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COMMON FUNCTIONAL PRINCIPAL COMPONENTS1

BY MICHAL BENKO, WOLFGANG HÄRDLE AND ALOIS KNEIP

Humboldt-Universität, Humboldt-Universität and Bonn Universität

Functional principal component analysis (FPCA) based on the Karhunen–
Loève decomposition has been successfully applied in many applications,
mainly for one sample problems. In this paper we consider common func-
tional principal components for two sample problems. Our research is mo-
tivated not only by the theoretical challenge of this data situation, but also
by the actual question of dynamics of implied volatility (IV) functions. For
different maturities the log-returns of IVs are samples of (smooth) random
functions and the methods proposed here study the similarities of their sto-
chastic behavior. First we present a new method for estimation of functional
principal components from discrete noisy data. Next we present the two sam-
ple inference for FPCA and develop the two sample theory. We propose
bootstrap tests for testing the equality of eigenvalues, eigenfunctions, and
mean functions of two functional samples, illustrate the test-properties by
simulation study and apply the method to the IV analysis.

1. Introduction. In many applications in biometrics, chemometrics, econo-
metrics, etc., the data come from the observation of continuous phenomenons of
time or space and can be assumed to represent a sample of i.i.d. smooth random
functions X1(t), . . . , Xn(t) ∈ L2[0,1]. Functional data analysis has received con-
siderable attention in the statistical literature during the last decade. In this context
functional principal component analysis (FPCA) has proved to be a key technique.
An early reference is Rao (1958), and important methodological contributions have
been given by various authors. Case studies and references, as well as methodolog-
ical and algorithmical details, can be found in the books by Ramsay and Silverman
(2002, 2005) or Ferraty and Vieu (2006).

The well-known Karhunen–Loève (KL) expansion provides a basic tool to de-
scribe the distribution of the random functions Xi and can be seen as the the-
oretical basis of FPCA. For v,w ∈ L2[0,1], let 〈v,w〉 = ∫ 1

0 v(t)w(t) dt , and let
‖ · ‖= 〈·, ·〉1/2 denote the usual L2-norm. With λ1 ≥ λ2 ≥ · · · and γ1, γ2, . . . denot-
ing eigenvalues and corresponding orthonormal eigenfunctions of the covariance
operator � of Xi , we obtain Xi = μ+∑∞

r=1 βriγr , i = 1, . . . , n, where μ = E(Xi)
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is the mean function and βri = 〈Xi − μ,γr〉 are (scalar) factor loadings with
E(β2

ri) = λr . Structure and dynamics of the random functions can be assessed by
analyzing the “functional principal components” γr , as well as the distribution of
the factor loadings. For a given functional sample, the unknown characteristics
λr, γr are estimated by the eigenvalues and eigenfunctions of the empirical covari-
ance operator �̂n of X1, . . . ,Xn. Note that an eigenfunction γr is identified (up to
sign) only if the corresponding eigenvalue λr has multiplicity one. This therefore
establishes a necessary regularity condition for any inference based on an esti-
mated functional principal component γ̂r in FPCA. Signs are arbitrary (γr and βri

can be replaced by −γr and −βri ) and may be fixed by a suitable standardization.
More detailed discussion on this topic and precise assumptions can be found in
Section 2.

In many important applications a small number of functional principal compo-
nents will suffice to approximate the functions Xi with a high degree of accuracy.
Indeed, FPCA plays a much more central role in functional data analysis than its
well-known analogue in multivariate analysis. There are two major reasons. First,
distributions on function spaces are complex objects, and the Karhunen–Loève ex-
pansion seems to be the only practically feasible way to access their structure. Sec-
ond, in multivariate analysis a substantial interpretation of principal components is
often difficult and has to be based on vague arguments concerning the correlation
of principal components with original variables. Such a problem does not at all
exists in the functional context, where γ1(t), γ2(t), . . . are functions representing
the major modes of variation of Xi(t) over t .

In this paper we consider inference and tests of hypotheses on the structure of
functional principal components. Motivated by an application to implied volatility
analysis, we will concentrate on the two sample case. A central point is the use
of bootstrap procedures. We will show that the bootstrap methodology can also be
applied to functional data.

In Section 2 we start by discussing one-sample inference for FPCA. Basic re-
sults on asymptotic distributions have already been derived by Dauxois, Pousse
and Romain (1982) in situations where the functions are directly observable. Hall
and Hosseini-Nasab (2006) develop asymptotic Taylor expansions of estimated
eigenfunctions in terms of the difference �̂n − �. Without deriving rigorous theo-
retical results, they also provide some qualitative arguments as well as simulation
results motivating the use of bootstrap in order to construct confidence regions for
principal components.

In practice, the functions of interest are often not directly observed, but are re-
gression curves which have to be reconstructed from discrete, noisy data. In this
context the standard approach is to first estimate individual functions nonpara-
metrically (e.g., by B-splines) and then to determine principal components of the
resulting estimated empirical covariance operator—see Besse and Ramsay (1986),
Ramsay and Dalzell (1991), among others. Approaches incorporating a smooth-
ing step into the eigenanalysis have been proposed by Rice and Silverman (1991),
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Pezzulli and Silverman (1993) or Silverman (1996). Robust estimation of princi-
pal components has been considered by Lacontore et al. (1999). Yao, Müller and
Wang (2005) and Hall, Müller and Wang (2006) propose techniques based on non-
parametric estimation of the covariance function E[{Xi(t) − μ(t)}{Xi(s) − μ(s)}]
which can also be applied if there are only a few scattered observations per curve.

Section 2.1 presents a new method for estimation of functional principal com-
ponents. It consists in an adaptation of a technique introduced by Kneip and Utikal
(2001) for the case of density functions. The key-idea is to represent the compo-
nents of the Karhunen–Loève expansion in terms of an (L2) scalar-product matrix
of the sample. We investigate the asymptotic properties of the proposed method.
It is shown that under mild conditions the additional error caused by estimation
from discrete, noisy data is first-order asymptotically negligible, and inference may
proceed “as if” the functions were directly observed. Generalizing the results of
Dauxois, Pousse and Romain (1982), we then present a theorem on the asymptotic
distributions of the empirical eigenvalues and eigenfunctions. The structure of the
asymptotic expansion derived in the theorem provides a basis to show consistency
of bootstrap procedures.

Section 3 deals with two-sample inference. We consider two independent sam-
ples of functions {X(1)

i }n1
i=1 and {X(2)

i }n2
i=1. The problem of interest is to test in how

far the distributions of these random functions coincide. The structure of the dif-
ferent distributions in function space can be accessed by means of the respective
Karhunen–Loève expansions

X
(p)
i = μ(p) +

∞∑
r=1

β
(p)
ri γ (p)

r , p = 1,2.

Differences in the distribution of these random functions will correspond to dif-
ferences in the components of the respective KL expansions above. Without re-
striction, one may require that signs are such that 〈γ (1)

r , γ
(2)
r 〉 ≥ 0. Two sample

inference for FPCA in general has not been considered in the literature so far. In
Section 3 we define bootstrap procedures for testing the equality of mean func-
tions, eigenvalues, eigenfunctions and eigenspaces. Consistency of the bootstrap
is derived in Section 3.1, while Section 3.2 contains a simulation study providing
insight into the finite sample performance of our tests.

It is of particular interest to compare the functional components characterizing
the two samples. If these factors are “common,” this means γr := γ

(1)
r = γ

(2)
r , then

only the factor loadings β
(p)
ri may vary across samples. This situation may be seen

as a functional generalization of the concept of “common principal components”
as introduced by Flury (1988) in multivariate analysis. A weaker hypothesis may
only require equality of the eigenspaces spanned by the first L ∈ N functional prin-
cipal components. [N denotes the set of all natural numbers 1,2, . . . (0 /∈ N)]. If for
both samples the common L-dimensional eigenspaces suffice to approximate the
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functions with high accuracy, then the distributions in function space are well rep-
resented by a low-dimensional factor model, and subsequent analysis may rely on
comparing the multivariate distributions of the random vectors (β

(p)
r1 , . . . , β

(p)
rL )�.

The idea of “common functional principal components” is of considerable im-
portance in implied volatility (IV) dynamics. This application is discussed in de-
tail in Section 4. Implied volatility is obtained from the pricing model proposed
by Black and Scholes (1973) and is a key parameter for quoting options prices.
Our aim is to construct low-dimensional factor models for the log-returns of
the IV functions of options with different maturities. In our application the first
group of functional observations—{X(1)

i }n1
i=1, are log-returns on the maturity “1

month” (1M group) and second group—{X(2)
i }n2

i=1, are log-returns on the maturity
“3 months” (3M group).

The first three eigenfunctions (ordered with respect to the corresponding eigen-
values), estimated by the method described in Section 2.1, are plotted in Figure 1.
The estimated eigenfunctions for both groups are of similar structure, which mo-
tivates a common FPCA approach. Based on discretized vectors of functional val-
ues, a (multivariate) common principal components analysis of implied volatilities
has already been considered by Fengler, Härdle and Villa (2003). They rely on
the methodology introduced by Flury (1988) which is based on maximum like-
lihood estimation under the assumption of multivariate normality. Our analysis
overcomes the limitations of this approach by providing specific hypothesis tests
in a fully functional setup. It will be shown in Section 4 that for both groups L = 3
components suffice to explain 98.2% of the variability of the sample functions. An
application of the tests developed in Section 3 does not reject the equality of the
corresponding eigenspaces.

FIG. 1. Estimated eigenfunctions for 1M group in the left plot and 3M group in the right plot:
solid—first function, dashed—second function, finely dashed—third function.
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2. Functional principal components and one sample inference. In this sec-
tion we will focus on one sample of i.i.d. smooth random functions X1, . . . ,Xn ∈
L2[0,1]. We will assume a well-defined mean function μ = E(Xi), as well as the
existence of a continuous covariance function σ(t, s) = E[{Xi(t) − μ(t)}{Xi(s) −
μ(s)}]. Then E(‖Xi − μ‖2) = ∫

σ(t, t) dt < ∞, and the covariance operator � of
Xi is given by

(�v)(t) =
∫

σ(t, s)v(s) ds, v ∈ L2[0,1].
The Karhunen–Loève decomposition provides a basic tool to describe the dis-

tribution of the random functions Xi . With λ1 ≥ λ2 ≥ · · · and γ1, γ2, . . . denoting
eigenvalues and a corresponding complete orthonormal basis of eigenfunctions of
�, we obtain

Xi = μ +
∞∑

r=1

βriγr , i = 1, . . . , n,(1)

where βri = 〈Xi −μ,γr〉 are uncorrelated (scalar) factor loadings with E(βri) = 0,
E(β2

ri) = λr and E(βriβki) = 0 for r 	= k. Structure and dynamics of the random
functions can be assessed by analyzing the “functional principal components” γr ,
as well as the distribution of the factor loadings.

A discussion of basic properties of (1) can, for example, be found in Gihman and
Skorohod (1973). Under our assumptions, the infinite sums in (1) converge with
probability 1, and

∑∞
r=1 λr = E(‖Xi − μ‖2) < ∞. Smoothness of Xi carries over

to a corresponding degree of smoothness of σ(t, s) and γr . If, with probability 1,
Xi(t) is twice continuously differentiable, then σ as well as γr are also twice
continuously differentiable. The particular case of a Gaussian random function Xi

implies that the βri are independent N(0, λr)-distributed random variables.
An important property of (1) consists in the known fact that the first L principal

components provide a “best basis” for approximating the sample functions in terms
of the integrated square error; see Ramsay and Silverman (2005), Section 6.2.3,
among others. For any choice of L orthonormal basis functions v1, . . . , vL, the
mean integrated square error

ρ(v1, . . . , vL) = E

(∥∥∥∥∥Xi − μ −
L∑

r=1

〈Xi − μ,vr〉vr

∥∥∥∥∥
2)

(2)

is minimized by vr = γr .

2.1. Estimation of functional principal components. For a given sample an
empirical analog of (1) can be constructed by using eigenvalues λ̂1 ≥ λ̂2 ≥ · · · and
orthonormal eigenfunctions γ̂1, γ̂2, . . . of the empirical covariance operator �̂n,
where

(�̂nv)(t) =
∫

σ̂ (t, s)v(s) ds,
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with X̄ = n−1∑n
i=1 Xi and σ̂ (t, s) = n−1∑n

i=1{Xi(t) − X̄(t)}{Xi(s) − X̄(s)} de-
noting sample mean and covariance function. Then

Xi = X̄ +
n∑

r=1

β̂ri γ̂r , i = 1, . . . , n,(3)

where β̂ri = 〈γ̂r ,Xi − X̄〉. We necessarily obtain n−1∑
i β̂ri = 0, n−1∑

i β̂ri β̂si =
0 for r 	= s, and n−1∑

i β̂
2
ri = λ̂r .

Analysis will have to concentrate on the leading principal components ex-
plaining the major part of the variance. In the following we will assume that
λ1 > λ2 > · · · > λr0 > λr0+1, where r0 denotes the maximal number of compo-
nents to be considered. For all r = 1, . . . , r0, the corresponding eigenfunction γr

is then uniquely defined up to sign. Signs are arbitrary, decompositions (1) or (3)
may just as well be written in terms of −γr,−βri or −γ̂r ,−β̂ri , and any suitable
standardization may be applied by the statistician. In order to ensure that γ̂r may
be viewed as an estimator of γr rather than of −γr , we will in the following only
assume that signs are such that 〈γr, γ̂r〉 ≥ 0. More generally, any subsequent state-
ment concerning differences of two eigenfunctions will be based on the condition
of a nonnegative inner product. This does not impose any restriction and will go
without saying.

The results of Dauxois, Pousse and Romain (1982) imply that, under regularity
conditions, ‖γ̂r −γr‖ = Op(n−1/2), |λ̂r −λr | = Op(n−1/2), as well as |β̂ri −βri | =
Op(n−1/2) for all r ≤ r0.

However, in practice, the sample functions Xi are often not directly observed,
but have to be reconstructed from noisy observations Yij at discrete design points
tik :

Yik = Xi(tik) + εik, k = 1, . . . , Ti,(4)

where εik are independent noise terms with E(εik) = 0, Var(εik) = σ 2
i .

Our approach for estimating principal components is motivated by the well-
known duality relation between row and column spaces of a data matrix; see
Härdle and Simar (2003), Chapter 8, among others. In a first step this approach
relies on estimating the elements of the matrix:

Mlk = 〈Xl − X̄,Xk − X̄〉, l, k = 1, . . . , n.(5)

Some simple linear algebra shows that all nonzero eigenvalues λ̂1 ≥ λ̂2 · · · of �̂n

and l1 ≥ l2 · · · of M are related by λ̂r = lr/n, r = 1,2, . . . . When using the corre-
sponding orthonormal eigenvectors p1,p2, . . . of M , the empirical scores β̂ri , as
well as the empirical eigenfunctions γ̂r , are obtained by β̂ri = √

lrpir and

γ̂r = 1√
lr

n∑
i=1

pir(Xi − X̄) = 1√
lr

n∑
i=1

pirXi.(6)



COMMON FUNCTIONAL PC 7

The elements of M are functionals which can be estimated with asympotically
negligible bias and a parametric rate of convergence T

−1/2
i . If the data in (4) is

generated from a balanced, equidistant design, then it is easily seen that for i 	= j

this rate of convergence is achieved by the estimator

M̂ij = T −1
T∑

k=1

(Yik − Ȳ·k)(Yjk − Ȳ·k), i 	= j,

and

M̂ii = T −1
T∑

k=1

(Yik − Ȳ·k)2 − σ̂ 2
i ,

where σ̂ 2
i denotes some nonparametric estimator of variance and Ȳ·k = n−1 ×∑n

j=1 Yjk .
In the case of a random design some adjustment is necessary: Define the ordered

sample ti(1) ≤ ti(2) ≤ · · · ≤ ti(Ti) of design points, and for j = 1, . . . , Ti , let Yi(j)

denote the observation belonging to ti(j). With ti(0) = −ti(1) and ti(Ti+1) = 2 −
ti(Ti), set

χi(t) =
Ti∑

j=1

Yi(j)I

(
t ∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))
, t ∈ [0,1],

where I (·) denotes the indicator function, and for i 	= j , define the estimate of Mij

by

M̂ij =
∫ 1

0
{χi(t) − χ̄(t)}{χj (t) − χ̄ (t)}dt,

where χ̄(t) = n−1∑n
i=1 χi(t). Finally, by redefining ti(1) = −ti(2) and ti(Ti+1) =

2 − ti(Ti), set χ∗
i (t) =∑Ti

j=2 Yi(j−1)I (t ∈ [ ti(j−1)+ti(j)

2 ,
ti(j)+ti(j+1)

2 )), t ∈ [0,1]. Then
construct estimators of the diagonal terms Mii by

M̂ii =
∫ 1

0
{χi(t) − χ̄ (t)}{χ∗

i (t) − χ̄ (t)}dt.(7)

The aim of using the estimator (7) for the diagonal terms is to avoid the additional
bias implied by Eε(Y

2
ik) = Xi(tij )

2 + σ 2
i . Here Eε denotes conditional expecta-

tion given tij , Xi . Alternatively, we can construct a bias corrected estimator using
some nonparametric estimation of variance σ 2

i , for example, the difference based
model-free variance estimators studied in Hall, Kay and Titterington (1990) can
be employed.

The eigenvalues l̂1 ≥ l̂2 · · · and eigenvectors p̂1, p̂2, . . . of the resulting matrix

M̂ then provide estimates λ̂r;T = l̂r /n and β̂ri;T =
√

l̂r p̂ir of λ̂r and β̂ri . Esti-
mates γ̂r;T of the empirical functional principal component γ̂r can be determined
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from (6) when replacing the unknown true functions Xi by nonparametric esti-
mates X̂i (as, for example, local polynomial estimates) with smoothing parameter
(bandwidth) b:

γ̂r;T = 1√
l̂r

n∑
i=1

p̂ir X̂i .(8)

When considering (8), it is important to note that γ̂r;T is defined as a weighted
average of all estimated sample functions. Averaging reduces variance, and ef-
ficient estimation of γ̂r therefore requires undersmoothing of individual function
estimates X̂i . Theoretical results are given in Theorem 1 below. Indeed, if, for
example, n and T = mini Ti are of the same order of magnitude, then under suit-
able additional regularity conditions it will be shown that for an optimal choice
of a smoothing parameter b ∼ (nT )−1/5 and twice continuously differentiable Xi ,
we obtain the rate of convergence ‖γ̂r − γ̂r;T ‖ = Op{(nT )−2/5}. Note, however,
that the bias corrected estimator (7) may yield negative eigenvalues. In practice,
these values will be small and will have to be interpreted as zero. Furthermore,
the eigenfunctions determined by (8) may not be exactly orthogonal. Again, when
using reasonable bandwidths, this effect will be small, but of course (8) may by
followed by a suitable orthogonalization procedure.

It is of interest to compare our procedure to more standard methods for estimat-
ing λ̂r and γ̂r as mentioned above. When evaluating eigenvalues and eigenfunc-
tions of the empirical covariance operator of nonparametrically estimated curves
X̂i , then for fixed r ≤ r0 the above rate of convergence for the estimated eigenfunc-
tions may well be achieved for a suitable choice of smoothing parameters (e.g.,
number of basis functions). But as will be seen from Theorem 1, our approach

also implies that |λ̂r − l̂r
n
| = Op(T −1 + n−1). When using standard methods it

does not seem to be possible to obtain a corresponding rate of convergence, since
any smoothing bias |E[X̂i(t)] − Xi(t)| will invariably affect the quality of the cor-
responding estimate of λ̂r .

We want to emphasize that any finite sample interpretation will require that T is
sufficiently large such that our nonparametric reconstructions of individual curves
can be assumed to possess a fairly small bias. The above arguments do not apply
to extremely sparse designs with very few observations per curve [see Hall, Müller
and Wang (2006) for an FPCA methodology focusing on sparse data].

Note that, in addition to (8), our final estimate of the empirical mean function
μ̂ = X̄ will be given by μ̂T = n−1∑

i X̂i . A straightforward approach to determine
a suitable bandwidth b consists in a “leave-one-individual-out” cross-validation.
For the maximal number r0 of components to be considered, let μ̂T ,−i and γ̂r;T ,−i ,
r = 1, . . . , r0, denote the estimates of μ̂ and γ̂r obtained from the data (Ylj , tlj ),
l = 1, . . . , i − 1, i + 1, . . . , n, j = 1, . . . , Tk . By (8), these estimates depend on b,
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and one may approximate an optimal smoothing parameter by minimizing

∑
i

∑
j

{
Yij − μ̂T ,−i (tij ) −

r0∑
r=1

ϑ̂ri γ̂r;T ,−i(tij )

}2

over b, where ϑ̂ri denote ordinary least squares estimates of β̂ri . A more sophis-
ticated version of this method may even allow to select different bandwidths br

when estimating different functional principal components by (8). Although, un-
der certain regularity conditions, the same qualitative rates of convergence hold for
any arbitrary fixed r ≤ r0, the quality of estimates decreases when r becomes large.
Due to 〈γs, γr〉 = 0 for s < r , the number of zero crossings, peaks and valleys of
γr has to increase with r . Hence, in tendency γr will be less and less smooth as r

increases. At the same time, λr → 0, which means that for large r the r th eigen-
functions will only possess a very small influence on the structure of Xi . This in
turn means that the relative importance of the error terms εik in (4) on the structure
of γ̂r;T will increase with r .

2.2. One sample inference. Clearly, in the framework described by (1)–(4) we
are faced with two sources of variability of estimated functional principal compo-
nents. Due to sampling variation, γ̂r will differ from the true component γr , and
due to (4), there will exist an additional estimation error when approximating γ̂r

by γ̂r;T .
The following theorems quantify the order of magnitude of these different types

of error. Our theoretical results are based on the following assumptions on the
structure of the random functions Xi .

ASSUMPTION 1. X1, . . . ,Xn ∈ L2[0,1] is an i.i.d. sample of random func-
tions with mean μ and continuous covariance function σ(t, s), and (1) holds for
a system of eigenfunctions satisfying sups∈N supt∈[0,1] |γs(t)| < ∞. Furthermore,∑∞

r=1
∑∞

s=1 E[β2
riβ

2
si] < ∞ and

∑∞
q=1

∑∞
s=1 E[β2

riβqiβsi] < ∞ for all r ∈ N.
Recall that E[βri] = 0 and E[βriβsi] = 0 for r 	= s. Note that the assumption

on the factor loadings is necessarily fulfilled if Xi are Gaussian random functions.
Then βri and βsi are independent for r 	= s, all moments of βri are finite, and hence
E[β2

riβqiβsi] = 0 for q 	= s, as well as E[β2
riβ

2
si] = λrλs for r 	= s; see Gihman and

Skorohod (1973).

We need some further assumptions concerning smoothness of Xi and the struc-
ture of the discrete model (4).

ASSUMPTION 2. (a) Xi is a.s. twice continuously differentiable. There exists
a constant D1 < ∞ such that the derivatives are bounded by supt E[Xi

′(t)4] ≤ D1,
as well as supt E[Xi

′′(t)4] ≤ D1.
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(b) The design points tik , i = 1, . . . , n, k = 1, . . . , Ti , are i.i.d. random vari-
ables which are independent of Xi and εik . The corresponding design density f is
continuous on [0,1] and satisfies inft∈[0,1] f (t) > 0.

(c) For any i, the error terms εik are i.i.d. zero mean random variables with
Var(εik) = σ 2

i . Furthermore, εik is independent of Xi , and there exists a constant
D2 such that E(ε8

ik) < D2 for all i, k.
(d) The estimates X̂i used in (8) are determined by either a local linear or a

Nadaraya–Watson kernel estimator with smoothing parameter b and kernel func-
tion K . K is a continuous probability density which is symmetric at 0.

The following theorems provide asymptotic results as n,T → ∞, where T =
minn

i=1{Ti}.
THEOREM 1. In addition to Assumptions 1 and 2, assume that infs 	=r |λr −

λs | > 0 holds for some r = 1,2, . . . . Then we have the following:

(i) n−1∑n
i=1(β̂ri − β̂ri;T )2 = Op(T −1) and∣∣∣∣λ̂r − l̂r

n

∣∣∣∣= Op(T −1 + n−1).(9)

(ii) If additionally b → 0 and (T b)−1 → 0 as n,T → ∞, then for all t ∈ [0,1],
|γ̂r (t) − γ̂r;T (t)| = Op{b2 + (nT b)−1/2 + (T b1/2)−1 + n−1}.(10)

A proof is given in the Appendix.

THEOREM 2. Under Assumption 1 we obtain the following:

(i) For all t ∈ [0,1],
√

n{X̄(t) − μ(t)} =∑
r

{
1√
n

n∑
i=1

βri

}
γr(t)

L→ N

(
0,
∑
r

λrγr(t)
2

)
.

If, furthermore, λr−1 > λr > λr+1 holds for some fixed r ∈ {1,2, . . .}, then
(ii)

√
n(λ̂r − λr) = 1√

n

n∑
i=1

(β2
ri − λr) + Op(n−1/2)

L→ N(0,�r),(11)

where �r = E[(β2
ri − λr)

2],
(iii) and for all t ∈ [0,1]

γ̂r (t) − γr(t) =∑
s 	=r

{
1

n(λr − λs)

n∑
i=1

βsiβri

}
γs(t) + Rr(t),

(12)
where ‖Rr‖ = Op(n−1).
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Moreover,

√
n
∑
s 	=r

{
1

n(λr − λs)

n∑
i=1

βsiβri

}
γs(t)

L→ N

(
0,
∑
q 	=r

∑
s 	=r

E[β2
riβqiβsi]

(λq − λr)(λs − λr)
γq(t)γs(t)

)
.

A proof can be found in the Appendix. The theorem provides a generalization of
the results of Dauxois, Pousse and Romain (1982) who derive explicit asymptotic
distributions by assuming Gaussian random functions Xi . Note that in this case

�r = 2λ2
r and

∑
q 	=r

∑
s 	=r

E[β2
riβqiβsi ]

(λq−λr )(λs−λr )
γq(t)γs(t) =∑

s 	=r
λrλs

(λs−λr )2 γs(t)
2.

When evaluating the bandwidth-dependent terms in (10), best rates of conver-
gence |γ̂r (t)− γ̂r;T (t)| = Op{(nT )−2/5 +T −4/5 +n−1} are achieved when choos-
ing an undersmoothing bandwidth b ∼ max{(nT )−1/5, T −2/5}. Theoretical work
in functional data analysis is usually based on the implicit assumption that the
additional error due to (4) is negligible, and that one can proceed “as if” the func-
tions Xi were directly observed. In view of Theorems 1 and 2, this approach is
justified in the following situations:

(1) T is much larger than n, that is, n/T 4/5 → 0, and the smoothing parame-
ter b in (8) is of order T −1/5 (optimal smoothing of individual functions).

(2) An undersmoothing bandwidth b ∼ max{(nT )−1/5, T −2/5} is used and
n/T 8/5 → 0. This means that T may be smaller than n, but T must be at least
of order of magnitude larger than n5/8.

In both cases (1) and (2) the above theorems imply that |λ̂r − l̂r
n
| = Op(|λ̂r −

λr |), as well as ‖γ̂r − γ̂r;T ‖ = Op(‖γ̂r − γr‖). Inference about functional principal
components will then be first-order equivalent to an inference based on known
functions Xi .

In such situations Theorem 2 suggests bootstrap procedures as tools for one
sample inference. For example, the distribution of ‖γ̂r −γr‖ may by approximated
by the bootstrap distribution of ‖γ̂ ∗

r − γ̂r‖, where γ̂ ∗
r are estimates to be obtained

from i.i.d. bootstrap resamples X∗
1,X∗

2, . . . ,X∗
n of {X1,X2, . . . ,Xn}. This means

that X∗
1 = Xi1, . . . ,X

∗
n = Xin for some indices i1, . . . , in drawn independently and

with replacement from {1, . . . , n} and, in practice, γ̂ ∗
r may thus be approximated

from corresponding discrete data (Yi1j , ti1j )j=1,...,Ti1
, . . . , (Yinj , tinj )j=1,...,Tin

.
The additional error is negligible if either (1) or (2) is satisfied.

One may wonder about the validity of such a bootstrap. Functions are com-
plex objects and there is no established result in bootstrap theory which readily
generalizes to samples of random functions. But by (1), i.i.d. bootstrap resam-
ples {X∗

i }i=1,...,n may be equivalently represented by corresponding, i.i.d. resam-
ples {β∗

1i , β
∗
2i , . . .}i=1,...,n of factor loadings. Standard multivariate bootstrap the-
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orems imply that for any q ∈ N the distribution of moments of the random vec-
tors (β1i , . . . , βqi) may be consistently approximated by the bootstrap distribution
of corresponding moments of (β∗

1i , . . . , β
∗
qi). Together with some straightforward

limit arguments as q → ∞, the structure of the first-order terms in the asymptotic
expansions (11) and (12) then allows to establish consistency of the functional
bootstrap. These arguments will be made precise in the proof of Theorem 3 below,
which concerns related bootstrap statistics in two sample problems.

REMARK. Theorem 2(iii) implies that the variance of γ̂r is large if one of the
differences λr−1 −λr or λr −λr+1 is small. In the limit case of eigenvalues of mul-
tiplicity m > 1 our theory does not apply. Note that then only the m-dimensional
eigenspace is identified, but not a particular basis (eigenfunctions). In multivari-
ate PCA Tyler (1981) provides some inference results on corresponding projection
matrices assuming that λr > λr+1 ≥ · · · ≥ λr+m > λr+m+1 for known values of r

and m.

Although the existence of eigenvalues λr , r ≤ r0, with multiplicity m > 1 may
be considered as a degenerate case, it is immediately seen that λr → 0 and, hence,
λr −λr+1 → 0 as r increases. Even in the case of fully observed functions Xi , esti-
mates of eigenfunctions corresponding to very small eigenvalues will thus be poor.
The problem of determining a sensible upper limit of the number r0 of principal
components to be analyzed is addressed in Hall and Hosseini-Nasab (2006).

3. Two sample inference. The comparison of functional components across
groups leads naturally to two sample problems. Thus, let

X
(1)
1 ,X

(1)
2 , . . . ,X(1)

n1
and X

(2)
1 ,X

(2)
2 , . . . ,X(2)

n2

denote two independent samples of smooth functions. The problem of interest is to
test in how far the distributions of these random functions coincide. The structure
of the different distributions in function space can be accessed by means of the
respective Karhunen–Loève decompositions. The problem to be considered then
translates into testing equality of the different components of these decompositions
given by

X
(p)
i = μ(p) +

∞∑
r=1

β
(p)
ri γ (p)

r , p = 1,2,(13)

where again γ
(p)
r are the eigenfunctions of the respective covariance operator �(p)

corresponding to the eigenvalues λ
(p)
1 = E{(β(p)

1i )2} ≥ λ
(p)
2 = E{(β(p)

2i )2} ≥ · · ·. We

will again suppose that λ
(p)
r−1 > λ

(p)
r > λ

(p)
r+1, p = 1,2, for all r ≤ r0 components to

be considered. Without restriction, we will additionally assume that signs are such
that 〈γ (1)

r , γ
(2)
r 〉 ≥ 0, as well as 〈γ̂ (1)

r , γ̂
(2)
r 〉 ≥ 0.
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It is of great interest to detect possible variations in the functional components
characterizing the two samples in (13). Significant difference may give rise to sub-
stantial interpretation. Important hypotheses to be considered thus are as follows:

H01 :μ(1) = μ(2) and H02,r
:γ (1)

r = γ (2)
r , r ≤ r0.

Hypothesis H02,r
is of particular importance. Then γ

(1)
r = γ

(2)
r and only the factor

loadings βri may vary across samples. If, for example, H02,r
is accepted, one may

additionally want to test hypotheses about the distributions of β
(p)
ri , p = 1,2. Re-

call that necessarily E{β(p)
ri } = 0, E{β(p)

ri }2 = λ
(p)
r , and β

(p)
si is uncorrelated with

β
(p)
ri if r 	= s. If the X

(p)
i are Gaussian random variables, the β

(p)
ri are independent

N(0, λr) random variables. A natural hypothesis to be tested then refers to the
equality of variances:

H03,r
:λ(1)

r = λ(2)
r , r = 1,2, . . . .

Let μ̂(p)(t) = 1
np

∑
i X

(p)
i (t), and let λ̂

(p)
1 ≥ λ̂

(p)
2 ≥ · · · and γ̂

(p)
1 , γ̂

(p)
2 , . . . denote

eigenvalues and corresponding eigenfunctions of the empirical covariance operator
�̂

(p)
np of X

(p)
1 ,X

(p)
2 (t), . . . ,X

(p)
np . The following test statistics are defined in terms

of μ̂(p), λ̂
(p)
r and γ̂

(p)
r . As discussed in the proceeding section, all curves in both

samples are usually not directly observed, but have to be reconstructed from noisy
observations according to (4). In this situation, the “true” empirical eigenvalues
and eigenfunctions have to be replaced by their discrete sample estimates. Boot-
strap estimates are obtained by resampling the observations corresponding to the
unknown curves X

(p)
i . As discussed in Section 2.2, the validity of our test pro-

cedures is then based on the assumption that T is sufficiently large such that the
additional estimation error is asymptotically negligible.

Our tests of the hypotheses H01,H02,r
and H03,r

rely on the statistics

D1
def= ∥∥μ̂(1) − μ̂(2)

∥∥2
,

D2,r
def= ∥∥γ̂ (1)

r − γ̂ (2)
r

∥∥2
,

D3,r
def= ∣∣λ̂(1)

r − λ̂(2)
r

∣∣2.
The respective null-hypothesis has to be rejected if D1 ≥ �1;1−α , D2,r ≥ �2,r;1−α

or D3,r ≥ �3,r;1−α , where �1;1−α , �2,r;1−α and �3,r;1−α denote the critical val-
ues of the distributions of

�1
def= ∥∥μ̂(1) − μ(1) − (μ̂(2) − μ(2))∥∥2

,

�2,r
def= ∥∥γ̂ (1)

r − γ (1)
r − (γ̂ (2)

r − γ (2)
r

)∥∥2
,

�3,r
def= ∣∣λ̂(1)

r − λ(1)
r − (λ̂(2)

r − λ(2)
r

)∣∣2.
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Of course, the distributions of the different �’s cannot be accessed directly, since
they depend on the unknown true population mean, eigenvalues and eigenfunc-
tions. However, it will be shown below that these distributions and, hence, their
critical values are approximated by the bootstrap distribution of

�∗
1

def= ∥∥μ̂(1)∗ − μ̂(1) − (μ̂(2)∗ − μ̂(2))∥∥2
,

�∗
2,r

def= ∥∥γ̂ (1)∗
r − γ̂ (1)

r − (γ̂ (2)∗
r − γ̂ (2)

r

)∥∥2
,

�∗
3,r

def= ∣∣λ̂(1)∗
r − λ̂(1)

r − (λ̂(2)∗
r − λ̂(2)

r

)∣∣2,
where μ̂(1)∗, γ̂

(1)∗
r , λ̂

(1)∗
r , as well as μ̂(2)∗, γ̂

(2)∗
r , λ̂

(2)∗
r , are estimates to be ob-

tained from independent bootstrap samples X1∗
1 (t),X1∗

2 (t), . . . ,X1∗
n1

(t), as well as
X2∗

1 (t),X2∗
2 (t), . . . ,X2∗

n2
(t).

This test procedure is motivated by the following insights:

(1) Under each of our null-hypotheses the respective test statistics D is equal
to the corresponding �. The test will thus asymptotically possess the correct level:
P(D > �1−α) ≈ α.

(2) If the null hypothesis is false, then D 	= �. Compared to the distribution of
�, the distribution of D is shifted by the difference in the true means, eigenfunc-
tions or eigenvalues. In tendency D will be larger than �1−α .

Let 1 < L ≤ r0. Even if for r ≤ L the equality of eigenfunctions is rejected,
we may be interested in the question of whether at least the L-dimensional
eigenspaces generated by the first L eigenfunctions are identical. Therefore, let
E (1)

L , as well as E (2)
L , denote the L-dimensional linear function spaces generated

by the eigenfunctions γ
(1)
1 , . . . , γ

(1)
L and γ

(2)
1 , . . . , γ

(2)
L , respectively. We then aim

to test the null hypothesis:

H04,L
:E (1)

L = E (2)
L .

Of course, H04,L
corresponds to the hypothesis that the operators projecting into

E (1)
L and E (2)

L are identical. This in turn translates into the condition that

L∑
r=1

γ (1)
r (t)γ (1)

r (s) =
L∑

r=1

γ (2)
r (t)γ (2)

r (s) for all t, s ∈ [0,1].

Similar to above, a suitable test statistic is given by

D4,L
def=
∫ ∫ { L∑

r=1

γ̂ (1)
r (t)γ̂ (1)

r (s) −
L∑

r=1

γ̂ (2)
r (t)γ̂ (2)

r (s)

}2

dt ds
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and the null hypothesis is rejected if D4,L ≥ �4,L;1−α , where �4,L;1−α denotes
the critical value of the distribution of

�4,L
def=
∫ ∫ [ L∑

r=1

{
γ̂ (1)
r (t)γ̂ (1)

r (s) − γ (1)
r (t)γ (1)

r (s)
}

−
L∑

r=1

{
γ̂ (2)
r (t)γ̂ (2)

r (s) − γ (2)
r (t)γ (2)

r (s)
}]2

dt ds.

The distribution of �4,L and, hence, its critical values are approximated by the
bootstrap distribution of

�∗
4,L

def=
∫ ∫ [ L∑

r=1

{
γ̂ (1)∗
r (t)γ̂ (1)∗

r (s) − γ̂ (1)
r (t)γ̂ (1)

r (s)
}

−
L∑

r=1

{
γ̂ (2)∗
r (t)γ̂ (2)∗

r (s) − γ̂ (2)
r (t)γ̂ (2)

r (s)
}]2

dt ds.

It will be shown in Theorem 3 below that under the null hypothesis, as well as
under the alternative, the distributions of n�1, n�2,r , n�3,r , n�4,L converge to
continuous limit distributions which can be consistently approximated by the boot-
strap distributions of n�∗

1, n�∗
2,r , n�∗

3,r , n�∗
4,L.

3.1. Theoretical results. Let n = (n1 + n2)/2. We will assume that asymptot-
ically n1 = n · q1 and n2 = n · q2 for some fixed proportions q1 and q2. We will
then study the asymptotic behavior of our statistics as n → ∞.

We will use X1 = {X(1)
1 , . . . ,X

(1)
n1 } and X2 = {X(2)

1 , . . . ,X
(2)
n2 } to denote the

observed samples of random functions.

THEOREM 3. Assume that {X(1)
1 , . . . ,X

(1)
n1 } and {X(2)

1 , . . . ,X
(2)
n2 } are two in-

dependent samples of random functions, each of which satisfies Assumption 1. As
n → ∞ we then obtain the following:

(i) There exists a nondegenerated, continuous probability distribution F1 such

that n�1
L→ F1, and for any δ > 0,∣∣P(n�1 ≥ δ) − P(n�∗

1 ≥ δ|X1,X2)
∣∣= Op(1).

(ii) If, furthermore, λ
(1)
r−1 > λ

(1)
r > λ

(1)
r+1 and λ

(2)
r−1 > λ

(2)
r > λ

(2)
r+1 hold for some

fixed r = 1,2, . . . , there exist a nondegenerated, continuous probability distribu-

tions Fk,r such that n�k,r
L→ Fk,r , k = 2,3, and for any δ > 0,∣∣P(n�k,r ≥ δ) − P(n�∗

k,r ≥ δ|X1,X2)
∣∣= Op(1), k = 2,3.
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(iii) If λ
(1)
r > λ

(1)
r+1 > 0 and λ

(2)
r > λ

(2)
r+1 > 0 hold for all r = 1, . . . ,L, there ex-

ists a nondegenerated, continuous probability distribution F4,L such that n�4,L
L→

F4,L, and for any δ > 0,∣∣P(n�4,L ≥ δ) − P(n�∗
4,L ≥ δ|X1,X2)

∣∣= Op(1).

The structures of the distributions F1, F2,r , F3,r , F4,L are derived in the proof
of the theorem which can be found in the Appendix. They are obtained as limits of
distributions of quadratic forms.

3.2. Simulation study. In this paragraph we illustrate the finite behavior of the
proposed test. The basic simulation-setup (setup “a”) is established as follows: the
first sample is generated by the random combination of orthonormalized sine and
cosine functions (Fourier functions) and the second sample is generated by the
random combination of the same but shifted factor functions:

X
(1)
i (tik) = β

(1)
1i

√
2 sin(2πtik) + β

(1)
2i

√
2 cos(2πtik),

X
(2)
i (tik) = β

(2)
1i

√
2 sin{2π(tik + δ)} + β

(2)
2i

√
2 cos{2π(tik + δ)}.

The factor loadings are i.i.d. random variables with β
(p)
1i ∼ N(0, λ

(p)
1 ) and

β
(p)
2i ∼ N(0, λ

(p)
2 ). The functions are generated on the equidistant grid tik = tk =

k/T , k = 1, . . . T = 100, i = 1, . . . , n = 70. The simulation setup is based on the
fact that the error of the estimation of the eigenfunctions simulated by sine and
cosine functions is, in particular, manifested by some shift of the estimated eigen-
functions. The focus of this simulation study is the test of common eigenfunctions.

For the presentation of results in Table 1, we use the following notation: “(a)
λ

(1)
1 , λ

(1)
2 , λ

(2)
2 , λ

(2)
2 .” The shift parameter δ is changing from 0 to 0.25 with the

step 0.05. It should be mentioned that the shift δ = 0 yields the simulation of level
and setup with shift δ = 0.25 yields the simulation of the alternative, where the
two factor functions are exchanged.

In the second setup (setup “b”) the first factor functions are the same and the
second factor functions differ:

X
(1)
i (tik) = β

(1)
1i

√
2 sin(2πtik) + β

(1)
2i

√
2 cos(2πtik),

X
(2)
i (tik) = β

(2)
1i

√
2 sin{2π(tik + δ)} + β

(2)
2i

√
2 sin{4π(tik + δ)}.

In Table 1 we use the notation “(b) λ
(1)
1 , λ

(1)
2 , λ

(2)
2 , λ

(2)
2 ,Dr .” Dr means the test

for the equality of the r th eigenfunction. In the bootstrap tests we used 500 boot-
strap replications. The critical level in this simulation is α = 0.1. The number of
simulations is 250.

We can interpret Table 1 in the following way: In power simulations (δ 	= 0) test
behaves as expected: less powerful if the functions are “hardly distinguishable”



COMMON FUNCTIONAL PC 17

TABLE 1
The results of the simulations for α = 0.1, n = 70, T = 100, number of simulations 250

Setup/shift 0 0.05 0.1 0.15 0.2 0.25

(a) 10, 5, 8, 4 0.13 0.41 0.85 0.96 1 1
(a) 4, 2, 2, 1 0.12 0.48 0.87 0.96 1 1
(a) 2, 1, 1.5, 2 0.14 0.372 0.704 0.872 0.92 0.9
(b) 10, 5, 8, 4 D1 0.10 0.44 0.86 0.95 1 1
(b) 10, 5, 8, 4 D2 1 1 1 1 1 1

(small shift, small difference in eigenvalues). The level approximation seems to
be less precise if the difference in the eingenvalues (λ(p)

1 − λ
(p)
2 ) becomes smaller.

This can be explained by relative small sample-size n, small number of bootstrap-
replications and increasing estimation-error as argued in Theorem 2, assertion (iii).

In comparison to our general setup (4), we used an equidistant and common
design for all functions. This simplification is necessary, it simplifies and speeds-
up the simulations, in particular, using general random and observation-specific
design makes the simulation computationally untractable.

Second, we omitted the additional observation error, this corresponds to the
standard assumptions in the functional principal components theory. As argued in
Section 2.2, the inference based on the directly observed functions and estimated
functions Xi is first-order equivalent under mild conditions implied by Theorems 1
and 2. In order to illustrate this theoretical result in the simulation, we used the
following setup:

X
(1)
i (tik) = β

(1)
1i

√
2 sin(2πtik) + β

(1)
2i

√
2 cos(2πtik) + ε

(1)
ik ,

X
(2)
i (tik) = β

(2)
1i

√
2 sin{2π(tik + δ)} + β

(2)
2i

√
2 cos{2π(tik + δ)} + ε

(2)
ik ,

where ε
(p)
ik ∼ N(0,0.25), p = 1,2, all other parameters remain the same as in the

simulation setup “a.” Using this setup, we recalculate the simulation presented in
the second “row” of Table 1, for estimation of the functions X

(p)
i ,p = 1,2, we

used the Nadaraya–Watson estimation with Epanechnikov kernel and bandwidth
b = 0.05. We run the simulations with various bandwidths, the choice of the band-
width does not have a strong influence on results except by oversmoothing (large
bandwidths). The results are printed in Table 2. As we can see, the difference of
the simulation results using estimated functions is not significant in comparison
to the results printed in the second line of Table 1—directly observed functional
values.

The last limitation of this simulation study is the choice of a particular alterna-
tive. A more general setup of this simulation study might be based on the following
model: X

(1)
i (t) = β

(1)
1i γ

(1)
1 (t) + β

(1)
2i γ

(1)
2 (t), X

(2)
i (t) = β

(2)
1i γ

(2)
1 (t) + β

(2)
2i γ

(2)
2 (t),
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TABLE 2
The results of the simulation for α = 0.1, n = 70, T = 100 with additional error in observation

Setup/shift 0 0.05 0.1 0.15 0.2 0.25

(a) 10, 5, 8, 4 0.09 0.35 0.64 0.92 0.94 0.97

where γ
(1)
1 , γ

(2)
1 , γ

(1)
2 and g are mutually orthogonal functions on L2[0,1] and

γ
(2)
2 = (1 + υ2)−1/2{γ (1)

2 + υg}. Basically we create the alternative by the con-
tamination of one of the “eigenfunctions” (in our case the second one) in the di-
rection g and ensure ‖γ (2)

2 ‖ = 1. The amount of the contamination is controlled

by the parameter υ . Note that the exact squared integral difference ‖γ (1)
2 − γ

(2)
2 ‖2

does not depend on function g. Thus, in the “functional sense” particular “direc-
tion of the alternative hypothesis” represented by the function g has no impact
on the power of the test. However, since we are using a nonparametric estima-
tion technique, we might expect that rough (highly fluctuating) functions g will
yield higher error of estimation and, hence, decrease the precision (and power) of
the test. Finally, a higher number of factor functions (L) in simulation may cause
less precise approximation of critical values and more bootstrap replications and
larger sample-size may be needed. This can also be expected from Theorem 2 in
Section 2.2—the variance of the estimated eigenfunctions depends on all eigen-
functions corresponding to nonzero eingenvalues.

4. Implied volatility analysis. In this section we present an application of the
method discussed in previous sections to the implied volatilities of European op-
tions on the German stock index (ODAX). Implied volatilities are derived from the
Black–Scholes (BS) pricing formula for European options; see Black and Scholes
(1973). European call and put options are derivatives written on an underlying asset
with price process Si , which yield the pay-off max(SI −K,0) and max(K −SI ,0),
respectively. Here i denotes the current day, I the expiration day and K the strike
price. Time to maturity is defined as τ = I − i. The BS pricing formula for a Call
option is

Ci(Si,K, τ, r, σ ) = Si�(d1) − Ke−rτ�(d2),(14)

where d1 = ln(Si/K)+(r+σ 2/2)τ

σ
√

τ
, d2 = d1 − σ

√
τ , r is the risk-free interest rate, σ is

the (unknown and constant) volatility parameter, and � denotes the c.d.f. of a
standard normal distributed random variable. In (14) we assume the zero-dividend
case. The Put option price Pi can be obtained from the put–call parity Pi = Ci −
Si + e−τrK .

The implied volatility σ̃ is defined as the volatility σ , for which the BS price Ci

in (14) equals the price C̃i observed on the market. For a single asset, we obtain at
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each time point (day i) and for each maturity τ a IV function σ̃ τ
i (K). Practitioners

often rescale the strike dimension by plotting this surface in terms of (futures)
moneyness κ = K/Fi(τ ), where Fi(τ ) = Sie

rτ .
Clearly, for given parameters Si, r,K, τ the mapping from prices to IVs is a one-

to-one mapping. The IV is often used for quoting the European options in financial
practice, since it reflects the “uncertainty” of the financial market better than the
option prices. It is also known that if the stock price drops, the IV raises (so-called
leverage effect), motivates hedging strategies based on IVs. Consequently, for the
purpose of this application, we will regard the BS–IV as an individual financial
variable. The practical relevance of such an approach is justified by the volatility
based financial products such as VDAX, which are commonly traded on the option
markets.

The goal of this analysis is to study the dynamics of the IV functions for dif-
ferent maturities. More specifically, our aim is to construct low dimensional factor
models based on the truncated Karhunen–Loève expansions (1) for the log-returns
of the IV functions of options with different maturities and compare these factor
models using the methodology presented in the previous sections. Analysis of IVs
based on a low-dimensional factor model gives directly a descriptive insight into
the structure of distribution of the log-IV-returns—structure of the factors and em-
pirical distribution of the factor loadings may be a good starting point for further
pricing models. In practice, such a factor model can also be used in Monte Carlo
based pricing methods and for risk-management (hedging) purposes. For compre-
hensive monographs on IV and IV-factor models, see Hafner (2004) or Fengler
(2005b).

The idea of constructing and analyzing the factor models for log-IV-returns
for different maturities was originally proposed by Fengler, Härdle and Villa
(2003), who studied the dynamics of the IV via PCA on discretized IV func-
tions for different maturity groups and tested the Common Principal Compo-
nents (CPC) hypotheses (equality of eigenvectors and eigenspaces for different
groups). Fengler, Härdle and Villa (2003) proposed a PCA-based factor model
for log-IV-returns on (short) maturities 1, 2 and 3 months and grid of moneyness
[0.85,0.9,0.95,1,1.05,1.1]. They showed that the factor functions do not sig-
nificantly differ and only the factor loadings differ across maturity groups. Their
method relies on the CPC methodology introduced by Flury (1988) which is based
on maximum likelihood estimation under the assumption of multivariate normal-
ity. The log-IV-returns are extracted by the two-dimensional Nadaraya–Watson
estimate.

The main aim of this application is to reconsider their results in a functional
sense. Doing so, we overcome two basic weaknesses of their approach. First, the
factor model proposed by Fengler, Härdle and Villa (2003) is performed only on
a sparse design of moneyness. However, in practice (e.g., in Monte Carlo pric-
ing methods), evaluation of the model on a fine grid is needed. Using the func-
tional PCA approach, we may overcome this difficulty and evaluate the factor
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model on an arbitrary fine grid. The second difficulty of the procedure proposed
by Fengler, Härdle and Villa (2003) stems from the data design—on the exchange
we cannot observe options with desired maturity on each day and we need to
estimate them from the IV-functions with maturities observed on the particular
day. Consequently, the two-dimensional Nadaraya–Watson estimator proposed by
Fengler, Härdle and Villa (2003) results essentially in the (weighted) average of
the IVs (with closest maturities) observed on a particular day, which may af-
fect the test of the common eigenfunction hypothesis. We use the linear inter-

polation scheme in the total variance σ 2
TOT,i(κ, τ )

def= (σ τ
i (κ))2τ, in order to re-

cover the IV functions with fixed maturity (on day i). This interpolation scheme
is based on the arbitrage arguments originally proposed by Kahalé (2004) for
zero-dividend and zero-interest rate case and generalized for deterministic inter-
est rate by Fengler (2005a). More precisely, having IVs with maturities observed
on a particular day i: σ̃

τji

i (κ), ji = 1, . . . , pτi
, we calculate the corresponding to-

tal variance σ̃TOT,i(κ, τji
). From these total variances we linearly interpolate the

total variance with the desired maturity from the nearest maturities observed on
day i. The total variance can be easily transformed to corresponding IV σ̃ τ

i (κ). As

the last step, we calculate the log-returns � log σ̃ τ
i (κ)

def= log σ̃ τ
i+1(κ) − log σ̃ τ

i (κ).
The log-IV-returns are observed for each maturity τ on a discrete grid κτ

ik . We as-
sume that observed log-IV-return � log σ̃ τ

i (κτ
ik) consists of true log-return of the

IV function denoted by � logσ τ
i (κτ

ik) and possibly of some additional error ετ
ik .

By setting Y τ
ik := � log σ̃ τ

i (κτ
ik), Xτ

i (κ) := � logστ
i (κ), we obtain an analogue of

the model (4) with the argument κ :

Y τ
ik = Xτ

i (κik) + ετ
ik, i = 1, . . . , nτ .(15)

In order to simplify the notation and make the connection with the theoretical part
clear, we will use the notation of (15).

For our analysis we use a recent data set containing daily data from Janu-
ary 2004 to June 2004 from the German–Swiss exchange (EUREX). Violations
of the arbitrage-free assumptions (“obvious” errors in data) were corrected us-
ing the procedure proposed by Fengler (2005a). Similarly to Fengler, Härdle and
Villa (2003), we excluded options with maturity smaller then 10 days, since these
option-prices are known to be very noisy, partially because of a special and arbi-
trary setup in the pricing systems of the dealers. Using the interpolation scheme
described above, we calculate the log-IV-returns for two maturity groups: “1M”
group with maturity τ = 0.12 (measured in years) and “3M” group with matu-
rity τ = 0.36. The observed log-IV-returns are denoted by Y 1M

ik , k = 1, . . . ,K1M
i ,

Y 3M
ik , k = 1, . . . ,K3M

i . Since we ensured that for no i, the interpolation procedure
uses data with the same maturity for both groups, this procedure has no impact on
the independence of both samples.
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The underlying models based on the truncated version of (3) are as follows:

X1M
i (κ) = X̄1M(κ) +

L1M∑
r=1

β̂1M
ri γ̂r

1M(κ), i = 1, . . . , n1M,(16)

X3M
i (κ) = X̄3M(κ) +

L3M∑
r=1

β̂3M
ri γ̂r

3M(κ), i = 1, . . . , n3M.(17)

Models (16) and (17) can serve, for example, in a Monte Carlo pricing tool in
the risk management for pricing exotic options where the whole path of implied
volatilities is needed to determine the price. Estimating the factor functions in (16)
and (17) by eigenfunctions displayed in Figure 1, we only need to fit the (esti-
mated) factor loadings β̂1M

ji and β̂3M
ji . The pillar of the model is the dimension

reduction. Keeping the factor function fixed for a certain time period, we need to
analyze (two) multivariate random processes of the factor loadings. For the pur-
poses of this paper we will focus on the comparison of factors from models (16)
and (17) and the technical details of the factor loading analysis will not be dis-
cussed here, since in this respect we refer to Fengler, Härdle and Villa (2003), who
proposed to fit the factor loadings by centered normal distributions with diagonal
variance matrix containing the corresponding eigenvalues. For a deeper discus-
sion of the fitting of factor loadings using a more sophisticated approach, basically
based on (possibly multivariate) GARCH models; see Fengler (2005b).

From our data set we obtained 88 functional observations for the 1M group
(n1M ) and 125 observations for the 3M group (n3M ). We will estimate the model
on the interval for futures moneyness κ ∈ [0.8,1.1]. In comparison to Fengler,
Härdle and Villa (2003), we may estimate models (16) and (17) on an arbitrary
fine grid (we used an equidistant grid of 500 points on the interval [0.8,1.1]). For
illustration, the Nadaraya–Watson (NW) estimator of resulting log-returns is plot-
ted in Figure 2. The smoothing parameters have been chosen in accordance with
the requirements in Section 2.2. As argued in Section 2.2, we should use small
smoothing parameters in order to avoid a possible bias in the estimated eigenfunc-
tions. Thus, we use for each i essentially the smallest bandwidth bi that guarantees
that estimator X̂i is defined on the entire support [0.8,1.1].

Using the procedures described in Section 2.1, we first estimate the eigenfunc-
tions of both maturity groups. The estimated eigenfunctions are plotted in Figure 1.
The structure of the eigenfunctions is in accordance with other empirical studies
on IV-surfaces. For a deeper discussion and economical interpretation, see, for ex-
ample, Fengler, Härdle and Mammen (2007) or Fengler, Härdle and Villa (2003).

Clearly, the ratio of the variance explained by the kth factor function is given
by the quantity ν̂1M

k = λ̂1M
k /

∑n1M

j=1 λ̂1M
j for the 1M group and, correspondingly, by

ν̂3M
k for the 3M group. In Table 3 we list the contributions of the factor functions.

Looking at Table 3, we can see that 4th factor functions explain less than 1% of
the variation. This number was the “threshold” for the choice of L1M and L2M .
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FIG. 2. Nadaraya–Watson estimate of the log-IV-returns for maturity 1M (left figure) and 3M (right
figure). The bold line is the sample mean of the corresponding group.

We can observe (see Figure 1) that the factor functions for both groups are
similar. Thus, in the next step we use the bootstrap test for testing the equality
of the factor functions. We use 2000 bootstrap replications. The test of equal-
ity of the eigenfunctions was rejected for the first eigenfunction for the analyzed
time period (January 2004–June 2004) at a significance level α = 0.05 (P-value
0.01). We may conclude that the (first) factor functions are not identical in the
factor model for both maturity groups. However, from a practical point of view,
we are more interested in checking the appropriateness of the entire models for
a fixed number of factors: L = 2 or L = 3 in (16) and (17). This requirement
translates into the testing of the equality of eigenspaces. Thus, in the next step
we use the same setup (2000 bootstrap replications) to test the hypotheses that
the first two and first three eigenfunctions span the same eigenspaces E1M

L and
E3M

L . None of the hypotheses for L = 2 and L = 3 is rejected at significance
level α = 0.05 (P-value is 0.61 for L = 2 and 0.09 for L = 3). Summarizing,
even in the functional sense we have no significant reason to reject the hypothe-
sis of common eigenspaces for these two maturity groups. Using this hypothesis,

TABLE 3
Variance explained by the eigenfunctions

Var. explained 1M Var. explained 3M

ν̂τ
1 89.9% 93.0%

ν̂τ
2 7.7% 4.2%

ν̂τ
3 1.7% 1.0%

ν̂τ
4 0.6% 0.4%



COMMON FUNCTIONAL PC 23

the factors governing the movement of the returns of IV surface are invariant to
time to maturity, only their relative importance can vary. This leads to the com-
mon factor model: Xτ

i (κ) = X̄τ (κ)+∑Lτ

r=1 β̂τ
ri γ̂r (κ), i = 1, . . . , nτ , τ = 1M,3M,

where γr := γ 1M
r = γ 3M

r . Beside contributing to the understanding of the struc-
ture of the IV function dynamics, the common factor model helps us to reduce
the number of functional factors by half compared to models (16) and (17). Fur-
thermore, from the technical point of view, we also obtain an additional dimen-
sion reduction and higher estimation precision, since under this hypothesis we
may estimate the eigenfunctions from the (individually centered) pooled sample
Xi(κ)1M, i = 1, . . . , n1M , X3M

i (κ), i = 1, . . . , n3M . The main improvement com-
pared to the multivariate study by Fengler, Härdle and Villa (2003) is that our test is
performed in the functional sense – it does not depend on particular discretization
and our factor model can be evaluated on an arbitrary fine grid.

APPENDIX: MATHEMATICAL PROOFS

In the following, ‖v‖ = (
∫ 1

0 v(t)2 dt)1/2 will denote the L2-norm for any square
integrable function v. At the same time, ‖a‖ = (1

k

∑k
i=1 a2

i )
1/2 will indicate the

Euclidean norm, whenever a ∈ R
k is a k-vector for some k ∈ N.

In the proof of Theorem 1, Eε and Varε denote expectation and variance with
respect to ε only (i.e., conditional on tij and Xi).

PROOF OF THEOREM 1. Recall the definition of the χi(t) and note that
χi(t) = χX

i (t) + χε
i (t), where

χε
i (t) =

Ti∑
j=1

εi(j)I

(
t ∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))
,

as well as

χX
i (t) =

Ti∑
j=1

Xi

(
ti(j)

)
I

(
t ∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))

for t ∈ [0,1], ti(0) = −ti(1) and ti(Ti+1) = 2 − ti(Ti). Similarly, χ∗
i (t) = χ

X∗
i (t) +

χε∗
i (t).

By Assumption 2, E(|ti(j) − ti(j−1)|s) = O(T −s) for s = 1, . . . ,4, and the con-
vergence is uniform in j < n. Our assumptions on the structure of Xi together with
some straightforward Taylor expansions then lead to

〈χi,χj 〉 = 〈Xi,Xj 〉 + Op(1/T )

and

〈χi,χ
∗
i 〉 = ‖Xi‖2 + Op(1/T ).
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Moreover,

Eε(〈χε
i , χX

j 〉) = 0, Eε(‖χε
i ‖2) = σ 2

i ,

Eε(〈χε
i , χε∗

i 〉) = 0, Eε(〈χε
i , χε∗

i 〉2) = Op(1/T ),

Eε(〈χε
i , χX

j 〉2) = Op(1/T ), Eε(〈χε
i , χX

j 〉〈χε
k ,χX

l 〉) = 0 for i 	= k,

Eε(〈χε
i , χε

j 〉〈χε
i , χε

k 〉) = 0 for j 	= k and Eε(‖χε
i ‖4) = Op(1)

hold (uniformly) for all i, j = 1, . . . , n.
Consequently, Eε(‖χ̄‖2 − ‖X̄‖2) = Op(T −1 + n−1).
When using these relations, it is easily seen that for all i, j = 1, . . . , n

M̂ij − Mij = Op(T −1/2 + n−1) and
(18)

tr{(M̂ − M)2}1/2 = Op(1 + nT −1/2).

Since the orthonormal eigenvectors pq of M satisfy ‖pq‖ = 1, we furthermore
obtain for any i = 1, . . . , n and all q = 1,2, . . .

n∑
j=1

pjq

{
M̂ij − Mij −

∫ 1

0
χε

i (t)χX
j (t) dt

}
= Op(T −1/2 + n−1/2),(19)

as well as
n∑

j=1

pjq

∫ 1

0
χε

i (t)χX
j (t) dt = Op

(
n1/2

T 1/2

)
(20)

and
n∑

i=1

ai

n∑
j=1

pjq

∫ 1

0
χε

i (t)χX
j (t) dt = Op

(
n1/2

T 1/2

)
(21)

for any further vector a with ‖a‖ = 1.
Recall that the j th largest eigenvalue lj satisfies nλ̂j = lj . Since by assumption

infs 	=r |λr − λs | > 0, the results of Dauxois, Pousse and Romain (1982) imply
that λ̂r converges to λr as n → ∞, and sups 	=r

1
|λ̂r−λ̂s | = Op(1), which leads to

sups 	=r
1

|lr−ls | = Op(1/n). Assertion (a) of Lemma A of Kneip and Utikal (2001)
together with (18)–(21) then implies that∣∣∣∣λ̂r − l̂r

n

∣∣∣∣= n−1|lr − l̂r | = n−1|p�
r (M̂ − M)pr | + Op(T −1 + n−1)

(22)
= Op{(nT )−1/2 + T −1 + n−1}.

When analyzing the difference between the estimated and true eigenvectors p̂r

and pr , assertion (b) of Lemma A of Kneip and Utikal (2001) together with (18)
lead to

p̂r − pr = −Sr (M̂ − M)pr + Rr , with ‖Rr‖ = Op(T −1 + n−1)(23)
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and Sr =∑
s 	=r

1
ls−lr

psp
�
s . Since sup‖a‖=1 a�Sra ≤ sups 	=r

1
|lr−ls | = Op(1/n), we

can conclude that

‖p̂r − pr‖ = Op(T −1/2 + n−1),(24)

and our assertion on the sequence n−1∑
i (β̂ri − β̂ri;T )2 is an immediate conse-

quence.
Let us now consider assertion (ii). The well-known properties of local linear

estimators imply that |Eε{X̂i(t) − Xi(t)}| = Op(b2), as well as Varε{X̂i(t)} =
Op{T b}, and the convergence is uniform for all i, n. Furthermore, due to the inde-
pendence of the error term εij , Covε{X̂i(t), X̂j (t)} = 0 for i 	= j . Therefore,∣∣∣∣∣γ̂r (t) − 1√

lr

n∑
i=1

pirX̂i(t)

∣∣∣∣∣= Op

(
b2 + 1√

nT b

)
.

On the other hand, (18)–(24) imply that with X̂(t) = (X̂1(t), . . . , X̂n(t))
�∣∣∣∣∣γ̂r;T (t) − 1√

lr

n∑
i=1

pirX̂i(t)

∣∣∣∣∣
=
∣∣∣∣∣ 1√

lr

n∑
i=1

(p̂ir − pir)Xi(t) + 1√
lr

n∑
i=1

(p̂ir − pir){X̂i(t) − Xi(t)}
∣∣∣∣∣

+ Op(T −1 + n−1)

= ‖SrX(t)‖√
lr

∣∣∣∣p�
r (M̂ − M)Sr

X(t)

‖SrX(t)‖
∣∣∣∣

+ Op(b2T −1/2 + T −1b−1/2 + n−1)

= Op(n−1/2T −1/2 + b2T −1/2 + T −1b−1/2 + n−1).

This proves the theorem. �

PROOF OF THEOREM 2. First consider assertion (i). By definition,

X̄(t) − μ(t) = n−1
n∑

i=1

{Xi(t) − μ(t)} =∑
r

(
n−1

n∑
i=1

βri

)
γr(t).

Recall that, by assumption, βri are independent, zero mean random variables with
variance λr , and that the above series converges with probability 1. When defining
the truncated series

V (q) =
q∑

r=1

(
n−1

n∑
i=1

βri

)
γr(t),

standard central limit theorems therefore imply that
√

nV (q) is asymptotically
N(0,

∑q
r=1 λrγr(t)

2) distributed for any possible q ∈ N.
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The assertion of a N(0,
∑∞

r=1 λrγr(t)
2) limiting distribution now is a conse-

quence of the fact that for all δ1, δ2 > 0 there exists a qδ such that P {|√nV (q) −√
n
∑

r (n
−1∑n

i=1 βri)γr(t)| > δ1} < δ2 for all q ≥ qδ and all n sufficiently large.
In order to prove assertions (i) and (ii), consider some fixed r ∈ {1,2, . . .} with

λr−1 > λr > λr+1. Note that � as well as �̂n are nuclear, self-adjoint and non-
negative linear operators with �v = ∫

σ(t, s)v(s) ds and �̂nv = ∫
σ̂ (t, s)v(s) ds,

v ∈ L2[0,1]. For m ∈ N, let �m denote the orthogonal projector from L2[0,1]
into the m-dimensional linear space spanned by {γ1, . . . , γm}, that is, �mv =∑m

j=1〈v, γj 〉γj , v ∈ L2[0,1]. Now consider the operator �m�̂n�m, as well as

its eigenvalues and corresponding eigenfunctions denoted by λ̂1,m ≥ λ̂2,m ≥ · · ·
and γ̂1,m, γ̂2,m, . . . , respectively. It follows from well-known results in the Hilbert
space theory that �m�̂n�m converges strongly to �̂n as m → ∞. Furthermore, we
obtain (Rayleigh–Ritz theorem)

lim
m→∞ λ̂r,m = λr and lim

m→∞‖γ̂r − γ̂r,m‖ = 0 if λ̂r−1 > λ̂r > λ̂r+1.(25)

Note that under the above condition γ̂r is uniquely determined up to sign, and recall
that we always assume that the right “versions” (with respect to sign) are used so
that 〈γ̂r , γ̂r,m〉 ≥ 0. By definition, βji = ∫

γj (t){Xi(t) − μ(t)}dt , and therefore,∫
γj (t){Xi(t) − X̄(t)}dt = βji − β̄j , as well as Xi − X̄ =∑

j (βji − β̄j )γj , where

β̄j = 1
n

∑n
i=1 βji . When analyzing the structure of �m�̂n�m more deeply, we can

verify that �m�̂n�mv = ∫
σ̂m(t, s)v(s) ds, v ∈ L2[0,1], with

σ̂m(t, s) = gm(t)��̂mgm(s),

where gm(t) = (γ1(t), . . . , γm(t))�, and where �̂m is the m × m matrix with el-
ements { 1

n

∑n
i=1(βji − β̄j )(βki − β̄k)}j,k=1,...,m. Let λ1(�̂m) ≥ λ2(�̂m) ≥ · · · ≥

λm(�̂m) and ζ̂1,m, . . . , ζ̂m,m denote eigenvalues and corresponding eigenvectors of
�̂m. Some straightforward algebra then shows that

λ̂r,m = λr(�̂m), γ̂r,m = gm(t)�ζ̂r,m.(26)

We will use �m to represent the m × m diagonal matrix with diagonal en-
tries λ1 ≥ · · · ≥ λm. Obviously, the corresponding eigenvectors are given by the
m-dimensional unit vectors denoted by e1,m, . . . , em,m. Lemma A of Kneip and
Utikal (2001) now implies that the differences between eigenvalues and eigenvec-
tors of �m and �̂m can be bounded by

λ̂r,m − λr = tr{er,me�
r,m(�̂m − �m)} + R̃r,m,

(27)

with R̃r,m ≤ 6 sup‖a‖=1 a�(�̂m − �m)2a

mins |λs − λr | ,

ζ̂r,m − er,m = −Sr,m(�̂m − �m)er,m + R∗
r,m,

(28)

with ‖R∗
r,m‖ ≤ 6 sup‖a‖=1 a�(�̂m − �m)2a

mins |λs − λr |2 ,



COMMON FUNCTIONAL PC 27

where Sr,m =∑
s 	=r

1
λs−λr

es,me�
s,m.

Assumption 1 implies E(β̄r ) = 0, Var(β̄r ) = λr
n

, and with δii = 1, as well as
δij = 0 for i 	= j , we obtain

E
{

sup
‖a‖=1

a�(�̂m − �m)2a

}
≤ E{tr[(�̂m − �m)2]}

= E

{
m∑

j,k=1

[
1

n

n∑
i=1

(βji − β̄j )(βki − β̄k) − δjkλj

]2}
(29)

≤ E

{ ∞∑
j,k=1

[
1

n

n∑
i=1

(βji − β̄j )(βki − β̄k) − δjkλj

]2}

= 1

n

(∑
j

∑
k

E{β2
jiβ

2
ki}
)

+ O(n−1) = O(n−1),

for all m. Since tr{er,me�
r,m(�̂m −�m)} = 1

n

∑n
i=1(βri − β̄r )

2 −λr , (25), (26), (27)
and (29) together with standard central limit theorems imply that

√
n(λ̂r − λr) = 1√

n

n∑
i=1

(βri − β̄r )
2 − λr + Op(n−1/2)

= 1√
n

n∑
i=1

[(βri)
2 − E{(βri)

2}] + Op(n−1/2)(30)

L→ N(0,�r).

It remains to prove assertion (iii). Relations (26) and (28) lead to

γ̂r,m(t) − γr(t) = gm(t)�(ζ̂r,m − er,m)

= −
m∑

s 	=r

{
1

n(λs − λr)

n∑
i=1

(βsi − β̄s)(βri − β̄r )

}
γs(t)(31)

+ gm(t)�R∗
r,m,

where due to (29) the function gm(t)�R∗
r,m satisfies

E(‖g�
mR∗

r,m‖) = E(‖R∗
r,m‖)

≤ 6

nmins |λs − λr |2
(∑

j

∑
k

E{β2
jiβ

2
ki}
)

+ O(n−1),
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for all m. By Assumption 1, the series in (31) converge with probability 1 as m →
∞.

Obviously, the event λ̂r−1 > λ̂r > λ̂r+1 occurs with probability 1. Since m is
arbitrary, we can therefore conclude from (25) and (31) that

γ̂r (t) − γr(t)

= −∑
s 	=r

{
1

n(λs − λr)

n∑
i=1

(βsi − β̄s)(βri − β̄r )

}
γs(t) + R∗

r (t)(32)

= −∑
s 	=r

{
1

n(λs − λr)

n∑
i=1

βsiβri

}
γs(t) + Rr(t),

where ‖R∗
r ‖ = Op(n−1), as well as ‖Rr‖ = Op(n−1). Moreover,

√
n ×∑

s 	=r{ 1
n(λs−λr )

∑n
i=1 βsiβri}γs(t) is a zero mean random variable with variance∑

q 	=r

∑
s 	=r

E[β2
riβqiβsi ]

(λq−λr )(λs−λr )
γq(t)γs(t) < ∞. By Assumption 1, it follows from stan-

dard central limit arguments that for any q ∈ N the truncated series
√

nW(q)
def=√

n
∑q

s=1,s 	=r [ 1
n(λs−λr )

∑n
i=1 βsiβri]γs(t) is asymptotically normal distributed. The

asserted asymptotic normality of the complete series then follows from an argu-
ment similar to the one used in the proof of assertion (i). �

PROOF OF THEOREM 3. The results of Theorem 2 imply that

n�1 =
∫ (∑

r

1√
q1n1

n1∑
i=1

β
(1)
ri γ (1)

r (t)

(33)

−∑
r

1√
q2n2

n2∑
i=1

β
(2)
ri γ (2)

r (t)

)2

dt.

Furthermore, independence of X
(1)
i and X

(2)
i together with (30) imply that

√
n
[
λ̂(1)

r − λ(1)
r − {λ̂(2)

r − λ(2)
r

}] L→ N

(
0,

�
(1)
r

q1
+ �

(2)
r

q2

)
and

(34)
n

�
(1)
r /q1 + �

(2)
r /q2

�3,r
L→ χ2

1 .

Furthermore, (32) leads to

n�2,r =
∥∥∥∥∥∑

s 	=r

{
1

√
q1n1(λ

(1)
s − λ

(1)
r )

n1∑
i=1

β
(1)
si β

(1)
ri

}
γ (1)
s

(35)

−∑
s 	=r

{
1

√
q2n2(λ

(2)
s − λ

(2)
r )

n2∑
i=1

β
(2)
si β

(2)
ri

}
γ (2)
s

∥∥∥∥∥
2

+ Op(n−1/2)
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and

n�4,L = n

∫ ∫ [ L∑
r=1

γ (1)
r (t)

{
γ̂ (1)
r (u) − γ (1)

r (u)
}

+ γ (1)
r (u)

{
γ̂ (1)
r (t) − γ (1)

r (t)
}

−
L∑

r=1

γ (2)
r (t)

{
γ̂ (2)
r (u) − γ (2)

r (u)
}

+ γ (2)
r (u)

{
γ̂ (2)
r (t) − γ (2)

r (t)
}]2

dt du + Op(n−1/2)

=
∫ ∫ [ L∑

r=1

∑
s>L

{
1

√
q1n1(λ

(1)
s − λ

(1)
r )

n1∑
i=1

β
(1)
si β

(1)
ri

}
(36)

× {γ (1)
r (t)γ (1)

s (u) + γ (1)
r (u)γ (1)

s (t)
}

−
L∑

r=1

∑
s>L

{
1

√
q2n2(λ

(2)
s − λ

(2)
r )

n2∑
i=1

β
(2)
si β

(2)
ri

}

× {γ (2)
r (t)γ (2)

s (u) + γ (2)
r (u)γ (2)

s (t)}
]2

dt du

+ Op(n−1/2).

In order to verify (36), note that
∑L

r=1
∑L

s=1,s 	=r
1

(λ
(p)
s −λ

(p)
r )

aras = 0 for p = 1,2

and all possible sequences a1, . . . , aL. It is clear from our assumptions that all
sums involved converge with probability 1. Recall that E(β

(p)
ri β

(p)
si ) = 0, p = 1,2

for r 	= s.

It follows that X̃
(p)
r := 1√

qpnp

∑
s 	=r

∑np

i=1
β

(p)
si β

(p)
ri

λ
(p)
s −λ

(p)
r

γ
(p)
s , p = 1,2, is a continu-

ous, zero mean random function on L2[0,1], and, by assumption, E(‖X̃(p)
r ‖2) <

∞. By Hilbert space central limit theorems [see, e.g., Araujo and Giné (1980)],
X̃

(p)
r thus converges in distribution to a Gaussian random function ξ

(p)
r as

n → ∞. Obviously, ξ
(1)
r is independent of ξ

(2)
r . We can conclude that n�4,L

possesses a continuous limit distribution F4,L defined by the distribution of∫∫ [∑L
r=1{ξ (1)

r (t)γ
(1)
r (u) + ξ

(1)
r (u)γ

(1)
r (t)} − ∑L

r=1{ξ (2)
r (t)γ

(2)
r (u) + ξ

(2)
r (u) ×

γ
(2)
r (t)}]2 dt du. Similar arguments show the existence of continuous limit dis-

tributions F1 and F2,r of n�1 and n�2,r .
For given q ∈ N, define vectors b

(p)
i1 = (β

(p)
1i , . . . , β

(p)
qi , )� ∈ R

q , b
(p)
i2 =

(β
(p)
1i β

(p)
ri , . . . , β

(p)
r−1,iβ

(p)
ri , β

(p)
r+1,iβ

(p)
ri , . . . , β

(p)
qi β

(p)
ri )� ∈ R

q−1 and bi3 = (β
(p)
1i β

(p)
2i ,
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. . . , β
(p)
qi β

(p)
Li )� ∈ R

(q−1)L. When the infinite sums over r in (33), respectively
s 	= r in (35) and (36), are restricted to q ∈ N components (i.e.,

∑
r and

∑
s>L

are replaced by
∑

r≤q and
∑

L<s≤q ), then the above relations can generally be
presented as limits n� = limq→∞ n�(q) of quadratic forms

n�1(q) =

⎛⎜⎜⎜⎜⎝
1√
n1

n1∑
i=1

b
(1)
i1

1√
n2

n2∑
i=1

b
(2)
i1

⎞⎟⎟⎟⎟⎠
�

Q
q
1

⎛⎜⎜⎜⎜⎝
1√
n1

n1∑
i=1

b
(1)
i1

1√
n2

n2∑
i=1

b
(2)
i1

⎞⎟⎟⎟⎟⎠ ,

n�2,r (q) =

⎛⎜⎜⎜⎜⎝
1√
n1

n1∑
i=1

b
(1)
i2

1√
n2

n2∑
i=1

b
(2)
i2

⎞⎟⎟⎟⎟⎠
�

Q
q
2

⎛⎜⎜⎜⎜⎝
1√
n1

n1∑
i=1

b
(1)
i2

1√
n2

n2∑
i=1

b
(2)
i2

⎞⎟⎟⎟⎟⎠ ,(37)

n�4,L(q) =

⎛⎜⎜⎜⎜⎝
1√
n1

n1∑
i=1

b
(1)
i3

1√
n2

n2∑
i=1

b
(2)
i3

⎞⎟⎟⎟⎟⎠
�

Q
q
3

⎛⎜⎜⎜⎜⎝
1√
n1

n1∑
i=1

b
(1)
i3

1√
n2

n2∑
i=1

b
(2)
i3

⎞⎟⎟⎟⎟⎠ ,

where the elements of the 2q ×2q , 2(q −1)×2(q −1) and 2L(q −1)×2L(q −1)

matrices Q
q
1 , Qq

2 and Q
q
3 can be computed from the respective (q-element) version

of (33)–(36). Assumption 1 implies that all series converge with probability 1 as
q → ∞, and by (33)–(36), it is easily seen that for all ε, δ > 0 there exist some
q(ε, δ), n(ε, δ) ∈ N such that

P
(|n�1 − n�1(q)| > ε

)
< δ, P

(|n�2,r − n�2,r (q)| > ε
)
< δ,

(38)
P
(|n�4,L − n�4,L(q)| > ε

)
< δ

hold for all q ≥ q(ε, δ) and all n ≥ n(ε, δ). For any given q , we have E(bi1) =
E(bi2) = E(bi3) = 0, and it follows from Assumption 1 that the respective covari-
ance structures can be represented by finite covariance matrices �1,q , �2,q and
�3,q . It therefore follows from our assumptions together with standard multivari-

ate central limit theorems that the vectors { 1√
n1

∑n1
i=1(b

(1)
ik )�, 1√

n2

∑n2
i=1(b

(2)
ik )�}�,

k = 1,2,3, are asymptotically normal with zero means and covariance matrices
�1,q , �2,q and �3,q . One can thus conclude that, as n → ∞,

n�1(q)
L→ F1,q , n�2,r (q)

L→ F2,r,q , n�4,L(q)
L→ F4,L,q,(39)

where F1,q ,F2,r,q ,F4,L,q denote the continuous distributions of the quadratic
forms z�

1 Q
q
1z1, z�

2 Q
q
2z2, z�

3 Q
q
3z3 with z1 ∼ N(0,�1,q), z2 ∼ N(0,�2,q), z3 ∼



COMMON FUNCTIONAL PC 31

N(0,�3,q). Since ε, δ are arbitrary, (38) implies

lim
q→∞F1,q = F1, lim

q→∞F2,r,q = F2,r , lim
q→∞F4,L,q = F4,L.(40)

We now have to consider the asymptotic properties of bootstrapped eigenval-
ues and eigenfunctions. Let X̄(p)∗ = 1

np

∑np

i=1 X
(p)∗
i , β

(p)∗
ri = ∫

γ
(p)
r (t){X(p)∗

i (t) −
μ(t)}, β̄

(p)∗
r = 1

np

∑np

i=1 β
(p)∗
ri , and note that

∫
γ

(p)
r (t){X(p)∗

i (t) − X̄(p)∗(t)} =
β

(p)∗
ri − β̄

(p)∗
r . When considering unconditional expectations, our assumptions im-

ply that for p = 1,2

E
[
β

(p)∗
ri

]= 0, E
[(

β
(p)∗
ri

)2]= λ(p)
r ,

E
[(

β̄(p)∗
r

)2]= λ
(p)
r

np

, E
{[(

β
(p)∗
ri

)2 − λ(p)
r

]2}= �(p)
r ,

E

{ ∞∑
l,k=1

[
1

np

np∑
i=1

(
β

(p)∗
li − β̄

(p)∗
l

)(
β

(p)∗
ki − β̄

(p)∗
k

)− δlkλ
(p)
l

]2}
(41)

= 1

np

(∑
l

�
(p)
l +∑

l 	=k

λ
(p)
l λ

(p)
k

)
+ O(n−1

p ).

One can infer from (41) that the arguments used to prove Theorem 1 can be
generalized to approximate the difference between the bootstrap eigenvalues and
eigenfunctions λ̂

(p)∗
r , γ̂

(p)∗
r and the true eigenvalues λ

(p)
r , γ

(p)
r . All infinite sums

involved converge with probability 1. Relation (30) then generalizes to
√

np

(
λ̂(p)∗

r − λ̂(p)
r

)
= √

np

(
λ̂(p)∗

r − λ(p)
r

)− √
np

(
λ̂(p)

r − λ(p)
r

)
= 1√

np

np∑
i=1

(
β

(p)∗
ri − β̄(p)∗

r

)2(42)

− 1√
np

np∑
i=1

(
β

(p)
ri − β̄(p)

r

)2 + Op(n−1/2
p )

= 1√
np

np∑
i=1

{(
β

(p)∗
ri

)2 − 1

np

np∑
k=1

(
β

(p)
rk

)2}+ Op(n−1/2
p ).

Similarly, (32) becomes

γ̂ (p)∗
r − γ̂ (p)

r

= γ̂ (p)∗
r − γ (p)

r − (γ̂ (p)
r − γ (p)

r

)
(43)
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= −∑
s 	=r

{
1

λ
(p)
s − λ

(p)
r

1

np

np∑
i=1

(
β

(p)∗
si − β̄(p)∗

s

)(
β

(p)∗
ri − β̄(p)∗

r

)

− 1

λ
(p)
s − λ

(p)
r

1

np

np∑
i=1

(
β

(p)
si − β̄(p)

s

)(
β

(p)
ri − β̄(p)

r

)}
γ (p)
s (t)

+ R(p)∗
r (t)

= −∑
s 	=r

{
1

λ
(p)
s − λ

(p)
r

1

np

np∑
i=1

(
β

(p)∗
si β

(p)∗
ri − 1

np

np∑
k=1

β
(p)
sk β

(p)
rk

)}
γ (p)
s (t)

+ R̃(p)∗
r (t),

where due to (28), (29) and (41), the remainder term satisfies ‖R(p)∗
r ‖ = Op(n−1

p ).
We are now ready to analyze the bootstrap versions �∗ of the different �.

First consider �∗
3,r and note that {(β(p)∗

ri )2} are i.i.d. bootstrap resamples from

{(β(p)
ri )2}. It therefore follows from basic bootstrap results that the conditional

distribution of 1√
np

∑np

i=1[(β(p)∗
ri )2 − 1

np

∑np

k=1(β
(p)
rk )2] given Xp converges to the

same N(0,�
(p)
r ) limit distribution as 1√

np

∑np

i=1[(β(p)
ri )2 − E{(β(p)

ri )2}]. Together

with the independence of (β
(1)∗
ri )2 and (β

(2)∗
ri )2, the assertion of the theorem is an

immediate consequence.
Let us turn to �∗

1, �∗
2,r and �∗

4,L. Using (41)–(43), it is then easily seen that
n�∗

1, n�∗
2,r and n�∗

4,L admit expansions similar to (33), (35) and (36), when

replacing there 1√
np

∑np

i=1 β
(p)
ri by 1√

np

∑np

i=1(β
(p)∗
ri − 1

np

∑np

k=1 β
(p)
rk ), as well as

1√
np

∑np

i=1 β
(p)
si β

(p)
ri by 1√

np

∑np

i=1(β
(p)∗
si β

(p)∗
ri − 1

np

∑np

k=1 β
(p)
sk β

(p)
rk ).

Replacing β
(p)
ri , β

(p)
si by β

(p)∗
ri , β(p)∗

si leads to bootstrap analogs b
(p)∗
ik of the vec-

tors b
(p)
ik , k = 1,2,3. For any q ∈ N, define bootstrap versions n�∗

1(q), n�∗
2,r (q)

and n�∗
4,L(q) of n�1(q), n�2,r (q) and n�4,L(q) by using ( 1√

n1

∑n1
i=1(b

(1)∗
ik −

1
n1

∑n1
k=1 b

(1)
ik )�, 1√

n2

∑n2
i=1(b

(2)∗
ik − 1

n2

∑n2
k=1 b

(2)
ik )�) instead of ( 1√

n1

∑n1
i=1(b

(1)
ik )�,

1√
n2

∑n2
i=1(b

(2)
ik )�), k = 1,2,3, in (37). Applying again (41)–(43), one can con-

clude that for any ε > 0 there exists some q(ε) such that, as n → ∞,

P
(|n�∗

1 − n�∗
1(q)| < ε

)→ 1,

P
(|n�∗

2,r − n�∗
2,r (q)| < ε

)→ 1,(44)

P
(|n�∗

4,L − n�∗
4,L(q)| < ε

)→ 1

hold for all q ≥ q(ε). Of course, (44) generalizes to the conditional probabilities
given X1, X2.
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In order to prove the theorem, it thus only remains to show that for any given q

and all δ ∣∣P(n�(q) ≥ δ
)− P

(
n�∗(q) ≥ δ| X1,X2

)∣∣= Op(1)(45)

hold for either �(q) = �1(q) and �∗(q) = �∗
1(q), �(q) = �2,r (q) and �∗(q) =

�∗
2,r (q), or �(q) = �4,L(q) and �∗(q) = �∗

4,L(q). But note that for k =
1,2,3,E(bik) = 0, {b(j)∗

ik } are i.i.d. bootstrap resamples from {b(p)
ik }, and E(b

(p)∗
ik |

X1,X2) = 1
np

∑np

k=1 b
(p)
ik are the corresponding conditional means. It therefore fol-

lows from basic bootstrap results that as n → ∞ the conditional distribution of
( 1√

n1

∑n1
i=1(b

(1)∗
ik − 1

n1

∑n1
k=1 b

(1)
ik )�, 1√

n2

∑n2
i=1(b

(2)∗
ik − 1

n2

∑n2
k=1 b

(2)
ik )�) given X1,

X2 converges to the same N(0,�k,q) limit distribution as ( 1√
n1

∑n1
i=1(b

(1)
ik )�,

1√
n2

∑n2
i=1, (b

(2)
ik )�). This obviously holds for all q ∈ N, and (45) is an immedi-

ate consequence. The theorem then follows from (38), (39), (40), (44) and (45).
�
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