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In microarray technology, a number of critical steps are required to con-
vert the raw measurements into the data relied upon by biologists and clin-
icians. These data manipulations, referred to as preprocessing, influence the
quality of the ultimate measurements and studies that rely upon them. Stan-
dard operating procedure for microarray researchers is to use preprocessed
data as the starting point for the statistical analyses that produce reported re-
sults. This has prevented many researchers from carefully considering their
choice of preprocessing methodology. Furthermore, the fact that the pre-
processing step affects the stochastic properties of the final statistical sum-
maries is often ignored. In this paper we propose a statistical framework that
permits the integration of preprocessing into the standard statistical analysis
flow of microarray data. This general framework is relevant in many microar-
ray platforms and motivates targeted analysis methods for specific applica-
tions. We demonstrate its usefulness by applying the idea in three different
applications of the technology.

1. Introduction. Microarray technology measures the quantity of nucleic
acid molecules present in a biological sample referred to as the target. To do
this, we take advantage of hybridization properties of nucleic acid and use com-
plementary molecules immobilized on a solid surface, referred to as probes. The
nucleic acid molecules in the target sample are labeled with fluorescent dyes and
hybridized to the probes. A specialized scanner is then used to measure the amount
of fluorescence at each probe which is reported as an intensity. A defining charac-
teristic of microarray technology is that it includes thousands of probes on a rel-
atively small surface such as a glass slide. Various manufacturers provide a large
assortment of different platforms.

In this paper we refer to the probe hybridizing to its target phenomenon as spe-
cific binding. We define this term because, in practice, probes hybridize to the
noncomplementary molecules as well. We refer to this phenomenon as nonspecific
binding. Observed intensities are a combination of optical noise, a nonspecific
binding component and a specific-binding component. Most manufacturers try to
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measure the optical and nonspecific components directly by including additional
features or obtaining readings from areas of the chip with no probe. We refer to the
intensities read for each of these features as probe-level data. In practice, various
sources of variation need to be accounted for and these data are heavily manipu-
lated before one obtains the genomic-level measurements that most biologists and
clinicians use in their research. This procedure is commonly referred to as pre-
processing. Most preprocessing procedures only provide point estimates for each
genomic unit per sample. Although some methods provide measures of uncertainty
for these estimates, they are often discarded in higher level analysis [Rattray et al.
(2006)]. In this paper we introduce a statistical framework that permits the inte-
gration of preprocessing into the standard statistical analysis of microarray data.
This general framework can be adapted to a variety of biological applications of
microarray technology. We present the framework in Section 3 and demonstrate its
use in Section 4 with three examples.

For the statistical framework presented in this paper it is convenient to divide
the many different available platforms into two main classes. These are differen-
tiated by the type of data they produce. We refer to the platforms that produce
one set of probe-level data per microarray with some probes designed to mea-
sure specific binding and others to measure nonspecific binding as the high den-
sity oligonucleotide platforms. Affymetrix™GeneChip®arrays are by far the most
popular manufacturer of this technology. The two-color platforms produce two
sets of probe-level data per microarray (the red and green channels) and local op-
tical noise levels are measured from parts of the glass slide containing no probes.
No single company or academic lab dominates this market. Notice that there are a
handful of platforms that do not fall into either of these categories. However, the
vast majority of data produced in the past 5 years do.

The most popular microarray application of both platforms is measuring
genome-wide transcription activity. In this application each gene is represented
by one or more probes that will hybridize with the RNA transcribed from that
gene. In practice, researchers using microarrays for this purpose start out with the
probe-level data. However, most microarray products come equipped with soft-
wares that preprocess these data into higher level measurements where each gene
gets assigned one value on each array. This value is presented as the starting point
for analyses that eventually lead to the results published in the scientific literature.
Examples of these higher level analyses are identifying differentially expressed
genes, class discovery and class prediction. In some cases, the data manipulations
performed in the preprocessing step turn out to be rather complicated. Three steps
typically carried out in preprocessing are:

1. Adjusting probe intensities for optical noise and/or nonspecific binding. This
task is referred to as background correction.

2. Adjusting probe intensities to remove systematic biases due to technical varia-
tions such as different labeling efficiency, scanner setting or physical problems
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with the arrays. This task is referred to as normalization. Note that this does not
necessarily mean that we transform the data to have a normal distribution, as
the term traditionally implies in statistics.

3. When multiple probes represent a gene, summarizing the observed intensities
to attain one number for each gene. We will refer to this step as summarization.

We will refer to these as the three main preprocessing tasks. For both platform
classes, many different approaches have been proposed for each of these three
steps, resulting in competing preprocessing algorithms. Most of these preprocess-
ing algorithms do not try to estimate the measures of uncertainty that accompany
the resulting gene-level expression estimates. For example, nonlinear normaliza-
tion routines, such as quantile normalization [Amaratunga and Cabrera (2001)]
and “variance stabilizing normalization” [Huber et al. (2002)], can artificially re-
duce variation of the gene-level measurements. This fact is rarely taken into ac-
count in the higher level analyses. Notice that, for researchers with the luxury of
numerous array replicates, this is not necessarily a problem because measures of
uncertainty can be estimated from the gene-level data. However, this situation is
not common in academia and governmental institutions. Thus, for most microarray
experiments, it becomes important to obtain as much information as possible about
the stochastic properties of the final summary statistics from the probe-level data.
By posing models for these data, any manipulation could be described statistically
and bottom line results can be better understood.

Microarrays are now being used to measure genomic endpoints other than
gene expression, including yeast mutant representations, the presence of Single
Nucleotide Polymorphisms (SNPs), presence of deletions/insertions, and protein
binding sites by chromatin immunoprecipitation (known as ChIP-chip). In each
case, the units of measurement continue to be the probes. Without appropriate un-
derstanding of the bias and variance of these measurements, biological inferences
based upon probe analysis will be compromised. In Section 3 we present a general
statistical framework which consists of a stochastic model for probe-level data,
useful for any microarray application, and procedures for quantifying answers of
scientific interest that permit measuring the statistical properties introduced by the
three main preprocessing tasks. In Section 4 we give examples of the usefulness of
our proposal in three specific applications of microarray technology: detecting ex-
pressed genes, estimation of differential expression, and identification of synthetic
lethality and fitness defects in yeast mutants. Data used in the first two examples
are from a high-density oligonucleotide platform and data used in the third exam-
ple are from a two-color platform.

2. Previous work. Various research groups have demonstrated that statisti-
cal methodology can provide great improvements over the ad-hoc preprocessing
procedures offered as defaults by the companies producing the arrays. The im-
plementation of these methods have resulted in useful preprocessing algorithms
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which have already provided better scientific results for users of gene expression
arrays. Most of these procedures perform all three main preprocessing tasks. How-
ever, some approaches follow a step-by-step/modular approach, and others follow
a global/unified approach.

For a detailed description of the three major preprocessing tasks and a review
of some of the most popular preprocessing methodologies, we refer the readers
to our working paper [Wu and Irizarry (2005)]. Here we describe the additive-
background-multiplicative-error (addimult) model that has been implicitly or ex-
plicitly assumed to motivate most of the widely used preprocessing procedures.

2.1. The addimult model. After target RNA samples are prepared, labeled and
hybridized with arrays, these are scanned and images are produced and processed
to obtain an intensity value for each probe. These intensities represent the amount
of hybridization for each probe. However, part of the hybridization is nonspecific
and the intensities are affected by optical noise. Therefore, the observed intensities
need to be adjusted to give accurate measurements of specific hybridization. In
this paper we refer to the part of the observed intensity due to optical noise and
nonspecific binding as background noise. Wu et al. (2004) describe experiments
useful for understanding background noise behavior that empirically confirm that
its effect is additive and its distribution has nonzero mean.

The component of the observed intensities related to specific binding is also af-
fected by probe properties as well as measurement error. By using the log-scale
transformation before analyzing microarray data, many investigators have implic-
itly assumed a multiplicative measurement error model [Dudoit et al. (2002), Kerr,
Martin and Churchill (2000), Newton et al. (2001), Wolfinger et al. (2001)]. Fur-
thermore, various groups, for example, Li and Wong (2001), have demonstrated
the existence of strong multiplicative probe effects on the ability to measure spe-
cific signals.

Most ad-hoc preprocessing algorithms subtract background and then take the
log which arguably implies an addimult model. However, Cui et al. (2003), Durbin
et al. (2002), Huber et al. (2002) and Irizarry et al. (2003a) have explicitly proposed
addimult models and motivated algorithms based on these. A general form of this
model is simply

Y = B + S,(1)

with Y the observed intensity, B the background noise component and S the spe-
cific binding component which includes multiplicative effects.

2.2. Modular versus unified approaches. The three main preprocessing tasks
can be performed sequentially and produce gene level measures for each gene on
each array. Further higher level analyses use the summaries from preprocessing
as input data. We refer to this type of data flow as the modular approach. One
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disadvantage of the modular approach is that often the effect of the preprocess-
ing steps on the stochastic properties of the final statistical summaries is ignored.
For example, the gene expression measures produced by preprocessing procedures
often have different uncertainties. Not all preprocessing methods provide a mea-
sure of this uncertainty. Even when an uncertainty measure is provided, most high
level analysis methods do not make use of it. There are some exceptions, for ex-
ample, Liu et al. (2006) and Rattray (2006) show that propagating the uncertainty
in gene expression measures can improve accuracy in detecting differential gene
expression and principle component analysis. They still use a modular approach,
but include the variance obtained from preprocessing as part of variance of the log
scale expression level in high level analysis.

Another disadvantage of the stepwise modular approach is that each step is in-
dependently optimized without considering the effect of previous or subsequent
steps. This could lead to sub-optimal bottom-line results. Various investigators
have used the addimult model to combine the background adjustment and nor-
malization step into a unified estimation procedure. For example, Durbin et al.
(2002), Huber et al. (2002), Geller et al. (2003) and Cui et al. (2003) use addimult
models to motivate a transformation of the data that removes the dependence of
the variance on the mean intensity levels. However, these procedures do not define
and estimate parameters that represent quantities related to a scientific question as
we wish to accomplish with our general framework.

Some methods have been proposed to estimate, or test for, differential expres-
sion as part of a more general estimation procedure that performs some of the main
preprocessing tasks. For example, Kerr et al. (2000) propose the use of ANOVA
models to test for differential expression across different populations in two-color
arrays. Their models include parameters to account for the need for normalization.
However, the background adjustment step is performed separately. Wolfinger et
al. (2001) propose a similar model that permits some of the effects to be random.
This group developed the equivalent approach for high-density oligonucleotide ar-
rays [Chu, Weir and Wolfinger (2002)]. In both approaches no background adjust-
ment is performed. Hein et al. (2005) propose a Bayesian model for high-density
oligonucleotide arrays that combines background adjustment and summarization,
and permits the possibility of estimating more meaningful parameters along with
credibility intervals. However, the normalization task is not addressed and probe
effects are not considered in the summarization.

In the next section we propose a statistical framework that will permit us to
estimate parameters of interest and perform all three main preprocessing tasks in
one estimation procedure. The measures of uncertainty will therefore account for
the preprocessing.

3. A general statistical framework. The first step in our proposed frame-
work is the definition of target DNA/RNA molecule of interest. For example, in
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expression arrays, we are interested in RNA transcripts. Then, for each target mole-
cule, a set of probes, that will provide specific binding measurements for this tar-
get, are identified. Probes that provide information about nonspecific binding are
also identified. Finally, answers to scientific questions related to these target mole-
cules can be quantified as summaries of the parameters in the following statistical
model:

Yh
gij = Oh

gij + Nh
gij + Sh

gij ,(2)

with g = 1, . . . ,G, i = 1, . . . , I, j = 1, . . . , Jg and h = 1, . . . ,H .
Here Yh

gij is the probe intensity read from a probe of type h, for target mole-
cule g, in array i, and probe j . For example, in GeneChip arrays h = 1,2 will
correspond to PM or MM and in two-color arrays to Red or Green. The target
molecules of interest, such as mRNA transcripts or SNP sites, are indexed with g.
The different probes used to represent a target are denoted with j . In many cases,
for example, most two-color platforms, only one probe is used and j can be omit-
ted.

The probe intensity contains three major components: optical noise O , intensi-
ties due to nonspecific and specific binding, N and S. In our model O can depend
on the various indexes, but in all our examples we consider it to be a constant for
each array. The N and S components can be further decomposed into

Nh
gij = exp(µh

gij + ξh
gij ) and

(3)
Sh

gij = exp(νh
i + θh

gi + φh
gij + εh

gij ), if Sh
gij > 0.

The mean level of nonspecific intensity for the j th probe of type h related to tar-
get molecule g is represented by µh

gj , and random effects that explain differences

from array to array are denoted with ξh
gij . The fact that the N is strictly positive

explains the need for background adjustment. If target molecule g is present, then
the specific binding component Sg is formed by an array specific constant ν that
explains the need for normalization, a log-scale probe effect φ, measurement error
ε and a quantity proportional to the amount of transcript exp{θ}. For example, in
two-color arrays, θ red and θgreen represent the specific binding in the two channels.
In GeneChip arrays, θPM represent the specific binding on the PM probe, and θMM

represent the intensity due to binding of the PM target on the MM probe. It has
been observed that, at least for some probes, θMM > 0 [Wu and Irizarry (2004)].

The distribution of stochastic components in (3) will depend on the platform
and application. However, we model ξ with a normal distribution in the exam-
ples presented in this paper. Using an experiment designed specifically to motivate
a stochastic model for background noise, Wu et al. (2004) demonstrate this is a
reasonable assumption for GeneChip arrays. Below we present evidence that the
log-normal assumption applies to two-color platforms as well. If we remove out-
liers, the normal assumption appears to be useful to model ε as well.
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Notice that some of the models motivating the unified preprocessing algorithms
described in Section 2 are special cases of model (3). An example is the model
proposed by Durbin et al. (2002) for two-color platforms. To obtain their model
from ours, we need to assume N is 0 and that O is normally distributed. Instead
of estimating θ , Durbin et al. (2002) derive a transformation t for which the vari-
ance of � = t (YR) − t (YG) does not depend on the expectation of SR and SG.
The difference � is used as a measure of relative expression on the two samples.
Huber et al. (2002) follow a similar approach. Unlike Durbin et al. (2002), they
explicitly include φ and ν in their model. As in Durbin et al. (2002), they con-
sider N + O to be normally distributed. Because their procedure was originally
developed for two-color arrays, φ is absorbed into θ . Using an ad-hoc robust ver-
sion of maximum likelihood estimation, the parameters are estimated to derive a
transformation similar to the one proposed by Durbin et al. (2002). The model
described by Kerr et al. (2000) is also a special case of ours. They assume Y has
been background adjusted and, therefore, that O and N are 0. They incorporate
the estimation of differential expression with the normalization step by permitting
θh
gi to be constant for measurements from the same population. Hein et al. (2005)

use our model as well, but impose further assumptions on the distribution of the
parameters. The ν and φ parameters are not accounted for though.

The approaches described by Durbin et al. (2002) and Huber et al. (2002) as-
sume O + N to be IID normal for each hybridization. As mentioned, empirical
evidence suggests that this assumption is incorrect and that the distribution of the
background component is heavily right skewed. Therefore, a log-normality as-
sumption is more appropriate. This incorrect assumption of normality has a rel-
atively large impact on the accuracy of the expression level estimate. Figure 1
compares the resulting expression estimates obtained from using VSN procedures
proposed by Huber et al. (2002) to the GCRMA procedure which uses a log-normal
assumption [Wu et al. (2004)], using data from an assessment experiment (de-
scribed in more detail in Section 4.1.3). The result from the generalized-log (glog)
proposed by Durbin et al. (2002) is almost indistinguishable from VSN and is
omitted. We also compare these to a procedure that is just like GCRMA, but does
no background correction at all. The figure shows averaged log (base 2) expression
estimates plotted against known log (base 2) concentration levels for data from an
assessment experiment (described in more detail in Section 4.1.3). Appropriate
background adjustment will yield a straight line and, according to our model, no
background adjustment will yield flat local slopes for low concentrations. Notice
that the procedures using the normality assumption are almost equivalent to not
correcting for background.

Although the proposal of using a log-normal distribution for the background
noise provides great practical improvements, the major advantage of our statistical
framework is that it will permit us to describe final results of scientific interest with
rigorous statistical statements. We will be able to quantify scientific questions as
an exercise of optimizing estimation of a set of model parameters. With the proper



340 Z. WU AND R. A. IRIZARRY

FIG. 1. Log (base 2) expression estimates plotted against nominal log (base 2) concentration in
picoMolar, computed with background adjustment described in the text. To make the curves compa-
rable, the lines are shifted so that they have the same expression at log concentration 8 picoMolar (3
in log base 2).

model in place, fitting the model will produce direct estimates of the parameters
of interest along with uncertainty measures that take into account the effects of the
three main preprocessing tasks.

Fitting model (3) in practice will sometimes be challenging. Many parameters
in model (3) are not identifiable without certain constraints. However, the platform
designs usually impose constraints that allow the parameters to be identified. For
example, in GeneChip arrays we will assume that the probe-effects φh

gij does not

depend on array i and that νh
i does not depend on the probe-type h. In two-color

platforms we will assume that φh
gij does not depend on probe-type h. In platforms

that use isothermal design [Wang et al. (2006b)] to minimize the range of op-
timal hybridization temperature of all probes, it is possible to omit φh

gij . Other
application specific assumptions that make the model more parsimonious will be
demonstrated by examples in Section 4.

The choice of which components in the model are random and which are fixed
will also vary from application to application. In some applications we may model
φgi with a normal distribution that does not depend on i or g as done by Wolfin-
ger et al. (2001). In cases where we assume the variance of ε depends on g, then
assuming this variance follows, for example, a gamma distribution across g will
add power to the analysis. For gene-level data, these types of hierarchical models
have greatly improved results in practice, such as the ability of finding differential
expressed genes. For example, see Lonnstedt and Speed (2002), Smyth (2004),
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Gottardo et al. (2003), Pan et al. (2003) and Kendziorski et al. (2003). However, in
spite of the improvements and the easy interpretation of the results (e.g., posterior
probability of differential expression), we often find Bayesian inference compu-
tationally expensive, as observed by other researchers [Liu et al. (2006)]. In the
cases when the cost of computing becomes impractical, ad-hoc versions are possi-
ble. In these cases we can still use the model assumptions to describe the statistical
characteristics of the resulting data summaries.

4. Applications. In this section we describe how our framework can be
adapted to give solutions to three important practical problems: detecting ex-
pressed genes, estimation of differential expression, and identification of synthetic
lethality and fitness defects in yeast mutants. In each section we briefly describe
the scientific problem, the way our framework will be implemented, a dataset used
to assess the performance of our approach, and results comparing our approach to
standard ones.

4.1. Detecting expressed genes.

4.1.1. Scientific problem. For any given target sample, it is not likely that tran-
scripts from all genes are present. Determining which transcripts are present is
sometimes of scientific interest. The Affymetrix default software (MAS 5.0) in-
cludes an algorithm for the detection of expressed genes using GeneChip arrays.
The results are summarized as detection calls that can take the values absent (A),
marginal (M) and present (P). Using our framework, one can construct an algo-
rithm by viewing the problem as testing the hypothesis

E[SPM
gij ] = 0 for all j = 1, . . . , Jg,

for each gene g on each array i, with the alternative hypothesis E[SPM
gij ] > 0 (re-

member SPM
gij ≥ 0 by definition). For this application we also assume that O is

constant within array. Because the variability of the µPM
gij across (g, j) has been

demonstrated to be very large [Wu et al. (2004)], this problem is not trivial. The
solution offered by Affymetrix can be derived by assuming µPM

gij = µMM
gij and

SMM
gij = 0 for all probes [Hubbell, Liu and Mei (2002) and Liu et al. (2002)]. Un-

der these assumptions, E[Y PM
gij −Y MM

gij ] = 0 under the null hypothesis. A Wilcoxon

test on Rg = (Y PM
gj − Y MM

gj )/(Y PM
gj + Y MM

gj ) is performed on the Jg observations

to obtain a p-value1. The default behavior of MAS 5.0 is to assign a P, M or A
call to a p-value smaller than 0.4, between 0.4 and 0.6, and bigger than 0.6 re-
spectively. Liu et al. (2002) demonstrate that the algorithm works relatively well
in practice. However, in this section we demonstrate that our framework can be
used to generate similar detection calls with almost half of the number of probes.

1MAS 5.0 software tests the null hypothesis that median(Rg) = τ versus the alternative hypothesis
that median(Rg) > τ for a positive constant τ . The default is τ = 0.015.
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4.1.2. Our solution. Empirical results do not support the assumptions µPM
gij =

µMM
gij and SMM

gij = 0. There is strong evidence that SMM
gij > 0 for many probes

[Irizarry et al. (2003a)] and that µPM
gij �= µMM

gij [Naef and Magnasco (2003) and
Wu et al. (2004)]. Notice that if we can not use the MM probes, then we need to
have probe-specific information about µPM

gij . Wu et al. (2004) describe methodol-

ogy for estimating µh
gij using probe sequence information. These authors present

two strategies: one uses the MM intensities and the other one does not. In both
instances, µh

gij is estimated by fitting a 15-parameter model to hundreds of thou-
sands of probes, thus, it is estimated with enough precision to consider it known in
this application. If we treat µh

gij as constant, then testing the null hypothesis with-
out using the MM probes is straight forward. Notice that GeneChip arrays include
one MM for each PM, thus, PM-only arrays can represent twice as many genes at
the same price or represent the same genes at half-price. We therefore refer to our
approach without using the MMs as the half-price procedure. Notice that the com-
mercial arrays created by NimbleGen [Singh-Gasson et al. (1999)] and the new
exon arrays from Affymetrix do not include MM probes. The half-price procedure
will permit users of these arrays to perform detection calls.

4.1.3. Assessment data. To compare the two approaches, we used Affyme-
trix’s spike-in experiment on the HG-U133 platform. This experiment is similar
to the one described in Irizarry et al. (2003b) and Cope et al. (2004). In this ex-
periment transcripts from 42 genes were artificially added or spiked-in to a com-
plex cRNA target at 14 different concentrations ranging from 0 to 512 picoMolar.
Fourteen different mixtures were formed by varying the concentrations following
a Latin-square design. Three replicates of these mixtures were formed and hy-
bridized to 42 GeneChip arrays of the same type. The 42 spiked-in genes were
known not to be present in the original cRNA target, thus, if their spike-in concen-
tration was 0, then the correct detection call is A. For all other concentrations the
correct call is obviously P.

4.1.4. Results. Figure 2 compares the results obtained using Affymetrix’s de-
fault procedure and our proposed approach. Figure 2A shows ROC curves for de-
tecting target presence for genes, at various concentrations ranging from 0.125
to 2 picoMolar, using our approach (solid lines) using MM data or MAS 5.0
(dashed lines). Using both the PM and MM measurements as MAS 5.0, our ap-
proach tops the result from MAS 5.0. Figure 2B compares the result from the
half-price approach(solid line) with MAS 5.0 (dotted lines). Using nearly half the
information, the half-price approach achieves similar sensitivity and specificity as
MAS 5.0, suggesting this is a useful alternative when no MM measurements are
available. In fact, the Affymetrix Exon arrays have adopted a design without MM
probes. Another advantage of our approach is that it can easily be extended to
include replicates and compute one p-value for each gene under each condition.
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FIG. 2. (A) Receiver operating curves for detection calls from MAS 5.0 (dashed lines) and our
approach (solid lines), when both PM and MM measurements are used. The concentrations of the
present genes are 0.125,0.25,0.5,1 and 2 picoMolar. (B) Same as A except the half-price approach
(solid lines) is compared to MAS 5.0 (dashed lines).

The Affymetrix algorithm assigns Present/Absent calls to each gene on each array.
Common practice to dealing with replicates is to call a gene “present” when the
number of present calls exceed an arbitrary proportion of the replicates within a
condition.

4.2. Estimating differential expression.

4.2.1. Scientific problem. In this application we typically have two classes of
samples (e.g., experimental and control) and in many cases we have various repli-
cates. We are interested in measuring differential expression for each gene. Cur-
rently, the standard approach is to first preprocess the probe-level data and then
use statistical procedures developed for gene-level data [Chu, Weir and Wolfinger
(2002), Dudoit et al. (2002), Kerr et al. (2002), Kerr, Martin and Churchill (2000),
Lee et al. (2000), Lonnstedt and Speed (2002), Newton et al. (2001), Schena et
al. (1996), Tusher, Tibshirani and Chu (2001), Wolfinger et al. (2001), Yang et al.
(2002)] without consideration of the preprocessing algorithm. In this example we
will use data from GeneChip arrays.

4.2.2. Our solution. In this context, we quantify differential expression by
defining θii ≡ β0,g + β1,gXi , with Xi = 1 if array i was hybridized to the ex-
perimental target, and Xi = 0 otherwise. The parameter of interest will be β1,g .
For this application we use the MM probes only to estimate µgij . To do this, we
assume that SMM

gij = 0 which, as seen below, does yield useful results. To reduce
the number of parameters needed to represent the probe-specific mean levels, we
use probe sequence information as described by Wu et al. (2004). In summary, the
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µh
gij and φh

gij are assumed to be linear functions of indicator variables denoting
what base (G, C, T or A) is in each position of the probe. We assume the base ef-
fect is a smooth function of position and use splines with 5 degrees of freedom to
model these functions. These assumptions reduce the number of parameters from
hundreds of thousands to less than 20. See Wu et al. (2004) for more details. Other
minor assumptions about across and within array correlations are described in the
Appendix.

With the specifics of the model in place, we are ready to estimate β1,g . A pos-
sibility is to obtain the MLE along with a standard error for this estimate. Alter-
natively, we can pose a Bayesian model and obtain posterior distributions of the
β1,g . Wu et al. (2004) demonstrate that normal distribution is a reasonable assump-
tion for ξgij in model (3). Rocke et al. (2001) show that normal distribution is a
good approximation for εgij as well. The total intensity of nonspecific and specific
binding, N +S, is therefore a convolution of two log-normally distributed random
variables. This convolution has a complex likelihood and makes it computation-
ally impractical to obtain MLE or Bayesian estimates for each of the thousands of
genes on an array. On the other hand, the first two moments of Ngij and Sgij are
easy to compute given the parameters. Therefore, we use generalized estimating
equations which rely on simply the first two moments. Details of the implementa-
tion are in the Appendix.

Notice that, unlike the modular approach taken by Liu et al. (2006) to propa-
gate the measurement error of expression level summaries into differential expres-
sion detection, in this framework, expression level measurements for each array
are never calculated. Instead, the parameter of interest is calculated along with a
measure of uncertainty that includes the effects of background adjustment, nor-
malization and summarization. We refer to the procedure that leads to an estimate
β̂1,g and its standard error as the unified approach.

4.2.3. Assessment data. To demonstrate the utility of the unified procedure,
we use data from the spike-in experiment described in Section 4.1.3. Recall that
the RNA samples in this experiment were the same in all hybridizations except for
the spiked-in genes. The spiked-in genes varied in concentration, within and across
arrays. This implies that we can find comparisons of arrays for which only 42 genes
are expected to be differentially expressed. Furthermore, for various comparisons,
we had three technical triplicates in each group. We choose comparisons of two
triplicates for which the expected fold-changes, for most of the spiked-in genes,
was 2.

4.2.4. Results. Figure 3A shows β̂1,g plotted against the average log expres-
sion level (taken across the six arrays) for each gene. Notice that this provides
similar information to an MA-plot. The blue bars denote point-wise critical values
for rejecting the hypothesis that β1,g = 0 at the 0.01 level. These critical values
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FIG. 3. (A) β̂1,g plotted against (β̂1,g + β̂0,g)/2. The color of each dot represents the p-value. Yel-
low represents low p-value (present genes), red presents large p-value (absent genes). The blue bars
mark φ(0.995) ˆSE and φ(0.005) ˆSE, where φ(·) is the cumulative density function of Normal(0,1).
Spiked-in genes are labeled as big purple points. (B) Averaged receiver operating curves from 14
comparisons of 2-condition with 3-replicates each from the GeneChip spike-in experiment.

are computed using the fact that our estimates are asymptotically normal. Non-
spiked in genes, which are known not to be differentially expressed, exceeding
these bounds are shown with red stars. Spiked-in genes are shown with large pur-
ple dots. We add detection call information (described in Section 4.1) for all other
points. Yellow represents low p-value (present gene), red represents large p-value
(absent gene). In this case the null hypothesis was that the genes were absent in
all six hybridizations. A common approach used by biologists is to filter genes
with Affymetrix produced absent calls and then compute fold change estimates.
Figure 2 demonstrates that this will result in many false negatives. We propose
looking at both fold change estimates and p-values in one plot such as Figure 3A.
Because we are adding P/A call information to an MA-plot, we refer to this as an
MA-PA plot.

Figure 3A demonstrates that a procedure calling genes differentially expressed
when they are outside the critical value bounds performs rather well. Figures 3B
compares our results to those obtained with the commonly used approaches, the t-
test and the linear models for microarray data (LIMMA) [Smyth (2004)]. LIMMA
is one of the most popular procedures for detecting differentially expressed genes
among biologists and was designed specifically for this application. This method
requires expression-level data, thus, we demonstrate results obtained using two
popular preprocessing algorithms: RMA and MAS 5.0 (Affymetrix’s default). Fig-
ure 3B shows average ROC curves for the five procedures obtained from 14 three
versus three comparisons. To imitate real data, we excluded comparisons with
unrealistically large nominal fold changes and with high nominal concentrations.
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FIG. 4. (A) Estimated differential expression for genes with nominal fold change of 2 obtained with
MAS 5.0. The x-axis shows the lower of the two nominal concentrations involved in the comparison.
(B) As (A) but using RMA. (C) As (A) but with our estimate β̂1,g .

Specifically, only comparisons with nominal fold changes of 2 and nominal con-
centrations smaller than 4 picoMolar were included. The ROC curve demonstrates
that our procedure performs better than the modular approaches. Figure 4 shows
log fold change estimates obtained with the three procedures and demonstrates that
our unified approach provides estimates with less bias.

Figure 4 demonstrates that for low nominal concentrations the unified approach
estimates have larger variances. However, model based standard error estimates ac-
count for this fact. Figure 5 plots our model-based standard error estimate against
observed average log intensity for each gene. We also plot sample standard devi-

FIG. 5. Model based (blue bars) and empirical standard deviations (red crosses) of β̂1,g as de-
scribed in the text.
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ations, calculated from 42 arrays, of β̂1,g for various strata of the average log in-
tensity. The model-based standard errors, based on three replicates, are very close
to the sample standard errors. Notice the strong dependence of both standard error
estimates on the average log intensity. This dependence is predicted by our model.
Equation (4) in the Appendix shows that the standard error is proportional to the
inverse of E[S]. This provides a plausible alternate explanation to the common
claim made by many biologists that the high variation observed for low abundance
genes is a biological reality. Our calculations show that the high variation is due to
the statistical manipulations needed to correct for background.

4.3. Identification of synthetic lethality and fitness defects in yeast mutants.

4.3.1. Scientific problem. The Yeast Deletion strain collection was created by
an international consortium of yeast geneticists [Giaeve et al. (2002)] and is an in-
valuable resource for genetics research. For each of the 6000+ genes in the yeast
genome, a mutant yeast strain was created missing that gene. Some genes are es-
sential and, thus, the mutants are not viable. Two unique DNA tags were incor-
porated into the genome of each mutant strain. Recently, two-channel microarray
technology has been developed containing the necessary probes to detect the tags
[Yang et al. (2005)]. Thus, Microarray hybridization can be used to measure the
representation of each mutant in a complex mixture of many different mutants.

A new collection of mutant yeast that are missing two genes is being created.
Of interest is to find pairs of nonessential genes for which removing both causes
lethality or fitness to grow defects. In a typical hybridization, various tags will be
missing in the experimental target, these represent dead yeast, and present in the
control target, these represent live yeast. Mutants with fitness defects will be under-
represented in the experimental target. The task is to identify these tags using the
microarray data.

4.3.2. Our solution. Because of financial constrains (for each of the 4000+
nonessential genes we need a hybridization), we will typically have only one array
I = 1 per query gene. As mentioned, two tags are used to represent each gene;
thus, we have two probes per mutant, that is, J = 2 for all g. Because the yeast
mutants are either dead or alive, we will model θh

g with a two component mixture

distribution. One component will represent the dead mutant, that is, Sh
gj = 0 for

h = R,G, the other will represent the live mutants. Figure 6A plots a density esti-
mate of log intensities for both R and G channels and clearly shows both alive and
dead components. This figure motivates the assumption that θh

g follows a normal
distribution for the alive mutants. Furthermore, the figures also supports our claim
that the normal assumption for ξh

gij is useful.
Once the model is fitted under these assumptions, we are ready to provide useful

summaries. To quantify the evidence for a gene being dead in the experimental
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FIG. 6. (A) Density estimates of log intensities from the Green (dashed green line) and Red chan-
nels (solid red line). (B) Log intensity ratios plotted against the log likelihood ratios described in the
text.

target and alive in the control, we compute a likelihood ratio comparing a model
where YR and YG come from different mixture components to a model where they
come from the same. For mutants that appear to be alive in both cultures we can
estimate the difference in representation log(θG

g ) − log(θR
g ).

4.3.3. Assessment data. One mixture of yeast DNA was split into two halves,
and into each half DNA from a few selected mutants were spiked in with known
concentration ratio. The concentrations were chosen so that (1) some mutants
were not represented in the experimental pool and represented in the control and
(2) some mutants had known fold changes in representation when comparing
both samples. The spike-in material was introduced into the hybridization mix-
ture in three different concentration groups (high, medium and low). See Peyser
et al. (2005) for more details.

4.3.4. Results. In Figure 6B we show the log likelihood ratios of mutants that
had the same representation (imitating alive/alive or dead/dead) or were spiked-in
only in one sample (imitating dead/alive) plotted against the naive log-ratio statis-
tic. This figure shows that the log likelihood ratio statistic clearly discriminates the
dead/alive mutants from the rest. Various number of these genes would not have
been detected had we used the log ratio.

In Figure 7 we show box-plots of the MLE of log(θG
g ) − log(θR

g ) for the genes
that were spiked in to be differentially represented stratified by concentration
groups. In this figure we also show estimates obtained using two standard pre-
processing procedures. The first is what we refer to as the default procedure which
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FIG. 7. (A) Box-plot of log fold change estimates using the default preprocessing algorithm for the
low, medium and high concentration groups. The fourth box-plot shows the log fold change estimates
of genes that were not spiked-in. (B) As (A) but with a popular alternative preprocessing algorithm.
(C) As (A) but with our model-based estimate.

background corrects using the direct estimates of background noise and normal-
izes by the log ratio medians. The second is the approach proposed by [Dudoit et
al. (2002)]. The figure demonstrates our estimation procedure offers an improve-
ment in accuracy and precision over the other two. As in the previous example,
the uncertainty introduced by the background adjustment and normalization can
be included with our result.

5. Discussion. We have presented a general statistical framework for the
analysis of microarray data. The advantages of our framework, as any model-based
inference, depends on the validity of our assumptions. However, we believe it to be
a general enough framework for it to be relevant in many microarray applications,
and targeted enough to be useful in practice. We have demonstrated the flexibil-
ity of our proposal with three examples from three very different applications and
two different platforms. These examples are not intended to be final solutions to
the specific problems we presented but rather examples of the adaptability of the
proposed framework. An immense amount of work has been published in the sta-
tistics literature for both preprocessing and higher-level analyses of microarray
data. Our hope is that our work will serve as a basic infrastructure that will permit
the integration of these two bodies of work.

The first step in building a unified model is to describe deterministic effects
and all sources of random variation. This allows a complete description of the
data structure. However, keeping all these error terms in the model often increases
the computational cost. In many practical situations, empirical evidence suggests
feasible simplifications. For example, we have observed that the variance due to
optical noise is mostly negligible compared to the variance due to nonspecific bind-
ing background. Therefore, in the examples we have presented in this paper, we
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have assumed that O is a constant. In general, we have assumed that the random
effects ξ and ε are correlated among repeated measures. The strength of these cor-
relations depends on the relative magnitude of between and within probe variance.
In cases where biological variation is large, the within probe variances across ar-
rays are higher and these correlations will be smaller than what we encounter in
technical replicates, as in the Latin-square dataset. In our example for estimating
differential expression, we do not differentiate the sources of cross array variance
and let the data determine plug-in estimates of the correlation coefficients. Rattray
et al. (2006) take a different approach by propagating the uncertainty of gene ex-
pression measures obtained in preprocessing procedures into a higher-level model,
adding biological variance for each gene. When biological variance is dominant,
this approach will probably generate results similar to that from a unified model.
However, when the uncertainty from preprocessing is large, the resulting error
terms can be highly correlated because the same probes are used on each array.
Existing error propagating approaches ignore this fact and will result in overesti-
mates of the gene specific variance across samples. Last, we want to point out that
both approaches to integrating the errors from preprocessing and from biological
replicates are expected to make a difference mostly in situations with limited repli-
cates. When there is sufficient replication, the benefit of integrated approaches is
limited and may not be worth the complexity of computation.

We view our proposal as a first step toward a general framework for microar-
ray probe-level data analysis. The results obtained in three independent applica-
tions perform well when compared to procedures that have been fine tuned for
that specific applications. Other researchers have also proposed models based on
this framework on other applications of microarrays. Wang et al. (2006a) pro-
pose a model for estimating genome-wide copy number that is essentially built
upon this framework. Meyer et al. (2006) adapt the model from Wu et al. (2004)
for ChIP-chip experiment to identify transcription factor binding sites. Results in
these applications are encouraging, but further improvements are possible. Below
we describe specific aspects that we plan to improve and develop in the future.

Notice that we have purposely left image processing out of our framework. Our
experience has been that current default image processing software is reliable and
that alternative algorithms offer small or no advantages. In our opinion the added
complexity required to model pixel level data is not merited. However, as the fea-
ture sizes on the array become smaller, and less pixels are available per feature, it
is possible that expanding the framework to describe pixel level data is worth the
effort.

Normalization is one of the most controversial topics among users of the tech-
nology. Our approach of representing the need for normalization with one para-
meter is admittedly a simplification. Our current model is likely to improve by
considering more elaborate approaches. Furthermore, one of the current limita-
tions of microarray technology is that normalization techniques are based on as-
sumptions related to the number of genes that are changing or the distributions
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of gene expression across samples. For the majority of experiments these are use-
ful assumptions, making these methods an invaluable resource for improving the
quality of microarray data. However, the number of experiments in which these
assumptions are not adequate is growing. New normalization schemes will need
to be developed. Although offering a specific solution to this problem is outside
the scope of this paper, our framework is general enough to adjust to these type of
data.

Notice that in model (3), if we remove background, intensity grows linearly with
amount of target. Various groups, for example, Hekstra et al. (2003) have noticed
that probe hybridization can be modeled using the Langmuir or Hill equations.
These models predict a nonlinear behavior. In particular, they predict the observed
phenomenon that changes are attenuated for high-abundance genes. Furthermore,
various groups, for example, Cludin et al. (2001), have noticed that scanner satura-
tion has a similar effect. In our experience this effect affects a very small proportion
of genes [Irizarry, Wu and Jaffee (2006)]. However, adapting our model to account
for these effects is possible.

Finally, high-level analyses certainly include more than the examples we give
in this paper. For example, gene networks describing the interaction and regulation
among genes are often more meaningful than inference on single genes. Studying
gene networks using microarrays often relies on the ability to estimate the co-
regulation of gene expression. The Pearson correlation of gene expression is often
used as a measure of similarity [Getz, Levine and Domany (2000)]. However, in
cases with only a few biological samples, gene-level expression summaries do not
yield reliable estimates of correlation coefficients. Using the probe level model,
we can take advantage of the fact that each probe within a probeset respond to the
same biological variation. Estimating correlation of gene expression from the two
sets of probe level data can increase the efficiency over the gene-level expression
measures.

APPENDIX

A.1. Generalized estimating equations for GeneChip spike-in experiment.
To define the model, we let Ygj = (Yg1j , Yg2j , . . . , Ygij , . . . , YgIj )

′ denote the vec-
tor of PM intensities for probe j across the samples i = 1, . . . , I . Similarly, Ngj ,
Sgj , ξgi , εgj denote the vectors for probe j across samples corresponding to the
definition in model (3), ν = (ν1, ν2, . . . , νi, . . . , νI

)′ and ξgj = (φgj , φgj , . . .)
′. We

ignore the variance in optical noise and, as explained in the next section, adjust for
it by subtracting the minimal intensity on each array. We write the optical-noise-
adjusted intensities as

Ygj = Ngj + Sgj

= exp{µgj + ξgj } + exp{ν + ξgj + XT θ + εgj }.
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Here θ = (θ1, θ2)
′ is the vector of the log scale expression in the two condi-

tions, X is the design matrix.
We compute plug-in estimators for µ, φgj and ν using data from the entire array

as described in the next section. We add constraints that the mean of νs and φ of
average affinity are 0 such that θ is identified. We use probe sequence information
to predict µgj . However, the probe effects are not completely accounted for by that
linear function base effect. Therefore, considering the same probes are used across
arrays, we allow the random effects to be correlated: var(ξgj ) = 	N , where 	N

ii =
σ 2

N
and 	N

ii′ = ρNσ 2
N for i �= i ′. var(εgj ) = 	S , where 	S

ii = σ 2
S and 	S

ii′ = ρSσ 2
S

for i �= i ′. The N and S notation denote the nonspecific and specific components.
We assume ξ and ε follow normal distribution and the mean of variance of Ygj is
determined accordingly.

We then estimate θ for each gene g using the following generalized estimating
equation:

1

J

J∑
j=1

Agj (θ)(ygj − Eθ [Ygj ]) = 0,

where Agj (θ) = (
∂Eθ [Ygj ]

∂θ )′V−1
0 and V0 is a diagonal working covariance matrix.

The asymptotic variance of θ̂ is

D−1�D−1′,

where

D = E
{

Agj (θ0)
∂Eθ0[Ygj ]

∂θ

}
,

� = E{Agj (θ0)varθ0(Ygj )Agj (θ0)
′}.

We estimate D and � with

D̂ = 1

J

∑
Agj (θ̂)

∂E
θ̂
[Ygj ]
∂θ

,

�̂ = 1

J
Agj (θ̂)var

θ̂
(Ygj )Agj (θ̂)′.

Notice the averaging is taken over the probes and the sample size here is the
number of probes. Although the number of probes in a probe set is not very large
(11–20 and typically 16 in GeneChip arrays), Figure 5 shows that the estimated
variance based on this asymptotic result fits the observed variance quite well. We
believe this is explained by the fact that, although marginal distribution of intensi-
ties is right skewed, condition on probe, the distribution of intensities across arrays
is approximately normal. This results in a fast convergence of the sandwich esti-
mator of the variance.
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An interesting application of these results is that we can illustrate the relation-
ship between the asymptotic variance and the magnitude of θ . We consider the
simplest null case where θ = (θ, θ, . . . , θ)′, νi = 0 and all probes in this probeset
have the same probe effect. We consider a simple k-control/k-treatment compari-
son, therefore, XT is the matrix[

1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·

]
.

To simplify notation, we use γ1 ≡ E[Ngij ], γ2 ≡ E[Sgij ], V ≡ var(Ygij ),

W ≡ cov(Ygij , Ygi′j ). The normal assumption about ε implies γ2 = eφ+θ+σ 2
S /2 and

∂γ2
∂θ

= γ2. Therefore,

A = γ2

V
XT ,

D = kγ 2
2

V
I2×2,

� = γ 2
2

V 2

[
k[V + (k − 1)W ] k2W

k2W k[V + (k − 1)W ]
]
.

The asymptotic variance of θ̂ is then

D−1�D−1′ ∝ γ −2
2

[
k[V + (k − 1)W ] k2W

k2W k[V + (k − 1)W ]
]

and the variance of θ̂1 − θ̂2 ∝ (V − W)/γ 2
2 . Using the normal assumption again,

we have V = γ 2
1 (eσ 2

N −1)+γ 2
2 (eσ 2

S −1) and W = γ 2
1 (eρ

N
σ 2

N −1)+γ 2
2 (eρSσ 2

S −1).
This implies

var(θ̂1 − θ̂2) ∝ γ 2
1 (eσ 2

N − eρNσ 2
N ) + γ 2

2 (eσ 2
S − eρSσ 2

S )

γ 2
2

,(4)

which predicts that the variance of estimated differential expression converges to a
constant as expression levels increase (γ2 increases) and is approximately propor-
tional to 1/S2 when S is small.

A.2. Ad-hoc plug-in estimates. For our example, we assume Ogij is constant
and form an estimate Ô , using the minimum observed intensity on each array.
We do this because the variance of Ogij is negligible compared to the variance
of Ngij [Wu et al. (2004)]. To estimate µgij , probe affinities αgj are computed
using probe sequence as described in Wu and Irizarry (2004). We assume that
µgij is a smooth function h of these affinities, that is, µgj = h(αgj ), and estimate
µgij through estimating h. Specifically, a loess curve is fit to the log(Y MM − Ô)

versus αMM scatter plot to obtain ĥ. The µgij are then estimated as ĥi(α
PM
gj ). The
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residuals from the loess fit are used to estimate the variance of ξ , σ 2
N . To estimate

the correlation coefficient ρN , we identify a subset of probes with log(Y PM − Ô)

less than the corresponding µ̂. The target mRNAs of these probes are likely to be
absent and log(Y PM − Ô) ≈ N . We obtain sample variance of each probe across
arrays and use σ̂ 2

N0 to denote the mean of these variances. ρN is calculated as
(σ̂ 2

N − σ̂ 2
N0)/σ̂

2
N .

To estimate 	S , we first identify a subset of probe sets with high expression
level such that log(PM) ≈ log(S). Within each probe set we estimate the sample
variance of log(PM) and use the mean as the estimate of σ 2

S . Using these probes,
we regress log(PM) on αPM to predict φ for all probes. To estimate ρS , we use a
similar approach as for ρN : from a subset of probes with strong signals, we obtain
sample variance of each probe across arrays and set σ̂ 2

S0 as the mean of those
variances. ρS is calculated as (σ̂ 2

S − σ̂ 2
S0)/σ̂

2
S . We estimate θ first under ν = 0. The

normalization parameters ν are then estimated such that the θ̂1 − θ̂2 has weighted
mean 0, with the weights from estimated standard errors of θ̂1 − θ̂2.

For genes that are not expressed in at least one condition, θ = −∞ and the GEE
may not converge in obtaining θ̂ . For these genes we compute a p-value testing the
hypothesis that it is absent under both conditions. We compute p-value for differ-
ential expression for all other genes based on the asymptotic normal distribution.

The code implementing the GEE for GeneChip arrays is made into an R package
uniarray and is available at http://www.stat.brown.edu/~zwu/software.html.
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