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SUPERDIFFUSIVITY FOR A BROWNIAN POLYMER IN
A CONTINUOUS GAUSSIAN ENVIRONMENT

BY SÉRGIO BEZERRA,1 SAMY TINDEL AND FREDERI VIENS2

Université de Nancy, Université de Nancy and Purdue University

This paper provides information about the asymptotic behavior of a
one-dimensional Brownian polymer in random medium represented by a
Gaussian field W on R+ × R which is white noise in time and function-
valued in space. According to the behavior of the spatial covariance of W , we
give a lower bound on the power growth (wandering exponent) of the poly-
mer when the time parameter goes to infinity: the polymer is proved to be
superdiffusive, with a wandering exponent exceeding any α < 3/5.

1. Introduction. This paper is concerned with a model for a one-dimensional
directed Brownian polymer in a Gaussian random environment (random medium)
which can be briefly described as follows: the polymer itself, in the absence of any
random environment, will simply be modeled by a Brownian motion b = {bt ; t ≥
0}, defined on a complete filtered probability space (C,F , (Ft )t≥0, (P

x
b )x∈R),

where P x
b stands for the Wiener measure starting from the initial condition x.

The corresponding expected value will be denoted3 by Ex
b , or simply by Eb, when

x = 0. One may assume that C is the space of continuous functions started at 0.
The random environment will be represented by a centered Gaussian field W

indexed by R+ × R, defined on another complete probability space (�,G,P) in-
dependent of b’s canonical space. Denoting by E the expected value with respect
to P, the covariance structure of W is given by

E[W(t, x)W(s, y)] = [t ∧ s]Q(x − y),(1.1)

for a given homogeneous covariance function Q : R → R satisfying some growth
conditions that will be specified later on. In particular, the function t �→
[Q(0)]−1/2W(t, x) is a standard Brownian motion for any fixed x ∈ R, and for
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every fixed t ∈ R+, the process x �→ t−1/2W(t, x) is a homogeneous Gaussian
field on R with covariance function Q.

Once b and W are defined, the polymer measure itself can be described as fol-
lows: for any t > 0, the energy of a given path (or configuration) b on [0, t], under
the influence of the random environment W , is given by the Hamiltonian

−Ht(b) =
∫ t

0
W(ds, bs).(1.2)

A completely rigorous meaning for this integral will be given in the next section,
but for the moment, notice that for any fixed path b, Ht(b) is a centered Gaussian
random variable with variance tQ(0). Based on this Hamiltonian, for any x ∈ R,
and a given constant β (interpreted as the inverse of the temperature of the system),
we define our (random) polymer measure Gx

t (with Gt := G0
t ) as follows:

dGx
t (b) = e−βHt (b)

Zx
t

dP x
b (b) with Zx

t = Ex
b

[
e−βHt (b)].(1.3)

After early results in the Mathematical Physics literature (see [7] and [12]),
links between martingale theory and directed polymers in random environments
were established in [2] and [1], and over the last few years, several papers have
shed some light on different types of polymer models: the case of random walks in
discrete potential is treated, for instance, in [3], the case of Gaussian random walks
is in [13] and [14], and the case of Brownian polymers in a Poisson potential is
considered in [6]. On the other hand, the second author of this paper has undertaken
in [16] the study of the polymer measure Gt defined by (1.3). This latter model,
which is believed to behave similarly to the other directed polymers mentioned
above, has at least one advantage, from our point of view: it can be tackled with a
wide variety of methods, some of which are new to the field: scaling invariances
for both b and W , stochastic analysis, Gaussian tools. Our long-term goal is to
exploit such tools in order to get a rather complete description of the asymptotic
behavior of the measure Gt .

In the present article we undertake this task by investigating the so-called wan-
dering exponent α, which measures the growth of the polymer when t tends to ∞,
and can be defined informally by the fact that, under the measure Gt , sups≤t |bs |
behave like tα for large times t . This kind of exponent has been studied in different
contexts in [6, 13–15] and [18], yielding the conclusion that, for a wide number
of models in dimension one, we should have 3/5 ≤ α ≤ 3/4. The true exponent
conjectured by physicists is α = 2/3.

Our understanding, from references [8, 10] and [11], is that physicists have
come to this conjecture in dimension one, based on simulations (e.g., [10]) and
on theoretical evidence as well as physical heuristics (in [8] where α is denoted
by ζ ). The lower bound α ≥ 3/5 is confirmed mathematically in partially discrete
settings (e.g., [14]). Our Section 3 provides an explanation of how our quantitative
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results confirm that α should be no less than 3/5 if the environment’s spatial mem-
ory, that is, its spatial correlation range, is short enough (cubic decay rate), and that
superdiffusivity (α > 1/2) is only guaranteed if this memory is not too long (de-
cay rate exponent exceeding 5/2). These long-spatial-memory situations are ones
which do not seem to be considered in the mathematical or physical literature, so
it is possible that the conjecture α = 2/3 may not apply, although at this stage we
have no evidence of any example of an upper bound result implying α < 2/3.

In this paper we will see that, for our model, we have α ≥ 3/5. More specifically,
we will prove the following.

THEOREM 1.1. Let β be any strictly positive real number. Assume that
Q : R → R defined by (1.1) is a symmetric positive function, decreasing on R+
and such that, for some constant θ > 0,

Q(x) = O

(
1

|x|3+θ

)
as x → ±∞.(1.4)

In particular, Q(0) < ∞, which implies that W defined in (1.1) is function-valued
in x. Then, for any ε > 0, we have

lim
t→∞ P

[
1

t3/5−ε

〈
sup
s≤t

|bs |
〉
t

≥ 1
]

= 1,(1.5)

where 〈·〉t denotes expectation with respect to the polymer measure dGx
t (b)

in (1.3).

Our proof of this result inspires itself with some of the steps of Peterman’s
work in [14], where the same kind of growth bound has been established for a
random walk in a Gaussian potential. Notice that, beyond generalizing his work
from discrete to continuous space, we have been able to extend Petermann’s result
to a wider class of environments: indeed, we prove the relation (1.5) holds as soon
as Q satisfies the mild correlation decay assumption (1.4); Peterman assumed an
exponential decay for Q. Moreover, many arguments had to be changed in order
to pass from the random walk to the Brownian case. Having said all this, we must
express our debt to Peterman’s work which, unfortunately, has not been published
beyond this Ph.D. dissertation [14] as directed by Erwin Bolthausen.

From the physical standpoint, it is worth noting that the above superdiffusiv-
ity theorem (wandering exponent α > 1/2), which obviously does not hold for
β = 0 (absence of random environment), holds nonetheless for all β > 0, that is,
all temperatures. This is in contrast to the notion of strong disorder, defined and
described at the end of the next section, a concept that we will study in detail in
a separate publication. However, taken in a naive and intuitive sense, strong disor-
der is morally implied by superdiffusivity; lower bounds on wandering exponents
that exceed 1/2 thus appear as a convenient quantitative way of measuring this
disorder, which is proved here to hold uniformly for all temperatures.
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This paper is structured as follows. Section 2 defines the random environment
W and the Hamiltonian Ht(b) rigorously, and discusses the relation between our
wandering exponent α and the concept of strong disorder. Section 3 discusses the
meaning of our main technical Hypothesis 1.4, what happens when one tries to
weaken it, and a related open problem on the interplay between superdiffusivity
and random environment correlation range. Section 3 also presents the main strat-
egy for proving Theorem 1.1. The remainder of the paper is devoted to proving this
theorem. Section 4 calculates the asymptotic correlation structure of space-time
averages of W . Section 5 calculates similar asymptotics describing the interaction
between b and W . Section 6 presents an application of Girsanov’s theorem for b

which estimates the penalization needed to force distant portions of b back near
the origin. Finally, with all these quantitative tools in hand, the proof of the theo-
rem is completed in Section 7, which also contains a detailed heuristic description
of this part of the proof.

The authors of this paper express their thanks to two referees whose detailed
comments resulted in corrections and other improvements over an earlier version
of this paper.

2. Preliminaries; the partition function; strong disorder. In this section we
will first recall some basic facts about the partition function Zt , and then give
briefly some notions of Gaussian analysis which will be used later on. Let us recall
that W is a centered Gaussian field defined on R+ × R, which can also be seen
as a Gaussian family {W(ϕ)} indexed by tests functions ϕ : R+ × R → R, where
W(ϕ) stands for the Wiener integral of ϕ with respect to W :

W(ϕ) =
∫

R

∫
R+

ϕ(s, x)W(ds, x) dx,

whose covariance structure is given by

E[W(ϕ)W(ψ)] =
∫

R+

(∫
R×R

ϕ(s, x)Q(x − y)ψ(s, y) dx dy

)
ds,(2.1)

for two arbitrary test functions ϕ,ψ .
Let us start here by defining more rigorously the quantity Ht(b) given by (1.2),

which can be done through a Fourier transform procedure: there exists (see, e.g.,
[5] for further details) a centered Gaussian independently scattered C-valued mea-
sure ν on R+ × R such that

W(t, x) =
∫

R+×R

1[0,t](s)eiuxν(ds, du).(2.2)

For every test function f : R+ × R → C, set now

ν(f ) ≡
∫

R+×R

f (s, u)ν(ds, du).(2.3)
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While the random variable ν(f ) may be complex-valued, to ensure that it is real
valued, it is sufficient to assume that f is of the form f (s, u) = f1(s)e

iuf2(s) for
real valued functions f1 and f2. Then the law of ν is defined by the following
covariance structure: for any such test functions f,g : R+ × R → C, we have

E[ν(f )ν(g)] =
∫

R+×R

f (s, u)g(s, u)Q̂(du)ds,(2.4)

where the finite positive measure Q̂ is the Fourier transform of Q (see [17] for
details).

From (2.2), we see that the Itô-stochastic differential of W in time can be un-
derstood as W(ds, x) := ∫

u∈R
eiuxν(ds, du), or even, if the measure Q̂(du) has a

density f (u) with respect to the Lebesgue measure, which is typical, as

W(ds, x) :=
∫
u∈R

eiux
√

f (u)M(ds, du),

where M is a white-noise measure on R+ × R, that is, a centered independently
scattered Gaussian measure with covariance given by E[M(A)M(B)] = mLeb(A∩
B), where mLeb is Lebegue’s measure on R+ × R.

We can go back now to the definition of Ht(b): invoking the representation (2.2),
we can write

−Ht(b) =
∫ t

0
W(ds, bs) =

∫ t

0

∫
R

eiubs ν(ds, du),(2.5)

and it can be shown (see [5]) that the right-hand side of the above relation is well
defined for any Hölder continuous path b, by a L2-limit procedure. Such a limiting
procedure can be adapted to the specific case of constructing Ht(b), using the
natural time evolution structure; we will not comment on this further. However,
the reader will surmise that the following remark, given for the sake of illustration,
can be useful: when Q̂ has a density f , we obtain

−Ht(b) =
∫ ∫

[0,t]×R

eiubs

√
f (u)M(ds, du).

With the so-called partition function Zx
t defined earlier as Zx

t = Eb[e−βHt (b)],
set

pt(β) := 1

t
E[log(Zx

t )],(2.6)

usually called the free energy of the system. By spatial homogeneity of W , pt(β)

is independent of the initial condition x ∈ R, and the same holds for the law of
b − x under Gx

t , thus without loss of generality, we set x = 0, hence, the notation
Eb,Zt , . . . standing for E0

b,Z
0
t , etc. It was shown in [16] that limt→∞ pt(β) =

supt≥0 pt(β) exists and is positive, and that P-almost surely, 1
t

logZt converges to
the same limit. The trivial bound

p(β) := lim
t→∞pt(β) ≤ β2

2
Q(0)(2.7)
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always holds, but the polymer is said to be in the strong disorder regime if

limt→∞ 1
t

logZt <
β2

2 Q(0), which is therefore equivalent to saying that inequal-
ity (2.7) above is strict. We will show in a separate publication that, for all
β ≥ β0, while p(β) ≥ cβ4/3 for all nontrivial random media W and some con-
stant depending on W ’s law, we have the specific strong disorder upper bound
p(β) ≤ cβ2−2H/(2H+1), where H is a spatial Hölder exponent for W . Yet we do
not know if these results can be made to hold for small β . One would prefer not
having any condition on the temperature scale, and physicists expect strong disor-
der in our one-dimensional setting for all β > 0, which is only confirmed mathe-
matically in some cases, such as in [3] and [6].

This is where the polymer’s superdiffusivity (wandering exponent α > 1/2) can
be useful to our fully continuous situation. Since the concept of “strong disorder”
was introduced in order to determine whether the random environment has any sig-
nificant influence on polymer paths b, it is generally acceptable to say that a poly-
mer with super-diffusive behavior exhibits “strong disorder.” Even though this sec-
ond definition does not match the common one given above (p(β) = Q(0)β2/2), it
is useful to note that the results of the next section imply the following (see Corol-
lary 7.3): if W exhibits decorrelation that is not too slow, specifically if for large x,
Q(x) ≤ cx−5/2−ϑ , where ϑ > 0, then the polymer is superdiffusive with exponent
any α < min{1

2 + ϑ
6−2ϑ

;3/5}, and this form of strong disorder holds for all β > 0.
The specific order of decorrelation x−5/2−ϑ 
 x−5/2 can be quantified by saying
that W ’s decorrelation is certainly faster than the well-known order x−2+2H for the
increments of fractional Brownian motion, but the class of such W ’s still qualifies
as containing long-range correlations (polynomial with moderate power).

We also plan to investigate, in a separate publication, situations in which we can
show the complementary story: we plan to prove that if weak disorder holds, that

is, if limt→∞ 1
t

logZt = β2

2 Q(0), then the polymer is diffusive, that is, α = 1/2.

3. Discussion of hypothesis and results; strategy of proof. Recall our goal:
we will prove that, for the polymer measure Gt = G0

t in (1.3), Theorem 1.1 holds.
This theorem gives an indication of the asymptotic speed of our polymer. Indeed,
if we could write that sups≤t |bs | ∼ tα under Gt as t → ∞, then Theorem 1.1
would state that the wandering exponent α is no smaller than 3/5. As stated in the
introduction, our basic technical assumption to prove the theorem is the following.

HYPOTHESIS 3.1. We assume that Q : R → R defined by (1.1) is a symmetric
positive function, decreasing on R+ and such that there exists a strictly positive
constant θ such that

Q(x) = O

(
1

|x|3+θ

)
as x → ±∞.
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The rate 3 + θ can be quantified physically by saying that W decorrelates in
space faster than the well-known order x−2+2H for the increments of fractional
Brownian motion with Hurst parameter H ∈ (0,1), but the class of W ’s defined
by Hypothesis 3.1 still qualifies as containing long-range correlated noises (poly-
nomial rate with moderate power), as opposed to exponential correlation decay,
found, for instance, in finite memory ARCH/GARCH models, and even more so
in opposition to the case of spatial white noise.

The specific correlation decay rate of Q in the above hypothesis appears to be
important in order to obtain the highest possible superdiffusion wandering expo-
nent α using our technique (any α < 3/5). The end of Section 7 shows that if one
tries to use a smaller decay power than 3+θ above, the result is impeded: α cannot
be chosen arbitrarily close to 3/5. In Corollary 7.3 and its preceeding discussion,
we prove that if Q(x) = O(|x|−r ) with r ∈ (5/2,3], then we can only guarantee
being able to take 1/2 < α < 3/(11 − 2r), so superdiffusivity is still proved, but α

arbitrarily close to 3/5 is disallowed.
Corollary 7.3 thus opens the interesting question of whether, in continuous

space, the Brownian polymer in a Gaussian environment has a super-diffusive
behavior with a wandering exponent determined by the environment’s range/rate
of spatial correlations. We do not believe that any physical conjecture in which
α = 2/3 specifically argues that this should hold in our continuous space setting.
There are other examples in which scaling limits depend heavily on whether one
is in discrete or continuous space: for instance, in the regime of small diffusion
constant (resp. viscosity) κ , the almost-sure Lyapunov exponent for the partition
function Zt (resp. Anderson model) is known to depend heavily on the spatial reg-
ularity of W in continuous space (see [9]), but is known to be universally of order
1/ log(κ−1) in discrete space (see [4]). We will not discuss this point further herein.

REMARK 3.2. Hypothesis 3.1 immediately implies that Q(0) < ∞. Since
max |Q| = Q(0) and Q has an integrable tail, we get Q ∈ L1(R).

Without loss of generality, we will assume throughout that Q is normalized so
that

∫
R

Q(x)dx = 1.
The integrability of Q represents a kind of nondegeneracy condition, which says

that the decorrelation of W at distinct sites is not immediate.

STRATEGY OF THE PROOF FOR THEOREM 1.1. For t, ε > 0, set

At,ε = {there exists s0 ∈ [t/2, t] such that |bs0 | ≥ t3/5−ε/2}.
Then we can write

〈sups≤t |bs |〉t
t3/5−ε

≥ tε/2

t3/5−ε/2

〈
sup
s≤t

|bs |1At,ε

〉
t

≥ tε/2Gt(At,ε),

since sups≤t |bs | ≥ t3/5−ε/2 on At,ε . Thus,

〈sups≤t |bs |〉t
t3/5−ε

≥ tε/2(
1 − Gt(A

c
t,ε)

)
,(3.1)
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where Ac
t,ε = {b; sups∈[t/2,t] |bs | ≤ t3/5−ε/2} is the complement of At,ε . We will

start now a discretization procedure in space: for an arbitrary integer k, and α > 0,
set

Iα
k = tα[2k − 1,2k + 1) and Lα

k = {b;bs ∈ Iα
k for all s ∈ [t/2, t]}.

Then Ãt,ε = L
3/5−ε/2
0 , and equation (3.1) can be rewritten as

〈sups≤t |bs |〉t
t3/5−ε

≥ tε/2(
1 − Gt(L

3/5−ε/2
0 )

)
.

Set now

Zα
t (k) := Eb[1Lα

k
exp(−βHt(b))].

We have

〈sups≤t |bs |〉t
t3/5−ε

≥ tε/2
(

1 − Z
3/5−ε/2
t (0)

Eb[exp(−βHt(b))]
)
,

by definition of Gt . On the other hand, since the events Lα
k are disjoint sets, we

have

Eb[exp(−βHt(b))] ≥ ∑
k∈Z

Z
3/5−ε/2
t (k).

Therefore, we have established that

〈sups≤t |bs |〉t
t3/5−ε

≥ tε/2
(

1 − Z
3/5−ε/2
t (0)

Z
3/5−ε/2
t (0) + Z

3/5−ε/2
t (k)

)
,(3.2)

for any integer k �= 0. Suppose now that W ∈ At , where At is defined as

At := {W ;There exists k∗ �= 0 such that Zα
t (k∗) > Zα

t (0)}.
Then, choosing k = k∗ in (3.2), it is easily seen that

〈sups≤t |bs |〉t
t3/5−ε

≥ tε/2
(

1 − 1

2

)
≥ 1,

whenever t is large enough. The proof is now easily finished if we can prove the
following lemma:

LEMMA 3.3. Given a positive real number α ∈ (1/2;3/5) and an environ-
ment W satisfying Hypothesis 3.1, then

lim inf
t→∞ P(At ) = 1.(3.3)

The remainder of this article will now be devoted to the proof Lemma 3.3. �

4. Initial covariance computations. In order to prove Lemma 3.3, we shall
begin with a series of preliminary results, the first of which is a covariance com-
putation, including precise asymptotic estimations in large time, for space-time
averages of the random environment W .
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For a given k ∈ Z and α > 0, recall that Ik := Iα
k = tα[2k − 1,2k + 1), and set

η̃k = η̃α
k := 1

t (α+1)/2

∫ t

t/2

∫
Ik

W(ds, x) dx.(4.1)

Then {η̃k;k ∈ Z} is a centered Gaussian vector, whose covariance matrix will be
called C(t) = (C�,k(t))�,k∈Z, where

C�,k(t) = E[η̃�η̃k] = Cov(η̃�; η̃k) = 1

2tα

∫
Ik

∫
I�

Q(x − y)dx dy,(4.2)

where the last equality above follows directly from the definition of W ’s covari-
ance in (2.1).

Here and below, we omit the superscripts α on quantities like η̃α
k , Iα

k , Lα
k ,

etc. We now proceed to estimate the matrix C(t), and show, in particular, that
limt→∞ C(t) = Id. This can be interpreted as saying that the amount of decorre-
lation of the potential at distant locations implied by Hypothesis 3.1 is enough to
guarantee independence of the η̃k asymptotically.

PROPOSITION 4.1. Let θ be the strictly positive constant defined in Hypothe-
sis 3.1, and consider k ∈ Z, α > 0 and τ < θ ∧ 1. Set also

λ := 1

C0,0(t)
= 1

Ck,k(t)
,

where C(t) has been defined at (4.2). Then, the elements of C(t) satisfy the follow-
ing:

(i) λ = 1 + O( 1
tα

).
(ii) λ

∑
� �=k |� − k|τ |C�,k(t)| = O( 1

tα
).

PROOF.
Step 0: initial calculation. We will only consider the case k = 0, the other ones

being easily deduced by homogeneity of W . Let us first evaluate C�,0(t) for � ≥ 0
(here again, the case � < 0 is similar, since Q is a symmetric function). Then, a
direct application of (4.2) gives

C�,0(t) = 1

2tα

∫ tα(2�+1)

tα(2�−1)

∫ tα

−tα
Q(x − y)dx dy.

Set now

(I ) := 1

2tα

[∫ tα(2�+1)

tα(2�−1)

∫ −tα

−∞
Q(x − y)dx dy +

∫ tα(2�+1)

tα(2�−1)

∫ ∞
tα

Q(x − y)dx dy

]
.

Since
∫
R Q(x − y)dx = 1 for any y ∈ R, it is easily checked that

C�,0(t) = 1 − (I ).(4.3)
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Then, a series of changes of variable yields

(I ) = 1

2tα

[∫ tα(2�+1)

tα(2�−1)

∫ −tα−y

−∞
Q(u)dudy +

∫ tα(2�+1)

tα(2�−1)

∫ ∞
tα−y

Q(u)dudy

]

= 1

2tα

[∫ −tα(2�)

−tα(2�+2)

∫ ẑ

−∞
Q(u)dudẑ +

∫ −tα(2�−2)

−tα(2�)

∫ ∞
z

Q(u)dudz

]
,

where we have set ẑ = −tα −y and z = tα −y. Thus, denoting by F̄ (z) the quantity∫ ∞
z Q(u)du, we get

(I ) = 1

2tα

[∫ −tα(2�)

−tα(2�+2)

(
1 − F̄ (ẑ)

)
dẑ +

∫ −tα(2�−2)

−tα(2�)
F̄ (z) dz

]
(4.4)

= 1 − 1

2tα

∫ −tα(2�)

−t−α(2�+2)
F̄ (z) dz + 1

2tα

∫ −tα(2�−2)

−tα(2�)
F̄ (z) dz.

Putting together (4.3) and (4.4), one obtains, for any � ≥ 0,

C�,0(t) = 1

2tα

[∫ −tα(2�)

−tα(2�+2)
F̄ (z) dz −

∫ −tα(2�−2)

−tα(2�)
F̄ (z) dz

]
.(4.5)

Step 1: proving item (i). We are now ready to prove item (i). By symmetry of Q,
we have 1 − F̄ (−z) = F̄ (z). Thus, for � = 0, equation (4.5) becomes

C0,0(t) = 1

2tα

[∫ 0

−2tα

(
1 − F̄ (−z)

)
dz −

∫ 2tα

0
F̄ (z) dz

]
(4.6)

= 1 − 1

tα

∫ 2tα

0
F̄ (z) dz.

Now, using the fact that

F̄ (z) ≤ c
(
1 ∧ |z|−(2+θ)),(4.7)

which follows directly from Hypothesis 3.1, it is easily seen that C0,0(t) = 1 +
O(t−α), which ends the proof of item (i).

Step 2: proving item (ii). In order to show item (ii), we deal with � = 1 separately
from the other cases. Beginning with � ≥ 2, we first get the obvious derivative
F̄ ′(z) = −Q(z), and we will use the fact that Q is decreasing on R+ to bound this
latter function on an interval in R+ by its value at the left endpoint. Invoking the
fact that F̄ (−v) = 1 − F̄ (x), we may thus write from equation (4.5)

|C�,0(t)| = 1

2tα

∣∣∣∣
∫ −tα(2�−2)

−tα(2�)
[F̄ (z − 2tα) − F̄ (z)]dz

∣∣∣∣
= 1

2tα

∣∣∣∣
∫ −tα(2�−2)

−tα(2�)
[F̄ (−z + 2tα) − F̄ (−z)]dz

∣∣∣∣
= 1

2tα

∣∣∣∣
∫ 2tα�

tα(2�−2)
[F̄ (z + 2tα) − F̄ (z)]dz

∣∣∣∣
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= 1

2tα

∣∣∣∣
∫ 2tα�

tα(2�−2)

(
−

∫ z+2tα

z
Q(x) dx

)
dz

∣∣∣∣
≤ 2tαQ

(
tα(2� − 2)

)
≤ ct−α(2+θ)(2� − 2)−3−θ ,

where the last step holds by Hypothesis 3.1 for some constant c > 0. We immedi-
ately obtain

∞∑
�=2

|C�,0(t)|�τ ≤ ct−α(2+θ)
∞∑

�=2

(2� − 2)−3−θ �τ

≤ cKτ,θ t
−α(2+θ)

for some constant Kτ,θ as soon as τ < 2 + θ , which is clearly satisfied by the
assumption on τ , and leads to an upper bound in the series in item (ii) which is
amply sufficient to prove the proposition, except for the term � = 1, with which
we deal now.

To finish the proof of the proposition, it is indeed sufficient to prove that tαC1,0
is bounded. We first evaluate this quantity from (4.5):

tαC1,0 =
∫ −2tα

−4tα
F̄ (z) dz −

∫ 0

−2tα
F̄ (z) dz

=
∫ 0

−2tα

(
F̄ (z − 2tα) − F̄ (z)

)
dz

=
∫ 0

−2tα

(∫ z

z−2tα
Q(x) dx

)
dz

=
∫ 2tα

0

(∫ −z

−z−2tα
Q(x) dx

)
dz

=
∫ 2tα

0

(∫ z+2tα

z
Q(x) dx

)
dz.

Next we separate the first unit of the z-integral from its remainder: tαC1,0 = A+B ,
where we define A := ∫ 1

0 (
∫ z+2tα

z Q(x) dx) dz and B := ∫ 1∧2tα

1 (
∫ z+2tα

z Q(x) dx) dz.
Since

∫
R

Q = 1, we immediately have A ≤ 1 which is the only term to deal with
when t ≤ 2−1/α . When t > 2−1/α , for the term B , we use Hypothesis 3.1: for some
constant c,

B ≤ c

∫ 2tα

1

(∫ z+2tα

z
x−3−θ dx

)
dz

= c

(θ + 1)(θ + 2)
(1 − 2−θ + 4−θ−1)(tα)−(θ+1) ≤ c

(θ + 1)(θ + 2)
.

This finishes the proof of the proposition. �
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5. Interaction between b and W . The next step in developing the tools to
prove Lemma 3.3 is to get some quantitative information about the way b interacts
with the random environment W when the Brownian motion is localized by the
event Lk . As we did with the notation Ik := Iα

k , we are omitting superscripts α,
writing only Lk instead of Lα

k from now on.
We begin by introducing two quantities. First, in order to simplify some t -

dependent normalizers, we renormalize η̃ as

η� := t (1−α)/2

2
η̃� = 1

2tα

∫ t

t/2

∫
I�

W(ds, x) dx;(5.1)

we will not need to revert to using η̃ in this article. We also need a vector v =
v(bs; t/2 ≤ s ≤ t) of R

Z, defined for each � ∈ Z by

v� := 4tα−1E
[
η�

∫ t

t/2
W(ds, bs)

]
.(5.2)

We will prove, in a sense, that v� looks like 1{k}(�) on Lk . To this end, for a fixed
k ∈ Z, and τ < θ (remember that θ is defined in Hypothesis 3.1), let us consider
the norm ‖ · ‖τ,k defined on R

Z by

‖x‖τ,k = |xk| +
∑
i �=k

|xi ||i − k|τ .(5.3)

REMARK 5.1. It will be essential in the sequel to control the decay of v�, and
also of a quantity δ� [defined later in Proposition 5.3 as the �th component of the
solution x to the linear system C(t)x = v] when |�| → ∞. It will be used, for
instance, in relations (7.6) and (7.10). This is why we have introduced the norm
‖ · ‖τ,k here.

5.1. Asymptotics and boundedness of v. We are now ready to state a first result
about the interaction between b and W : the behavior of the vector v in large time.

PROPOSITION 5.2. Suppose b ∈ Lk . Then the vector v given by (5.2) satisfies
the following properties:

(i) Let ‖ · ‖τ,k be the norm defined at (5.3). Then

‖v‖τ,k − vk = O

(
1

tα

)
.

(ii) For t large enough, there exist two strictly positive real numbers c and c

such that

c ≤ vk ≤ c.
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PROOF. Let us start with item (i). To perform calculations rigorously, it is best
to use the environment representation (2.2). Recall also that ηk is given by (5.1).
Then

v� = 2

t
E

[∫ t

t/2

∫
R

exp(iubs)ν(ds, du)

∫
I�

∫ t

t/2

∫
R

exp(iux)ν(ds, du)dx

]

= 2

t

∫
I�

E
[∫ t

t/2

∫
R

exp(iubs)ν(ds, du)

∫ t

t/2

∫
R

exp(iux)ν(ds, du)

]
dx.

Thanks to (2.4), and according to the fact that Q̂ is the Fourier transform of Q, we
thus have

v� = 2

t

∫
I�

[∫ t

t/2

∫
R

exp
(
iu(bs − x)

)
Q̂(du)ds

]
dx

= 2

t

∫ t

t/2

∫
I�

Q(bs − x)dx ds(5.4)

≤ sup
s∈[t/2,t]

∫
I�

Q(bs − x)dx.(5.5)

However, if � �= k, on the event Lk , it is easily checked that, for s ∈ [t/2, t], and
for all x ∈ I�, we have

(2|� − k| − 2)tα ≤ |bs − x|.
According to the fact that Q is a positive decreasing function on R+, and Q(x) =
Q(|x|), for each s ∈ [t/2, t] we can conclude that∫

I�

Q(bs − x)dx =
∫
I�

Q(|bs − x|) dx

≤
∫ tα(2�+1)

tα(2�+1)
Q

(
(2|� − k| − 2)tα

)
dx

≤ 2tαQ
(
tα(2|� − k| − 2)

)
.

Consequently, putting together equations (5.5) and (5.1), we get

‖v‖τ,k = vk + ∑
� �=k

|� − k|τ v�

≤ vk + 2tα
∑
� �=k

|� − k|τQ(
tα(2|� − k| − 2)

)
(5.6)

≤ vk + κ

tα(2+θ)

∑
� �=k

|� − k|−(3+θ−τ)

≤ vk + κ

tα(2+θ)
,
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where κ is a positive constant that can change from one occurrence to the next, and
where we have used again Hypothesis 3.1. It is now readily checked that ‖v‖τ,k ≤
vk + O(t−α), which ends the proof of item (i).

Let us prove now item (ii): go back to equation (5.4) and set � = k. Then we get

inf
s∈[t/2,t]

∫
Ik

Q(bs − x)dx ≤ vk ≤ sup
s∈[t/2,t]

∫
Ik

Q(bs − x)dx

≤
∫

R

Q(u)du = 1.

To find a lower bound on the left-hand side, we now make use of the nondegen-
eracy assumption, as noted in Remark 3.2: since Q is an even function, we get∫ ∞

0 Q(x)dx = 1/2. But if b ∈ Lk , then for any s ∈ [t/2, t], we have that the in-
terval bs − Ik contains either [0, tα] or [−tα,0], so that, again by the evenness
of Q, ∫

Ik

Q(bs − x)dx ≥
∫ tα

0
Q(x)dx.

The latter quantity, which tends to 1/2 when t → ∞, can be made to exceed 1/4
for t large enough. This finishes the proof of item (ii) with c = 1/4 and c = 1, and
the proposition. �

5.2. Inversion of C(t). In this section we will be concerned with the opera-
tor C−1(t), where C(t) has been defined by relation (4.2), and more specifically,
we will get some information about the solution δ to the system C(t)x = v. The
importance of δ stems from the fact that the variables ηk will be independent of
−Ht(b) − ∑

j∈Z δjηj , which will be useful for further computations (see Propo-
sition 7.2). However, we have already seen that C(t) behaves asymptotically like
the identity matrix, and thus, the vector δ should be of the same kind as v, in par-
ticular, when b ∈ Lk . This is indeed the case, and will be proved in the following
proposition.

PROPOSITION 5.3. Under Hypothesis 3.1, suppose in addition that b ∈ Lk .
Set lτ,k = {x ∈ R

Z; ‖x‖τ,k < ∞}. Then:

(i) The operator C(t) is invertible in lτ,k . We set then δ := C−1(t)v.
(ii) There exist some strictly positive real numbers d and d such that

d ≤ δk ≤ d.

(iii) The following relation holds:

‖δ‖τ,k − δk = O

(
1

tα

)
.

(iv) On the probability space (�,G,P), the family {ηl; l ∈ Z} is independent of
−Ht(b) − ∑

j∈Z δjηj .
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REMARK 5.4. Notice that Proposition 5.3 contains a considerable amount of
the information which will be used for the proof of Lemma 3.3. Indeed, inequal-
ity (7.14) will be obtained thanks to item (iv), item (iii) will be invoked for inequal-
ity (7.10), and item (ii) will be essential in order to define the random variables η̌0
and η̌k in (7.9).

PROOF OF PROPOSITION 5.3.
Step 1: proving item (i). We choose the standard operator norm on lτ,k : a ma-

trix A is defined to be in the linear operator space Lτ,k if the norm

‖A‖τ,k := sup
x∈lτ,k : ‖x‖τ,k=1

‖Ax‖τ,k

is finite. Then, on one hand, the following relations are satisfied since we are deal-
ing with the operator norm on lτ,k : for D1,D2 ∈ Lτ,k and x ∈ lτ,k :

‖D1x‖τ,k ≤ ‖D1‖τ,k‖x‖τ,k and ‖D1 + D2‖τ,k ≤ ‖D1‖τ,k + ‖D2‖τ,k.(5.7)

On the other hand, let us now prove that, setting A(t) := Id−λC(t), Proposi-
tion 4.1 yields that ‖A(t)‖τ,k = O(t−α), and thus,

‖A(t)‖τ,k < 1,(5.8)

if t is large enough. First recall that by definition of C(t) and λ, denoting by Ċ(t)

the matrix C(t) deprived of its diagonal, we have

A(t) = −λĊ(t).

By Proposition 4.1 item (i), λ tends to 1 as t → ∞. Therefore, it is sufficient to
show that ‖Ċ(t)‖τ,k = O(t−α). Thus, let x ∈ lτ,k such that ‖x‖τ,k = 1. In other
words,

|xk| +
∑
i �=k

|xi ||i − k|τ = 1.

Now we calculate the two terms that form ‖Ċ(t)x‖τ,k . The first is

|(Ċ(t)x)k| =
∣∣∣∣∣
∑
j �=k

Ckj (t)xj

∣∣∣∣∣ ≤ ∑
j �=k

|Ckj (t)xj |

≤
(∑

j �=k

|xj ||k − j |τ
)(∑

j �=k

|Ckj (t)||k − j |τ
)

(5.9)

≤ 1 · O(t−α),

where we used the assumption ‖x‖τ,k = 1 and the result of Proposition 4.1
item (ii). The second term in ‖Ċ(t)x‖τ,k equals

∑
i �=k

∣∣∣∣∣
∑
j �=i

Cij (t)xj

∣∣∣∣∣|i − k|τ ≤ ∑
j∈Z

|xj |
∑

i �=j ;i �=k

|Cij (t)||i − k|τ =: K2;
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we split this sum up according to j = k or j �= k:

K2 ≤ |xk|
∑
i �=k

|Cik(t)||i − k|τ + ∑
j �=k

|xj |
∑

i �=j ;i �=k

|Cij (t)||i − j + j − k|τ

≤ |xk|
∑
i �=k

|Cik(t)||i − k|τ + ∑
j �=k

|xj |
∑

i �=j ;i �=k

|Cij (t)||i − j |τ

+ ∑
j �=k

|xj ||j − k|τ ∑
i �=j ;i �=k

|Cij (t)|,

where in the last line we used the fact that |a + b|τ ≤ |a|τ + |b|τ whenever τ ∈
(0,1).

Now using the fact that
∑

i �=j ;i �=k |Cij (t)| is bounded above by
∑

i �=j |Cij (t)||i−
j |τ , and the latter is O(t−α) by Proposition 4.1 item (ii), we can assert K2 ≤
O(t−α), which, combined with (5.9), implies our goal ‖Ċ(t)‖τ,k = O(t−α), and
thus (5.8). This contraction relation (5.8) finishes the proof of (i) because it allows
us to define C−1(t) in Lτ,k by a Von Neumann type series of the form

C−1(t) = λ
∑
j≥0

Aj .(5.10)

Step 2: proving item (ii). For t large enough, set δ = C−1(t)v, which makes
sense since v ∈ lτ,k . Then, thanks to the fact that C−1(t) can be defined by rela-
tion (5.10), we have

δk = λ

(
vk + ∑

j≥1

(Ajv)k

)
≥ λ

(
vk − ∑

j≥1

‖Ajv‖τ,k

)

≥ λ

(
vk − ∑

j≥1

‖A‖j
τ,k‖v‖τ,k

)
,

where we have used the relations xk ≥ −‖x‖τ,k and (5.7). Hence, since
‖A(t)‖τ,k = O(t−α), we obtain

δk ≥ λ

(
vk − ‖A‖τ,k

1 − ‖A‖τ,k

‖v‖τ,k

)
≥ λ

(
vk + O

(
1

tα

))
≥ d + O

(
1

tα

)
,(5.11)

according to the properties of v shown at Proposition 5.2. The upper bound on δk

can now be shown by the same type of argument, which ends the proof of our
claim.

Step 3: proving item (iii). Let us evaluate now the quantity ‖δ‖τ,k − δk : thanks
to relations (5.7) and (5.11), we get

‖δ‖τ,k − δk ≤ ‖C(t)−1‖τ,k‖v‖τ,k − δk

≤
(
‖C(t)−1‖τ,k‖v‖τ,k − λvk + λ‖A‖τ,k

1 − ‖A‖τ,k

‖v‖τ,k

)
.
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Thus, using again the fact that C−1(t) is defined by equation (5.10) and rela-
tion (5.7), we obtain

‖δ‖τ,k − δk ≤ λ

(
1 + ‖A‖τ,k

1 − ‖A‖τ,k

‖v‖τ,k − vk

)

= λ(‖v‖τ,k − vk) + O

(
1

tα

)
= O

(
1

tα

)
,

where in the last two steps we have invoked, respectively, item (i) and Proposi-
tion 5.2. This concludes our proof of (iii).

Step 4: proving item (iv). Recall that, by definition, C(t) = t−(1−α)Cov(η).
Hence,

δj = (C−1(t)v)j = 1
4 t1−α

∑
k∈Z

[Cov(η)]−1
jk vk

= ∑
k∈Z

[Cov(η)]−1
jk E

[∫ t

t/2
W(ds, bs)ηk

]

= ∑
k∈Z

[Cov(η)]−1
jk E[(−Ht(b))ηk];

we have the following standard calculation for any � ∈ Z:

E

[(
−Ht(b) − ∑

j∈Z

δjηj

)
η�

]

= −E[Ht(b)η�] + E
∑
j∈Z

∑
k∈Z

[Cov(η)]−1
jk E[Ht(b)ηk]ηjη�

= −E[Ht(b)η�] + E
∑
j∈Z

∑
k∈Z

[Cov(η)]−1
jk [Cov(η)]j�E[Ht(b)ηk]

= −E[Ht(b)η�] + ∑
k∈Z

δk�E[Ht(b)ηk] = 0.

Now since for fixed b, Ht(b) and the sequence η are both linear functionals of a
same Gaussian field, they form a jointly Gaussian vector, and are thus independent.

�

6. Application of Girsanov’s theorem. In our context the cost of having b

living in the interval Ik = [tα(2k − 1), tα(2k + 1)] instead of I0 = [−tα, tα] can
be calculated explicitly thanks to Girsanov’s theorem: given an integer k, a real
number t and a realization of the environment W , we define a new environment by
setting Wk,t (ds, x) := W(ds, x + h(s)), where

h(s) := min(2s/t,1)2ktα,
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or more rigorously,

Wk,t (s, x) :=
∫ s

0
W

(
du, x + h(u)

)
.(6.1)

A simple and useful result that we can now prove is the following.

LEMMA 6.1. The random fields defined by W = {W(s, x) : (s, x) ∈ R+ × R}
and Wk,t = {∫ s

0 W(du,u + h(u)) : (s, x) ∈ R+ × R} have the same distribution.

PROOF. The easiest way to establish this result is to revert to the represen-
tation of W using the Gaussian measure ν, that is, (2.2), and also its conse-
quence (2.5), so that

Wk,t (s, x) :=
∫ s

0

∫
R

eıλ(x+h(u))ν(ds, du).

Since the law of this centered Gaussian field is determined by its covariance struc-
ture only, it is now immediate to check, using the formulas (2.3) and (2.4), that it
has the same law as W , since we have

W(s, x) :=
∫ s

0

∫
R

eıλxν(ds, du).

The calculations are left to the reader. �

ALTERNATE PROOF. It is also possible to invoke a direct proof of this fact, us-
ing L2 approximations of Wk,t (s, x) by Riemann sums. For fixed s, x, Wk,t (s, x)

can be written as a limit in L2(�), as n → ∞, of the sum
∑n

i=1 J
k,t
i of the in-

crements J
k,t
i := W([si/n, s(i + 1)/n], x + h(si/n)), whose individual laws are

identical to those of the Ji ’s defined without adding the shift h(si/n), because W

is spatially homogeneous. Since the J
k,t
i ’s are independent as i changes (as are the

Ji ’s), Wk,t (s, x) and W(s, x) have the same distribution for fixed s, x; we omit the
end of this—more intuitive but less rigorous—proof. �

We also need to introduce a modified partition function Z̃ defined by

Z̃α
t (k) = Eb

[
1Lk

(b) exp

(
β

(∫ t

0
W(ds, bs) − ∑

j∈Z

δjηj

))]
.(6.2)

In the sequel we will have to stress the dependence of these partition functions on
the environment under consideration. We will thus set Z̃α

t (k) = Z̃α
t (k,W). With

these notations in mind, we can prove the following proposition, which shows that
the cost of having b live in Lk rather than L0 is exponential of order t2α−1.

PROPOSITION 6.2. Given two positive real numbers α and t , and an integer k

fixed, we have

Z̃α
t (k,W) ≥ exp[−4(k + k2)t2α−1]Z̃α

t (0,Wk,t ).(6.3)
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PROOF.
Step 1: using Girsanov’s theorem. Given k and t , and with h(s) = min(2s/t,

1)2ktα as defined above, we associate to a path b a shifted path b′ by the relation

b′
s ≡ bs − h(s) for s ∈ R.

Notice that this shift transforms a path which lives in the interval Ik for all s ∈
[t/2, t] into a path which belongs to I0 in the same time interval. More precisely,
one immediately checks that 1Lk

(b) = 1L0(b
′). Let us call Mt(b

′) the Girsanov
density involved in the shift between b and b′, that is,

Mt(b
′) = exp(−b′

t/24ktα−1 − 4k2t2α−1).

The choice of h(s) = 4kstα−1 for s ∈ [0, t/2] is made to obtain a continuous func-
tion that starts at 0, and is piecewise linear (constant over [t/2, t]); this function
has the advantage that its Girsanov “energy” is minimal, ensuring that our proof is
most efficient. It is possible that other, nonlinear, choices could have fulfilled our
purposes, but this would be an unnecessary complication. For sake of clarity, let
us stress now the dependence of the random variables δ, η and so on, on the data
of our problem: it is readily checked, for instance, that

ηj = ηj (W) and δj = δj (b,L(W)),

where a function of (W) represents its dependence on the increments of W in the
interval [0, t], as a random variable, where the symbol L(·) denotes the law (distri-
bution) of a process on [0, t], and where a function of b represents its dependence
on the fixed path b. Then, adopting this convention, we have

Z̃α
t (k,W) = Eb

[
1Lk

exp

(
β

∫ t

0
W

(
ds, b′

s + h(s)
)

− ∑
j∈Z

δj

(
b′ + h,L(W)

)
ηj (W)

)]
.

After applying Girsanov’s transformation, noting that by definition,
∫ t

0 W(ds, b′
s +

h(s)) = ∫ t
0 Wk,t (ds, b′

s), we get (recall that b′ is a standard Brownian motion under
the new probability, so that it is notationally legitimate to write b instead of b′, and
to denote expectation with respect to the new measure by Eb)

Z̃α
t (k,W) = Eb

[
1L0(b)Mt(b) exp

(
β

(∫ t

0
Wk,t (ds, bs)r

− ∑
j∈Z

δj

(
b + h,L(W)

)
ηj (W)

))]
.
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Step 2: reexpressing the transformed η. One should now compare the random
variables ηj (W) and ηj (W

k,t ): by definition of these quantities, we have

ηj (W
k,t ) = 1

t2α

∫ (2j+1)tα

(2j−1)tα

∫ t

t/2
W(ds, x + 2ktα) dx

(6.4)

= 1

t2α

∫ (2(j+k)+1)tα

(2(j+k)−1)tα

∫ t

t/2
W(ds, x) dx = ηj+k(W).

In particular, the law of η(Wk,t ), considered as the set of random variables forming
that sequence, is the same as the law of η(W), a fact which we will not use in this
proof, but will be crucial in the proof of the next lemma.

Step 3: reexpressing the transformed δ. Along the same lines as (6.4), we now
show that

δj

(
b + h,L(W)

) = δj−k(b,L(Wk,t )).(6.5)

To see this, we recall the definition of δ: we have

δ = δ
(
b + h,L(W)

) = [C(t)]−1v = [C(t,L(W))]−1v
(
b + h,L(W)

)
,

where we calculate

C�,m(t,L(W))

= 1

t (α+1)
E

[∫ t

t/2

∫ (2m+1)tα

(2m−1)tα
W(ds, x) dx ·

∫ t

t/2

∫ (2�+1)tα

(2�−1)tα
W(ds, x) dx

]

= 1

t (α+1)
E

[∫ t

t/2

∫ (2(m−k)+1)tα

(2(m−k)−1)tα
W(ds, x + 2ktα) dx

×
∫ t

t/2

∫ (2(�−k)+1)tα

(2(�−k)−1)tα
W(ds, x + 2ktα) dx

]

= 1

t (α+1)
E

[∫ t

t/2

∫
Im−k

Wk,t (ds, x) dx ·
∫ t

t/2

∫
I�−k

Wk,t (ds, x) dx

]

= C�−k,m−k(t,L(Wk,t )),

and similarly,

v�

(
b + h,L(W)

)
= 4tα−1E

[∫ t

t/2

∫ (2�+1)tα

(2�−1)tα
W(ds, x) dx ·

∫ t

t/2
W

(
ds, bs + h(s)

)]

= 4tα−1E
[∫ t

t/2

∫ (2(�−k)+1)tα

(2(�−k)−1)tα
W

(
ds, x + h(s)

)
dx ·

∫ t

t/2
W

(
ds, bs + h(s)

)]

= 4tα−1E
[∫

I�

∫ t

t/2
Wk,t (ds, x) dx ·

∫ t

t/2
Wk,t (ds, bs)

]

= v�−k(b,L(Wk,t )).
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We may thus write that the definition of δ(b + h,L(W)) is equivalent to

∀� ∈ Z :
∑
m∈Z

C�,m(t,L(W))δm

(
b + h,L(W)

) = v�

(
b + h,L(W)

)

⇐⇒ ∀� ∈ Z :
∑
m∈Z

C�−k,m−k(t,L(Wk,t ))δm

(
b + h,L(W)

)

= v�−k(b,L(Wk,t ))

⇐⇒ ∀� ∈ Z :
∑
m∈Z

C�,m(t,L(Wk,t ))δm+k

(
b + h,L(W)

)

= v�(b,L(Wk,t )).

This last statement is equivalent to saying δm+k(b + h,L(W)) = δm(b,L(Wk,t )),
which is precisely the statement of (6.5).

Step 4: conclusion. Plugging equations (6.4) and (6.5) into (6), we end up with

Z̃α
t (k,W) = Eb

[
1L0(b)Mt(b) exp

(
β

(∫ t

0
Wk,t (ds, bs)

− ∑
j∈Z

δj−k(b,L(Wk,t ))ηj−k(W
k,t )

))]
.

To conclude the proof of the proposition, notice that for b ∈ L0, we get
|bt/2| ≤ tα , and therefore,

Mt(b) ≥ exp(−4kt2α−1 − 4k2t2α−1).(6.6)

Combining (6) and (6.6), and renumbering the sum for j ∈ Z as j ′ = j − k ∈ Z,
we recognize the term Z̃α

t (0,Wk,t ), and the proof is complete. �

The above proof has an important consequence which we record here for use at
a crucial point in the next section.

LEMMA 6.3. Let

X(W,b) = −Ht(b) − ∑
j∈Z

δjηj =
∫ t

0
W(ds, bs) − ∑

j∈Z

δj (b,L(W))ηj (W)

and, therefore,

X(Wk,t , b) =
∫ t

0
Wk,t (ds, bs) − ∑

j∈Z

δj (b,L(Wk,t ))ηj (W
k,t ).

Denote by η(W) the entire sequence {ηj (W) : j ∈ Z}. Then for each b, X(W,b)

and η(W) are independent, and for each k ∈ Z, and each b, X(Wk,t , b) and η(W)

are independent.
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PROOF. We have already proved in Proposition 5.3(iv) that X(W,b) and
η(W) are independent, which is the first half of what we have to prove. This im-
plies in addition that X(Wk,t , b) and η(Wk,t ) are also independent because the
random fields W and Wk,t have the same distribution (Lemma 6.1).

To conclude the proof this lemma, we simply invoke the portion of the proof
of Proposition 6.2 which shows the specific shift equality relation ηj+k(W) =
ηj (W

k,t ), from (6.4): this is a P-almost-sure equality in �. This implies that the
sets of points in the sequences {ηj (W) : j ∈ Z} and {ηj (W

k,t ) : j ∈ Z} are pre-
cisely the same sets of random variables. Therefore, for each k and b, X(Wk,t , b)

is independent of the entire sequence η(W). �

7. Proof of Lemma 3.3. Recall that we have reduced our problem to the eval-
uation of P(Bt ), where

Bt = Ac
t = {For all k ∈ Z,Zα

t (k) ≤ Zα
t (0)},

and one wishes to show that limt→∞ P(Bt ) = 0. Then a first step in order to prove
this claim is to truncate Bt : for a positive integer M , let ŻM and Z̄M be the sets
defined respectively by

Z̄M = {−M,−M + 1, . . . ,M − 1,M} and ŻM = Z̄M\{0},(7.1)

and BM,t the event defined by

BM,t = {For all k ∈ ŻM,Zα
t (k) ≤ Zα

t (0)}.
Then obviously, P(Bt ) ≤ P(BM,t ), and we only need to prove that P(BM,t ) tends
to 0 as t → ∞.

Here is a brief account on the strategy we will follow in order to complete our
proof.

(1) Recall that we are trying to bound

P(BM,t ) = P
(
Eb

[
1Lk

e−βHt (b)] < Eb

[
1L0e

−βHt (b)] for all k ∈ ŻM

)
.(7.2)

A natural idea is then to split the conditions Eb[1Lk
e−βHt (b)] < Eb[1L0e

−βHt (b)]
in terms of a condition involving the random variables ηl introduced at (5.1), on
which we have a reasonable control, and another set of conditions involving some
random variables independent of the family {ηl; l ∈ Z}. However, we have already
seen in Proposition 5.3 that −Ht(b) − ∑

j∈Z δjηj is independent of {ηl; l ∈ Z}.
Thus, a natural choice will be to replace e−βHt (b) by et (b) in the expression (7.2),
where et (b) is defined by

et (b) := exp

(
−β

(
Ht(b) + ∑

j∈Z

δjηj

))
.

Of course, this induces a correction term exp(β
∑

j∈Z δjηj ), but this term can be
controlled, since the covariance structure of the family {ηl; l ∈ Z} is given by
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Proposition 4.2, and the vector δ is controlled by means of Proposition 5.3. Up
to a negligible term, we will be allowed to bound P(BM,t ) by a probability of the
form

P
(

For any k ∈ ŻM; Z̃α
t (k)

Z̃α
t (0)

< exp(2γ t2α−1 + η∗
k )

)
,(7.3)

where Z̃α
t (k) = Eb[1Lk

et (b)], as was defined in Section 6 on Girsanov’s theorem,
the term t2α−1 comes from the sharp estimates of δ in Proposition 5.3, and the
random variable η∗

k is one which is defined using only the random variables η,
because it results from using et (b) instead of e−Ht(b). The effect of η∗

k can be stud-
ied separately from the behavior of the ratio Z̃α

t (k)/Z̃α
t (0), by the independence

property of these two quantities.
(2) Notice that up to now, we have chosen our parameters carefully in order to

get a penalization of order exp(2γ t2α−1) in (7.3). This was chosen to be consistent
with the correction exp(−4(k + k2)t2α−1) we must impose on b if we wish that it
live the second half of its life in Ik , as we showed by using Girsanov’s theorem in
Proposition 6.2. In fact, we will be able to bound P(BM,t ) by P(FM), where the
event FM is defined by

FM =
{

For any k ∈ ŻM ; Z̃α
t (0,Wk,t )

Z̃α
t (0,W)

< exp(γ̂ t2α−1 + η∗
k )

}
,

for some constant γ̂ = γ̂ (M), where the shifted environments Wk,t are defined
in (6.1).

(3) It turns out that the random variable η∗
k is optimally chosen to be of the order

η0 −ηk [see the definition (7.9) we chose below]. We are now considering a set FM

involving the random variables Z̃t and η∗
k , and this will allow us to take advantage

of the following facts:

1. The ratio Z̃α
t (0,Wk,t )/Z̃α

t (0,W) cannot be too small at many different sites
k ∈ ŻM , by translation invariance in space of W .

2. Proposition 4.2 asserts that {t−(1−α)/2ηk;k ∈ ŻM} is asymptotically a stan-
dard Gaussian vector. Since η∗

k is of the order η0 − ηk (and thus of magnitude
t (1−α)/2), it can be highly negative at many different sites; thus, we are allowed
to expect that exp(γ̂ t2α−1 + η∗

k) is much smaller than 1 at many different sites
of ŻM .

3. The random variables Z̃α
t are independent of anything defined using η, includ-

ing η∗
k , and hence, the two effects alluded to above can be taken into account

separately.

(4) These heuristic considerations will be formalized in step 3 of the proof be-
low, through the introduction of an intricate family of subsets of ŻM , but let us
mention that the exponent 3/5 comes out already at this stage: indeed, the above
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considerations only make sense if the magnitude t (1−α)/2 of the η∗
k is greater than

the magnitude t2α−1 of the penalization, so that a highly negative η∗
k can win

against the latter. This can only occur, obviously, whenever α < 3/5. In this sense,
our estimates are quite sharp: they mainly rely on the covariance structure of η and
on Girsanov’s theorem applied to b.

Before going into the details of our calculations, let us introduce a new set
B̂M,t : as mentioned above, our computations will bring out some expressions of
the form ut := ∑

j∈Z δjηj , and it will be convenient to keep this kind of term of
order O(t2α−1), which is also the order of the exponential correction term appear-
ing in (6.3). However, since δ satisfies Proposition 5.3, it is easily checked that ut

is of the desired order if ηj ≤ |j − k|τ t3α−1 on Lk . These considerations motivate
the introduction of the event

B̂M,t ≡ {There exists � ∈ Z̄M and j ∈ Z\{�}; |ηj | ≥ |j − �|τ t3α−1},
and we will trivially bound P(BM,t ) by

P(BM,t ) ≤ P(B̂M,t ) + P(B̂c
M,t ∩ BM,t ).(7.4)

We will now prove that the two terms on the right-hand side of (7.4) vanish as
t → ∞, whenever M is large enough.

Step 1: estimation of P(B̂M,t ). Let � be the distribution function of a standard
Gaussian random variable, that is, if Z ∼ N (0,1), then

�(x) = P(Z ≤ x),(7.5)

and set �̄ = 1 − �. Then let us bound simply P(B̂M,t ) by

P(B̂M,t ) ≤ ∑
�∈Z̄M

∑
j �=�

P(|ηj | ≥ |j − �|τ t3α−1)

≤ 2
∑

�∈Z̄M

∑
j �=�

�̄

(
2|j − �|τ t (7α−3)/2

C
1/2
0,0 (t)

)
,

where C0,0(t), defined in (4.2), equals tα−1/4E[η�ηk]. Recall that �̄(x) ≤ e−x2/2

for x large, enough, and that C(t) satisfies Proposition 4.1. Thus, for two constants
c1, c2 > 0, we get

P(B̂M,t ) ≤ c1M
∑
j≥1

exp(−c2j
2τ t7α−3).(7.6)

The following facts are now easily seen:

• The series in the right-hand side of (7.6) is convergent, since τ > 0, which ex-
plains the choice of the norm ‖x‖τ,� in order to bound ηj .
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• Since we have assumed α > 1/2 > 3/7, we have 7α − 3 > 0, and thus, an ele-
mentary application of the dominated convergence theorem yields

lim
t→∞ P(B̂M,t ) = 0,(7.7)

which proves our first claim.

Step 2: estimation of P(B̂c
M,t ∩ BM,t ). Recall that the vector δ has been intro-

duced because −Ht(b) − ∑
j∈Z δjηj is independent of the family η, and for sake

of compactness of notation, set

et (b) = exp

(
−β

(
Ht(b) + ∑

j∈Z

δjηj

))
.(7.8)

Now we have

P(B̂c
M,t ∩ BM,t )

= P
(
B̂c

M,t and Eb

[
1Lk

e−Ht(b)] < Eb

[
1L0e

−Ht(b)] for all k ∈ ŻM

)

= P

(
B̂c

M,t and Eb

[
1Lk

et (b) exp

(∑
j∈Z

βδjηj

)]

< Eb

[
1L0et (b) exp

(∑
j∈Z

βδjηj

)]
for all k ∈ ŻM

)
.

As mentioned before, δ := C−1(t)v depends on the path b, as is easily seen from
definition (5.2). In order to get rid of the term

∑
j∈Z δjηj , we will then set

η̌0 = max (βdη0, βdη0) and η̂k = min (βdηk,βdηk),(7.9)

where the constants d, d have been introduced in Proposition 5.3. Then, according
to the definition of B̂c

M,t , we get

P(B̂c
M,t ∩ BM,t ) ≤ P

(
For any k ∈ ŻM,

Eb

[
1Lk

et (b) exp

(
− ∑

j∈Z

β|δj ||j − k|τ t3α−1 + η̂k

)]

< Eb

[
1L0et (b) exp

(∑
j∈Z

β|δj |jτ t3α−1 + η̌0

)])
.

Now, invoking Proposition 5.3, item (iii), we obtain that, for any integer k, there
exists a constant γ (possibly depending on β) such that

∑
j∈Z β|δj ||j −�|τ ≤ γ t−α
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on Lk . Thus, thanks to the fact that the random variables η only depend on W , and
observing that Z̃α

t (k) = Eb[1Lk
et (b)], we get

P(B̂c
M,t ∩ BM,t )

≤ P
(
For any k ∈ ŻM;

(7.10)
Z̃α

t (k) exp(−γ t2α−1 + η̂k) < exp(γ t2α−1 + η̌0)Z̃
α
t (0)

)
= P

(
For any k ∈ ŻM; Z̃α

t (k)

Z̃α
t (0)

< exp(2γ t2α−1 + η̌0 − η̂k)

)
.

Let us apply now Proposition 6.2 in order to conclude that

P(B̂c
M,t ∩ BM,t )

≤ P
(

For any k ∈ ŻM ; Z̃α
t (0,Wk,t )

Z̃α
t (0,W)

< exp(γ̂ t2α−1 + η̌0 − η̂k)

)
,

where γ̂ = γ̂ (M) = sup{2γ + ζ(k);k ∈ ŻM} and ζ(k) = 4k(k + 1). We have thus
proved that

P(B̂c
M,t ∩ BM,t ) ≤ P(FM),

where

FM =
{

For any k ∈ ŻM; Z̃α
t (0,Wk,t )

Z̃α
t (0,W)

< exp(γ̂ t2α−1 + η̌0 − η̂k)

}
.

Step 3: evaluation of P(FM). We can see now that the probability of FM will
be expressed in terms of a balance between the values of η̌0 − η̂k (which will be
assumed to be highly negative) and the ratio Z̃α

t (0,Wk,t )/Z̃α
t (0,W), which cannot

be too small at many different sites k. In order to quantify this heuristic statement,
we introduce a family S̄M,m of subsets of Z̄M which will be used to construct a
large symmetric set L around 0 such that η̌0 − η̂� < −t2α−1+ρ for all � ∈ L: for a
given ρ > 0 and integer numbers m and M , define the families of subsets

SM,m = ⋃
k,k̂∈DM,m

{kŻ
k̂
},

with DM,m = {(k, k′) :k ≥ 1, k̂ ≥ m;kŻ
k̂
⊂ ŻM}(7.11)

S̄M,m = {L ⊂ ŻM;There exists S ∈ SM,m such that S ⊂ L}.
In relation with these families of subsets of ŻM , set also

F̂M,m,ρ = ⋃
L∈S̄M,m

F̂ρ,L,(7.12)
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with

F̂ρ,L = {η̌0 − η̂� < −t2α−1+ρ, for all � ∈ L,
(7.13)

η̌0 − η̂
�̂
> −t2α−1+ρ, for all �̂ ∈ ŻM\L}.

Then one can bound trivially P(FM) by

P(FM) ≤ 1 − P(F̂M,m,ρ) + P(FM ∩ F̂M,m,ρ).

Furthermore, for t large enough, we have γ̂ t2α−1 − t2α−1+ρ < 0, which explains
the need for the constant ρ > 0. Thus,

FM ∩ F̂M,m,ρ ⊆ ⋃
L∈S̄M,m

⋂
�∈L

{
Z̃α

t (0,W�,t )

Z̃α
t (0,W)

< exp(γ̂ t2α−1 − 2t2α−1+ρ)

}
∩ F̂ρ,L

⊆ ⋃
L∈S̄M,m

{Z̃α
t (0,W�,t ) < Z̃α

t (0,W) for all � ∈ L} ∩ F̂ρ,L.

Hence, we get

P(FM) ≤ 1 − P(F̂M,m,ρ)

+ ∑
L∈S̄M,m

P
({Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ L} ∩ F̂ρ,L

)
(7.14)

≤ 1 − P(F̂M,m,ρ)

+ ∑
L∈S̄M,m

P
(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ L

)
P(F̂ρ,L),

where in the last step, we have used the independence, proved in the next step,
between the random variables Z̃α

t (0,W�,t ) and the sequence {ηk;k ∈ Z̄M}, and
also between Z̃α

t (0,W) and the sequence {ηk;k ∈ Z̄M}.
Step 4: independence of η and the Z̃α

t ’s. Using the notation X(W,b) introduced
in Lemma 6.3, this lemma’s conclusion is that X(W,b) and η(W) are independent
for each continuous function b; after evaluation of Z̃α

t (0,W) in formula (6.2), it
implies that the latter is also independent of η.

Lemma 6.3 can also be applied to prove the other independence: it proves that
for each fixed b, k, we have independence of X(Wk,t , b) and the entire sequence η.
When defining Z̃α

t (0,W�,t ), formula (6.2) must be used with W replaced by W�,t ,
which specifically means

Z̃α
t (0,W�,t ) = Eb

[
1Lk

expβ

(∫ t

0
W�,t (ds, bs) − ∑

j∈Z

δj (b,L(W�,t ))ηj (W
�,t )

)]

= Eb[1Lk
expβ(X(W�,t , b))],
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proving that Z̃α
t (0,W�,t ) is independent of η, as required to justify (7.14) in step 3.

One can prove in addition that δ(b,L(W)) = δ(b,L(W�,t )) for any �, but this
fact will not be needed.

Step 5: finishing the proof. The end of our proof of Lemma 3.3 relies on the
following propositions, whose proofs will be postponed until the next sections.

PROPOSITION 7.1. Let m be a fixed positive even integer, and M > m. Then,
for any L ∈ S̄M,m, we have

P
(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ L

) ≤ 1

m
.

PROPOSITION 7.2. Let m be a fixed positive integer. Let ρ be a strictly positive
number such that 5

2(α − 3
5) + ρ < 0. Then, for t large enough, there exists a M

large enough such that

P(F̂M,m,ρ) ≥ 1 − 1

m
.(7.15)

With these results in mind, let us finish now the proof of Lemma 3.3, and thus of
our theorem: take t,M large enough so that (7.15) is satisfied. Then (7.14) yields
directly, invoking Proposition 7.1 and the fact that the events F̂ρ,L are disjoints,

P(FM) ≤ 1

m
+ 1

m

∑
L∈S̄M,m

P(F̂ρ,L) ≤ 1

m
+ 1

m
= 2

m
,

which tends to 0 as m → ∞, and ends the proof of the theorem, modulo establish-
ing the last two propositions above.

Before proceeding with the proofs of Propositions 7.1 and 7.2, we discuss the
consequences of weakening Hypothesis 3.1. If we assume only that

Q(x) ≤ |x|−2−θ ,(7.16)

can we find values of θ ≤ 1 such that we still get superdiffusive behavior for
the polymer, that is, α > 1/2? Since the result of the Girsanov theorem, Propo-
sition 6.2, is not effected by the value of θ above, this means that the penalization
from Girsanov’s theorem, of order t2α−1, cannot be made smaller by a different
choice of decorrelation speed in Q. Therefore, we should expect not to be able
to preserve the threshold α < 3/5. To see exactly what happens to this threshold
under condition (7.16), we first state, and leave it to the reader to check, that we
can rework the proof of Proposition 5.3, item (iii), to obtain instead

|δ|τ,k − δk = o(t−αθ ).

It is then simple to check that (7.10) becomes

P(B̂c
M,t ∩ BM,t ) ≤ P

(
For any k ∈ ŻM; Z̃α

t (k)

Z̃α
t (0)

< exp(2γ t3α−1−θ + η̌0 − η̂k)

)
.
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Hence, the application of Proposition 6.2 still works, but we can no longer make
the corresponding Girsanov penalization of the same order, since for θ < 1,
3α − 1 − αθ > 2α − 1. Having thus convinced ourselves that Hypothesis 3.1 is
the only way to get the entire proof to be efficient in terms of using compara-
ble penalizations throughout, we can now ignore this inefficiency, and answer the
question at the beginning of this paragraph. The reader will check that any other
occurrences of the use of Hypothesis 3.1 are not further effected by switching
to (7.16): the entire proof can still be used if we only require that the magnitude
of the ηk’s, namely, t (1−α)/2, is larger than the new penalization t3α−1−αθ . This
yields

α <
3

7 − 2θ
.

Now we see that to get a super-diffusive behavior, we need 3/(7 − 2θ) > 1/2, that
is, θ > 1/2. We also see that the weakest hypothesis required for such behavior is
Q(x) ≤ x−5/2−ϑ for ϑ > 0. We state these findings formally, using the reparame-
trization θ = ϑ + 1/2.

COROLLARY 7.3. Assume instead of Hypothesis 3.1 that there exists ϑ ∈
(0,1/2] such that as |x| → ∞,

Q(x) = O(|x|−5/2−ϑ).

Then for any ε > 0, we obtain the following specific super-diffusive behavior for
the polymer measure:

lim
t→∞ P

[〈
sup
s≤t

|bs |
〉
t

≥ t1/2+ϑ/(6−2ϑ)−ε

]
= 1.

7.1. Proof of Proposition 7.1. Let L ∈ S̄M,m. Then, by definition (7.11) of
S̄M,m, there exists k ≥ 1 such that kŻm ⊂ L. Then

P
(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ L

)
≤ P

(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ kŻm

)
.

It is thus sufficient to estimate the right-hand side in the above inequality.
Given an even integer m ≤ M , recall that Z̄m has been defined at (7.1). Set also

m̂ = m/2, and for each i ∈ kZ̄m̂, we associate the following event:

�(i) ≡ {
Z̃α

t (0,W�,t ) < Z̃α
t (0,W i,t ) for all � ∈ kZ̄m̂\{i}}.

Then these events are disjoint, and since |kZ̄m̂| = 2m̂ + 1, we get trivially the
existence of i0 ∈ kZ̄m̂ such that

P
(
�(i0)

) ≤ 1

2m̂ + 1
≤ 1

m
.(7.17)
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However, the translation-invariance of the environment W yields

P
(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ kŻm

)
= P

(
Z̃α

t (0,W�+i0,t ) < Z̃α
t (0,W i0,t ) for all � ∈ kŻm

)
.

Indeed, exactly as we proved Lemma 6.1, denoting again h(s) = min(2s/t,1)2ktα ,
it holds that, for fixed b,

∫ t
0 W(ds, bs + (� + i0)h(s)) has the same distribution as∫ t

0 W(ds, bs + �h(s)).
We may now rewrite the above expression as the following upper bound:

P
(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W) for all � ∈ kŻm

)
(7.18)

≤ P
(
Z̃α

t (0,W�,t ) < Z̃α
t (0,W i0,t ) for all � ∈ kZ̄m̂\{i0}) = P

(
�(i0)

)
.

Observe that the last inequality is just due to the elementary fact that kZ̄m̂\{i0} ⊂
i0 + kŻm whenever i0 ∈ kZ̄m̂, a fact which is easily checked. Hence, putting to-
gether (7.17) and (7.18), we get the announced result.

7.2. Proof of Proposition 7.2. Recall that F̂M,m,ρ is defined by (7.12), and
define the quantity

τ(t) := 2β−1t (5/2)(α−3/5)+ρ,

which tends to 0 as t → ∞ if α < 3
5 and ρ is small enough. The following inequal-

ity

P(F̂M,m,ρ) ≥ P

( ⋃
L∈S̄M,m

{
t (α−1)/2(η̌0 − η̂�) ≤ −βτ(t) for all � ∈ L

})
(7.19)

is then easily established by an elementary inclusion argument, which we detail
here. Indeed, assume that, for some L ∈ S̄M,m, for all � ∈ L, η satisfies

t (α−1)/2(η̌0 − η̂�) ≤ −βτ(t),

which is equivalent to

η̌0 − η̂� ≤ −t2α−1+ρ.

To justify the above inequality, we only need to prove that, for some other
L′ ∈ S̄M,m, the same η also satisfies the above inequality for all � ∈ L′, while for
all � ∈ ŻM \ L′, the contrary holds, namely,

η̌0 − η̂� > −t2α−1+ρ.

Let then � be the subset of ŻM defined by

� = {� ∈ ŻM ; η̌0 − η̂� > −t2α−1+ρ},
and set L′ = ŻM \�. Then, by construction, L′ has the required properties defined
above, and since L′ ⊃ L, by definition of S̄M,m, we have L′ ∈ S̄M,m.
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In order to get a lower bound on the right-hand side of (7.19) above, we will
construct now a large enough collection of symmetric and disjoint sets in ŻM : with
m < M , consider the collection {Qq(m)Żm;q < q∗}, where the integers Qq(m)

are defined by

Q1(m) = 1, Qq+1(m) = mQq(m) + 1, q∗ = inf {q;Qq(m) > M}.
This collection is the sequence

Żm, (m + 1)Żm, [m(m + 1) + 1]Żm, . . . ,Qq(m)Żm, . . . ,Qq∗−1(m)Żm,

which are nonoverlapping annuli in ŻM , and therefore are indeed symmetric and
disjoint subsets of ŻM . Since Qq(m)Żm is certainly of the form kŻ

k̂
with k ≥ 1

and k̂ ≥ m, and is a subset of ŻM as soon as q < q∗, by definition, Qq(m)Żm ∈
S̄M,m. Thus, using the notation η̌0, η̂� and η� defined in (7.8) and (7.9), and revert-
ing to the notation η̃ = 2t−(1−α)/2η, we get

P(F̂M,m,ρ) ≥ P

( ⋃
q<q∗

{max(dη̃0, dη̃0) − min(dη̃�, dη̃�) ≤ −τ(t)

for all � ∈ Qq(m)Żm}
)
.

Indeed, the original set F̂M,m,ρ defined in (7.12) and (7.13) was a union of events
indexed by L ∈ S̄M,m, while here we use only sets of the form L = Qq(m)Żm;
moreover, the above condition on the difference max(dη̃0, dη̃0)−min(dη̃�, dη̃�) is
implied by the two conditions on the individual terms of this difference in F̂M,m,ρ ,
and the shorthand notation τ(t) was introduced above to be consistent with these
conditions in (7.13). Let us call now A� the event

A� = {max(dη̃0, dη̃0) − min(dη̃�, dη̃�) ≤ −τ(t)},
and we distinguish two cases according to the values of η̃0:

(a) If η̃0 ≥ 0, then max(dη̃0, dη̃0) = dη̃0, and hence, A� is the event defined by
the relation

min(dη̃�, dη̃�) ≥ τ(t) + dη̃0.

In particular, η̃� has to be positive, and thus, A� can be written as

{dη̃0 − dη̃� < −τ(t)}.
(b) If η̃0 ≤ −τ(t)/d ≤ 0, then max(dη̃0, dη̃0) = dη̃0. Thus, A� can be written

as the event defined by the relation

min(dη̃�, dη̃�) ≥ τ(t) + dη̃0,(7.20)

and if η̃0 ≤ −τ(t)/d , we have τ(t) + dη̃0 ≤ 0. Hence, (7.20) is implied by η̃� ≥ 0.
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Summarizing the considerations above, we get

P(F̂M,m,ρ) ≥ P(D+) + P(D−),

with

D+ = ⋃
q<q∗

{dη̃0 − dη̃� ≤ −τ(t) for all � ∈ Qq(m)Żm} ∩ {η̃0 > 0},

D− = ⋃
q<q∗

{η̃� ≥ 0 for all � ∈ Qq(m)Żm} ∩ {η̃0 ≤ −τ(t)/d}.

We will now prove that P(D+) is close to 1/2. Entirely similar arguments, left to
the reader, lead to showing that P(D−) can also be made arbitrarily close to 1/2,
concluding the proof of the proposition.

Observe that, according to Proposition 4.1, the random variables {η̃�; l ∈ Z̄M}
converge in distribution to a family of independent standard Gaussian random vari-
ables {ϒ�; l ∈ Z̄M}. Consequently, and using the fact that −τ(t) → 0 as t → ∞,

P(D+) = P

( ⋃
q<q∗

{dϒ0 − dϒ� ≤ 0 for all � ∈ Qq(m)Żm} ∩ {ϒ0 > 0}
)

+ εM(t),

where, for a fixed M ∈ N, we have limt→∞ εM(t) = 0. Furthermore, since the ϒ�

are independent random variables, we get

P(D+) =
∫ ∞

0
P

( ⋃
q<q∗

{dx − dϒ� ≤ 0 for all � ∈ Qq(m)Żm}
)

× e−x2/2

(2π)1/2 dx + εM(t)(7.21)

= 1

2
−

∫ ∞
0

P

( ⋂
q<q∗

D̂q

)
e−x2/2

(2π)1/2 dx + εM(t),

where

D̂q = {There exists � ∈ Qq(m)Żm;dx − dϒ� ≥ 0}.
In order to take advantage of the independence of the ϒ�, it is convenient to
pick some disjoint sets out of ŻM , which explains the choice of disjoint subsets
Qq(m)Żm. Now, it is easily seen that, for a fixed value q0, if one desires to have
q∗ > q0, it is sufficient to take M of order mq0 . Let us assume that we are in this
situation; this means that, setting κ = d/d , we have

P

( ⋂
q<q∗

D̂q

)
≤ P

( ⋂
q≤q0

{There exists � ∈ Qq(m)Żm;ϒ� ≤ κx}
)

= Pq0(There exists � ∈ Żm;ϒ� ≤ κx) = [1 − P2m(ϒ1 ≥ κx)]q0 .
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Plugging these inequalities into (7.21), we obtain

P(D+) ≥ 1

2
−

∫ ∞
0

[1 − P2m(ϒ1 ≥ κx)]q0
e−x2/2

(2π)1/2 dx + εM(t).

Recall that the function � has been defined by relation (7.5). Then the last inequal-
ity yields

P(D+) ≥ 1

2
−

∫ ∞
0

[1 − �(κx)2m]q0
e−x2/2

(2π)1/2 dx + εM(t).

It is easily seen that this probability can be made as close as we wish to 1
2 by taking

q0 → ∞, because 1/2 ≤ �(x) < 1 for all x ≥ 0, this asymptotic being equivalent
to M → ∞.
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