorem 2.1). To
describe our first result, let Q̃0 be the Markov kernel on B1 × X defined by

Q̃0(A|x) = Q(t−1(A)|x).(14)

THEOREM 3.2. The Markov kernel Q̃0 serves as a version of Q̃ in (13).

PROOF. Consider nonnegative measurable functions v on X and ψ on [0,∞).
Then using the definition of Q̃0 yields∫ ∞

0

∫
X

v(x)ψ(a)P̃ (dx|a)s(da) =
∫ ∞

0

∫
X

∫
�

v(x)ψ(a)P (dx|θ)π(dθ |a)s(da)

=
∫
�

∫
X

v(x)ψ(t (θ))P (dx|θ)ν(dθ)

=
∫
X

∫
�

v(x)ψ(t (θ))Q(dθ |x)M(dx)

=
∫
X

∫ ∞
0

v(x)ψ(a)Q̃0(da|x)M(dx). �
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THEOREM 3.3. Consider h̃ ∈ L2(s) and define h∗ on � by h∗(θ) = h̃(t (θ)).
Then h∗ ∈ L2(ν) and �̃(h̃) = �(h∗), where �̃ and � are the Dirichlet forms for
the P̃ -s chain and the P -ν chain respectively.

PROOF. That h∗ ∈ L2(ν) is obvious. Using the definition of h∗, Q̃0, and The-
orems 3.1 and 3.2, we have

�(h∗) = 1
2

∫
�

∫
�

∫
X

(
h∗(θ) − h∗(η)

)2
Q(dθ |x)Q(dη|x)M(dx)

= 1
2

∫
�

∫
�

∫
X

(
h̃(t (θ)) − h̃(t (η))

)2
Q(dθ |x)Q(dη|x)M(dx)

= 1
2

∫ ∞
0

∫ ∞
0

∫
X

(
h̃(a) − h̃(b)

)2
Q̃0(da|x)Q̃0(db|x)M(dx) = �̃(h̃). �

THEOREM 3.4. If the P̃ -s chain is l-s-r, then the P -ν chain is l-ν-r.

PROOF. Let A be an s-proper subset of [0,∞). By Theorem 2.4,

inf
h̃∈Ṽ (A)

�̃(h̃) = 0,

where Ṽ (·) is the analog of V (·) [defined by (9)] for the P̃ -s problem. Now, let
{Di} be an increasing sequence of s-proper subsets of [0,∞) such that Di ↗
[0,∞). Setting Ei = t−1(Di) for i = 1,2, . . . , we see that ν(Ei) = s(Di) ∈ (0,∞)

and Ei ↗ �. By Theorem 2.2, it is sufficient to show that each Ei is l-ν-r. But
using Theorem 2.4 shows that it is sufficient to verify that

inf
h∈V (Ei)

�(h) = 0.(15)

To show (15), let ε > 0 be given and select h̃ ∈ Ṽ (Di) so that �̃(h̃) < ε. Then set
h∗(θ) = h̃(t (θ)). Clearly, h∗ ∈ V (Ei) and by Theorem 3.3, �(h∗) = �̃(h̃) < ε.
Thus, (15) holds. �

REMARK 3.2. The choice of [0,∞) for the range of t is purely for simplicity
and the direct application to Example 1.1. Any other choice of Polish space for the
range of t yields the same results as long as Assumption 3.1 holds. A convenient
choice for t and its range is dependent upon the application.

4. Recurrence of Markov chains. In this section we discuss the recurrence
of a discrete time Markov chain with values in a Polish space X. The σ -algebra
generated by the open sets of X is denoted by B. The notation and setting in this
section are independent of that in the earlier sections. Indeed, the material here
may be of independent interest since some nontrivial generalizations of results in
[17] are given below.
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Consider a discrete time Markov chain X = (X0,X1, . . .) with state space X so
each Xi is an element of X, i = 0,1, . . . . Therefore, X takes values in the product
space X∞ which is equipped with the natural product σ -algebra B∞. The one-
step transition function of the chain, assumed to be a Markov kernel on B × X, is
denoted by T (·|y) for y ∈ X. Given x0 ∈ X, let P(·|x0) denote the distribution of
X ∈ X∞ when X0 = x0. Thus, P(·|x0) is a probability measure on B∞.

Now, let C be a Borel subset of X. Define the stopping time

τC =
{∞, if Xn /∈ C for all n ≥ 1,

smallest n ≥ 1 such that Xn ∈ C, otherwise

and let EC = {w ∈ X∞|τC(w) < ∞}.
DEFINITION 4.1. The set C is P(·|x0)-recurrent if P(EC |x0) = 1. The set C

is recurrent if C is P(·|x0)-recurrent for all x0 ∈ X.

REMARK 4.1. If C is recurrent and ν-proper, in the language of Section 2,
then C is ν-recurrent.

PROPOSITION 4.1. If C is P(·|x0)-recurrent for all x0 ∈ Cc, then C is recur-
rent.

PROOF. This is a standard Markov chain argument which is omitted. �

4.1. A condition for recurrence. Let f be a Borel measurable function defined
on X with values in [0,∞). Define a sequence of random variables Y0, Y1, Y2, . . .

by

Yn = f (XτC∧n), n = 0,1, . . . ,

where ∧ denotes the minimum. Obviously, Yi = f (Xi) for i = 0,1. The proof of
the following is omitted.

LEMMA 4.1. With EC as defined above, if w ∈ EC , then the sequence
{Yn(w) | n = 0,1,2, . . .} converges to a finite limit, namely, f (XτC(w)(w)).

Here is an important structural condition on f and the chain X.

ASSUMPTION 4.1. Given x0 ∈ X,

P

(
lim sup
n→∞

f (Xn) = ∞
∣∣∣ x0

)
= 1.

THEOREM 4.1. Let H ⊆ X∞ be the set of w’s such that Yn(w) converges to
a finite limit. Suppose Assumption 4.1 holds and that P(H |x0) = 1. Then the set C

is P(· | x0)-recurrent.
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PROOF. Let EC be as defined above. Then by Lemma 4.1, EC ⊆ H . Thus
H = EC ∪ (H ∩ Ec

C). To show that C is P(· | x0)-recurrent, it suffices to show
P(H ∩ Ec

C | x0) = 0 since then, P(H |x0) = P(EC |x0) = 1. Let

K =
{
w

∣∣∣ lim sup
n→∞

f (Xn(w)) = ∞
}
.

Then, since P(K|x0) = 1, we have P(H ∩ Ec
C | x0) = P(H ∩ Ec

C ∩ K | x0). Since
H ∩ Ec

C ∩ K is empty, this completes the proof. �

The above shows that when Assumption 4.1 holds, P(·|x0)-recurrence of C will
hold if we can show that {Yn|n = 1, . . .} converges to a finite limit a.s.-P(·|x0). Of
course, if {Yn} is a P(·|x0) supermartingale, then H has P(·|x0) probability one
and Theorem 4.1 applies. It is this martingale argument that [17] used.

4.2. When is {Yn} a supermartingale? Given the Markov chain X =
(X0,X1, . . .) with state space X and X0 = x0, let Fn be the σ -algebra in B∞
generated by X0, . . . ,Xn. Recall that {Yn,Fn | n = 0,1,2 . . .} is a P(·|x0) super-
martingale if

E
(
Yn+1|Fn

) ≤ Yn, n = 0,1, . . . ,(16)

where the expectation is taken under P(·|x0) on B∞.

DEFINITION 4.2. A function f :X → [0,∞) is superharmonic on Cc if

E
(
f (X1) | X0 = x0

) ≤ f (x0) for all x0 ∈ Cc.(17)

THEOREM 4.2. If f is superharmonic on Cc, then (Yn,Fn | n = 0,1, . . .) is a
supermartingale for each x0 ∈ Cc.

PROOF. Recall that Yi = f (Xi) for i = 0,1 and fix x0 /∈ C. That (16) holds
for n = 0 is a direct consequence of (17) since x0 /∈ C.

For n ≥ 1, let Gn ∈ Fn be the event Gn = {X1 /∈ C, . . . ,Xn /∈ C} = {τC > n}.
Obviously, E(Yn+1 | Fn) = E(IGc

n
Yn+1 | Fn) + E(IGnYn+1 | Fn). On the set Gc

n,
Yn+1 = Yn so

E(IGc
n
Yn+1 | Fn) = E(IGc

n
Yn | Fn) = IGc

n
Yn.(18)

On the set Gn, τC ≥ n + 1 so Yn+1 = f (Xn+1) and

E(IGnYn+1 | Fn) = E(IGnf (Xn+1) | Fn) = IGnE(f (Xn+1) | Fn) ≤ IGnf (Xn).

The last inequality follows from the Markov property and the assumption that f is
superharmonic on Cc. Thus, on the set Gn,

E(IGnYn+1 | Fn) ≤ IGnf (Xn) = IGnYn.(19)

Combining (18) and (19) shows (16) holds. �
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COROLLARY 4.1. Suppose f is superharmonic on Cc. Then for each x0 ∈ Cc,
{Yn} converges a.s.-P(· | x0) to a finite random variable Y .

PROOF. This is just the Supermartingale Convergence Theorem since 0 ≤
EYn ≤ EY1 for all n, so 0 ≤ supnEYn ≤ EY1 ([3], page 468). �

Combining what has now been established, we have the following result.

THEOREM 4.3. Suppose Assumption 4.1 holds for x0 ∈ Cc and that f is su-
perharmonic on the set Cc ⊆ X. Then the set C is recurrent.

Theorem 4.3 parallels some results in Chapter 8 of [19] in the use of superhar-
monic functions. An important difference is that Meyn and Tweedie assume the
Markov chain is irreducible, while we rely on Assumption 4.1.

4.3. The case when X = [0,∞) In this section it is assumed that the state
space X is [0,∞). We develop sufficient conditions on the chain X = (X0,X1, . . .)

so that a particular function f is superharmonic on the set [m,∞) when m is large
enough. In addition, we provide a sufficient condition for Assumption 4.1 which
may be easy to check in examples. When these two results hold, it will follow
from our previous results that the set C = [0,m) is recurrent. An application of
this result is provided in Section 5.

We begin with a statement of a main result, although several auxiliary results
are needed before the proof can be completed. For k = 1,2,3, let

μk(x) =
∫ ∞

0
(y − x)kT (dy|x).(20)

The quantity ∫ ∞
0

|y − x|3T (dy|x)

is assumed finite for all x ∈ [0,∞), so μk(x) is well defined for all x ∈ [0,∞) and
k = 1,2,3. We also assume that μ2(x) > 0 for all sufficiently large x.

THEOREM 4.4. Assume that there is a function ψ1 such that, for all suffi-
ciently large x,

μ1(x) ≤ μ2(x)

2x
[1 + ψ1(x)](21)

and

lim
x→∞(logx)ψ1(x) = 0.(22)
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Also, assume that

lim
x→∞

logx

x

μ3(x)

μ2(x)
= 0.(23)

Then, for x ≥ 0,

f0(x) = log
(
log(e + x)

)
(24)

is superharmonic on the interval [m,∞) for m large enough.

What needs to be established to prove Theorem 4.4 is that, for all large x,

δ(x) = E
(
f0(X1) − f0(x) | X0 = x

) ≤ 0.(25)

To this end, note that the first four derivatives of f0 satisfy

f ′
0(x) = 1

(x + e) log(x + e)
> 0,

f ′′
0 (x) = − log(x + e) + 1

(x + e)2 log2(x + e)
< 0,

f ′′′
0 (x) = 2 log2(x + e) + 3 log(x + e) + 2

(x + e)3 log3(x + e)
> 0,

f
(iv)
0 (x) = −6 log3(x + e) + 7 log2(x + e) + 12 log(x + e) + 6

(x + e)4 log4(x + e)
< 0.

Now, expanding f0 in a Taylor series about x in (25), discarding the negative term
f (iv) in this expansion, and doing a bit of algebra results in

δ(x) ≤ f ′
0(x)μ2(x)

2x

[
2xμ1(x)

μ2(x)
+ f ′′

0 (x)

f ′
0(x)

x + 2f ′′′
0 (x)μ3(x)x

6f ′
0(x)μ2(x)

]
.(26)

For notational convenience, set

ψ2(x) = 2f ′′′
0 (x)μ3(x)x

6f ′(x)μ2(x)
.

Our first intermediate conclusion is the following, which is a direct consequence
of (26) and (21).

LEMMA 4.2. For all sufficiently large x, with δ(x) as defined in (25),

δ(x) ≤ f ′
0(x)μ2(x)

2x

[
1 + ψ1(x) + f ′′

0 (x)x

f ′
0(x)

+ ψ2(x)

]
.(27)

LEMMA 4.3. The right-hand side of the inequality (27) is equal to

f ′
0(x)μ2(x)

2x
xf ′

0(x)

[
−1 + e log(x + e)

x
+ ψ1(x)

xf ′
0(x)

+ ψ2(x)

xf ′
0(x)

]
.(28)
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PROOF. First verify by direct calculation that

f ′
0(x) + xf ′′

0 (x)

(f ′
0(x))2 = −x + e log(x + e).(29)

Multiplying and dividing the bracketed term in (27) by xf ′
0(x) and using (29) im-

mediately yields the claim. �

Now, we complete the proof of Theorem 4.4 by showing that the bracketed term
in (28) is negative for all large x. But, this is a direct consequence of assumptions
(22) and (23). For example,

ψ1(x)

xf ′
0(x)

= x + e

x
log(x + e)ψ1(x),

which obviously converges to zero as x → ∞ under assumption (22). With a bit
more algebra, (23) implies that ψ2(x)/xf ′

0(x) converges to zero as x → ∞. There-
fore, the right-hand side of (27) is negative for all large x. Thus, δ(x) ≤ 0 for all x

large enough and the proof is complete.
We now turn to a discussion of the structural Assumption 4.1 when X = [0,∞)

and the function f is f0 in (24). Because f0 is monotone increasing from [0,∞)

onto [0,∞), it is clear that Assumption 4.1 holds for f = f0 if and only if the
following holds:

CONDITION 4.1. Given x0 ∈ [0,∞),

P

(
lim sup
n→∞

Xn = ∞
∣∣∣ x0

)
= 1.

PROPOSITION 4.2. Define the event

Am,k = {X1 ∈ [0,m],X2 ∈ [0,m], . . . ,Xk ∈ [0,m]}
for positive integers m and k. Assume that, for each x0 and each m ∈ N,
P(Am,k|x0) → 0 as k → ∞. Then Condition 4.1 holds for all x0.

PROOF. Fix x0. For m ∈ N, define Em = {Xn ∈ [0,m] for n = 1,2, . . .}. Let
E = ⋃∞

m=1 Em. Clearly, P(E|x0) = 0 if and only if P(Em|x0) = 0 for all m ∈ N.
Define

F =
{

lim sup
n→∞

Xn = ∞
}
,

and note that Ec = F . Hence, P(F |x0) = 1 if and only P(Em|x0) = 0 for all m ∈
N. Note that Am,k ↓ Em. By assumption, for each fixed m ∈ N, P(Am,k|x0) → 0
as k → ∞. Thus, P(Em|x0) = 0 for all m ∈ N and the result is proved. �
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PROPOSITION 4.3. Assume that for each positive integer m there exists a δ =
δ(m) < 1 such that

sup
x0∈[0,m]

T ([0,m] | x0) ≤ δ.(30)

Then Condition 4.1 holds for all x0.

PROOF. Fix x0 and m ∈ N. Note that

P(Am,k|x0) =
∫ m

0

∫ m

0
· · ·

∫ m

0
T (dx1|x0) · · ·T (dxk−1|xk−2)T ([0,m]|xk−1)

≤ T ([0,m] | x0)δ
k−1

≤ δk−1.

Thus, P(Am,k|x0) → 0 as k → ∞ and an application of Proposition 4.2 completes
the proof. �

In summary, the main conclusion of this section is the following.

THEOREM 4.5. Assume that X = [0,∞) and that the assumptions of Theo-
rem 4.4 and Proposition 4.3 hold. Then there exists an m ∈ (0,∞) such that the
set C = [0,m) is recurrent.

It is Theorem 4.5 that is used in the application of the next section.

5. Strongly admissible priors for the multivariate normal mean. We now
use our results to identify strongly admissible priors for the mean of a multivariate
normal distribution. Recall the setting of Example 1.1. Assume that X ∼ Np(θ, Ip)

and take the prior to be νa,b(dθ) = dθ/(a +‖θ‖2)b, where a ≥ 0, b > 0, and dθ is
Lebesgue measure on R

p .
The prior ν0,b is improper for all b > 0, but the marginal is σ -finite only when

b < p/2. On the other hand, when a > 0, νa,b is improper only when b ≤ p/2 and
the marginal is σ -finite for all b in this range. We therefore restrict attention to
b ∈ (0,p/2) when a = 0 and to b ∈ (0,p/2] when a > 0. When these conditions
are satisfied, a proper posterior distribution Qa,b(dθ |x) exists and satisfies the
disintegration

P(dx|θ)νa,b(dθ) = Qa,b(dθ |x)Ma,b(dx).

Here is the main result of this section.

THEOREM 5.1. Suppose X ∼ Np(θ, Ip) with p ≥ 3. The prior νa,b [equiv-
alently, the posterior Qa,b(dθ |x)] is strongly admissible if either (A) a > 0 and
b ∈ [p/2 − 1,p/2] or (B) a = 0 and b ∈ [p/2 − 1,p/2).
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REMARK 5.1. The problem we address is substantively different from the tra-
ditional problem of estimating θ under quadratic loss. However, one of the results
established in [2] is that when a = 1 and b = (p − 1)/2 the formal Bayes estima-
tor of θ is admissible under quadratic loss. The argument in [2] uses the general
results in [4]. It seems plausible that the results in [4] could be used to obtain ad-
missibility, under quadratic loss, of the formal Bayes estimator of θ for any of the
priors νa,b in Theorem 5.1.

PROOF OF THEOREM 5.1. Throughout, we will refrain from using subscripts
on ν, M and Q. In Example 3.1 it is shown that the prior ν(dθ) can be expressed
as π(dθ |β)s(dβ), where π(·|β) is the uniform distribution on {θ |‖θ‖2 = β} and
s(dβ) is given in (12) with g0(β) = (a + β)−b. The new model, P̃ , has density
(with respect to Lebesgue measure on R

p) given by

f̃ (x|β) =
∫
�
(2π)−p/2e−(1/2)‖x−√

βξ‖2
π1(dξ),

where π1 is the uniform distribution on � = {θ |‖θ‖ = 1}. The formal posterior for
β can be written as Q̃(dβ|x) = q(β|x)dβ , where

q(β|x) = cf̃ (x|β)g0(β)βp/2−1

m(x)
(31)

with c a positive constant and

m(x) = c

∫ ∞
0

f̃ (x|β)g0(β)βp/2−1 dβ =
∫

Rp
f (x|θ)g0(‖θ‖2) dθ,(32)

where f (x|θ) is the multivariate normal density with mean θ ∈ R
p and covariance

matrix the p × p identity, Ip . The P̃ -s chain has Markov transition function given
by

R̃(dβ|η) =
∫

Rp
Q̃(dβ|x)f̃ (x|η)dx.(33)

According to Theorem 3.4, to prove that ν is strongly admissible, it suffices to
show that the P̃ -s chain is l-s-r. This is now established by showing that the con-
ditions of Theorem 4.5 are satisfied.

Note that f̃ (x|η) and q(β|x) are strictly positive for all β,η ∈ (0,∞) and x ∈
R

p . It follows that R̃(C|η) > 0 for every η ∈ [0,∞) and every C with positive
Lebesgue measure. In order to apply Proposition 4.3, we need to show that, for
any m ∈ N, there exists a δ < 1 such that

sup
η∈[0,m]

R̃([0,m]|η) ≤ δ.

It suffices to show that R̃([0,m]|η) is a continuous function of η for η ∈ [0,m]. Fix
η∗ ∈ [0,m] and, without loss of generality, let {ηk}∞k=1 be a sequence in [0,4m] that
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converges to η∗. An application of dominated convergence shows that f̃ (x|ηk) →
f̃ (x|η∗) as k → ∞. Let g : Rp → R such that

g(x) = I
(‖x‖ < 4

√
m

) + I
(‖x‖ ≥ 4

√
m

)
e−(1/2)‖x/2‖2

.

Since g is integrable and f̃ (x|ηk) ≤ g(x) for all x and all k, another application of
dominated convergence yields the desired continuity.

We now turn our attention to establishing the conditions of Theorem 4.4. Recall
that

μk(η) :=
∫ ∞

0
(β − η)kR̃(dβ|η).

In the appendix we prove

μ1(η) = 2p − 4b + ψ∗
1 (η), μ2(η) = 8η + ψ∗

2 (η) and μ3(η) = ψ∗
3 (η),

where, as η → ∞, ψ∗
1 (η) = O(η−1), ψ∗

2 (η) = O(1) and ψ∗
3 (η) = O(η). Set

ψ1(η) = η−ε for some ε ∈ (0,1). Then (22) holds and

μ2(η)[1 + ψ1(η)] = 8η + 8η1−ε + O(1).

Since b ≥ p/2 − 1, it follows that

2ημ1(η) = (4p − 8b)η + O(1) ≤ 8η + O(1),

so (21) holds. Furthermore, (23) holds since, as η → ∞,

logη

η

μ3(η)

μ2(η)
= logη

η

ψ∗
3 (η)

8η + ψ∗
2 (η)

= ψ∗
3 (η)

η

logη

8η + ψ∗
2 (η)

→ 0. �

Let ν(dθ) be an improper prior on � = R
p and suppose that the P -ν chain

is l-ν-r so that ν is strongly admissible. A result in [11] shows that (under mild
conditions) if h : Rp → [0,∞) is a bounded function, then the “perturbed” prior
ν∗(dθ) = h(θ)ν(dθ) is also strongly admissible. In fact, Corollary 4 in [11] in
conjunction with the results in the proof of our Theorem 5.1 immediately yields
the following:

THEOREM 5.2. Suppose X ∼ Np(θ, Ip) with p ≥ 3. Let h : Rp → [0,∞) be
bounded and suppose the perturbed prior νh,a,b(dθ) = h(θ)νa,b(dθ) is improper.
Then νh,a,b is strongly admissible if either (A) a > 0 and b ∈ [p/2 − 1,p/2] or
(B) a = 0 and b ∈ [p/2 − 1,p/2).

REMARK 5.2. It is possible to get most of part (A) of Theorem 5.1 by com-
bining the proof of part (B) with the work in [11]. Fix b ∈ [p/2 − 1,p/2). We
know from the proof of part (B) that the Markov chain associated with the prior
ν0,b(dθ) = dθ/(‖θ‖2)b is l-ν0,b-r. Now fix a > 0, and note that

νa,b(dθ) = 1

(a + ‖θ‖2)b
dθ =

( ‖θ‖2

a + ‖θ‖2

)b

ν0,b(dθ).
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Since (‖θ‖2/(a +‖θ‖2))b is a bounded function, the results in [11] imply that νa,b

is strongly admissible.

Finally, using arguments somewhat similar to those in the proof of Theorem 5.1,
the multivariate Poisson case was discussed in [16].

APPENDIX: ASYMPTOTIC EXPANSION OF MOMENTS.

Throughout this section, p ∈ {3,4, . . .}, a ≥ 0 and b > 0 are considered fixed
and the assumptions of Theorem 5.1 are in force. We begin by recalling some facts
concerning the noncentral χ2 distribution. Suppose that Z ∼ Np(γ, Ip) and let
λ = ‖γ ‖2. Then V = ‖Z‖2 ∼ χ2

p(λ) and its density at v > 0 is given by

∞∑
n=0

e−λ/2(λ/2)n

n!
(v/2)n+p/2−1e−v/2

2�(n + p/2)
.(34)

We will need the first three moments of V , which are as follows:

E[V |λ] = λ + p, E[V 2|λ] = (λ + p)2 + 4λ + 2p,

E[V 3|λ] = (λ + p)3 + 12(λ + p)2 − 6λp + 24λ − 6p2 + 8p.

Recall that g0(z) = (a + z)−b. Using (34), one can show that E[g0(V )V k|λ] =
2kE[wk(N)|λ], where N |λ ∼ Poisson(λ/2) and, for n ∈ Z

+ := {0,1,2, . . .},

wk(n) :=
∫ ∞

0

g0(z)(z/2)n+p/2+k−1e−z/2

2�(n + p/2)
dz.

When a = 0 and p/2 − b > 0,

wk(n) = �(n + p/2 + k − b)

2b�(n + p/2)
,(35)

which is well defined even when n = k = 0. Our goal is to prove the following.

PROPOSITION A.1. For η > 0, we have

μ1(η) = 2p − 4b + ψ∗
1 (η), μ2(η) = 8η + ψ∗

2 (η) and μ3(η) = ψ∗
3 (η),

where, as η → ∞, ψ∗
1 (η) = O(η−1), ψ∗

2 (η) = O(1) and ψ∗
3 (η) = O(η).

PROOF. The proof is constructed in several intermediate steps. Define mk(ζ ) :
R+ → R+ via mk(ζ ) = E[g0(U)Uk|ζ ] with U ∼ χ2

p(ζ ). Our first result follows.

PROPOSITION A.2. Fix η > 0 and let Y ∼ χ2
p(η). For k ∈ {0,1,2,3},

E

[
mk(Y )

m0(Y )

∣∣∣η]
< ∞(36)
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and ∫ ∞
0

βkR̃(dβ|η) = E

[
mk(Y )

m0(Y )

∣∣∣η]
.(37)

PROOF. We begin with (36). Since g0 is convex, we can use Jensen’s inequal-
ity to obtain

mk(ζ )

m0(ζ )
≤ mk(ζ )

g0(ζ + p)
= (a + ζ + p)bmk(ζ ).

Hence, it suffices to show that E[Ybmk(Y ) | η] < ∞, but this follows from the fact
that Y has a moment generating function.

We now establish (37). Recall that π1 is the uniform distribution on � =
{θ |‖θ‖ = 1}. Then∫ ∞

0
βkf̃ (x|β)g0(β)βp/2−1 dβ

=
∫ ∞

0
βk

∫
�
(2π)−p/2e−(1/2)‖x−√

βξ‖2
π1(dξ)g0(β)βp/2−1 dβ

=
∫

Rp
g0(‖θ‖2)(‖θ‖2)k(2π)−p/2e−(1/2)‖x−θ‖2

dθ.

The last expression is equal to

E[g0(‖θ‖2)(‖θ‖2)k],
where θ ∼ Np(x, Ip). Of course, if θ ∼ Np(x, Ip), then ‖θ‖2 ∼ χ2

p(‖x‖2). Thus,∫ ∞
0

βkf̃ (x|β)g0(β)βp/2−1 dβ = mk(‖x‖2).

Now note that∫ ∞
0

βkQ̃(dβ|x) =
∫ ∞

0 βkf̃ (x|β)g0(β)βp/2−1dβ∫ ∞
0 f̃ (x|β)g0(β)βp/2−1dβ

= mk(‖x‖2)

m0(‖x‖2)
.

To complete the proof, note that

∫ ∞
0

βkR̃(dβ|η) =
∫

Rp

[∫ ∞
0

βkQ̃(dβ|x)

]
f̃ (x|η)dx =

∫
Rp

mk(‖x‖2)

m0(‖x‖2)
f̃ (x|η)dx

=
∫

Rp

∫
�

mk(‖x‖2)

m0(‖x‖2)

(
1√
2π

)p

e−(1/2)‖x−√
ηξ‖2

π1(dξ) dx

=
∫
�

[∫
Rp

mk(‖x‖2)

m0(‖x‖2)

(
1√
2π

)p

e−(1/2)‖x−√
ηξ‖2

dx

]
π1(dξ).
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Consider the inside integral. If X ∼ Np(
√

ηξ, Ip), then, since ‖√ηξ‖2 = η, it fol-
lows that ‖X‖2 ∼ χ2

p(η). Hence, the inside integral can be expressed as

E

[
mk(Y )

m0(Y )

∣∣∣η]
,

where Y ∼ χ2
p(η), and this does not depend on ξ . Therefore,

∫ ∞
0

βkR̃(dβ|η) =
∫
�

E

[
mk(Y )

m0(Y )

∣∣∣η]
π(dξ) = E

[
mk(Y )

m0(Y )

∣∣∣η]
. �

It now follows from the discussion at the beginning of this appendix that
mk(y) = 2kE[wk(N)|y], where N |y ∼ Poisson(y/2) and

μ1(η) = 2E

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− η,

μ2(η) = 4E

[
E(w2(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− 4ηE

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
+ η2,

μ3(η) = 8E

[
E(w3(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− 12ηE

[
E(w2(N)|Y)

E(w0(N)|Y)

∣∣∣η]

+ 6η2E

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− η3,

where N |Y = y ∼ Poisson(y/2) and Y ∼ χ2
p(η).

We now begin working on wk(n). Our first result is as follows.

PROPOSITION A.3. Suppose n ∈ Z
+ and k ∈ {1,2,3}.

1. If a = 0, then

wk(n)

wk−1(n)
= n + p

2
+ k − b − 1.(38)

2. If a > 0, then

wk(n)

wk−1(n)
= n + p

2
+ k − b − 1 + φ(n + k − 1),(39)

where φ : Z
+ → (0,∞) is given by

φ(n) :=
∫ ∞

0 (ab/(a + z))g0(z)(z/2)n+p/2−1e−z/2 dz∫ ∞
0 g0(z)(z/2)n+p/2−1e−z/2 dz

.

Moreover, φ(n) is bounded and φ(n) = O(n−1) as n → ∞.
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PROOF. The a = 0 result follows directly from (35). Now assume that a > 0
and define κ(z) = ab/(a + z). Note that

zg′
0(z) = [−b + κ(z)]g0(z),(40)

where g′
0 denotes the derivative of g0. Integration by parts yields

wk(n) = 1

�(n + p/2)

∫ ∞
0

g′
0(z)e

−z/2
(

z

2

)n+p/2+k−1

dz

+
(
n + p

2
+ k − 1

)
wk−1(n).

An application of (40) yields∫ ∞
0

g′
0(z)e

−z/2
(

z

2

)n+p/2+k−1

dz

= 1

2

∫ ∞
0

[−b + κ(z)]g0(z)e
−z/2

(
z

2

)n+p/2+k−2

dz

= −b�

(
n + p

2

)
wk−1(n) + 1

2

∫ ∞
0

κ(z)g0(z)e
−z/2

(
z

2

)n+p/2+k−2

dz.

It follows that

wk(n)

wk−1(n)
= n + p

2
+ k − b − 1 + φ(n + k − 1).

Since κ(z) is bounded above by b, it is clear that φ(n) is also bounded above by b.
Now define N(n) and D(n) as follows:

φ(n) = N(n)

D(n)
=

∫ ∞
0 (ab/(a + z))g0(z)(z/2)n+p/2−1e−z/2 dz∫ ∞

0 g0(z)(z/2)n+p/2−1e−z/2 dz
.

Using Jensen’s inequality, we obtain

D(n) =
∫ ∞

0
g0(z)

(
z

2

)n+p/2−1

e−z/2dz

= 2�(n + p/2)

∫ ∞
0

g0(z)
zn+p/2−1e−z/2

�(n + p/2)2n+p/2 dz

≥ 2�(n + p/2)

(a + p + 2n)b
.

As long as n > b + 1 − p/2, we have

N(n) =
∫ ∞

0

(
ab

a + z

)
g0(z)

(
z

2

)n+p/2−1

e−z/2 dz



2444 M. L. EATON, J. P. HOBERT, G. L. JONES AND W.-L. LAI

≤ ab

2n+p/2−1

∫ ∞
0

zn+p/2−b−2e−z/2 dz

= ab�(n + p/2 − b − 1)

2b
.

Putting these two bounds together, we have

nφ(n) ≤ ab

2b+1

(
a + p

n
+ 2

)b

nb+1 �(n + p/2 − b − 1)

�(n + p/2)
.

Finally, according to [1], page 257,

nb+1 �(n + p/2 − b − 1)

�(n + p/2)
→ 1 as n → ∞,

from which it follows that φ(n) = O(n−1). �

A simple calculation shows that, for n ∈ Z
+ and k ∈ {1,2,3}, we have

wk(n) =
(
n + p

2

)
wk−1(n + 1).

This combined with (39) yields, when a > 0,

(n + p/2)wk−1(n + 1) = (
n + p/2 + k − b − 1 + φ(n + k − 1)

)
wk−1(n).(41)

PROPOSITION A.4. Suppose N |y ∼ Poisson(y/2) where y > 0 and let k ∈
{1,2,3}.

1. If a = 0, then

E[wk(N)|y]
E[wk−1(N)|y]

(42)

= p

2
+ k − b − 1 + y

2
+ y(k − b − 1)

2

E[wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y] .

2. If a > 0, then

E[wk(N)|y]
E[wk−1(N)|y]

= p

2
+ k − b − 1 + y

2
+ y(k − b − 1)

2

E[wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y]

(43)

+ y

2

E[φ(N + k − 1)wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y]

+ E[φ(N + k − 1)wk−1(N)|y]
E[wk−1(N)|y] .
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PROOF. First,

E[Nwk−1(N)|y] =
∞∑

n=0

nwk−1(n)
e−y/2(y/2)n

n!

= y

2

∞∑
n=1

wk−1(n)
e−y/2(y/2)n−1

(n − 1)!
= y

2

∞∑
m=0

wk−1(m + 1)
e−y/2(y/2)m

m!

= y

2
E[wk−1(N + 1)|y].

We now prove the result for a > 0 and we note that a proof for the a = 0 case can
be constructed simply by replacing φ by 0 in the following argument. Rearranging
(39) and taking expectations yields

E[wk(N)|y] =
(

p

2
+ k − b − 1

)
E[wk−1(N)|y]

(44)
+ E[Nwk−1(N)|y] + E[φ(N + k − 1)wk−1(N)|y].

A rearrangement of (41) yields

wk−1(n + 1) = wk−1(n) + wk−1(n)

[
2(k − b − 1 + φ(n + k − 1))

2n + p

]
.

Therefore,

E[Nwk−1(N)|y] = y

2
E[wk−1(N + 1)|y]

= y

2
E[wk−1(N)|y](45)

+ yE

[
(k − b − 1 + φ(N + k − 1))wk−1(N)

2N + p

∣∣∣y]
.

Replacing E[Nwk−1(N)|y] in (44) with the last line in (45) and dividing through
by E[wk−1(N)|y] yields (43). �

PROPOSITION A.5. There exists a constant c ∈ (0,∞) such that

wk−1(n)

wk−1(n + 1)
≤ c

for all n ∈ Z
+ and all k ∈ {1,2,3}. Note that c may depend on p, a and b, but does

not depend on n and k.



2446 M. L. EATON, J. P. HOBERT, G. L. JONES AND W.-L. LAI

PROOF. We first handle the case a = 0. Equation (35) shows that

wk−1(n)

wk−1(n + 1)
= n + p/2

n + p/2 + k − b − 1
.

Since b < p/2, the denominator is always strictly positive. Furthermore, for any
k ∈ {1,2,3}, this fraction clearly converges to 1 as n → ∞. Thus, the fraction is
bounded above by a positive, finite constant.

The a > 0 case is similar, but we do not have the luxury of using the exact
expression (35). A rearrangement of (41) yields

wk−1(n)

wk−1(n + 1)
= n + p/2

n + p/2 + k − b − 1 + φ(n + k − 1)
.

Since φ(n) is strictly positive, the denominator is always strictly positive. As
above, for any k ∈ {1,2,3}, the fraction converges to 1 as n → ∞. Thus, the frac-
tion is bounded above by a positive, finite constant. �

Note that for all n ∈ Z
+ and all k ∈ {1,2,3}, we have

wk−1(n)

wk−1(n + 2)
= wk−1(n)

wk−1(n + 1)

wk−1(n + 1)

wk−1(n + 2)
≤ c2.

PROPOSITION A.6. Suppose h : Z+ → R is such that h(n) = O(n−l) as n →
∞, where l ∈ {1,2}. If N |y ∼ Poisson(y/2) where y > 0, then there exists 0 < d <

∞ such that for any k ∈ {1,2,3},∣∣∣∣E[h(N)wk−1(N)|y]
E[wk−1(N)|y]

∣∣∣∣ ≤ d

yl
.

PROOF. We prove the result for l = 2. The proof for the l = 1 case is similar
and is left to the reader. From Proposition A.5, we know there exists a constant
c ∈ (0,∞) such that c2wk−1(n+ 2) ≥ wk−1(n) for all n ∈ Z

+ and all k ∈ {1,2,3}.
The assumptions concerning h imply the existence of an M ∈ (0,∞) such that
|(n + 2)(n + 1)h(n)| < M for all n ∈ Z

+. Thus,∣∣E[h(N)wk−1(N)|y]∣∣
≤ E[|h(N)|wk−1(N)|y]

=
∞∑

n=0

|h(n)|wk−1(n)
e−y/2(y/2)n

n!

= 4

y2

∞∑
n=0

(n + 2)(n + 1)|h(n)|wk−1(n)
e−y/2(y/2)n+2

(n + 2)!

≤ 4c2

y2

∞∑
n=0

(n + 2)(n + 1)|h(n)|wk−1(n + 2)
e−y/2(y/2)n+2

(n + 2)!
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≤ 4c2M

y2

∞∑
n=0

wk−1(n + 2)
e−y/2(y/2)n+2

(n + 2)!

≤ 4c2M

y2

∞∑
m=0

wk−1(m)
e−y/2(y/2)m

m!

= 4c2M

y2 E[wk−1(N)|y]. �

PROPOSITION A.7. Suppose N |y ∼ Poisson(y/2) where y > 0. For each k ∈
{1,2,3}, there exists a bounded function ψk and a constant dk ∈ (0,∞) such that
|ψk(y)| ≤ dk/y for y > 0 and

E[wk(N)|y]
E[wk−1(N)|y] = p

2
+ 2(k − b − 1) + y

2
+ ψk(y).

PROOF. Suppose a > 0 and fix k ∈ {1,2,3}. The a = 0 case is simpler and is
left to the reader. Rearranging (41) and taking expectations yields

E

[
wk−1(N)

N + p/2

∣∣∣y]

= E

[
wk−1(N + 1)

N + p/2 + k − b − 1 + φ(N + k − 1)

∣∣∣y]

= 2

y

∞∑
n=0

wk−1(n + 1)

×
[

n + 1

n + p/2 + k − b − 1 + φ(n + k − 1)

]
e−y/2(y/2)n+1

(n + 1)!(46)

= 2

y

∞∑
m=1

wk−1(m)

[
m

m + p/2 + k − b − 2 + φ(m + k − 2)

]
e−y/2(y/2)m

m!

= 2

y

∞∑
m=0

wk−1(m)[1 + O(m−1)]e
−y/2(y/2)m

m!

= 2

y
E[wk−1(N)|y] + 2

y
E[wk−1(N)O(N−1)|y].

Therefore,

y(k − b − 1)

2

E[wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y]

(47)

= k − b − 1 + (k − b − 1)
E[wk−1(N)O(N−1)|y]

E[wk−1(N)|y] .
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This allows us to rewrite (43) as

E[wk(N)|y]
E[wk−1(N)|y] = p

2
+ 2(k − b − 1) + y

2
+ ψk1(y) + ψk2(y) + ψk3(y),

where

ψk1(y) := (k − b − 1)
E[wk−1(N)O(N−1)|y]

E[wk−1(N)|y] ,

ψk2(y) := y

2

E[φ(N + k − 1)wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y] ,

ψk3(y) := E[φ(N + k − 1)wk−1(N)|y]
E[wk−1(N)|y] .

Let ψk(y) = ∑3
j=1 ψkj (y). Consider ψk1(y). Proposition A.6 implies that there

exists a d∗
k1 ∈ (0,∞) such that

∣∣∣∣E[wk−1(N)O(N−1)|y]
E[wk−1(N)|y]

∣∣∣∣ ≤ d∗
k1

y
,

which implies that

|ψk1(y)| ≤ |k − b − 1|d∗
k1

y
= dk1

y
.

This shows that ψk1 is bounded for large y. Note that (47) yields

|ψk1(y)| =
∣∣∣∣b + 1 − k + y(k − b − 1)

2

E[wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y]

∣∣∣∣
≤ |b + 1 − k| + y

∣∣∣∣k − b − 1

p

∣∣∣∣,
which shows that ψk1 is bounded for small y as well.

Now consider ψk2. Since φ(n + k − 1)/(n + p/2) is O(n−2), Proposition A.6
implies that there exists a d∗

k2 ∈ (0,∞) such that, for all y > 0,∣∣∣∣E[φ(N + k − 1)wk−1(N)/(N + p/2)|y]
E[wk−1(N)|y]

∣∣∣∣ ≤ d∗
k2

y2 ,

and hence,

|ψk2(y)| ≤ y

2

d∗
k2

y2 = dk2

y
.

As above, this shows that ψk2 is bounded for large y. The fact that ψk2 is bounded
for small y follows from the fact that φ is bounded.
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Finally, consider ψk3. Since φ(n) = O(n−1), Proposition A.6 implies that there
exists a d∗

k3 ∈ (0,∞) such that, for all y > 0, |ψk3(y)| < dk3/y. Again, the bound-
edness of ψk3 follows from that of φ. Putting all of this together, we find that

|ψk(y)| =
∣∣∣∣∣

3∑
j=1

ψkj (y)

∣∣∣∣∣ ≤
3∑

j=1

|ψkj (y)| ≤ 3
max{dk1, dk2, dk3}

y
= dk

y
.

Moreover, since each |ψkj (y)| is bounded for y > 0, so is |ψk(y)|. �

We can now assert that
E[w1(N)|y]
E[w0(N)|y] = p

2
− 2b + y

2
+ ψ1(y),

E[w2(N)|y]
E[w1(N)|y] = p

2
+ 2(1 − b) + y

2
+ ψ2(y),

E[w3(N)|y]
E[w2(N)|y] = p

2
+ 2(2 − b) + y

2
+ ψ3(y),

where each ψi(y) is bounded and |ψi(y)| ≤ d/y for all y > 0 and a constant d ∈
(0,∞). We need one more technical result.

PROPOSITION A.8. Suppose that Y |η ∼ χ2
p(η) and that p ≥ 3. If there ex-

ists a 0 < d < ∞ such that |ψ(y)| ≤ d/y, then |E[ψ(Y )|η]| ≤ 2d/η so that
E[ψ(Y )|η] = O(η−1) as η → ∞.

PROOF.

|E[ψ(Y )|η]| ≤
∫ ∞

0
|ψ(y)|

∞∑
n=0

e−η/2(η/2)n

n!
(y/2)n+p/2−1e−y/2

2�(n + p/2)
dy

≤ d

∞∑
n=0

e−η/2(η/2)n

n!
∫ ∞

0

yn+p/2−2e−y/2

2n+p/2�(n + p/2)
dy

= d

∞∑
n=0

e−η/2(η/2)n

n!
1

(2n + p − 2)

= 2d

η

∞∑
n=0

(n + 1)

(2n + p − 2)

e−η/2(η/2)n+1

(n + 1)!

≤ 2d

η

∞∑
n=0

e−η/2(η/2)n+1

(n + 1)! ≤ 2d

η
.

�

Assume that Y |η ∼ χ2
p(η). Proposition A.8 implies that E[|ψi(Y )||η] =

O(η−1) as η → ∞. Furthermore, since |yψi(y)| ≤ d , E[|Yψi(Y )||η] = O(1)
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as η → ∞. Also, since the ψi are bounded, so are products of the ψi . Thus,
E[|ψi(Y )ψj (Y )||η] and E[|ψi(Y )ψj (Y )ψk(Y )||η] are both O(1) as η → ∞ for
any i, j, k ∈ {1,2,3}. Finally, since |y2ψi(y)| ≤ dy, it follows that
E[Y 2|ψi(Y )||η] ≤ dE[Y |η] = d(η + p) = O(η) as η → ∞.

Putting the above work together (and using the moments of the noncentral χ2

given at the beginning of this section), we calculate that

E

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
= η

2
+ p − 2b + O(η−1)

(in all of these equations, it is understood that the limits are taken as η → ∞)

E

[
E(w2(N)|Y)

E(w0(N)|Y)

∣∣∣η]
= E

[
E(w2(N)|Y)

E(w1(N)|Y)

E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]

= η2

4
+ (p + 2 − 2b)η + O(1),

E

[
E(w3(N)|Y)

E(w0(N)|Y)

∣∣∣η]
= E

[
E(w3(N)|Y)

E(w2(N)|Y)

E(w2(N)|Y)

E(w1(N)|Y)

E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]

= 1

8

(
η3 + (6p − 12b + 24)η2) + O(η).

We are now in position to calculate μ1(η), μ2(η) and μ3(η) in (38):

μ1(η) = 2E

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− η

= η + 2p − 4b + O(η−1) − η

= 2p − 4b + O(η−1),

μ2(η) = 4E

[
E(w2(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− 4ηE

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
+ η2

= 4
(

η2

4
+ (p + 2 − 2b)η

)
− 4η

(
η

2
+ p − 2b

)
+ η2 + O(1)

= 8η + O(1),

μ3(η) = 8E

[
E(w3(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− 12ηE

[
E(w2(N)|Y)

E(w0(N)|Y)

∣∣∣η]

+ 6η2E

[
E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣η]
− η3

= (
η3 + (6p − 12b + 24)η2) − 12η

(
η2

4
+ (p + 2 − 2b)η

)

+ 6η2
(

η

2
+ p − 2b

)
− η3 + O(η) = O(η).
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This completes the proof of Proposition A.1. �
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