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PROPAGATION OF CHAOS AND POINCARÉ INEQUALITIES
FOR A SYSTEM OF PARTICLES INTERACTING

THROUGH THEIR CDF

BY BENJAMIN JOURDAIN AND FLORENT MALRIEU

École des Ponts and Université Rennes 1

In this paper, in the particular case of a concave flux function, we are
interested in the long time behavior of the nonlinear process associated in
[Methodol. Comput. Appl. Probab. 2 (2000) 69–91] to the one-dimensional
viscous scalar conservation law. We also consider the particle system ob-
tained by replacing the cumulative distribution function in the drift coefficient
of this nonlinear process by the empirical cumulative distribution function.
We first obtain a trajectorial propagation of chaos estimate which strengthens
the weak convergence result obtained in [8] without any convexity assump-
tion on the flux function. Then Poincaré inequalities are used to get explicit
estimates concerning the long time behavior of both the nonlinear process
and the particle system.

Introduction. In this paper, we are interested in the viscous scalar conserva-
tion law with C1 flux function −A

∂tFt (x) = σ 2

2
∂xxFt (x) + ∂x(A(Ft (x)), F0(x) = H ∗ m(x),(1)

where m is a probability measure on the real line and H(x) = 1{x≥0} denotes the
Heaviside function. As a consequence, H ∗ m is the cumulative distribution func-
tion of the probability measure m. Since A appears in this equation through its
derivative, we suppose without restriction that A(0) = 0. According to [8], one
may associate the following nonlinear process with the conservation law:⎧⎨

⎩Xt = X0 + σBt −
∫ t

0
A′(H ∗ Ps(Xs)

)
ds,

∀t ≥ 0, the law of Xt is Pt ,

(2)

where (Bt )t≥0 is a real Brownian motion independent from the initial random vari-
able X0 with law m and σ a positive constant. The process X is said to be nonlinear
in the sense that the drift term of the SDE depends on the entire law Pt of Xt . More
precisely, according to [8], this nonlinear stochastic differential equation admits a
unique weak solution. Moreover, H ∗ Pt(x) is the unique bounded weak solution
of (1). For t > 0, by the Girsanov theorem, Pt admits a density pt with respect to
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the Lebesgue measure on the real line.
We want to address the long time behavior of the nonlinear process solving (2)

by studying convergence of the density pt (see [2] and [3] for a similar study
in a different setting). Since the cumulative distribution function x → H ∗ Ps(x)

which appears in the drift coefficient is nondecreasing, convexity of A is a nat-
ural assumption in order to ensure ergodicity. Then the flux function −A in the
conservation law (1) is concave.

In the first section of the paper, after recalling results obtained in [8], we show
that trajectorial uniqueness holds for (2) under convexity of A. Then we introduce
a simulable system of n particles obtained by replacing in the drift coefficient the
cumulative distribution function by its empirical version and the derivative A′ by a
suitable finite difference approximation. When A is convex, existence and trajecto-
rial uniqueness hold for this system. Moreover, we prove a trajectorial estimation
of propagation of chaos which strengthens the weak convergence result obtained
in [8]. Unfortunately, because the empirical cumulative distribution function is a
step function and therefore not an increasing one, this estimation is not uniform in
time.

The second and main section deals with the long time behavior of both the
nonlinear process and the particle system. We address the convergence of the
density pt of Xt by first studying the convergence of the associated solution
H ∗ pt of (1) to the solution F∞ with the same expectation of the stationary equa-
tion σ 2

2 ∂xxF∞(x) + ∂x(A(F∞(x)) = 0 obtained by removing the time derivative
in (1). For this result, no convexity hypothesis is made on A. Instead, one assumes
A(u) < 0 for u ∈ (0,1), A′(0) < 0, A(1) = 0 and A′(1) > 0. In contrast, to prove
exponential convergence of the density of the particle system uniform in the num-
ber n of particles, we suppose that the function A is uniformly convex. This hy-
pothesis ensures the existence of an invariant distribution for the particle system.
In [14], a necessary and sufficient condition on the drift sequence is established
for existence of the invariant measure and convergence in total variation norm for
the law of the particle system at time t to this measure. In the present paper, the
key step to derive quantitative convergence to equilibrium consists in obtaining a
Poincaré inequality for the stationary density of the particle system uniform in n.
This density has exponential-like tails and therefore does not satisfy a logarithmic
Sobolev inequality. So the derivation of the Poincaré inequality cannot rely on the
curvature criterion, used, for instance, in [5, 6, 12] or [13] for the granular media
equation. Instead we make a direct estimation of the Poincaré constant using the
specific analytic form of the invariant density. To our knowledge, our study pro-
vides the first example of a particle system, for which a Poincaré inequality but no
logarithmic Sobolev inequality holds uniformly in the number n of particles.

ASSUMPTION. Throughout the paper, we assume that A is a C1 function on
[0,1] s.t. A(0) = 0.
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1. Propagation of chaos.

1.1. The nonlinear process. Let us first state existence and uniqueness for the
nonlinear stochastic differential equation (2).

THEOREM 1.1. The nonlinear stochastic differential equation (2) admits a
unique weak solution ((Xt ,Pt ))t≥0. For t > 0, Pt admits a density pt with respect
to the Lebesgue measure on R. The function (t, x) 	→ H ∗ Pt(x) is the unique
bounded weak solution of the viscous scalar conservation law (1). Moreover,

∀t ≥ 0 Xt − X0 is integrable and E(Xt − X0) = −A(1)t.(3)

Last, if the function A is convex on [0,1], (2) admits a unique strong solution.

PROOF. The first and third statements are consequences of Proposition 1.2 and
Theorem 2.1 of [8] [uniqueness follows from uniqueness for (1) and existence is
obtained by a propagation of chaos result].

According to the Yamada–Watanabe theorem, to deduce the last statement, it is
enough to check that when A is convex, then trajectorial uniqueness holds for the
standard stochastic differential equation

dXt = σ dBt − A′(H ∗ Qt(Xt)
)
dt

where (Qt)t≥0 is the flow of time-marginals of a probability measure Q on
C([0,+∞),R). Since for each t ≥ 0 the function x 	→ A′(H ∗ Qt(x)) is non-
decreasing, if (Xt)t≥0 and (Yt )t≥0 both solve this standard SDE, then |Xt − Yt | is
bounded by

|X0 − Y0| +
∫ t

0
sign(Xs − Ys)

(
A′(H ∗ Qs(Ys)

) − A′(H ∗ Qs(Xs)
))

ds,

and then by |X0 − Y0| which concludes the proof of trajectorial uniqueness.
Existence of the density pt for t > 0 follows from the boundedness of the

drift coefficient and the Girsanov theorem. To prove (3), one first remarks that by
boundedness of the drift coefficient, for each t ≥ 0, the random variable Xt − X0
is integrable and

E(Xt − X0) = −
∫ t

0
E

(
A′(H ∗ Ps(Xs)

))
ds

= −
∫ t

0

∫
R

A′
(∫ x

−∞
Ps(dy)

)
Ps(dx) ds.

For s > 0, since by the Girsanov theorem Ps does not weight points,∫
R

A′
(∫ x

−∞
Ps(dy)

)
Ps(dx) = [

A
(
H ∗ Ps(x)

)]+∞
−∞ = A(1). �
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COROLLARY 1.2. Assume that A is C2 on [0,1]. Then the function H ∗Pt(x)

is C1,2 on (0,+∞) × R and solves (1) in the classical sense on this domain.

PROOF. By the Girsanov theorem, for t0 > 0, the law Pt0 of Xt0 admits a
density with respect to the Lebesgue measure on R. Hence (t, x) 	→ H ∗ Pt(x) is
a continuous function on (0,+∞) × R with values in [0,1]. According to [11],
Theorem 8.1, page 495, Remark 8.1, page 495 and Theorem 2.5, page 18, there
exists a function u with values in [0,1], continuous on [0,+∞) × R and C1,2 on
(0,+∞) × R such that⎧⎨

⎩
∀x ∈ R, u(0, x) = H ∗ Pt0(x),

∀(t, x) ∈ (0,+∞) × R, ∂tu(t, x) = σ 2

2
∂xxu(t, x) + ∂x(A(u(t, x))).

By the uniqueness result for bounded weak solutions of this viscous scalar conser-
vation law recalled in Theorem 1.1, ∀t ≥ t0, H ∗ Pt(x) = u(t − t0, x). The conclu-
sion follows since t0 is arbitrary. �

1.2. Study of the particle system. For n ∈ N
∗, let (an(i))1≤i≤n be a sequence

of real numbers. In this section, we are interested in the n-dimensional stochastic
differential equation

dX
i,n
t = σ dBi

t − an

(
n∑

j=1

1{Xj,n
t ≤X

i,n
t }

)
dt, X

i,n
0 = Xi

0, 1 ≤ i ≤ n,(4)

where (Bi)i≥1 are independent standard Brownian motions independent from the
sequence (Xi

0)i≥1 of initial random variables.
In the next section devoted to the approximation of the nonlinear stochastic

differential equation (2), we will choose an(i) equal to the finite difference ap-
proximation n(A(i/n) − A((i − 1)/n)) of A′( i

n
). For this particular choice, the

nondecreasing assumption made in the following proposition is implied by con-
vexity of A.

PROPOSITION 1.3. Assume that the sequence (an(i))1≤i≤n is nondecreasing.
Then the stochastic differential equation (4) has a unique strong solution. Let
(Y

1,n
t , . . . , Y

n,n
t ) denote another solution starting from (Y 1

0 , . . . , Y n
0 ) and driven

by the same Brownian motion (B1, . . . ,Bn). Then

a.s.,∀t ≥ 0
n∑

i=1

(X
i,n
t − Y

i,n
t )2 ≤

n∑
i=1

(Xi
0 − Y i

0)2.(5)

In addition, if the initial conditions (X1
0, . . . ,X

n
0) and (Y 1

0 , . . . , Y n
0 ) are s.t. a.s.,

∀i ∈ {1, . . . , n}, Xi
0 < Y i

0 (resp. Xi
0 ≤ Y i

0), then

a.s., ∀t ≥ 0,∀i ∈ {1, . . . , n} X
i,n
t < Y

i,n
t (resp. X

i,n
t ≤ Y

i,n
t ).(6)
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Existence of a weak solution to (4) is a consequence of the Girsanov theorem.
Therefore, according to the Yamada–Watanabe theorem, it is enough to prove (5)
which implies trajectorial uniqueness to obtain existence of a unique strong solu-
tion. To do so, we will need the following lemma.

LEMMA 1.4. Let (a(i))1≤i≤n and (b(i))1≤i≤n denote two nondecreasing se-
quences of real numbers. Then for any permutation τ ∈ Sn,

n∑
i=1

a(i)b(τ (i)) ≤
n∑

i=1

a(i)b(i).(7)

PROOF. For n = 2, the result is an easy consequence of the inequality(
a(2) − a(1)

)(
b(2) − b(1)

) ≥ 0.

For n > 2, we define τ1 as τ if τ(1) = 1 and as τ composed with the transposition
between 1 and τ−1(1) otherwise. This way, τ1(1) = 1. In addition, using the result
for n = 2, we get

∑n
i=1 a(i)b(τ (i)) ≤ ∑n

i=1 a(i)b(τ1(i)).
For 2 ≤ j ≤ n − 1, we define inductively τj as τj−1 if τj−1(j) = j and as τj−1

composed with the transposition between j and τ−1
j−1(j) otherwise. This way, for

1 ≤ i ≤ j , τj (i) = i. Again by the result for n = 2, one has

n∑
i=1

a(i)b(τ (i)) ≤
n∑

i=1

a(i)b(τ1(i)) ≤
n∑

i=1

a(i)b(τ2(i)) ≤ · · · ≤
n∑

i=1

a(i)b(τn−1(i)).

We conclude by remarking that τn−1 is the identity. �

We are now ready to complete the proof of Proposition 1.3.

PROOF OF PROPOSITION 1.3. Let (X1,n, . . . ,Xn,n) and (Y 1,n, . . . , Y n,n) de-
note two solutions. The difference

n∑
i=1

(X
i,n
t − Y

i,n
t )2 −

n∑
i=1

(Xi
0 − Y i

0)2

is equal to

2
∫ t

0

n∑
i=1

(Xi,n
s − Y i,n

s )

(
an

(
n∑

j=1

1{Y j,n
s ≤Y

i,n
s }

)
− an

(
n∑

j=1

1{Xj,n
s ≤X

i,n
s }

))
ds.(8)

By the Girsanov theorem, for any s > 0 the distributions of (X1,n
s , . . . ,Xn,n

s ) and
(Y 1,n

s , . . . , Y n,n
s ) admit densities w.r.t. the Lebesgue measure on R

n and there-
fore dP ⊗ ds a.e. the positions X1,n

s , . . . ,Xn,n
s (resp. Y 1,n

s , . . . , Y n,n
s ) are distinct

and there is a unique permutation τX
s ∈ Sn (resp. τY

s ∈ Sn) such that X
τX
s (1),n

s <
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X
τX
s (2),n

s < · · · < X
τX
s (n),n

s (resp. Y
τY
s (1),n

s < Y
τY
s (2),n

s < · · · < Y
τY
s (n),n

s ). Therefore
dP ⊗ ds a.e.,

n∑
i=1

(Xi,n
s − Y i,n

s )

(
an

(
n∑

j=1

1{Y j,n
s ≤Y

i,n
s }

)
− an

(
n∑

j=1

1{Xj,n
s ≤X

i,n
s }

))

is equal to

n∑
i=1

an(i)
((

X
τY
s (i),n

s − Y
τY
s (i),n

s

) − (
X

τX
s (i),n

s − Y
τX
s (i),n

s

))
.

The sequence (an(i))1≤i≤n is nondecreasing. Applying Lemma 1.4 with b(i) =
X

τX
s (i),n

s and τ = (τX
s )−1 ◦ τY

s then with b(i) = Y
τY
s (i),n

s and τ = (τY
s )−1 ◦ τX

s , one
obtains that the integrand in (8) is nonpositive dP ⊗ ds a.e. Hence (5) holds.

Let us now suppose that a.s. ∀i ∈ {1, . . . , n}, Xi
0 < Y i

0 and define ν = inf{t >

0 :∃i ∈ {1, . . . , n},Xi,n
t ≥ Y

i,n
t } with the convention inf ∅ = +∞. From now on,

we restrict ourselves to the event {ν < +∞}. Let i ∈ {1, . . . , n} be such that Y i,n
ν =

Xi,n
ν . There is an increasing sequence (sk)k≥1 of positive times with limit ν such

that ∀k ≥ 1, an(
∑n

j=1 1{Xj,n
sk

≤X
i,n
sk

}) < an(
∑n

j=1 1{Y j,n
sk

≤Y
i,n
sk

}). Since (an(i))1≤i≤n is

nondecreasing, by extracting a subsequence still denoted by (sk)k for simplicity,
one deduces the existence of j ∈ {1, . . . , n} with j �= i such that ∀k ≥ 1,Xi,n

sk
<

X
j,n
sk and Y

j,n
sk ≤ Y i,n

sk
. Since sk < ν, Xi,n

sk
< X

j,n
sk < Y

j,n
sk ≤ Y i,n

sk
. By continuity of

the paths, one obtains Xi,n
ν = X

j,n
ν = Y

j,n
ν = Y i,n

ν . Now since the probability of the
event

∃i1, i2, i3 dist. in {1, . . . , n},∃t > 0 X
i1
0 + σB

i1
t = X

i2
0 + σB

i2
t = X

i3
0 + σB

i3
t

is equal to 0, the Girsanov theorem implies that a.s. ∀l ∈ {1, . . . , n} \ {i, j}, Xl,n
ν �=

Xi,n
ν = X

j,n
ν . In the same way, Y l,n

ν �= Y i,n
ν = Y

j,n
ν . By continuity of the paths and

definition of ν one deduces that for k large enough, and for every t ∈ [sk, ν],
n∑

l=1
l �=i,j

1{Y l,n
t ≤Y

i,n
t } ≤

n∑
l=1

l �=i,j

1{Xl,n
t ≤X

i,n
t };

n∑
l=1

l �=i,j

1{Y l,n
t ≤Y

j,n
t } ≤

n∑
l=1

l �=i,j

1{Xl,n
t ≤X

j,n
t }.

Since a.s. dt a.e., Y
i,n
t �= Y

j,n
t and (an(i))1≤i≤n is nondecreasing, one obtains that

a.s. dt a.e. on [sk, ν],

an

(
n∑

l=1

1{Y l,n
t ≤Y

i,n
t }

)
+ an

(
n∑

l=1

1{Y l,n
t ≤Y

j,n
t }

)

≤ an

(
n∑

l=1

1{Xl,n
t ≤X

j,n
t }

)
+ an

(
n∑

l=1

1{Xl,n
t ≤X

i,n
t }

)
.
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By integration with respect to t on [sk, ν], this implies that a.s. Y i,n
ν −Xi,n

ν +Y
j,n
ν −

X
j,n
ν ≥ Y i,n

sk
− Xi,n

sk
+ Y

j,n
sk − X

j,n
sk > 0. Therefore P(ν < +∞) = 0.

When a.s. for i ∈ {1, . . . , n}, Xi
0 ≤ Y i

0 , one obtains that for ε > 0 the solution

(Y
1,n,ε
t , . . . , Y

n,n,ε
t ) to (4) starting from (Y 1

0 + ε, . . . , Y n
0 + ε) is such that

a.s., ∀t ≥ 0 ∀i ∈ {1, . . . , n} X
i,n
t < Y

i,n,ε
t .

Since by (5), Y
i,n,ε
t ≤ Y

i,n
t + √

nε, one easily concludes by letting ε → 0. �

1.3. Trajectorial propagation of chaos. From now on, we set

∀n ∈ N
∗,∀i ∈ {1, . . . , n} an(i) = n

(
A

(
i

n

)
− A

(
i − 1

n

))
(9)

and assume that the initial positions (Xi
0)i≥1 of the particles are independent and

identically distributed according to m. We prefer to define an(i) with the above
finite difference approximation of the choice A′(i/n) made in [8] because the sum∑n

i=1 an(i) which plays a role in the long time behavior of the particle system
is then simply equal to nA(1). One could also obtain trajectorial propagation of
chaos estimates similar to Theorem 1.5 below for the choice an(i) = A′(i/n).

In the present section, we also suppose that A is a convex function on [0,1]. By
Theorem 1.1, for each i ≥ 1, the nonlinear stochastic differential equation⎧⎪⎨

⎪⎩
Xi

t = Xi
0 + σBi

t −
∫ t

0
A′(H ∗ Ps(X

i
s)

)
ds,

∀t ≥ 0, the law of Xi
t is Pt ,

(10)

has a unique solution and for all t ≥ 0, the law Pt of Xi
t does not depend on i.

Under a Lipschitz regularity assumption on A′, we obtain the following trajectorial
propagation of chaos estimation.

THEOREM 1.5. If A : [0,1] → R is convex and A′ is Lipschitz continuous with
constant K , then

∀n ≥ 1,∀1 ≤ i ≤ n,∀t ≥ 0 E

(
sup

s∈[0,t]
(Xi,n

s − Xi
s)

2
)

≤ K2t2

6n
.

PROOF. Let us write
∑n

i=1(X
i,n
t − Xi

t )
2 as

2
∫ t

0

n∑
i=1

(Xi,n
s − Xi

s)

(
an

(
n∑

j=1

1{Xj
s ≤Xi

s}

)
− an

(
n∑

j=1

1{Xj,n
s ≤X

i,n
s }

))
ds

+ 2
∫ t

0

n∑
i=1

(Xi,n
s − Xi

s)C(s,X1
s , . . . ,X

n
s ) ds
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where C(s,X1
s , . . . ,X

n
s ) is equal to

A′(H ∗ Ps(X
i
s)

) − n

(
A

(
1

n

n∑
j=1

1{Xj
s ≤Xi

s}

)
− A

(
1

n

n∑
j=1

1{Xj
s ≤Xi

s} − 1

n

))
.

Like in the proof of trajectorial uniqueness for (4), because of the convexity of A,
the first term of the r.h.s. is nonpositive. Moreover, by Lipschitz continuity of A′,(

A′(H ∗ Ps(X
i
s)

) − n

(
A

(
1

n

n∑
j=1

1{Xj
s ≤Xi

s}

)
− A

(
1

n

n∑
j=1

1{Xj
s ≤Xi

s} − 1

n

)))2

=
(∫ 1

0
A′(H ∗ Ps(X

i
s)

) − A′
(

1

n

n∑
j=1

1{Xj
s ≤Xi

s} + θ − 1

n

)
dθ

)2

≤ K2

n2

∫ 1

0

(∑
j �=i

(
H ∗ Ps(X

i
s) − 1{Xj

s ≤Xi
s}

)
+ (

H ∗ Ps(X
i
s) − θ

))2

dθ.

For s > 0, as the variables Xi
s are i.i.d. with common law Ps which does not weight

points and H ∗ Ps(X
i
s) is uniformly distributed on [0,1],

∫ 1

0
E

((∑
j �=i

(
H ∗ Ps(X

i
s) − 1{Xj

s ≤Xi
s}

) + (
H ∗ Ps(X

i
s) − θ

))2)
dθ

= ∑
j �=i

E
((

H ∗ Ps(X
i
s) − 1{Xj

s ≤Xi
s}

)2) +
∫ 1

0
E

((
H ∗ Ps(X

i
s) − θ

)2)
dθ

= (n − 1)E
((

H ∗ Ps(X
i
s)

)(
1 − H ∗ Ps(X

i
s)

)) + 1/6

= n/6.

Using the Cauchy–Schwarz inequality, one obtains

E

(
sup

s∈[0,t]

n∑
i=1

(Xi,n
s − Xi

s)
2

)
≤ 2

∫ t

0

√√√√√K2

6n
E

((
n∑

i=1

(X
i,n
s − Xi

s)

)2)
ds

≤ 2K√
6

∫ t

0

√√√√E

(
sup

u∈[0,s]

n∑
i=1

(X
i,n
u − Xi

u)
2

)
ds.

By comparison with the ordinary differential equation α′(t) = 2K
√

α(t)
6 , one con-

cludes that

∀t ≥ 0 E

(
sup

s∈[0,t]

n∑
i=1

(Xi,n
s − Xi

s)
2

)
≤ K2t2

6
.
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Exchangeability of the couples ((Xi,n,Xi))i∈{1,...,n} completes the proof. �

REMARK 1.6. One could think that assuming that A is uniformly convex:

∃α > 0,∀0 ≤ x ≤ y ≤ 1 A′(y) − A′(x) ≥ α(y − x)(11)

would lead to a better estimation. Indeed, then for every i ∈ {1, . . . , n − 1},

an(i + 1) − an(i) = n

∫ (i+1)/n

i/n

[
A′(x) − A′

(
x − 1

n

)]
dx ≥ α

n
.

But since even in this situation, the nonpositive term

n∑
i=1

(Xi,n
s − Xi

s)

(
an

(
n∑

j=1

1{Xj
s ≤Xi

s}

)
− an

(
n∑

j=1

1{Xj,n
s ≤X

i,n
s }

))

vanishes as soon as the order between the coordinates of (X1,n
s , . . . ,Xn,n

s ) is the
same as the order between the coordinates of (X1

s , . . . ,X
n
s ), we were not able so

far to improve the estimation.

COROLLARY 1.7. Under the hypotheses of Theorem 1.5, let m̃ be a probabil-
ity measure on R such that ∀x ∈ R, H ∗m̃(x) ≤ H ∗m(x). If for some random vari-
able U1 uniform on [0,1] independent from (Bi)i≥1, X1

0 = inf{x :H ∗ m(x) ≥ U1}
and (Y 1

t )t≥0 denotes the solution of the nonlinear stochastic differential equation⎧⎨
⎩Y 1

t = Y 1
0 + σB1

t −
∫ t

0
A′(H ∗ P̃s(Y

1
s )

)
ds,

∀t ≥ 0, the law of Y 1
t is P̃t ,

(12)

with Y 1
0 = inf{x :H ∗ m̃(x) ≥ U1}, then

P(∀t ≥ 0,X1
t ≤ Y 1

t ) = 1.

Moreover ∀t ≥ 0, ∀x ∈ R, H ∗ P̃t (x) ≤ H ∗ Pt(x). Last, the function t 	→ E|Y 1
t −

X1
t | is constant.

REMARK 1.8. At least when m and m̃ do not weight points, one has a.s.
A′(H ∗ P0(X

1
0)) = A′(H ∗ P̃0(Y

1
0 )) since H ∗ m(X1

0) = H ∗ m̃(Y 1
0 ) = U1. There-

fore a.s. d(Y 1 − X1)0 = 0 and one may wonder whether a.s. Y 1
t − X1

t does not
depend on t . If this property holds, necessarily, a.s. dt a.e. A′(H ∗ Pt(X

1
t )) =

A′(H ∗P̃t (Y
1
t )). If A′ is increasing, a.s. for all t > 0, H ∗pt(X

1
t ) = H ∗p̃t (Y

1
t ) with

pt and p̃t denoting the respective densities of Pt and P̃t . If A is C2, the Brown-
ian contribution in d(H ∗ pt(X

1
t ) − H ∗ p̃t (Y

1
t )) given by Itô’s formula vanishes,

that is, pt(X
1
t ) = p̃t (Y

1
t ) and ∀u ∈]0,1[, pt((H ∗ pt)

−1(u)) = p̃t ((H ∗ p̃t )
−1(u))

or equivalently ((H ∗ pt)
−1)′(u) = ((H ∗ p̃t )

−1)′(u). Hence Y 1
t = X1

t + c for a
deterministic constant c which does not depend on t according to (3). Letting
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t → 0, one obtains Y 1
0 = X1

0 +c. This necessary condition turns out to be sufficient
as (X1

t + c)t≥0 obviously solves the nonlinear stochastic differential equation (2)
starting from X1

0 + c.

PROOF OF COROLLARY 1.7. For (Ui)i≥2 a sequence of independent uniform
random variables independent from (U1, (B

i)i≥1), we set

∀i ≥ 2 Xi
0 = inf{x :H ∗ m(x) ≥ Ui} and Y i

0 = inf{x :H ∗ m̃(x) ≥ Ui}.
Since H ∗ m̃ ≤ H ∗ m, a.s. ∀i ≥ 1, Y i

0 ≥ Xi
0. From Proposition 1.3, one deduces

that the solutions (X
1,n
t , . . . ,X

n,n
t ) and (Y

1,n
t , . . . , Y

n,n
t ) to (4) respectively starting

from (X1
0, . . . ,X

n
0) and (Y 1

0 , . . . , Y n
0 ) are such that

a.s., ∀n ≥ 1,∀i ∈ {1, . . . , n},∀t ≥ 0 Y
i,n
t ≥ X

i,n
t .

Since, by Theorem 1.5, for fixed t ≥ 0, one may extract from (X
1,n
t , Y

1,n
t )n≥1 a

subsequence almost surely converging to (X1
t , Y

1
t ), one easily deduces that P(∀t ≥

0,X1
t ≤ Y 1

t ) = 1. Hence

∀t ≥ 0,∀x ∈ R H ∗ P̃t (x) = P(Y 1
t ≤ x) ≤ P(X1

t ≤ x) = H ∗ Pt(x).

Since |Y 1
t −X1

t |−|Y 1
0 −X1

0| = Y 1
t −Y 1

0 −(X1
t −X1

0), (3) ensures that E|Y 1
t −X1

t | ∈[0,+∞] does not depend on t . �

2. Long time behavior. In this section we are interested in the long time be-
havior of both the nonlinear process and the particle system. According to (3)
and the equality

∑n
i=1 an(i) = nA(1) which follows from (9), we have to suppose

A(1) = 0 in order to obtain convergence of the densities as t tends to infinity. We
address the convergence of the density pt of Xt by first studying the convergence
of the associated cumulative distribution function Ft under the following hypoth-
esis denoted by (H) in the sequel:

A(0) = A(1) = 0, A′(0) < 0,
(H)

A′(1) > 0 and ∀u ∈ (0,1) A(u) < 0.

These assumptions determine the spatial behavior at infinity of the drift coefficient
in (2).

To prove exponential convergence of the density of the particle system uniform
in the number n of particles, we make the stronger assumption of uniform convex-
ity on A. The key step in the proof is to obtain a Poincaré inequality uniform in
n for the stationary density of the particle system. This density has exponential-
like tails and therefore does not satisfy a logarithmic Sobolev inequality. So the
derivation of the Poincaré inequality cannot rely on the curvature criterion, used,
for instance, by Malrieu [12, 13] when dealing with the granular media equation.
Instead, we take advantage of the following nice feature: up to reordering of the
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coordinates, the stationary density is the density of the image by a linear trans-
formation of a vector of independent exponential variables. And it turns out that
the control of the constant in the n-dimensional Poincaré inequality relies on the
Hardy inequality stated in Lemma 2.18 which is a one-dimensional Poincaré-like
inequality. To our knowledge, our study provides the first example of a particle sys-
tem, for which a Poincaré inequality but no logarithmic Sobolev inequality holds
uniformly in the number n of particles.

2.1. The nonlinear process. In this section, we are first going to obtain nec-
essary and sufficient conditions on the function A ensuring existence for the sta-
tionary Fokker–Planck equation obtained by removing the time-derivative in the
nonlinear Fokker–Planck equation

∂tpt = σ 2

2
∂xxpt + ∂x

(
A′(H ∗ pt)pt

)
(13)

satisfied by the density of the solution of (2). Under a slightly stronger condition,
the solutions satisfy a Poincaré inequality.

LEMMA 2.1. A necessary and sufficient condition for the existence of a prob-
ability measure μ solving the stationary Fokker–Planck equation

σ 2

2
∂xxμ + ∂x

(
A′(H ∗ μ(x)

)
μ

) = 0

in the distribution sense is A(1) = 0 and A(u) < 0 for all u ∈ (0,1). Under that
condition, all the solutions are the translations of a probability measure with a C1

density f which satisfies

∀x ∈ R f (x) = − 2

σ 2 A
(
H ∗ f (x)

)
and

(14)

f ′(x) = − 2

σ 2 A′(H ∗ f (x)
)
f (x).

If A′(0) < 0 and A′(1) > 0, then

f (x) ∼

⎧⎪⎪⎨
⎪⎪⎩

−2A′(0)

σ 2

∫ x

−∞
f (y) dy, when x → −∞,

2A′(1)

σ 2

∫ +∞
x

f (y) dy, when x → +∞,
(15)

∫ x

0

dy

f (y)
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−σ 2

2A′(0)f (x)
, when x → −∞,

σ 2

2A′(1)f (x)
, when x → +∞,
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and all the solutions satisfy a Poincaré inequality and have a finite expectation.
Last, if the function A is C2 on [0,1], then f is C2 and satisfies

f ′′(x) = − 2

σ 2 A′′(H ∗ f (x)
)
f 2(x) + f ′2(x)

f (x)
.(16)

PROOF. Let μ be a probability measure on R solving the stationary Fokker–
Planck equation. The equality σ 2

2 ∂xxμ = −∂x(A
′(H ∗μ(x))μ) ensures that μ does

not weight points. Hence the stationary equation is equivalent to ∂xx(
σ 2

2 μ+A(H ∗
μ(x))) = 0. One deduces that μ possesses a C1 density f such that

∀x ∈ R f (x) = − 2

σ 2 A
(
H ∗ f (x)

) + αx + β,(17)

for some constants α and β . Since A(0) = 0, letting x → −∞ then x → +∞ in
the last equality, one obtains α = β = A(1) = 0. For u ∈ (0,1), since u = H ∗f (x)

for some x ∈ R and H ∗ f is not constant and equal to u, the Cauchy–Lipschitz
theorem and (17) imply that A(u) �= 0. Since f is nonnegative, A(u) < 0. Hence
A(1) = 0 and A(u) < 0 for all u ∈ (0,1) is a necessary condition.

Under that condition, a probability measure μ solves the stationary Fokker–
Planck equation if and only if its cumulative distribution function H ∗ μ(x) is a
C2 solution to the differential equation

ϕ′(x) = − 2

σ 2 A(ϕ(x)), x ∈ R.(18)

By the Cauchy–Lipschitz theorem, for each v ∈ [0,1] this equation admits a unique
solution ϕv defined on R with values in [0,1] such that ϕv(0) = v. Moreover, as
A(0) = A(1) = 0, ϕ0 ≡ 0 and ϕ1 ≡ 1 and

∀v ∈ (0,1),∀x ∈ R 0 < ϕv(x) < 1.(19)

For v ∈ (0,1), since ϕv is nondecreasing and ϕv(x) = v − 2
σ 2

∫ x
0 A(ϕv(y)) dy, nec-

essarily limy→+∞ ϕv(y) = 1. In the same way, limy→−∞ ϕv(y) = 0 and ϕv is an
increasing function from R to (0,1) with inverse denoted by ϕ−1

v . The unique-
ness result for (18) implies that ∀v ∈ (0,1),∀x ∈ R, ϕv(x) = ϕ1/2(x + ϕ−1

1/2(v)).
Therefore the solutions to the stationary Fokker–Planck equation are the probabil-
ity measures obtained by spatial translation of the probability measure with density
f (x) = ϕ′

1/2(x) which satisfies (14) according to (18).
Let us now suppose that A′(0) < 0 and A′(1) > 0. When x → +∞,

f (x) = − 2

σ 2 A

(
1 −

∫ +∞
x

f (y) dy

)
∼ 2A′(1)

σ 2

∫ +∞
x

f (y) dy.

By (14), f ′(x)
f (x)

= (logf (x))′ = − 2
σ 2 A′(ϕ1/2(x)) converges to −2A′(1)

σ 2 as x → +∞.

This implies that log(f (x))
x

converges to −2A′(1)

σ 2 and that xf (x)1{x≥0} is integrable.
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Moreover, since
∫ +∞

0
dy

f (y)
= +∞,

∫ x
0

dy
f (y)

∼ σ 2

2A′(1)

∫ x
0 − f ′(y)

f 2(y)
dy ∼ σ 2

2A′(1)f (x)
, as

x → +∞. In the same way, one obtains the equivalents given in (15) when x →
−∞ and checks the integrability of the function xf (x)1{x≤0}. From (15), one has

lim
x→−∞

∫ x

−∞
f (y) dy

∫ 0

x

dy

f (y)
= σ 4

4(A′(0))2

and

lim
x→+∞

∫ +∞
x

f (y) dy

∫ x

0

dy

f (y)
= σ 4

4(A′(1))2 .

By Theorem 6.2.2, page 99 of [1], one concludes that the measure with density f

satisfies a Poincaré inequality.
By (14), the function f is C2 as soon as the function A is C2 on [0,1]. More-

over, f ′′(x) = − 2
σ 2 A′′(H ∗ f (x))f 2(x) − 2

σ 2 A′(H ∗ f (x))f ′(x) which combined
with (14) implies (16). �

REMARK 2.2. When A is a C1 convex function on [0,1] such that A(0) =
A(1) = 0 and A′(u) < 0 for some u ∈ (0,1), then the necessary and sufficient
condition in Lemma 2.1 is obviously satisfied. Since (14) implies

(logf (x))′′ =
(

f ′(x)

f (x)

)′
=

(−2/σ 2A′(H ∗ f (x))f (x)

f (x)

)′

= − 2

σ 2 A′′(H ∗ f (x)
)
f (x) ≤ 0,

the probability measures solving the stationary Fokker–Planck equation admit log-
concave densities with respect to the Lebesgue measure. Log-concavity is a prop-
erty stronger than the existence of a Poincaré inequality (see [7]).

EXAMPLE 2.3. Using (18) and (19), the following two choices for A lead to
exact computations and different tails for the stationary densities:

• if A(x) = 1
2x(x − 1), one gets log(

ϕ1/2(x)

1−ϕ1/2(x)
) = x/σ 2, that is,

ϕ1/2(x) = ex/σ 2

1 + ex/σ 2 and ϕ′
1/2(x) = 1

4σ 2 cosh2(x/2σ 2)
;

• if A(x) = x3 − x = x(x − 1)(x + 1),

ϕ√
1/2(x) = 1√

1 + e−4x/σ 2
and ϕ′√

1/2(x) = 2e−4x/σ 2

σ 2(1 + e−4x/σ 2
)3/2

.
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When A(1) = 0 and A(u) < 0 for all u ∈ (0,1), a natural question is how to
link the translation parameter of the candidate long time limit of the marginal Pt

solving the stationary Fokker–Planck equation to the initial marginal m. When∫
R

|x|m(dx) < +∞, by (3), for all t ≥ 0, E(X1
t ) = E(X1

0). Therefore the transla-
tion parameter is chosen in order to ensure that the invariant measure has the same
mean as the initial measure m.

Let us denote by pt the density of Pt and by Ft = H ∗ Pt its cumulative distri-
bution function.

THEOREM 2.4. Let A be C2 on [0,1] satisfying (H). Assume that m admits

a density p0 such that
∫
R

|x|p0(x) dx < +∞ and
∫
R

(p0(x)−p∞(x))2

p∞(x)
dx is small

enough where p∞ denotes the stationary distribution with same expectation as
p0. Last, we suppose that A and p0 are such that p is a smooth solution of (13).

Then
∫
R

(pt (x)−p∞(x))2

p∞(x)
dx converges to 0 exponentially fast as t → +∞.

By a smooth solution of (13), we mean that p possesses enough regularity and
integrability so that the formal computations made in the proof below are justified.

EXAMPLE 2.5. When A(x) = 1
2(x2 − x), one easily checks that the function

φ(t, x) = −Ft(x + t
2) solves Burgers’ equation

∂tφ = σ 2

2
∂xxφ − 1

2
∂xφ

2, φ(0, x) = −F0(x).

By the Cole–Hopf transformation, ψ(t, x) = exp(− 1
σ 2

∫ x
−∞ φ(t, y) dy) solves the

heat equation

∂tψ = σ 2

2
∂xxψ, ψ(0, x) = exp

(
1

σ 2

∫ x

−∞
F0(y) dy

)
.

Since Ft(x) = σ 2 ∂xψ
ψ

(t, x − t
2), one deduces that

Ft(x) =
∫
R

e−(x−t/2−y)2/2σ 2tF0(y)ψ(0, y) dy/(σ
√

2πt)∫
R

e−(x−t/2−y)2/2σ 2tψ(0, y) dy/(σ
√

2πt)
.(20)

If x̄ denotes the expectation associated with the cumulative distribution function
F0, one has

∫ x̄
−∞ F0(z) dz = ∫ +∞

x̄ (1 − F0(z)) dz. Since∫ x

−∞
F0(z) dz =

∫ x̄

−∞
F0(z) dz −

∫ x

x̄

(
1 − F0(z)

)
dz + (x − x̄),

one deduces that the function ψ̃(0, x) = e−(x−x̄)/σ 2
ψ(0, x) [resp. ψ(0, x)] is

bounded on R+ (resp. R−) and converges to 1 as x tends to +∞ (resp. −∞).
Let us deduce the limit of Ft(x) as t → +∞. Writing the integral for y ∈ R as

the sum of the integrals for y ∈ R− and for y ∈ R+, and making the change of
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variables z = y−x+t/2
σ
√

t
(resp. z = y−x−t/2

σ
√

t
) in the first (resp. second) integral, one

obtains∫
R

e−(y−x+t/2)2/(2σ 2t)F0(y)ψ(0, y)
dy

σ
√

2πt

=
∫

R

e−z2/21{z≤√
t/(2σ)−x/(σ

√
t)}

× F0

(
σ
√

tz + x − t

2

)
ψ

(
0, σ

√
tz + x − t

2

)
dz√
2π

+ e(x−x̄)/σ 2
∫

R

e−z2/21{z≥−√
t/(2σ)−x/(σ

√
t)}

× F0

(
σ
√

tz + x + t

2

)
ψ̃

(
0, σ

√
tz + x + t

2

)
dz√
2π

.

By the Lebesgue theorem, the first term of the right-hand side converges to 0
whereas the second term converges to e(x−x̄)/σ 2

. Replacing F0 by 1 in the above
computation, one obtains that the denominator in (20) converges to 1 + e(x−x̄)/σ 2

.
Therefore

∀x ∈ R lim
t→+∞Ft(x) = e(x−x̄)/σ 2

1 + e(x−x̄)/σ 2 .

Notice that in the same way, one may also obtain the limit of the density

pt(x) =
∫
R
((y + t/2 − x)/(σ 2t))e−(x−t/2−y)2/(2σ 2t)F0(y)ψ(0, y) dy/(σ

√
2πt)∫

R
e−(x− t

2 −y)2/(2σ 2t)ψ(0, y) dy/(σ
√

2πt)

− 1

σ 2

(∫
R

e−(x−t/2−y)2/(2σ 2t)F0(y)ψ(0, y) dy/(σ
√

2πt)∫
R

e−(x−t/2−y)2/(2σ 2t)ψ(0, y) dy(σ
√

2πt)

)2

.

One easily checks

∀x ∈ R lim
t→+∞pt(x) = 1

σ 2

(
e(x−x̄)/σ 2

1 + e(x−x̄)/σ 2 − e2(x−x̄)/σ 2

(1 + e(x−x̄)/σ 2
)2

)

= 1

4σ 2 cosh2((x − x̄)/2σ 2)
.

In order to prove Theorem 2.4, we are first going to check exponential conver-
gence of Ft to the cumulative distribution function F∞ of p∞. Let Gt = Ft −F∞.
Since for a random variable X with cumulative distribution function F , E(X) =∫ +∞

0 (1 − F(x)) dx − ∫ 0
−∞ F(x)dx, the equality of the expectations associated to

Ft and F∞ writes
∫
R

Gt(x) dx = 0. This very convenient expression of the link
between pt and p∞ is one main reason for first considering the convergence of Gt

to 0. In order to prove this convergence, we need the following result.
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LEMMA 2.6. Under the assumptions of Theorem 2.4, one has

∫
R

G2
t (x)

p∞(x)
dx ≤ c

∫
R

(
Gt(x)

p∞(x)

)′2
p∞(x) dx(21)

where c denotes the constant in the Poincaré inequality satisfied by p∞. Moreover

∫
R

(pt (x) − p∞(x))2

p∞(x)
dx

(22)

=
∫

R

(
Gt(x)

p∞(x)

)′2
p∞(x) dx + 2

σ 2

∫
R

Gt(x)2A′′(F∞)(x) dx

and ∫
R

Gt(x)2

p∞(x)
dx ≤ c̃

∫
R

(pt (x) − p∞(x))2

p∞(x)
dx.(23)

REMARK 2.7. When A is convex, (23) is a consequence of (22) and (21).

PROOF OF LEMMA 2.6. As
∫
R

Gt(x) dx = 0, (21) is the Poincaré inequality
satisfied by p∞ written for the function Gt/p∞.

Since ( Gt (x)
p∞(x)

)′ = G′
t (x)

p∞(x)
− Gt(x)p′∞(x)

p∞(x)2 , one has

∫
R

(
Gt(x)

p∞(x)

)′2
p∞(x) dx =

∫
R

(pt (x) − p∞(x))2

p∞(x)
dx −

∫
R

G2
t (x)

′
p′∞(x)

p2∞(x)
dx

+
∫

R

G2
t (x)p′∞(x)

2

p3∞(x)
dx

=
∫

R

(pt (x) − p∞(x))2

p∞(x)
dx +

∫
R

G2
t (x)p′′∞(x)

p2∞(x)
dx

−
∫

R

G2
t (x)p′∞(x)

2

p3∞(x)
dx.

Since p∞ solves (16), one easily deduces (22).
Writing G2

t (y) as

2
(

1{y≤0}
∫ y

−∞
Gt(pt − p∞)(x) dx − 1{y>0}

∫ +∞
y

Gt(pt − p∞)(x) dx

)
,

one obtains∫
R

G2
t

p∞
(x) dx = −2

∫
R

Gt(pt − p∞)(x)

∫ x

0

1

p∞(y)
dy dx.(24)
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By (15), and since 1
p∞ is bounded from below and above on each compact subset

of the real line,

∃C > 0,∀x ∈ R

∣∣∣∣
∫ x

0

1

p∞(y)
dy

∣∣∣∣ ≤ C

p∞(x)
.

Using the Cauchy–Schwarz inequality in (24), and inserting the latter bound, one
obtains∫

R

G2
t

p∞
(x) dx ≤ 2C

(∫
R

G2
t

p∞
(x) dx

)1/2(∫
R

(pt (x) − p∞(x))2

p∞(x)
dx

)1/2

.

One easily deduces (23). �

According to (23), the exponential convergence of
∫
R

(pt (x)−p∞(x))2

p∞(x)
dx to zero

is a stronger result than the exponential convergence stated in the next lemma.

LEMMA 2.8. Under the assumptions of Theorem 2.4, there is a positive con-

stant C such that if
∫
R

G2
0

p∞ (x) dx is small enough, then

∀t ≥ 0
∫

R

G2
t

p∞
(x) dx ≤ e−Ct

C

∫
R

G2
0

p∞
(x) dx.

PROOF. According to (14), one has σ 2

2 F ′′∞ + (A(F∞))′ = 0 which also writes
p′∞
p∞ = − 2

σ 2 A′(F∞). Combining these equations with (1), then using Young’s in-
equality, one easily obtains for ε > 0,

1

2

d

dt

∫
R

G2
t

p∞
(x) dx

= −σ 2

2

∫
R

(
Gt(x)

p∞(x)

)′2
p∞(x) dx

(25)

−
∫

R

(
A(Ft) − A(F∞) − A′(F∞)Gt

)
(x)

(
Gt(x)

p∞(x)

)′
dx

≤
(
ε − σ 2

2

)∫
R

(
Gt

p∞
(x)

)′2
p∞(x) dx + ‖A′′‖2∞

16ε

∫
R

G4
t (x)

p∞(x)
dx.

Since

‖Gt‖2∞ ≤
(∫

R

|pt(x) − p∞(x)|√
p∞(x)

√
p∞(x) dx

)2

(26)

≤
∫

R

(pt (x) − p∞(x))2

p∞(x)
dx,
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|Gt | is bounded by 1 and p∞A′′(F∞) = − 2
σ 2 A×A′′(F∞) is bounded, one deduces

from (22) that

‖Gt‖2∞ ≤ 4

σ 4 ‖AA′′‖∞
∫

R

G2
t

p∞
(x) dx +

(
1 ∧

∫
R

(
Gt

p∞
(x)

)′2
p∞(x) dx

)
.

Inserting this bound in (25) and using Young’s inequality, one deduces that for
η > 0,

1

2

d

dt

∫
R

G2
t

p∞
(x) dx

≤
(
ε − σ 2

2

)∫
R

(
Gt

p∞
(x)

)′2
p∞(x) dx

+ ‖AA′′‖∞‖A′′‖2∞
4εσ 4

(∫
R

G2
t

p∞
(x) dx

)2

+ η

(
1 ∧

∫
R

(
Gt

p∞
(x)

)′2
p∞(x) dx

)2

+ ‖A′′‖4∞
1024ε2η

(∫
R

G2
t

p∞
(x) dx

)2

≤
(
ε + η − σ 2

2

)∫
R

(
Gt

p∞
(x)

)′2
p∞(x) dx

+
(‖AA′′‖∞‖A′′‖2∞

4εσ 4 + ‖A′′‖4∞
1024ε2η

)(∫
R

G2
t

p∞
(x) dx

)2

.

One easily concludes with (21) and Lemma 2.10 below. �

REMARK 2.9. (i) After reading this proof, one may wonder whether one could
replace the upper bound in (25) by(

ε − σ 2

2

)∫
R

(
Gt

p∞
(x)

)′2
p∞(x) dx + ‖A′′‖2∞

16ε

∫
R

G2
t

p∞
(x) dx

using ‖Gt‖∞ ≤ 1. If the constant c in the Poincaré inequality (21) was smaller

than σ 4

‖A′′‖2∞
, one could deduce exponential convergence of

∫
R

G2
t

p∞ (x) dx to 0 even

for large values of
∫
R

G2
0

p∞ (x) dx. In case A(x) = 1
2(x2 − x) (see Example 2.5), one

has ‖A′′‖∞ = 1 and

c ≥
∫

R

x2p∞(x) dx −
(∫

R

xp∞(x) dx

)2

=
∫ +∞

0

x2

2σ 2 cosh2(x/(2σ 2))
dx

> 4σ 4
∫ +∞

0
y2e−2y dy = σ 4 = σ 4

‖A′′‖2∞
,

and this approach does not work.
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(ii) Convexity of A implies nonnegativity of the term A(Ft) − A(F∞) −
A′(F∞)Gt which appears in the right-hand side of the first displayed equality in
the proof. One may wonder if one could exploit this property to obtain exponential
convergence of pt to p∞ even if p0 is not close to p∞. We have not been able to
do so.

PROOF OF THEOREM 2.4. By (14), p′∞ = − 2
σ 2 A′(F∞)p∞ and ‖p∞‖∞ ≤

2‖A‖∞
σ 2 . The Fokker–Planck equation (13) for pt ensures that

1

2

d

dt

∫
R

(pt (x) − p∞(x))2

p∞(x)
dx

= −σ 2

2

∫
R

(
pt

p∞
(x)

)′2
p∞(x) dx

−
∫

R

(
A′(Ft ) − A′(F∞)

)
(x)(pt − p∞)(x)

(
pt

p∞
(x)

)′
dx

−
∫

R

(
A′(Ft ) − A′(F∞)

)
(x)p∞(x)

(
pt

p∞
(x)

)′
dx.

Then, using Young’s inequality and (26), one easily checks that for ε, η > 0,

1

2

d

dt

∫
R

(pt (x) − p∞(x))2

p∞(x)
dx

≤
(
η + ε − σ 2

2

)∫
R

(
pt

p∞
(x)

)′2
p∞(x) dx

+ 1

4ε

∫
R

(
A′(Ft )(x) − A′(F∞)(x)

)2 (pt (x) − p∞(x))2

p∞(x)
dx

+ 1

4η

∫
R

(
A′(Ft )(x) − A′(F∞)(x)

)2
p∞(x) dx

≤
(
η + ε − σ 2

2

)∫
R

(
pt

p∞
(x)

)′2
p∞(x) dx

+ ‖A′′‖2∞
4ε

(∫
R

(pt (x) − p∞(x))2

p∞(x)
dx

)2

+ ‖A′′‖2∞
4η

× 4‖A‖2∞
σ 4

∫
R

G2
t

p∞
(x) dx.

By (23) and Lemma 2.8, for
∫
R

(p0(x)−p∞(x))2

p∞(x)
dx small enough, the last term of
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the r.h.s. is smaller than c̃e−Ct

C

∫
R

(p0(x)−p∞(x))2

p∞(x)
dx. Since

∫
R

(
pt

p∞ (x))′2p∞(x) dx

is greater than 1
c

∫
R

(pt (x)−p∞(x))2

p∞(x)
dx, one easily concludes by Lemma 2.10 below.

�

LEMMA 2.10. Assume that u : R+ → R+ satisfies

∀t ≥ 0
du

dt
(t) ≤ βu(t)

(
u(t) − α

) + γ e−δt

for some constants α,β, δ > 0 and γ ≥ 0.
If γ = 0 and u(0) < α, then

∀t ≥ 0 u(t) ≤ αu(0)e−αβt

α + u(0)(e−αβt − 1)
.

If u(0) < α
2 and γ <

βα2

4 , then u(t) converges to 0 exponentially fast as
t → +∞.

PROOF. When γ = 0, as long as u(t) ∈ (0, α), one has

du

dt
(t)

(
1

u(t)
+ 1

α − u(t)

)
≤ −αβ

and after integration one obtains the desired estimation. Since the upper bound is
not greater than u(0) and u(t) = 0 ⇒ ∀s ≥ t, u(s) = 0 one easily concludes.

Now when γ ∈ (0,
βα2

4 ), one has βa(α − a) = γ for some a ∈ (0, α
2 ) and

d

dt

(
u(t) ∧ α

2
− a

)+
= 1{a<u(t)<α/2}

du

dt
(t) ≤ 0.

Hence when u(0) < α
2 , ∀t ≥ 0, u(t) ≤ u(0) ∨ a and

du

dt
(t) ≤ −β

(
α − u(0) ∨ a

)
u(t) + γ e−δt .

For v(t) = eβ(α−u(0)∨a)tu(t) one deduces

dv

dt
(t) ≤ γ e(β(α−u(0)∨a)−δ)t

and one concludes by integration of this inequality that u(t) is bounded by
C(1 + t)e−[(β(α−u(0)∨a))∧δ]t . �

2.2. The particle system (4). Let us suppose that A(1) = 0 and that the first-
order moment associated with the initial probability measure m is defined and
equal to x̄. As in the case of the granular media equation considered by Malrieu
[12, 13], the direction (1,1, . . . ,1) is quite singular for the particle system. Indeed,

d(X
1,n
t + · · · + X

n,n
t ) = σ

n∑
i=1

dBi
t ,
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which prevents the law of (X
1,n
t , . . . ,X

n,n
t ) from converging as t → +∞. Follow-

ing [12, 13], one introduces the hyperplane Mn = {y = (y1, . . . , yn) ∈ R
n :y1 +

· · · + yn = nx̄} orthogonal to this singular direction and denotes by P̄ the orthog-
onal projection on Mn and by P the orthogonal projection on {y = (y1, . . . , yn) ∈
R

n :y1 + · · · + yn = 0}. Since
∑n

i=1 an(i) = n(A(1) − A(0)) = 0, the orthogonal

projection (Y
i,n
t = x̄ + X

i,n
t − 1

n

∑n
j=1 X

j,n
t )1≤i≤n of the original particle system

on Mn is a diffusion on this hyperplane solving

dY
i,n
t = σ

n − 1

n
dBi

t − σ

n

∑
j �=i

dB
j
t − an

(
n∑

j=1

1{Y j,n
t ≤Y

i,n
t }

)
dt.(27)

Propagation of chaos for the projected system is a consequence of the following
estimate.

PROPOSITION 2.11. Assume that A is convex, such that A′ is Lipschitz con-
tinuous with constant K and A(1) = 0 and that the initial measure m has a finite
second order moment. Then, ∀i ∈ {1, . . . , n},∀t ≥ 0,

E[(Xi
t − Y

i,n
t )2] ≤ 1

n

[
K2t2

6
+ E[(X0 − x̄)2] + σ 2t + 2

∫ t

0

∫
R

A(Fs(x)) dx ds

]
,

where Xi is solution of (10).

PROOF. Denoting Xn
1(t) = (X1

t , . . . ,X
n
t ), X

n,n
1 (t) = (X

1,n
t , . . . ,X

n,n
t ) and

Y
n,n
1 (t) = (Y

1,n
t , . . . , Y

n,n
t ), one has

|Xn
1(t) − Y

n,n
1 (t)|2 = |Xn

1(t) − P̄X
n,n
1 (t)|2(28)

= |Xn
1(t) − P̄Xn

1(t)|2 + |P̄Xn
1(t) − P̄X

n,n
1 (t)|2

≤ 1

n

(
n∑

i=1

(Xi
t − x̄)

)2

+
n∑

i=1

(Xi
t − X

i,n
t )2.(29)

Since (Xt − x̄)2 ≤ 3((X0 − x̄)2 + σ 2B2
t + ‖A′‖2∞t2), the variable Xt is square

integrable. As

∀x > 0 |(x − x̄)A(Ft (x))| ≤ ‖A′‖∞
(
1 − Ft(x)

)
(x + |x̄|)

≤ ‖A′‖∞
(

E(X2
t )

x
+ |x̄|(1 − Ft(x)

))
,

one has limx→+∞(x − x̄)A(Ft (x)) = 0. Similarly (x − x̄)A(Ft (x)) also vanishes
as x → −∞ and

∫
R
(x − x̄)A′(Ft (x))pt (x) dx = − ∫

R
A(Ft(x)) dx. Computing

(Xt − x̄)2 by Itô’s formula and taking expectations, one deduces that

E
(
(Xt − x̄)2) = E

(
(X0 − x̄)2) + σ 2t + 2

∫ t

0

∫
R

A(Fs(x)) dx ds.
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Moreover, by (3), E(Xt − x̄) = −A(1)t = 0. One concludes by taking expectations
in (29) then using Theorem 1.5 and exchangeability of the particles. �

Let us now study the long time behavior of the projected particle system.

THEOREM 2.12. Assume that the function A is uniformly convex on [0,1]
with constant α [see (11)] and such that A(1) = 0. Then, the probability measure
with density

pn∞(y) = 1

Zn

e−2/σ 2 ∑n
i=1 an(i)y(i)

with respect to the Lebesgue measure dy on Mn is invariant for the projected
dynamics (27). Here y(1) ≤ y(2) ≤ · · · ≤ y(n) denotes the increasing reordering of

the coordinates of y = (y1, . . . , yn) and Zn = ∫
Mn

e
− 2

σ2
∑n

i=1 an(i)y(i) dy. Moreover,

if (Y
1,n
0 , . . . , Y

n,n
0 ) admits a symmetric density pn

0(y) with respect to the Lebesgue

measure on Mn, then for all t ≥ 0, (Y
1,n
t , . . . , Y

n,n
t ) admits a symmetric density

pn
t (y) which is such that

∀t ≥ 0
∫
Mn

(
pn

t

pn∞
(x) − 1

)2

pn∞(x) dx

(30)

≤ e−λnt
∫
Mn

(
pn

0

pn∞
(x) − 1

)2

pn∞(x) dx

where the sequence (λn)n is bounded from below by α2

123σ 2 .

In order to deduce long time properties of the nonlinear process from long time
properties of the projected system, it is not restrictive to assume that pn

0 is sym-
metric (see Remark 2.15 to get some intuition about this hypothesis). But the lack
of uniformity in time of the estimation given in Proposition 2.11 is a real problem.

REMARK 2.13. In case n = 2, the process Yt = Y
2,2
t − Y

1,2
t solves the sto-

chastic differential equation

dYt = σ(dB2
t − dB1

t ) − sgn(Yt )
(
a2(2) − a2(1)

)
dt

and the density of Yt converges exponentially to a2(2)−a2(1)

2σ 2 e(−(a2(2)−a2(1))/σ 2)|y|

when the density of Y0 is close enough to this limit. As (Y
1,2
t , Y

2,2
t ) = x +

1
2(−Zt,Zt), one easily deduces exponential convergence of the density of

(Y
1,2
t , Y

2,2
t ) on the straight line M2 to a2(2)−a2(1)√

2σ 2 e−(a2(2)/σ 2)2y(2)e(a2(1)/σ 2)(−2y(1)).

The proof of Theorem 2.12 relies on the following Poincaré inequality.
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PROPOSITION 2.14. Under the assumptions of Theorem 2.12, the density

p̃n∞(y) = n!1{y1≤y2≤···≤yn}
Zn

e−(2/σ 2)
∑n

i=1 an(i)yi

on Mn is such that for f : Rn → R regular enough,

∫
Mn

(
f (y) −

∫
Mn

f (y)p̃n∞(y) dy

)2

p̃n∞(y) dy

(31)

≤ σ 2

λn

∫
Mn

|P∇f (y)|2p̃n∞(y) dy

where the sequence (λn)n is bounded from below by α2

123σ 2 .

PROOF OF THEOREM 2.12. Let us first check the following Green formula:
for f : Rn → R and u : Rn → R

n regular enough,∫
Mn

f ∇ · (Pu)(y) dy = −
∫
Mn

P∇f · (Pu)(y) dy.(32)

Let 1 ∈ R
n denote the vector with all coordinates equal to 1. For ϕ : R → R and

v : Rn → R
n, one has∫

R

ϕ
(√

nz
) ∫

Mn

∇ · (P v)

(
y + z1√

n

)
dy dz

=
∫

Rn
ϕ(x1 + · · · + xn − nx̄)∇ · (P v)(x) dx

= −
∫

Rn
ϕ′(x1 + · · · + xn − nx̄)1 · (P v)(x) dx = 0.

The function ϕ being arbitrary, one deduces that
∫
Mn

∇ · (P v)(y) dy = 0. Since

∇ · P(f u) = ∇f · (Pu) + f ∇ · (Pu) = P∇f · (Pu) + f ∇ · (Pu), (32) follows
for the choice v = f u.

By weak uniqueness for (27), when (Y
1,n
0 , . . . , Y

n,n
0 ) has a symmetric density

pn
0 with respect to the Lebesgue measure on Mn, the particles Y i,n, i ∈ {1, . . . , n}

are exchangeable and for each t ≥ 0, (Y
1,n
t , . . . , Y

n,n
t ) has a symmetric density pn

t .
By composition with the projection P̄ , one obtains an extension of pn

t on R
n that

we still denote by pn
t . Since

∑n
i=1 an(i) = n(A(1) − A(0)) = 0, setting

b(y) = ∑
τ∈Sn

1{yτ(1)≤yτ(2)≤···≤yτ(n)}

⎛
⎜⎜⎜⎝

can(τ
−1(1))

an(τ
−1(2))
...

an(τ
−1(n))

⎞
⎟⎟⎟⎠ ,
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one has Pb = b and the infinitesimal generator associated with (27) is Lψ = σ 2

2 ∇ ·
(P∇ψ) − Pb · ∇ψ . Computing dψ(Y

1,n
t , . . . , Y

n,n
t ) by Itô’s formula and taking

expectations then using (32), one obtains∫
Mn

ψ(y)∂tp
n
t (y) dy =

∫
Mn

Lψ(y)pn
t (y) dy

=
∫
Mn

ψ(y)∇ · P
(

σ 2

2
∇pn

t + bpn
t

)
(y) dy.

Hence the densities solve the Fokker–Planck equation

∂tp
n
t = ∇ · P

(
σ 2

2
∇pn

t + bpn
t

)
.

Now using (32) and b = −σ 2∇pn∞
2pn∞

, one deduces

∂t

∫
Mn

(
pn

t

pn∞
(y) − 1

)2

pn∞(y) dy

= 2
∫
Mn

pn
t

pn∞
(y)∇ · P

(
σ 2

2
∇pn

t + bpn
t

)
(y) dy

(33)

= −σ 2
∫
Mn

P∇ pn
t

pn∞
(y) · P ∇pn

t + (2bpn
t /σ 2)

pn∞
(y)pn∞(y) dy

= −σ 2
∫
Mn

∣∣∣∣P∇ pn
t

pn∞
(y)

∣∣∣∣
2

pn∞(y) dy.

By symmetry of the function pn
t

pn∞
and (31),

σ 2
∫
Mn

∣∣∣∣P∇ pn
t

pn∞
(y)

∣∣∣∣
2

pn∞(y) dy = σ 2
∫
Mn

∣∣∣∣P∇ pn
t

pn∞
(y)

∣∣∣∣
2

p̃n∞(y) dy

≥ λn

∫
Mn

(
pn

t

pn∞
(y) − 1

)2

p̃n∞(y) dy

≥ λn

∫
Mn

(
pn

t

pn∞
(y) − 1

)2

pn∞(y) dy

and the conclusion follows. �

Notice that the computation in (33) is formal and can only be justified when pn
t

is a smooth solution of the Fokker–Planck equation.

REMARK 2.15. Let us denote by Y
(1),n
t ≤ · · · ≤ Y

(n),n
t the increasing reorder-

ing of (Y
1,n
t , . . . , Y

n,n
t ). According to [9], the reordered system is a diffusion
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process normally reflected at the boundary of the closed convex set {y ∈ Mn :y1 ≤
y2 ≤ · · · ≤ yn}. More precisely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY
(i),n
t = σ dβi

t − an(i) dt + (γ i
t − γ i+1

t ) d|K|t ,(∫ t

0
(γ i

s − γ i+1
s ) d|K|s,1 ≤ i ≤ n

)
t≥0

is a continuous process

with finite variation equal to |K|t ,
γ 1 ≡ γ n+1 ≡ 0,

d|K|t a.e. ∀2 ≤ i ≤ n,γ i
t ≥ 0 and γ i

t

(
Y

(i),n
t − Y

(i−1),n
t

) = 0,

(34)

where (β1, . . . , βn) is a Brownian motion such that 〈βi,βj 〉t
t

= 1{i=j} − 1/n.

If the initial condition (Y
(1),n
0 ≤ · · · ≤ Y

(n),n
0 ) admits a density p̃n

0 with respect

to the Lebesgue measure on Mn, then the law of (Y
(1),n
t , . . . , Y

(n),n
t ) is the image

by increasing reordering of the symmetric law of the solution (Y
1,n
t , . . . , Y

n,n
t ) to

(27) starting from (Y
1,n
0 , . . . , Y

n,n
0 ) with density pn

0 obtained by symmetrization of

p̃n
0 . Therefore (Y

(1),n
t , . . . , Y

(n),n
t ) has the density p̃n

t (y) = n!pn
t (y)1{y1≤···≤yn} and

(30) holds with pn replaced by p̃n.

In order to prove Proposition 2.14, we take advantage of the specific form of the
density p̃n∞. Remarking that p̃n∞ is the density of the image of a vector of indepen-
dent exponential random variables by a linear transformation, one first obtains the
following result.

LEMMA 2.16. The Poincaré inequality (31) holds with the constant λn

greater than α2

4σ 2 multiplied by the smallest eigenvalue λ̃n of the (n − 1) × (n − 1)

matrix Qn defined by ∀1 ≤ i, j ≤ n − 1, Qn
ij = bn(i)L

n
ij bn(j) where

bn(i) = i(n − i)

n
and Ln =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 −1 2 −1 0
0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The last statement in Proposition 2.14 then follows from the next lemma which
is obtained by interpreting Qn as a finite element rigidity matrix associated with
the operator −x(1 − x)∂xx(x(1 − x).) acting on functions on (0,1). The Hardy
inequality stated in Lemma 2.18 ensures that it is enough to bound the small-
est eigenvalue of the corresponding mass matrix from below. The resort to this
one-dimensional Poincaré-like inequality in order to estimate the constant in the
n-dimensional Poincaré inequality (31) is striking.
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LEMMA 2.17. The sequence (λ̃n)n is bounded from below by 1/(16 × 27).

PROOF OF LEMMA 2.16. Let f be such that
∫
Mn

f (y)p̃n∞(y) dy = 0. Since
the left-hand side in the Poincaré inequality (31) only depends on the restric-
tion of f to Mn, one may assume that ∀x ∈ R

n, f (x) = f (P̄ x), which ensures
that for (x1, . . . , xn) ∈ R

n such that x1 + · · · + xn = 0, f (x̄ + x1, . . . , x̄ + xn) =
f (x1, . . . , xn) and P∇f (x̄ + x1, . . . , x̄ + xn) = ∇f (x1, . . . , xn). Therefore the
Poincaré inequality (31) is equivalent to I (f ) ≤ σ 2

λn
I (|∇f |) where

I (g) =
∫

Rn−1
(g2p̃n∞)

(−(x2 + · · · + xn), x
n
2
)
dxn

2 with xn
2 = (x2, . . . , xn).

To integrate the coordinates over independent domains, we make the change of
variables zn

2 = Mxn
2 where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 . . . . . . 1
−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0
...

...
...

...
...

...

0 . . . 0 −1 1 0
0 . . . . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

One easily checks that for 2 ≤ i ≤ n, z2 +· · ·+ zi = x2 +· · ·+ xn + xi and deduce
that (n − 1)z2 + (n − 2)z3 + · · · + 2zn−1 + zn = n(x2 + · · · + xn). Therefore

M−1 = 1

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 − n 3 − n 4 − n . . . −1
1 2 3 − n 4 − n . . . −1
1 2 3 4 − n . . . −1
...

...
...

...
...

...

1 2 3 . . . n − 2 −1
1 2 3 . . . . . . n − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and denoting

N =
⎛
⎝ 1 − n

n

2 − n

n
. . . − 2

n
−1

n
M−1

⎞
⎠ ,

one has

I (f ) = n!
Zn

∫
(R+)n−1

f 2(Nzn
2)e(−2/σ 2)

∑n
i=2 βn(i)zi

dzn
2

|M|
where

βn(i) = 1

n

[
(i − 1)

(
an(i) + · · · + an(n)

)

− (n + 1 − i)
(
an(1) + · · · + an(i − 1)

)]
= −nA

(
(i − 1)/n

)
> 0.
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Here |M| denotes the determinant of the matrix M ; it is equal to n by an easy
computation. The one-dimensional exponential density with parameter c satisfies
the Poincaré inequality with optimal constant 4/c2. Tensorizing this inequality (see
Chapters 3 and 6 in [1] for further details), one obtains

I (f ) ≤ n!
Zn

∫
(R+)n−1

n∑
j=2

σ 4

β2
n(j)

(
n∑

k=1

Nkj−1∂kf (Nzn
2)

)2

e(−2/σ 2)
∑n

i=2 βn(i)zi
dzn

2

|M|

=
∫

Rn−1

n∑
k,l=1

n∑
j=2

σ 4

β2
n(j)

Nkj−1Nlj−1∂kf ∂lf p̃n∞
(−(x2 + · · · + xn), x

n
2
)
dxn

2 .

Since A is uniformly convex with constant α and A(0) = A(1) = 0,

βn(i) = −nA
(
(i − 1)/n

) ≥ −nα

2
× i − 1

n

(
i − 1

n
− 1

)
= α

2
bn(i − 1).

Therefore

I (f ) ≤ 4σ 4

α2

∫
Rn−1

n∑
k,l=1

n−1∑
j=1

NkjNlj

b2
n(j)

∂kf ∂lf p̃n∞
(−(x2 + · · · + xn), x

n
2
)
dxn

2

≤ 4σ 2

α2λ̃n

I (|∇f |)

where λ̃n denotes the inverse of the largest eigenvalue of the symmetric positive
semidefinite matrix N̄N̄∗ defined by N̄ij = Nij

bn(j)
. To prove Proposition 2.14 with

a possibly modified lower bound, it is enough to check that the largest eigenvalue
is bounded from above uniformly in n. Unfortunately, the trace of the matrix can
be bounded from below by a positive constant multiplied by log(n). Therefore one
has to be more precise.

Let w be an eigenvector associated with the largest eigenvalue: N̄N̄∗w = 1
λ̃n

w.

Of course N̄∗w is nonzero and multiplying the previous equality by N̄∗, one ob-
tains that N̄∗w is an eigenvector of N̄∗N̄ associated with the eigenvalue 1

λ̃n
. By

symmetry, 1
λ̃n

is also the largest eigenvalue of N̄∗N̄ . We are going to check that

the latter matrix is invertible with inverse equal to Qn in order to conclude the
proof. Because of the definition of N̄ , it is enough to check that N∗N is invertible
with inverse equal to Ln.

By construction of the matrix N , for the equation Nzn
2 = x where x ∈ R

n to
have a solution zn

2 , it is necessary and sufficient that x1 = −(x2 + · · · + xn) and
then zn

2 = Mxn
2 .
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Now for fixed y ∈ R
n−1, let us find xn

2 ∈ R
n−1 such that N∗x = y where x =

−(x2 + · · · + xn, x
n
2 ). This equation writes⎛

⎜⎜⎜⎝(M−1)∗ −

⎛
⎜⎜⎜⎝

N11 N11 . . . N11
N12 N12 . . . N12
...

...
...

...

N1n−1 N1n−1 . . . N1n−1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠xn

2 = y.

One easily checks that the (n − 1) × (n − 1) matrix in the left-hand side is equal
to⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

...
...

0 . . . 0 1 1
0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with inverse R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
...

...
...

...
...

...

0 . . . 0 1 −1 0
0 . . . 0 0 1 −1
0 . . . 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Combining xn
2 = Ry with the solution of the previous problem, one obtains that

the unique solution of the equation N∗Nzn
2 = y is zn

2 = MRy. One concludes by
checking that the matrix MR is equal to Ln. �

PROOF OF LEMMA 2.17. For i ∈ {1, . . . , n − 1}, the functions

ui(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ (0,1)
∖[

i − 1

n
,
i + 1

n

]
,

i(n − i)(x − (i − 1)/n)√
nx(1 − x)

, if x ∈
[
i − 1

n
,

i

n

]
,

i(n − i)((i + 1)/n − x)√
nx(1 − x)

, if x ∈
[

i

n
,
i + 1

n

]
,

are such that

∀i, j ∈ {1, . . . , n − 1} Qn
ij =

∫ 1

0

(
x(1 − x)ui(x)

)′(
x(1 − x)uj (x)

)′
dx.

By the Hardy inequality stated in Lemma 2.18 below, the smallest eigenvalue of
the matrix Qn is greater than the smallest eigenvalue of the (n − 1) × (n − 1)

tridiagonal matrix Rn
ij = ∫ 1

0 ui(x)uj (x) dx divided by 16.

For i ∈ {1, . . . , n − 2}, let rn
i = ∫ (i+1)/n

i/n ui(ui − ui+1)(x) dx and

rn
n−1 =

∫ 1

(n−1)/n
u2

n−1(x) dx = (n − 1)2

n

∫ 1

(n−1)/n

1

x2 dx = n − 1

n
.

Using the change of variables y = 1 − x, one easily checks that

∀i ∈ {1, . . . , n − 1} Rn
ii − Rn

ii−1 − Rn
ii+1 = rn

i + rn
n−i ,
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where by convention Rn
10 = Rn

n−1n = 0. We are going to prove that

∀n ≥ 3 ∀i ∈ {2, . . . , n − 3} rn
i ≥ 1

27 ,

and that rn
1 and rn

n−2 are nonnegative. For y ∈ R
n−1, one deduces that

y∗Rny =
n−1∑
i=1

Rn
iiy

2
i + 2

n−2∑
i=1

Rn
ii+1yiyi+1

=
n−1∑
i=1

(Rn
ii − Rn

ii−1 − Rn
ii+1)y

2
i +

n−2∑
i=1

Rn
ii+1(yi + yi+1)

2 ≥ |y|2
27

and the conclusion follows.
Let us first suppose that i ≤ �n

2� − 1, which ensures that the function f (x) =
x2(1 − x)2 is increasing on [i/n, (i + 1)/n]. Let g(x) = ui(ui − ui+1)(x). One
easily checks that∫ (i+1)/n

i/n
g(x) dx = i2(n − i)2

n4

(
1

3
− (i + 1)(n − i − 1)

6i(n − i)

)

≥
⎧⎨
⎩

0, if i = 1,
i2(n − i)2

12n4 , if i ≥ 2.

Since there is some xi ∈ [i/n, (i + 1)/n] such that the function g(x) is non-
negative on [i/n, xi] then nonpositive on [xi, (i + 1)/n], and f is positive and
increasing, one deduces that for all x ∈ [i/n, (i + 1)/n], ∫ x

i/n
g(y)
f (y)

dy ≥ 0. This
ensures that ∀x ∈ [i/n, (i + 1)/n]

d

dx

(
f (x)

∫ x

i/n

g(y)

f (y)
dy

)
= f ′(x)

∫ x

i/n

g(y)

f (y)
dy + g(x) ≥ g(x).

Therefore

rn
i =

∫ (i+1)/n

i/n

g(y)

f (y)
dy ≥ 1

f ((i + 1)/n)

∫ (i+1)/n

i/n
g(y) dy

≥
⎧⎨
⎩

0, if i = 1,
i2(n − i)2

12(i + 1)2(n − i − 1)2 ≥ 1

27
, if i ≥ 2.

Let us now suppose that i ≥ �n+1
2 � so that the function f is decreasing on

[i/n, (i + 1)/n]. We deduce that

rn
i ≥ 1

f (i/n)

∫ (i+1)/n

i/n
(f u2

i )(x) dx

− 1

f ((i + 1)/n)

∫ (i+1)/n

i/n
(f uiui+1)(x) dx
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= 1

3
− i(n − i)

6(i + 1)(n − i − 1)

and the left-hand side is greater than 1/12 for i ≤ n − 3 and nonnegative for i =
n − 2.

We still have to deal with the case n odd and i = (n − 1)/2. Then, f is not
monotonic on In = [i/n, (i+1)/n] = [1/2−1/2n,1/2+1/2n]. But by symmetry,

rn
(n−1)/2 = (n − 1)2(n + 1)2

16n

∫ 1/2+1/2n

1/2−1/2n

(1/2 + 1/2n − x)(1 − 2x)

x2(1 − x)2 dx

= (n − 1)2(n + 1)2

32n

∫ 1/2+1/2n

1/2−1/2n

(1 − 2x)2

x2(1 − x)2 dx

≥ (n − 1)2(n + 1)2

2n

∫ 1/2+1/2n

1/2−1/2n
(1 − 2x)2 dx = (n2 − 1)2

6n4 ,

which completes the proof. �

LEMMA 2.18. For all u ∈ L2(0,1) such that the distribution derivative
(x(1 − x)u(x))′ belongs to L2(0,1),∫ 1

0
u2(x) dx ≤ 16

∫ 1

0

((
x(1 − x)u(x)

)′)2
dx.

PROOF. For v a C∞ function with compact support on (0,1), by the integra-
tion by parts formula,∫ 1/2

0

v2(x)

x2(1 − x)2 dx ≤ 4
∫ 1/2

0

v2(x)

x2 dx = 8
(∫ 1/2

0

vv′(x)

x
dx − v2(1/2)

)

≤ 8
(∫ 1/2

0

v2(x)

x2 dx

)1/2(∫ 1/2

0
(v′(x))2 dx

)1/2

.

Dealing with the integral on (1/2,1) in a symmetric way, one deduces∫ 1

0

v2(x)

x2(1 − x)2 dx ≤ 16
∫ 1

0
(v′(x))2 dx.(35)

Now approximating v ∈ H 1
0 (0,1) by a sequence of C∞ functions with compact

support converging in the H 1 norm and almost everywhere, one deduces with the
Fatou lemma that the inequality still holds for v ∈ H 1

0 .
For u satisfying the hypotheses in the lemma, v(x) = x(1 − x)u(x) belongs to

H 1(0,1). According to Theorem VIII.2, page 122 of [4], v admits a representative
continuous on [0,1] still denoted by v. Moreover, since u(x) = v(x)

x(1−x)
belongs

to L2(0,1), necessarily, v(0) = v(1) = 0. By Theorem VIII.11, page 133 of [4],
v belongs to H 1

0 (0,1) and the conclusion follows from (35). �
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