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MOMENTS OF MINORS OF WISHART MATRICES

BY MATHIAS DRTON,1 HÉLÈNE MASSAM2 AND INGRAM OLKIN3

University of Chicago, York University and Stanford University

For a random matrix following a Wishart distribution, we derive formu-
las for the expectation and the covariance matrix of compound matrices. The
compound matrix of order m is populated by all m×m-minors of the Wishart
matrix. Our results yield first and second moments of the minors of the sam-
ple covariance matrix for multivariate normal observations. This work is mo-
tivated by the fact that such minors arise in the expression of constraints on
the covariance matrix in many classical multivariate problems.

1. Introduction. Conditional independence constitutes one of the key con-
cepts in multivariate statistical modeling. In a multivariate normal random vector
X = (X1, . . . ,Xr)

T ∼ Nr (μ,�), conditional independence expresses itself in the
vanishing of minors, that is, subdeterminants of the positive definite covariance
matrix. Let I, J,K ⊆ [r] := {1, . . . , r} be three pairwise disjoint index sets. Then
XI and XJ are conditionally independent given XK , in symbols XI ⊥⊥ XJ | XK ,
if and only if

det
(
�{i}∪K×{j}∪K

)= 0 ∀i ∈ I, j ∈ J.(1.1)

The restrictions (1.1) correspond to vanishing partial correlations and can thus be
tested using sample partial correlations, which yields a simple approach to model
selection and assessment of goodness of fit of Gaussian independence models.

The situation becomes more complicated, however, in hidden variable models
because conditional independences involving hidden variables may lead to con-
straints on the covariance matrix of the observed variables that no longer corre-
spond to vanishing partial correlations. Spearman’s [14] tetrads are the classic
example of such constraints. A tetrad is a 2 × 2-minor det(�ij×k�) for which
{i, j} ∩ {k, �} = ∅. Tetrads are the defining equality constraints for one-factor
analysis [6], but also arise in other Gaussian hidden variable models. (Recall that
in factor analysis, observed variables are conditionally independent given hidden
factors.)
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Given a sample from a Nr (μ,�) distribution (joint) vanishing of tetrads can be
tested. Rejection of this hypothesis suggests that the model for which the tetrads
would vanish is inappropriate for the data. The route commonly taken when testing
the vanishing of a tetrad is to standardize the sample tetrad and compare the result
to the standard normal distribution. This approach allows one in particular to avoid
numerical maximization of the complicated likelihood functions of hidden variable
models and we refer the reader to the examples discussed, for example, in [3,
8, 15]. The difficulty in this procedure is how to standardize the sample tetrad,
a problem solved by Wishart [16] who found the sampling variance of the tetrad.

However, Wishart’s result only applies to 2 × 2-minors, which has limited the
application of the above constraint-based inference approach. In this paper we
greatly generalize Wishart’s result to obtain the covariance matrix of higher-order
minors of a Wishart matrix, a problem that is also of intrinsic distribution-theoretic
interest. In Section 2, we clarify the role of higher-order minors in hidden variable
models. In Section 3, we present some basic results based on simple but power-
ful invariance arguments for compound matrices. Together with the properties of
the Choleski decomposition of a Wishart matrix, these results allow us to com-
pute, in Sections 4 and 5, the expectations and covariance matrix of minors of
arbitrary Wishart matrices. In our conclusion in Section 6, we comment on future
research directions and give an example of constraint-based inference based on
3 × 3-minors. The Appendix contains the proofs of two lemmas as well as an in-
teresting auxiliary result on the mean of the determinant of a noncentral Wishart
covariance matrix.

2. Off-diagonal minors and hidden variables. Tetrads are 2×2-minors that
do not involve any diagonal elements of the covariance matrix �. We call any mi-
nor with this property an off-diagonal minor. In seminal work, Spirtes, Glymour
and Scheines [15], Theorem 6.10, have characterized the tetrad relations in covari-
ance matrices from directed Gaussian graphical models. The characterization of
the vanishing of higher-order off-diagonal minors is still an open problem but in
Proposition 2.2 below we are able to give simple sufficient conditions. Proposi-
tion 2.2(ii) applies in particular to factor analysis with m − 1 factors; see also [6].

Consider a random vector X = (X1, . . . ,Xr)
T ∼ Nr (μ,�) with r ≥ 2m com-

ponents. Let I, J ⊆ [r] be two disjoint index sets of cardinality |I | = |J | = m ≥ 1.

LEMMA 2.1. If K ⊆ [r] \ (I ∪ J ), then XI ⊥⊥ XJ | XK if and only if
det(�G×H) = 0 for all G ⊆ I ∪ K and H ⊆ J ∪ K of cardinality |G| = |H | =
|K| + 1.

PROOF. The claimed vanishing of minors implies (1.1) and thus the condi-
tional independence. Conversely, the conditional independence implies that

�I∪K×K∪J =
(

�I×K �I×J

�K×K �K×J

)
=
(

�I×K

�K×K

)
�−1

K×K (�K×K �K×J ).
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The second equality implies rank(�I∪K×J∪K) ≤ |K| and thus the claim. �

PROPOSITION 2.2. (i) If Xi ⊥⊥ XJ for some i ∈ I , then det(�I×J ) = 0.
(ii) Suppose the partitions I = I1 ∪̇ I2 and J = J1 ∪̇J2 have I1, J1 �= ∅ (I2 or

J2 may be empty). Let K1 and K be subsets of [r] \ (I ∪ J ) such that K1 ⊆ K

and |K| + |I2| + |J2| ≤ |K1| + m − 1. If XI1 ⊥⊥ XJ1 | XK∪I2∪J2 and XI ⊥⊥ XK1 ,
then det(�I×J ) = 0. The proposition states in particular that if XI ⊥⊥ XJ | XK for
K ⊆ [r] \ (I ∪ J ) with |K| ≤ m − 1, then det(�I×J ) = 0.

PROOF. (i) Immediate. (ii) By Lemma 2.1, rank(�I∪K×J∪K) ≤ |K| +
|I2| + |J2| and thus det(�I∪K1×J∪K1) = 0. Since �I×K1 = 0, it holds that
det(�I∪K1×J∪K1) = det(�I×J )det(�K1×K1), and the claim follows because
det(�K1×K1) > 0. The last statement of the proposition is obtained from (ii) by
taking I2 = J2 = K1 = ∅. �

For an example in which an m × m-minor yields the only equality constraint
on the covariance matrix, consider 2m + (m − 1) random variables X1, . . . ,X2m,
Y1, . . . , Ym−1. Define an acyclic digraph (DAG) Gm with these random vari-
ables as vertices and edges as follows. Every variable Yi is adjacent to every
one of the variables Xj by a directed edge Yi → Xj . Every pair of vertices in
{X1, . . . ,Xm} is joined by an edge, and the same holds for every pair of vertices in
{Xm+1, . . . ,X2m}. For uniqueness assume that Xi → Xj implies i < j . Figure 1
shows the graph G3, which we will take up in a data example in the conclusion in
Section 6.

In the remainder of this section, let I = [m] and J = {m+1, . . . ,2m}. The graph
Gm encodes that XI is conditionally independent of XJ given Y[m−1] and that the
random variables Yi are completely independent; see, for example, [10] for details
on the stochastic interpretation of directed graphs. Treating Y1, . . . , Ym−1 as hid-
den yields a Gaussian model for (X1, . . . ,X2m)T . It can be shown that this model
contains exactly those distributions N2m(μ,�) that have a covariance matrix of
the form � = � + ��T , where � is an arbitrary 2m × (m − 1)-matrix and � is a
positive definite block-diagonal matrix; �I×J = 0. Let Cm be the set of covariance
matrices � in this model. The following lemma is proven in the Appendix.

FIG. 1. The graph G3 with two complete subgraphs joined through two hidden variables.
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LEMMA 2.3. If a polynomial f in the entries of the covariance matrix �

evaluates to zero at every matrix in Cm, then f is a polynomial multiple of the
off-diagonal m × m-minor det(�I×J ).

3. Invariance under orthogonal transformations. Given that minors of co-
variance matrices arise so naturally in independence models, it is interesting to
study their natural estimators, namely the minors of the sample covariance ma-
trix. Up to a scaling factor depending on the sample size, such sample minors are
distributed like the minors of Wishart matrices, which arise as follows.

Let X ∈ R
r×n be a matrix whose columns are independent random vectors dis-

tributed according to the multivariate normal distribution Nr (0,�) with positive
definite covariance matrix � ∈ R

r×r . Then S = XXT is distributed according to
the Wishart distribution with scale parameter matrix � and n degrees of freedom,
in symbols, S ∼ Wr (n,�). We refer to the Wishart distribution Wr (n, Ir) with the
identity matrix Ir ∈ R

r×r as scale parameter, as standard Wishart distribution.
Simple invariance arguments based on ideas from Olkin and Rubin [13] (see

also [4] and [7], Problem 4, page 330) will permit us to learn much about the
standard case.

DEFINITION 3.1. Let O(r) be the group of orthogonal matrices in R
r×r . The

distribution of a symmetric random matrix V ∈ R
r×r is orthogonally invariant, if

for all G ∈ O(r), the distribution of GV GT is identical to the distribution of V .
We will say, for brevity, that V ∈ R

r×r is orthogonally invariant.

For S ∼ Wr (m,�) and G ∈ O(r), we have that GSGT ∼ Wr (n,G�GT ), and
hence, the standard Wishart distribution Wr (n, Ir) is orthogonally invariant.

The objects of our study are minors det(WI×J ) or det(SI×J ) that are specified
by two subsets I, J ⊆ [r] of equal cardinality |I | = |J | = m. We introduce the
notation {

r

m

}
= {I ⊆ [r] : |I | = m}, m ∈ [r].

PROPOSITION 3.2. Let I, J ∈ { r
m

}
. If the symmetric random matrix V ∈ R

r×r

is orthogonally invariant, then

E[det(VI×J )] =
{

E
[
det
(
V[m]×[m]

)]
, if I = J ,

0, otherwise.

PROOF. We extend the proof of [13], Lemma 1, which treats the case m = 1, in
which the minors reduce to individual entries of V . Let I, J ∈ { r

m

}
be two distinct

subsets. For j ∈ J \ I , let Dj ∈ O(r) be the diagonal matrix equal to the identity
matrix except for entry (j, j) which is equal to −1. Then DjV DT

j differs from V

in that all off-diagonal entries of the j th row and column have been negated. Since
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j ∈ J but j /∈ I , det[(DjV DT
j )I×J ] = −det(VI×J ). Thus, E[det(VI×J )] = 0 is

implied by E[det(VI×J )] = E[det(DjV DT
j )I×J ] = −E[det(VI×J )].

Since |I | = |J |, we can find a permutation that maps the indices in I to
those in J . Let P = PIJ ∈ O(r) be the matrix representing this permuta-
tion. Then, (PV P T )I×I = VJ×J , and E[det(VI×I )] = E{det[(PV P T )I×I ]} =
E[det(VJ×J )]. It follows that E[det(VI×I )] = E[det(V[m]×[m])] for all I ∈ { r

m

}
.

�

Our approach to determine the moment structure of the minors of a Wishart
matrix is based on the following ideas. First, recall that if S ∼ Wr (n,�), and
W ∼ Wr (n, Ir), then

S = �1/2W�1/2 ∼ Wr (n,�1/2Ir�
1/2) = Wr (n,�).(3.1)

[For notational simplicity, we will use the symmetric square root throughout the
paper but nonsymmetric square roots (e.g., lower triangular) could be used in-
stead.] Second, recall that for a matrix A ∈ R

r×r and an integer m ∈ [r], the mth
compound of A is the matrix

A(m) = (det(AI×J ))I,J∈{ r
m} ∈ R(p

m)×(p
m)

that is populated with all m × m-minors of A. If m = 0, we set A(0) = 1 ∈ R. The
Binet–Cauchy theorem (see, e.g., Marshall and Olkin [11], page 503 and Aitken
[1], Chapter V) states that

(AB)(m) = A(m)B(m),(3.2)

which allows us to use (3.1) for the transfer from standard to general Wishart
matrices. The last ingredient to our approach is the fact that the products

det(SI×J )det(SK×L), I, J,K,L ∈
{

r

m

}
,

which are exactly the quantities of interest for studying the variance-covariance
structure of minors of S, are the entries of the Kronecker product S(m) ⊗ S(m).

The next proposition states that the first and second moments of the compound
matrix S(m) can be obtained from those of the compound matrix W(m) for a stan-
dard Wishart matrix. The result follows from (3.1) and (3.2).

PROPOSITION 3.3. Let S ∼ Wr (n,�) and W ∼ Wr (n, Ir) and let �1/2 de-
note the unique symmetric and positive definite square root of �. Then

E
[
S(m)]= (�1/2)(m)E

[
W(m)](�1/2)(m),

E
[
S(m) ⊗ S(m)]= [(�1/2)(m) ⊗ (�1/2)(m)]

× (E[W(m) ⊗ W(m)])[(�1/2)(m) ⊗ (�1/2)(m)],
Cov
[
S(m)]= E

[
S(m) ⊗ S(m)]− (E[S(m)]⊗ E

[
S(m)])

= [(�1/2)(m) ⊗ (�1/2)(m)](Cov
[
W(m)])[(�1/2)(m) ⊗ (�1/2)(m)].
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Proposition 3.3 is only useful if we are able to compute the necessary moments
of W(m). However, the invariance of W under the orthogonal group tells us a great
deal about these moments. The full first and second moment structure of W(m) will
be derived in Corollary 4.2 and Theorem 4.5.

In the next result I � J denotes the symmetric difference (J \ I ) ∪ (I \ J ).

PROPOSITION 3.4. Let I, J,K,L ∈ { r
m

}
, and let V ∈ R

r×r be orthogonally
invariant. If I � J �= K � L, then

E[det(VI×J )det(VK×L)] = 0.(3.3)

Moreover, under any permutation of σ the indices in [r],
E[det(VI×J )det(VK×L)] = E

[
det
(
Vσ(I)×σ(J )

)
det
(
Vσ(K)×σ(L)

)]
.(3.4)

PROOF. Again we extend the ideas in [13], Lemma 1.
Let I � J �= K � L. Assume without loss of generality that there exists an

index j ∈ (I � J ) \ (K � L). Let Dj be the diagonal matrix defined in the proof
of Proposition 3.2. Recall that the action of Dj negates the j th row and column
in V . By choice of j ∈ I � J , it holds that det[(DjV DT

j )I×J ] = −det(VI×J ).

Since either j ∈ K ∩ L or j /∈ K ∪ L, it holds further that det[(DjV DT
j )K×L] =

det(VK×L). Then (3.3), as well as (3.4), follows immediately from the orthogonal
invariance of V . �

EXAMPLE 3.5. Let m = 2 and r = 4. Applying the permutation σ =
(1)(23)(4), (3.4) implies that E[det(V12×12)

2] = E[det(V13×13)
2] but because there

is no permutation of {1,2,3,4} that sends {1,2} to {1,2} and {1,2} to {2,4},
E[det(V12×12)

2] and E[det(V12×12)det(V24×24)] need not be equal. We will il-
lustrate the use of Proposition 3.4 further in Example 4.6 where we consider a
standard Wishart distribution.

4. Choleski-decomposition of a standard Wishart matrix. The arguments
presented in Section 3 determine the first and second moments of minors of orthog-
onally invariant random matrices only up to constants. In this section we determine
these constants for the standard Wishart distribution Wr (n, Ir). For this task we use
the Choleski-decomposition that has the following convenient distributional prop-
erty; see, for example, Muirhead [12], Theorem 3.2.14, for a proof of this classical
result.

LEMMA 4.1. Let W follow the Wr (n, Ir) distribution with n ≥ r . Let T =
(tij )i≤i,j≤r be lower-triangular with positive diagonal entries such that W =
T T T . Then the tij , i ≥ j , are independent random variables distributed as t2

ii ∼
χ2

n−i+1, i = 1, . . . , r , and tij ∼ N (0,1),1 ≤ j < i ≤ r .
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We remark that the elements tij have been called rectangular coordinates. Since
det(T T T ) =∏r

i=1 t2
ii and E[t2

ii] = E[χ2
n−i+1] = n − i + 1, we obtain the following

corollary to Proposition 3.2 and to Lemma 4.1 applied to WI×I .

COROLLARY 4.2. Let I, J ∈ { r
m

}
. If W ∼ Wr (n, Ir) with n ≥ m, then

E[det(WI×J )] =
{

n!/(n − m)!, if I = J ,
0, otherwise,

and

E
[
S(m)]= n!

(n − m)!�
(m).

The Choleski-decomposition W = T T T of a standard Wishart matrix W reveals
additional information. In the remainder of this section assume that n ≥ r , which
implies that T is of full rank with probability 1.

LEMMA 4.3. Let c ∈ {0, . . . ,m} be an integer such that there exists a subset
J̄ ⊆ {m + 1, . . . , r} of cardinality |J̄ | = m − c. Then

det
(
W[m]×([c]∪J̄ )

)=
(

c∏
i=1

t2
ii

)(
m∏

j=c+1

tjj

)
det
(
TJ̄×{c+1,...,m}

)
.

PROOF. Let Ī = {c + 1, . . . ,m} = [m] \ [c]. From the partitioning

W[m]×([c]∪J̄ ) =
(

W[c]×[c] W[c]×J̄

WĪ×[c] WĪ×J̄

)
,

we obtain that

det
(
W[m]×([c]∪J̄ )

)= det
(
W[c]×[c]

)
det
(
WĪ×J̄ − WĪ×[c]W

−1
[c]×[c]W[c]×J̄

)
.(4.1)

Clearly, det(W[c]×[c]) =∏c
i=1 t2

ii so that we are left with studying the second factor
on the right-hand side of (4.1).

For a subset D ⊆ [r], let TD = TD×[r] be the submatrix comprising all rows of
T with index in D. Then we can write

det
(
WĪ×J̄ − WĪ×[c]W

−1
[c]×[c]W[c]×J̄

)= det
{
TĪ

[
Ir − T T[c]

(
T[c]T T[c]

)−1
T[c]
]
T T

J̄

}
.

The matrix Ir −T T[c](T[c]T T[c])−1T[c] represents the orthogonal projection on the ker-
nel of T[c]. Since T is lower diagonal with by assumption nonzero diagonal entries,
it holds that ker(T[c]) = {0}c × R

r−c, which means that the projection considered
replaces the first c entries of a vector in R

r by zeros. Therefore,

det
{
TĪ

[
Ir − T T[c]

(
T[c]T T[c]

)−1
T[c]
]
T T

J̄

}= det
(
TĪ×{c+1,...,r}T

T
J̄×{c+1,...,r}

)
.
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By the Binet–Cauchy theorem,

det
(
TĪ×{c+1,...,r}T

T
J̄×{c+1,...,r}

)= ∑
D⊆{c+1,...,r},

|D|=m−c

det(TĪ×D)det(TJ̄×D)

(4.2)
= det(TĪ×Ī )det(TJ̄×Ī ).

The second equality in (4.2) holds because if D �= Ī = {c+1, . . . ,m}, then the ma-
trix TĪ×D contains a column consisting entirely of zeros and thus det(TĪ×D) = 0.
Our claim follows from det(TĪ×Ī ) =∏m

j=c+1 tjj . �

From Lemma 4.3 we can deduce the distribution of a minor det(WI×J ).

THEOREM 4.4. Let I, J ∈ { r
m

}
have a (possibly empty) intersection of cardi-

nality |I ∩ J | = c ≥ 0. If W ∼ Wr (n, Ir), then

det(WI×J ) ∼
(

c∏
i=1

Wi

)(
m∏

i=c+1

√
Wi

)
det(Z),(4.3)

where Wi, i = 1, . . . ,m, are independent χ2
n−i+1 random variables and Z =

(Zij ) ∈ R
(m−c)×(m−c) is a random matrix of independent N (0,1) random vari-

ables that are also independent of (W1, . . . ,Wm). In particular,

E[det(WI×J )2] = n!
(n − m)!

(n + 2)!
(n + 2 − |I ∩ J |)!(m − |I ∩ J |)!

and

Var[det(WI×J )]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n!
(n − m)!

[
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

]
, if I = J ,

n!
(n − m)!

(n + 2)!
(n + 2 − |I ∩ J |)!(m − |I ∩ J |)!, if |I ∩ J | < m.

PROOF. By orthogonal invariance of the standard Wishart distribution, we can
permute rows and columns of W such that I = [m] and J = [c] ∪ {m + 1, . . . ,

2m − c}. Thus (4.3) follows from Lemmas 4.3 and 4.1.
For the derivation of the second moment, recall that E[χ2

n ] = n and E[(χ2
n)2] =

n(n + 2). Let Sh be the group of permutations of [h]. Then

E[det(Z)2] = ∑
σ∈Sm−c

∑
τ∈Sm−c

E

[
m−c∏
i=1

Ziσ(i)Ziτ(i)

]

= ∑
σ∈Sm−c

m−c∏
i=1

E
[
Z2

iσ (i)

]= (m − c)!,
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which yields E[det(WI×J )2]. The variance is obtained using Corollary 4.2. �

We next turn to moments of the form E[det(WI×J )det(WK×L)] with (I, J ) �=
(K,L). By Proposition 3.4, this expectation is nonzero only if I � J = K � L. At
this point, before proceeding to derive the desired expectation, we would like to
emphasize that throughout the paper we consider an index set I = {i1, . . . , im} to be
equipped with an ordering. Such an ordering yields an index sequence (i1, . . . , im)

that dictates the order in which we list the rows (or columns) of a submatrix. Since
our results so far did not depend on the choice of ordering, we kept this view
implicit. For our next result, however, the order in which the indices in I are listed
matters since different orderings may lead to different signs of determinants due
to the interchanging of the rows or columns in submatrices. For example,

E[det(W12×14)det(W23×34)] = −E[det(W12×14)det(W23×43)].(4.4)

In the following theorem, the elements of four index sets I , J , K , L are assumed to
be ordered according to a total order of [r] that achieves certain order relationships
across the four sets. We write A < B if all elements of A ⊆ [r] are smaller than
those of B ⊆ [r], or if A or B is the empty set. (Note that this implies ∅ < A < ∅.)

THEOREM 4.5. Let I, J,K,L ∈ { r
m

}
such that I � J = K � L. Let

Ī = I \(I ∩J ), K̄ = K \(K ∩L), J̄ = J \(I ∩J ), L̄ = L\(K ∩L).

Moreover, assume that the indices in I , J , K and L are listed according to a total
order in [r] under which

(I ∩ J ) \ (K ∩ L) < Ī < J̄ < (K ∩ L) \ (I ∩ J ),

Ī ∩ K̄ < Ī ∩ L̄, J̄ ∩ K̄ < J̄ ∩ L̄.

Under these conventions it holds that if W ∼ Wr (n, Ir), then

E[det(WI×J )det(WK×L)] = n!
(n − m)!

(n + 2)!
(n + 2 − |I ∩ J ∩ K ∩ L|)!

× (n − m + |(I ∩ J ) \ (K ∩ L)|)!
(n − m)! |Ī ∩ K̄|!|Ī ∩ L̄|!.

Theorem 4.5 yields, for example, that E[det(W12×13)det(W24×34)] =
n(n − 1)2. However, it does not yield directly the value of E[det(W12×14) ×
det(W23×34)] in (4.4). Instead, we can obtain that E[det(W12×14)det(W23×43)] =
n(n − 1)2. Hence, by (4.4), we find E[det(W12×14)det(W23×34)] = −n(n − 1)2.

EXAMPLE 4.6. If m = 2 and r = 4, then the covariance matrix Cov[W(m)],
which determines Cov[S(m)], is a symmetric matrix of size 36 × 36. Because
Cov[W(m)] is derived from the symmetric matrix W , we can restrict ourselves to



2270 M. DRTON, H. MASSAM AND I. OLKIN

unordered pairs of sets (I, J ) ∈ { r
m

}× { r
m

}
with possible equality I = J . There are

21 such unordered pairs. We represent Cov[W(m)] as a symmetric block-diagonal
21 × 21 matrix with blocks formed according to I � J . Proposition 3.4 implies
such block-diagonal structure also for the general case of arbitrary m and r .

The first block is indexed by the six pairs (I, I ), I ∈ { r
m

}
, involves the principal

minors and takes on the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

12,12 13,13 14,14 23,23 24,24 34,34
f1 f4 f4 f4 f4 0

f1 f4 f4 0 f4
f1 0 f4 f4

f1 f4 f4
f1 f4

f1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where from Theorems 4.4 and 4.5 respectively, we have f1 = 2n(2n + 1)(n − 1)

and f4 = 2n(n − 1)2. Next, we have a series of six blocks of size 2 × 2, each
involving two pairs (I, J ) and (K,L) for which I � J = K � L and |I ∩ J | = 1,
or equivalently, |I � J | = 2. Two representatives of these six blocks are

( 12,13 24,34
f2 f5

f2

)
and

( 12,14 23,34
f2 −f5

f2

)
,

where by Theorems 4.4 and 4.5 respectively, f2 = n(n + 2)(n − 1) and f5 =
n(n − 1)2. The last block is obtained for the pairs (I, J ) with I, J disjoint, or
equivalently, I � J = [r] = {1,2,3,4}. It takes the form

⎛
⎝

12,34 13,24 14,23
f3 f6 −f6

f3 f6
f3

⎞
⎠

with f3 = 2n(n − 1) and f6 = n(n − 1).

The remainder of this section is devoted to the proof of Theorem 4.5 in which
we can assume that r = max(I ∪J ∪K ∪L). Note that since |(I ∩J )\ (K ∩L)| =
|(K ∩ L) \ (I ∩ J )|, the formula in Theorem 4.5 is not changed if the order of
(I, J ) and (K,L) is reversed.

LEMMA 4.7. If I ∩ J ∩ K ∩ L = C �= ∅, |C| = c ≥ 1, then

E[det(WI×J )det(WK×L)] = E[det(W̄Ic×J c)det(W̄Kc×Lc)] · E[det(WC×C)2],
where Ac = A \ C for any subset A ⊆ [r], and

W̄ = W[r]c×[r]c − W[r]c×CW−1
C×CWC×[r]c ∼ Wr−c(n − c, Ir−c).
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PROOF. The claim follows from the fact that

det(WI×J )det(WK×L) = det(WC×C)2 det(W̄Ic×J c)det(W̄Kc×Lc)

in conjunction with the independence of WC×C and W̄ (see Lemma 5.2 below).
�

Since Theorem 4.4 yields the term E[det(WC×C)2] appearing in Lemma 4.7,
the proof of Theorem 4.5 is completed by the following lemma, which is proven
in the Appendix.

LEMMA 4.8. Let I, J,K,L ∈ { r
m

}
such that I � J = K � L and I ∩ J ∩

K ∩ L = ∅. Define Ī , J̄ , K̄, L̄ as in Theorem 4.5, and assume furthermore that
I ∩ J < Ī < J̄ < K ∩ L, Ī ∩ K̄ < Ī ∩ L̄, and J̄ ∩ K̄ < J̄ ∩ L̄. If W ∼ Wr (n, Ir),
then

E[det(WI×J )det(WK×L)] = n!(n − m + c)!
[(n − m)!]2 · p!(m − c − p)!,

where c = |I ∩ J | = |K ∩ L| and p = |Ī ∩ K̄| = |J̄ ∩ L̄|.

5. Variances of minors. In Sections 3–4 we found the covariance matrix of
the compound S(m) of a Wishart matrix S ∼ Wr (n,�). However, due to the in-
volved square roots �1/2, the form of the individual entries of Cov[S(m)] is not
transparent. In this section, we derive explicit formulas for the variances of m×m-
minors with m ≤ n.

We begin by reviewing the well-known formula for a principal minor [2], Sec-
tion 7.5.

PROPOSITION 5.1. If S ∼ Wr (n,�) and I ∈ { r
m

}
, then

Var[det(SI×I )] = n!
(n − m)!

{
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

}
det(�I×I )

2.

PROOF. Apply (3.1) with the submatrix SI×I replacing the full Wishart ma-
trix SI×I to obtain that Var[det(SI×I )] = det(�I×I )

2 · Var[det(WI×I )], which in
conjunction with Theorem 4.4 yields the claim. �

Next, we derive an explicit formula for the variance of off-diagonal minors of
a general Wishart matrix S ∼ Wr (n,�). From this formula and Proposition 5.1,
a formula for the variance of arbitrary minors of S is obtained in Theorem 5.7.

Let I, J ∈ { r
m

}
be two disjoint subsets. Then the minor det(SI×J ) is off-diagonal

in that it does not involve any diagonal elements of S. Let SIJ×IJ and �IJ×IJ

be the (I ∪ J ) × (I ∪ J )-submatrix of S and �, respectively. We partition these
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2m × 2m-submatrices into four m × m-submatrices according to I and J where
we adopt the shorthand notation SI×I = SII , SI×J = SIJ , etc. Let

SII.J = SII − SIJ S−1
JJ SJI and �II.J = �II − �IJ �−1

JJ �JI .

Our line of attack in computing the variance of the off-diagonal minor det(SI×J ) =
det(SIJ ) is to employ the decomposition

Var[det(SIJ )] = Var[E[det(SIJ ) | SJJ ]] + E[Var[det(SIJ ) | SJJ ]].(5.1)

The evaluations of the two terms on the right-hand side of (5.1) are given in Lem-
mas 5.3 and 5.4, which are based on the following well-known result [12], Theo-
rem 3.2.10.

LEMMA 5.2. If S ∼ Wr (n,�) and m < n then SJJ ∼ Wm(n,�JJ ), SII.J ∼
Wm(n − m,�II.J ), and the random matrix SII.J is independent of (SIJ , SJJ ).
Finally, the conditional distribution of SIJ given SJJ is normal and such that

(SIJ S
−1/2
JJ | SJJ ) ∼ Nm2(�IJ �−1

JJ S
1/2
JJ ,�II.J ⊗ Im)(5.2)

⇐⇒ (�
−1/2
II.J SIJ S

−1/2
JJ | SJJ ) ∼ Nm2(�

−1/2
II.J �IJ �−1

JJ S
1/2
JJ , Im ⊗ Im).(5.3)

LEMMA 5.3. It holds that

Var[E[det(SIJ ) | SJJ ]] = n!
(n − m)!

{
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

}
· det(�IJ )2.

PROOF. By (5.2) in Lemma 5.2,

Var[E[det(SIJ ) | SJJ ]] = Var[E[det(SIJ S
−1/2
JJ ) | SJJ ] · det(S1/2

JJ )]
= Var[det(�IJ �−1

JJ ) · det(SJJ )]
= det(�IJ )2 det(�JJ )−2 Var[det(SJJ )].

Now the claim follows from Proposition 5.1. �

LEMMA 5.4. Let �IJ denote the I × J -submatrix of the inverse of �IJ×IJ .
Then

E[Var[det(SIJ ) | SJJ ]]
= det(�IJ×IJ )

×
(

m−1∑
k=0

(m − k)! · n!
(n − m)! · (n + 2)!

(n + 2 − k)! · (−1)k tr
{
(�JI�

IJ )(k)}).
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PROOF. First note that

E[Var[det(SIJ ) | SJJ ]]
(5.4)

= det(�II.J ) · E[Var[det(�−1/2
II.J SIJ S

−1/2
JJ ) | SJJ ] · det(SJJ )].

It follows from (5.3) that conditional on SJJ , the entries of the matrix
�

−1/2
II.J SIJ S

−1/2
JJ are independent normal random variables with variance 1, albeit

these entries are not identically distributed as their means may differ in arbitrary
fashion. We are led to the problem of computing Var[det(X)], where the matrix
X ∈ R

m×m is distributed according to the multivariate normal distribution

X ∼ Nm2(A, Im ⊗ Im), A = �
−1/2
II.J �IJ �−1

JJ S
1/2
JJ ∈ R

m×m.

Lemma A.1 provides an evaluation of E[det(X)2], and from (5.4) we find that

E[Var[det(SIJ ) | SJJ ]]
= det(�II.J )

(5.5)

×
m−1∑
k=0

(m − k)!

× E

[
tr
{
(�

−1/2
II.J �IJ �−1

JJ SJJ �−1
JJ �JI�

−1/2
II.J )(k)} · det(SJJ )

]
.

Setting C = �−1
JJ �JI�

−1
II.J �IJ �−1

JJ , (5.5) simplifies to

E[Var[det(SIJ ) | SJJ ]] = det(�II.J )

m−1∑
k=0

(m − k)! · E
[
tr
{
(CSJJ )(k)} · det(SJJ )

]

= det(�II.J )

m−1∑
k=0

(m − k)! · E
[
tr
{
C(k)S

(k)
JJ · det(SJJ )

}]

= det(�II.J )

m−1∑
k=0

(m − k)! · tr
{
C(k)E

[
S

(k)
JJ · det(SJJ )

]}
.

Now, let WJJ = (�JJ )−1/2SJJ (�JJ )−1/2. As in (3.1), WJJ ∼ Wm(n, Im). Thus

E[Var[det(SIJ ) | SJJ ]]
= det(�II.J )det(�JJ )

×
(

m−1∑
k=0

(m − k)! · tr
{
C(k)(�

1/2
JJ )(k)E

[
W

(k)
JJ · det(WJJ )

]
(�

1/2
JJ )(k)}).
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The distribution of W
(k)
JJ ·det(WJJ ) has the invariance property that for G ∈ O(m),

G(k)(W(k)
JJ · det(WJJ )

)
(GT )(k) ∼ W

(k)
JJ · det(WJJ ).

In analogy to Proposition 3.2 and the derivation of Theorem 4.4, it holds that

E
[
W

(k)
JJ · det(WJJ )

]= n!
(n − m)! · (n + 2)!

(n + 2 − k)! · I(m
k)

.

Because det(�II.J )det(�JJ ) = det(�IJ×IJ ), we therefore have that

E[Var[det(SIJ ) | SJJ ]]

= det(�IJ×IJ ) ·
(

m−1∑
k=0

(m − k)! n!
(n − m)! · (n + 2)!

(n + 2 − k)! · tr
{
(�JJ C)(k)}).

The claim now follows because, by simple considerations about the inverse of the
partitioned matrix �IJ×IJ , it holds that �JJ C = −�JI�

IJ . �

Combining Lemmas 5.3 and 5.4 according to (5.1) yields the following propo-
sition.

PROPOSITION 5.5. Let I, J ∈ { r
m

}
be two disjoint subsets. Then the off-

diagonal minor det(SI×J ) = det(SIJ ) of the Wishart matrix S ∼ Wr (n,�) has
variance

Var[det(SIJ )] = n!
(n − m)! · det(�IJ )2

{
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

}

+ n!
(n − m)! · det(�IJ×IJ )

×
(

m−1∑
k=0

(m − k)! · (n + 2)!
(n + 2 − k)! · (−1)k tr

{
(�JI�

IJ )(k)}).
COROLLARY 5.6 ([16]). In the special case m = 2 the off-diagonal minor

det(SI×J ) = det(SIJ ) is known as a tetrad, and

Var[det(SIJ )] = n(n − 1)[(n + 2)det(�II )det(�JJ )

− ndet(�IJ×IJ ) + 3ndet(�IJ )2].

PROOF. The claim follows from Proposition 5.5, and the fact that if m = 2,
then

tr(�JI�
IJ )det(�IJ×IJ ) = det(�IJ×IJ ) − det(�II )det(�JJ ) + det(�IJ )2. �
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THEOREM 5.7. Let I, J ∈ { r
m

}
have intersection C := I ∩ J of cardinality

c = |C| = |I ∩ J |. Define Ī = I \ (I ∩ J ), J̄ = J \ (I ∩ J ) and Ī J̄ = Ī ∪ J̄ . Then
the minor det(SI×J ) = det(SIJ ) of the Wishart matrix S ∼ Wr (n,�) has variance

Var[det(SIJ )] = n!
(n − m)!

{
(n + 2)!

(n + 2 − c)! − n!
(n − c)!

}
det(�C×C)2

×
[

det(�̄Ī J̄ )2
{

(n + 2 − c)!
(n + 2 − m)! − (n − c)!

(n − m)!
}

+ det(�̄Ī J̄×Ī J̄ )

×
(

m−c−1∑
k=0

(m − c − k)! · (n + 2 − c)!
(n + 2 − c − k)! · (−1)k

× tr
{
(�̄J̄ Ī �̄

Ī J̄ )(k)})],
where �̄ = �([r]\C)×([r]\C) − �([r]\C)×C�−1

C×C�C×([r]\C).

PROOF. Define S̄ in analogy to �̄. Since det(SI×J ) = det(SC×C)det(S̄Ī×J̄ )

and SC×C and S̄Ī×J̄ are independent (Lemma 5.2), the claim follows from Propo-
sitions 5.1 and 5.5. �

6. Conclusion. We study first and second moments of minors of a Wishart
matrix, relying fundamentally on the properties of compound matrices. For a stan-
dard Wishart matrix W , invariant under O(r), we extended classic invariance ar-
guments due to Olkin and Rubin [13] to the case of compounds. This was possible
because the Binet–Cauchy theorem implies that the distribution of the compound
W(m) is invariant under compounds of matrices in O(r). Note, however, that the
distribution of W(m) is not invariant under all matrices in O(

( r
m

)
).

Our results yield closed-form test statistics that are useful for evaluating the
goodness of fit of hidden variable models; compare [6], Section 3. As an example,
consider the model from Section 2 that is induced by the graph G3 in Figure 1.
For illustration we use classic data on physical variables for 305 fifteen-year-old
girls from the University of Chicago Lab schools; a correlation matrix is reported
in [9], Table 7.1, page 169. We choose X1, . . . ,X6 as Height, Arm span, Length of
forearm, Weight, Chest girth and Chest width. The partition in I = {X1,X2,X3}
and J = {X4,X5,X6} thus separates variables relating to lankiness from those re-
lating to stockiness. We compute the I × J minor of the sample correlation matrix
(recall Lemma 2.3) and estimate its sampling variance by inserting the correlation
matrix into the formula from Proposition 5.5. When doing this we omit the first
term in the formula because det(�IJ ) is hypothesized to be zero. Comparing the
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ratio of sample minor and estimated standard deviation to the standard normal dis-
tribution gives a p-value of 0.42. In comparison, the likelihood ratio test computed
using the EM algorithm has p-value 0.39, which also indicates a good model fit.
Repeating the same procedure for a less meaningful variable partition obtained
by exchanging Length of forearm (X3) and Chest width (X6) leads to p-values of
0.0034 and 0.0026 for the minor and the likelihood ratio test, respectively. These
results suggest that the closed-form minor test may indeed have good power.

In the above example, the only data available were a sample correlation ma-
trix, which we treated as if it were a sample covariance matrix. This is justified,
however, because the ratio of sample minor and standard deviation estimate is
the same when evaluated over the sample correlation matrix instead of the sam-
ple covariance matrix. This fact is a consequence of the multilinearity of the de-
terminant and the Binet–Cauchy theorem, which implies that Var�[det(SI×J )] =
(
∏

i∈I σii)(
∏

j∈J σjj )VarR[det(SI×J )]. Here, R is the correlation matrix of the co-
variance matrix �. While we can justifiably compute standardized sample minors
from correlation matrices, our Wishart distribution results do not yield the mo-
ments of minors of sample correlation matrices. The determination of these is an
interesting problem for future research. The distribution of sample correlation ma-
trices is orthogonally invariant when the covariance matrix is a multiple of the
identity but it is not so in general.

Our data example falls into a traditional large sample setting. We believe that
minors may also be useful for high-dimensional settings in which the number of
variables is large, perhaps even larger than the sample size. The reasoning behind
this speculation is that sample minors may be formed from full rank submatrices
even when the entire sample covariance matrix is singular. Clearly a likelihood
ratio test against a saturated alternative is impossible under such singularity.

APPENDIX

A.1. Proof of Lemma 2.3. Let R[σ ] be the ring of polynomials in the inde-
terminates σij , i ≤ j . Define I1 ⊆ R[σ ] to be the ideal generated by the minor
det(�I×J ). Since this minor is irreducible, I1 is a prime ideal. Define I2 ⊆ R[σ ]
to be the ideal of all polynomials that vanish when evaluated at a matrix � ∈ Cm.
The ideal I2 is also a prime ideal [5], Section 4.5. In Lemma 2.3, we claim that
I1 = I2.

Let V1 and V2 be the irreducible varieties of complex matrices � such that
f (�) = 0 for all f ∈ I1 and all f ∈ I2, respectively. In all distributions in the
graphical model induced by the graph Gm defined in Section 2 it holds that
XI ⊥⊥ XJ | Y[m−1]. Hence, by Proposition 2.2(ii), det(�I×J ) = 0 for all � ∈ Cm,
which implies that I1 ⊆ I2 and V2 ⊆ V1. Conversely, a matrix � ∈ V1 can be
written as � = � + ��T with � ∈ C

2m×2m block-diagonal and � ∈ C
2m×(m−1).

A polynomial in I2 must vanish at such a matrix �. Thus � ∈ V2, and conse-
quently V1 = V2. Since I1 is a prime ideal it now follows from the Strong Null-
stellensatz [5], Section 4.2, that I1 = I2.
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A.2. Proof of Lemma 4.8. First, we emphasize that Ī ∩ J̄ = ∅, K̄ ∩ L̄ = ∅,
Ī ∪̇ J̄ = I � J = K � L = K̄ ∪̇ L̄, and |Ī | = |J̄ | = |K̄| = |L̄| = m − c. Defining
q = |Ī ∩ L̄| = |J̄ ∩ K̄|, it also holds that p + q = |Ī ∩ K̄| + |Ī ∩ L̄| = |Ī | = m − c.
Moreover, since |Ī ∩ K̄| + |J̄ ∩ K̄| = |K̄| = m − c, it holds that |Ī ∩ K̄| = p =
|J̄ ∩ L̄| and |Ī ∩ L̄| = q = m − c − p = |J̄ ∩ K̄|.

By permuting the indices in [r] if necessary (Proposition 3.4), we can assume
that

I ∩ J = {1, . . . , c},
Ī ∩ K̄ = {c + 1, . . . , c + p},
Ī ∩ L̄ = {c + p + 1, . . . ,m = c + p + q},
J̄ ∩ K̄ = {m + 1, . . . ,m + q + 1},
J̄ ∩ L̄ = {m + q + 1, . . . ,2m − c = m + q + p},
K ∩ L = {2m − c + 1, . . . ,2m}.

As another convention, we enumerate the elements of the sets K and L as K =
(k1, . . . , km) and L = (�1, . . . , �m), respectively, while choosing ki = �i for all
i ∈ [c].

Let W = T T T be the Choleski-decomposition of W whose Choleski-factor T =
(tij ) is lower-triangular with positive diagonal elements. By Lemma 4.3,

det(WI×J ) =
(

c∏
i=1

t2
ii

)(
m∏

i=c+1

tii

)
det(TJ̄×Ī ).(A.1)

Whereas det(WI×J ) has the simple representation in (A.1), this is not the case
for det(WK×L). However, because we are interested in E[det(WI×J )det(WK×L)]
some simplification is possible based on the following fact. Because tij , i > j , are
independent N (0,1), if (αij | 1 ≤ j ≤ i ≤ r) contains an entry αij that is odd and
such that i > j , then

E

[∏
i≥j

t
αij

ij

]
=∏

i≥j

E[tαij

ij ] = 0.(A.2)

By the Binet–Cauchy theorem, det(WK×L) is equal to

∑
H∈{ r

m}
det(TK×H )det(TL×H) = ∑

H∈{ r
m}
∑

σ∈Sm

∑
τ∈Sm

(−1)σ+τ
m∏

a=1

tkahσ(a)
t�ahτ(a)

,

where H = {h1, . . . , hm}. Since ka = �a for a ∈ [c],
c∏

a=1

tkahσ(a)
t�ahτ(a)

=
c∏

a=1

tkahσ(a)
tkahτ(a)

.(A.3)
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We claim that

f1 = ∑
H∈{ r

m}
∑

σ∈Sm

∑
τ∈Sm:

τ(a)=σ(a)∀a∈[c]

(−1)σ+τ

(A.4)

×
(

c∏
a=1

t2
kahσ(a)

)(
m∏

b=c+1

tkbhσ(b)
t�bhτ(b)

)

satisfies

E[det(WI×J )det(WK×L)] = E[det(WI×J ) · f1].
In order to see this, fix H and σ , and assume that τ is such that there exists a ∈ [c]
for which σ(a) �= τ(a). Then hσ(a) �= ka or hτ(a) �= ka . Without loss of general-
ity, assume that hσ(a) �= ka . If hσ(a) > ka , then tkahσ(a)

= 0 because T is lower-
triangular. If hσ(a) < ka , then tkahσ(a)

appears with exponent 1 in the monomial∏m
a=1 tkahσ(a)

t�ahτ(a)
. The index ka ∈ K ∩L is not an element of I ∪J . Thus tkahσ(a)

appears with exponent 1 in

det(WI×J ) ·
m∏

a=1

tkahσ(a)
t�ahτ(a)

.

Therefore, according to (A.2), only monomials
∏m

a=1 tkahσ(a)
t�ahτ(a)

appearing in
f1 may contribute to the expected value of det(WI×J )det(WK×L).

We can rewrite (A.4) as

f1 = ∑
H∈{ r

m}
∑

σ∈Sm

(−1)σ

(
c∏

a=1

t2
kahσ(a)

)(
m∏

b=c+1

tkbhσ(b)

)

×
[ ∑

τ∈Sm:
τ(a)=σ(a)∀a∈[c]

(−1)τ
m∏

b=c+1

t�bhτ(b)

]
.

Now,

∑
τ∈Sm:

τ(a)=σ(a)∀a∈[c]

(−1)τ

(
m∏

b=c+1

t�bhτ(b)

)

= (−1)σ
∑

τ∈Sm:
τ(a)=σ(a)∀a∈[c]

(−1)τ◦σ−1
m∏

b=c+1

t�bhτ◦σ−1(σ (b))

= (−1)σ
∑

τ̄∈Sσ({c+1,...,m})
(−1)τ̄

m∏
b=c+1

t�bhτ̄(σ (b))

= (−1)σ det
(
TL̄×(hσ(c+1),...,hσ(m))

)
.
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Therefore,

f1 = ∑
H∈{ r

m}
∑

σ∈Sm

(
c∏

a=1

t2
kahσ(a)

)(
m∏

b=c+1

tkbhσ(b)

)
det
(
TL×(hσ(c+1),...,hσ(m))

)
.

We have thus shown that E[det(WI×J )det(WK×L)] is equal to the expectation of

∑
H∈{ r

m}
∑

σ∈Sm

(
c∏

a=1

t2
kahσ(a)

)(
m∏

b=c+1

tkbhσ(b)

)

(A.5)

× det
(
TL×(hσ(c+1),...,hσ(m))

)( c∏
a=1

t2
iaia

)(
m∏

b=c+1

tibib

)
det(TJ̄×Ī ).

We next claim that the expectation of (A.5) does not change when dropping
all terms associated with pairs (H,σ) for which {hσ(c+1), . . . , hσ(m)} �= Ī . To see
this, choose b ∈ {c + 1, . . . ,m} for which hσ(b) ∈ {hσ(c+1), . . . , hσ(m)} \ Ī . Now
consider three cases. First, if hσ(b) ∈ (K ∩ L) ∪̇ (J̄ ∩ L̄), then hσ(b) > kb ∈ K̄ , and
it follows that tkbhσ(b)

= 0, which leads to the vanishing of the term associated with
H and σ . Second, if hσ(b) ∈ J̄ ∩ K̄ , then every nonzero term in the expansion of
det(TL×(hσ(c+1),...,hσ(m))) involves an off-diagonal element of T that does not appear
in det(TJ̄×Ī ). Hence, every monomial of the term associated with (H,σ) features
an off-diagonal element of T raised to the power 1. Therefore, by (A.2), the term
associated with (H,σ) has expectation zero. The third case in which hσ(b) ∈ I ∩J

is similar to the second case just discussed.
The claim just verified allows us to rewrite (A.5) as

∑
H∈{ r

m}:Ī⊆H

∑
σ∈Sm,

hσ({c+1,...,m})=Ī

(−1)νσ

(
c∏

a=1

t2
kahσ(a)

)

×
(

c∏
a=1

t2
iaia

)(
m∏

b=c+1

tkbhσ(b)

)
(A.6)

×
(

m∏
b=c+1

tibib

)
det(TL̄×Ī )det(TJ̄×Ī ),

where νσ is the permutation of Ī = {c + 1, . . . ,m} that sorts hσ(c+1), . . . , hσ(m) in
increasing order, that is, c + 1 = hσ(ν(c+1)) < · · · < hσ(ν(m)) = m. We now argue
that the expectation of (A.6) does not change when replacing det(TL̄×Ī ) by( ∏

�∈L̄∩Ī

t��

)
det
(
T(J̄∩L̄)×(Ī∩K̄)

)
.(A.7)



2280 M. DRTON, H. MASSAM AND I. OLKIN

In fact, we find (A.7) from the Laplace expansion along the diagonal t��, � ∈ L̄∩ Ī ,
for which det(T(J̄∩L̄)×(Ī×K̄)) serves as a cofactor. Every term in det(TL̄×Ī ) that
does not appear in (A.7) involves an off-diagonal entry in T of the form tab with
a ∈ L̄ ∩ Ī and b ∈ Ī , a > b. Such tab, however, does not appear in det(TJ̄×Ī ) since
clearly a < min(J̄ ). Now, an appeal to (A.2) closes the argument.

Next, recall that kb ∈ Ī ∩ K̄ if b ∈ {c + 1, . . . , c + p}. Hence, if b ∈ {c +
1, . . . , c+p} but hσ(b) �= kb, then the term tkb,hσ(b)

does not appear in det(TJ̄×Ī ). In
other words, a term in (A.6) based on (H,σ) with hσ(b) �= kb has zero expectation
by (A.2). Combining this observation with the replacement in (A.7), we define

f2 = ∑
H∈{ r

m}:Ī⊆H

∑
σ∈Sm:hσ({c+1,...,m})=Ī ,

hσ(c+j)=kc+j∈Ī∩K̄∀j∈[p]

(−1)νσ

(
c∏

a=1

t2
kahσ(a)

)(
m∏

b=c+p+1

tkbhσ(b)

)

×
( ∏

k∈Ī∩K̄

tkk

)(
c∏

a=1

t2
iaia

)(
m∏

b=c+1

tibib

)( ∏
�∈L̄∩Ī

t��

)
(A.8)

× det
(
T(J̄∩L̄)×(Ī∩K̄)

)
det(TJ̄×Ī ),

which satisfies E[f2] = E[det(WI×J )det(WK×L)].
In our next simplification, we claim that if we replace det(TJ̄×Ī ) in f2 by

det
(
T(J̄∩L̄)×(Ī∩K̄)

)
det
(
T(J̄∩K̄)×(Ī∩L̄)

)
,(A.9)

then the expectation does not change. This follows from (A.2) because every term
in the expansion of det(TJ̄×Ī ) that does not appear in (A.9) involves some tab with
a ∈ J̄ ∩ L̄ and b ∈ Ī ∩ L̄, and such tab appears neither in det(T(J̄∩L̄)×(Ī∩K̄)) nor in∏m

b=c+p+1 tkbhσ(b)
because kb ∈ K̄ < min(J̄ ∩ L̄).

In f2, H ∈ { r
m

}
is such that Ī ⊆ H and hσ({c+1,...,m}) = Ī and therefore

H = {h1, h2, . . . , hc} ∪ Ī .(A.10)

Using (A.9) and the fact that hσ(b) ∈ Ī \(Ī ∩K̄) = Ī ∩L̄ if b ∈ {c+p+1, . . . ,m} =
Ī ∩ L̄, we obtain that E[det(WI×J )det(WK×L)] is equal to[ ∑

h1∈[k1]\Ī

∑
h2∈[k2]\(Ī∪{h1})

. . .
∑

hc∈[kc]\(Ī∪{h1,...,hc−1})

(
c∏

a=1

t2
kaha

)]

×
( ∑

μ∈SĪ∩L̄

(−1)μ
m∏

b=c+p+1

tkbμ(b)

)(
c∏

a=1

t2
iaia

)(∏
i∈Ī

t2
ii

)
(A.11)

× det
(
T(J̄∩L̄)×(Ī∩K̄)

)2 det
(
T(J̄∩K̄)×(Ī∩L̄)

)
.

In the simplification from (A.8) to (A.11) we replaced the two sums over H and
σ by the sums over h1, . . . , hc. This is possible because of (A.10) and because
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by choosing appropriate H and σ , hσ(a) can take on any value in [ka] \ Ī while
respecting that all hσ(a), a ∈ [c], must be different. In the simplification from (A.8)
to (A.11) we also replaced the permutation νσ by a new permutation μ. For this
step, recall that νσ in (A.8) is the permutation that brings hσ(c+1), . . . , hσ(m) in
increasing order with hσ(c+1) = kc+1 < hσ(c+2) = kc+2 < · · · < hσ(c+p) = kc+p ,
which implies that νσ (j) = j for all j ∈ {c + 1, . . . , c + p}. Thus the sign of νσ is
equal to the sign of νσ |{c+p+1,...,m}. The latter restriction is denoted by μ in (A.11).

Noting that kb ∈ J̄ ∩ K̄ if b ∈ {c + p + 1, . . . ,m}, we see that

∑
μ∈SĪ∩L̄

(−1)μ
m∏

b=c+p+1

tkbμ(b) = det
(
T(J̄∩K̄)×(Ī∩L̄)

)
.

Thus, we have shown that E[det(WI×J )det(WK×L)] is equal to the expectation of(∏
i∈I

t2
ii

)
det
(
T(L̄∩Ī )×(J̄∩K̄)

)2 det
(
T(L̄∩J̄ )×(Ī∩K̄)

)2[ c∏
a=1

([ka]\Ī∑
h=a

t2
kah

)]
.(A.12)

Since t2
ii ∼ χ2

n−i+1, and moreover,

[ka]\Ī∑
h=a

t2
kah ∼ χ2

(n−ka+1)+(ka−a)−|Ī | = χ2
(n−a+1)−(m−c) = χ2

n−m+c−a+1,

this proof can be completed using the results on expected values from the proof of
Theorem 4.4.

A.3. A noncentral Wishart determinant. As in Lemma 5.4, we consider
X ∈ R

m×m distributed according to Nm2(A, Im ⊗ Im), A = (aij ) ∈ R
m×m. From

the independence of the entries of X, it follows that

E[det(X)] = det(A).(A.13)

If A is nonzero, then the matrix XXT follows a noncentral Wishart distribu-
tion. Theorem 10.3.7 in [12] provides a general formula for moments of the deter-
minant of a noncentral Wishart matrix in terms of hypergeometric functions with
matrix argument. Here, X is a square matrix and we can give a simple formula
E[det(X)2] = E[det(XXT )] that involves only traces and compounds.

LEMMA A.1. The expectation of det(XXT ) = det(X)2 can be expressed as

E[det(X)2] =
m∑

k=0

(m − k)! · tr
[
(AAT )(k)].

Here, (AAT )(0) := 1 ∈ R and (AAT )(m) = det(AAT ). By (A.13),

Var[det(X)] =
m−1∑
k=0

(m − k)! · tr
[
(AAT )(k)].
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PROOF. Let Sm be the group of permutations of [m]. Then,

E[det(X)2] = ∑
σ∈Sm

∑
τ∈Sm

m∏
j=1

E
[
Xσ(j)jXτ(j)j

]

= ∑
σ∈Sm

∑
τ∈Sm

(−1)σ+τ
m∏

j=1

(
δσ(j)τ (j) + aσ(j)j aτ(j)j

)
,

where δij is the Kronecker delta. The product

m∏
j=1

(
δσ(j)τ (j) + aσ(j)j aτ(j)j

)= ∑
J⊆[m]

(∏
j∈J

aσ(j)j aτ(j)j

)
·
(∏

j �∈J

δσ(j)τ (j)

)
.

Therefore, if we define gJ (σ ) =∑ τ∈Sm

τ(j)=σ(j)∀j �∈J

(−1)σ+τ ∏
j∈J aσ(j)j aτ(j)j , then

E[det(X)2] =
m∑

k=0

∑
J∈{m

k}
∑

σ∈Sm

gJ (σ ).

Note that the permutations appearing in the definition of gJ (σ ) satisfy τ(J ) =
σ(J ).

Let σ1, σ2 ∈ Sm be two permutations such that σ1(j) = σ2(j) for all j ∈ J .
Moreover, let τ1, τ2 ∈ Sm satisfy τ1(j) = τ2(j) for all j ∈ J , τ1(j) = σ1(j) for all
j /∈ J , and τ2(j) = σ2(j) for all j /∈ J . Then it holds for the permutation signs that
(−1)σ1(−1)τ1 = (−1)σ2(−1)τ2 . This implies that gJ (σ1) = gJ (σ2). We obtain

E[det(X)2]
(A.14)

=
m∑

k=0

(m − k)! ∑
J∈{m

k}
∑

I∈{m
k}
∑
σ̄∈Sk

∑
τ̄∈Sk

(−1)σ̄+τ̄
k∏

h=1

aiσ̄ (h)jh
aiτ̄ (h)jh

.

By the Binet–Cauchy theorem,

E[det(X)2] =
m∑

k=0

(m − k)! ∑
I∈{m

k}
∑

J∈{m
k}

det(AIJ )2

=
m∑

k=0

(m − k)! ∑
I∈{m

k}
det
(
AI×[m]AT

I×[m]
)

=
m∑

k=0

(m − k)! · tr
[
(AAT )(k)].

�
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