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BROWNIAN MOVING AVERAGES HAVE CONDITIONAL
FULL SUPPORT

BY ALEXANDER CHERNY

Moscow State University

We prove that any Brownian moving average

Xt =
∫ t

−∞
(
f (s − t) − f (s)

)
dBs, t ≥ 0,

satisfies the conditional full support condition introduced by Guasoni, Rá-
sonyi and Schachermayer [Ann. Appl. Probab. 18 (2008) 491–520].

1. Introduction.

1.1. Overview. It is well known (see Soner, Shreve and Cvitanić [8], Leven-
tal and Skorokhod [6], Cherny [2]) that in the Black–Scholes–Merton model with
proportional transaction costs the superreplication price of a European call option
is equal to its trivial upper bound. The same is true for any European type contin-
gent claim in this model (see Cvitanić, Pham and Touzi [3]). In the recent paper
[4], Guasoni, Rásonyi and Schachermayer proved that the same result holds for a
much wider class of models satisfying only a minor geometric condition termed
conditional full support and denoted CFS for brevity (see the paper by Kabanov
and Stricker [5] for further research in this direction).

The CFS condition is as follows. We consider a filtered probability space
(�,F , (Ft )t∈[0,T ],P) and a continuous (Ft )-adapted process (Xt)t∈[0,T ] mean-
ing the discounted price (or the logarithm of the discounted price) of an asset. The
CFS condition requires that, for any t ∈ [0, T ],

supp Law(Xu; t ≤ u ≤ T | Ft ) = CXt [t, T ] a.s.,

where Cx[t, T ] denotes the space of continuous real-valued functions on [t, T ]
with f (t) = x and “supp” denotes the support (the conditional distribution here is
viewed as a measure on the space C[t, T ] of continuous functions on [t, T ]).1
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1We deal with real-valued price processes, while Guasoni, Rásonyi and Schachermayer deal with

strictly positive processes. The relationship between the two definitions is trivial: a process X satisfies
our version of CFS if and only if eX satisfies the CFS condition from [4].
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1.2. Goal of the paper. As motivated by the above discussion, the CFS con-
dition is interesting and important. The paper [4] provides several examples of
processes satisfying this condition. One of them is the fractional Brownian mo-
tion (FBM). It is well known (see Mandelbrot and Van Ness [7]) that FBM is a
Brownian moving average, that is, it can be represented as

Xt =
∫ t

−∞
(
f (s − t) − f (s)

)
dBs, t ∈ [0, T ],(1.1)

with a certain function f : R → R such that f = 0 on R+ and
∫ t
−∞(f (s − t) −

f (s))2 ds < ∞ for any t ≥ 0. Let us remark that the class of moving averages
includes processes that are, in a sense, more convenient for financial modeling
than FBM; for example, FBM is not a semimartingale (except for two particular
cases), while a moving average is a semimartingale provided that f is absolutely
continuous and its derivative is square integrable on (−∞,0] (see Cheridito [1]).

The main result of the paper is

THEOREM 1.1. Let f : R → R be a function such that f = 0 on R+,∫ t
−∞(f (s − t)−f (s))2 ds < ∞ for any t ≥ 0, and f is not zero on a set of positive

Lebesgue measure. Then the process X defined by (1.1) satisfies the CFS condition
with respect to its natural filtration.

We also consider the CFS condition for general Gaussian processes. In dis-
crete time it is easy to see that the CFS condition (appropriately redefined for the
discrete-time case) is satisfied provided that X is a Gaussian process such that
Var(Xt − Xs | Xu;u ≤ s) > 0 for any s < t (by Var we denote the variance). This
might seem a bit surprising, but in continuous time the corresponding result does
not hold; see Example 3.1.

2. Proof of Theorem 1.1. Let T > 0 and let f ∈ L2[−T ,0]. For g ∈ L2[0, T ],
we denote by f ∗ g the convolution of f and g restricted to [0, T ], that is, the
function

(f ∗ g)(t) =
∫ t

0
f (s − t)g(s) ds, t ∈ [0, T ].

LEMMA 2.1. Let h ∈ L2[−T ,0] satisfy the condition
∫ 0
−ε |h(t)|dt > 0 for any

ε > 0. Then the space {h ∗ g :g ∈ L2[0, T ]} is dense in C0[0, T ].

PROOF. If g is absolutely continuous with a square-integrable derivative and
g(0) = 0, then (h ∗ g)′ = h ∗ g′. Thus, if a function h ∗ g approximates a function
ϕ ∈ L2[0, T ] in the L2-sense, then the function h ∗ G, where G(t) = ∫ t

0 g(s) ds,
approximates the function �(t) = ∫ t

0 ϕ(s) ds in the C0[0, T ]-sense. So, it is suffi-
cient to prove that the space {h ∗ g :g ∈ L2[0, T ]} is dense in L2[0, T ].
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Suppose that this is not true. Then there exists a function ϕ ∈ L2[0, T ] not iden-
tically equal to zero and such that∫ T

0
(h ∗ g)(t)ϕ(t) dt = 0 ∀g ∈ L2[0, T ].

This means that

0 =
∫ T

0

∫ t

0
h(s − t)g(s)ϕ(t) ds dt

=
∫ T

0

∫ T

s
h(s − t)g(s)ϕ(t) dt ds ∀g ∈ L2[0, T ],

which, in turn, is equivalent to the property∫ T

s
h(s − t)ϕ(t) dt = 0 ∀s ∈ [0, T ].

But this is impossible due to the Titchmarsh convolution theorem (see [9], Chap-
ter VI). The obtained contradiction yields the desired result. �

PROOF OF THEOREM 1.1. Let a ∈ (−∞,0] be a number such that f = 0
a.e. with respect to the Lebesgue measure on [a,0] and

∫ a
a−ε |f (x)|dx > 0 for

any ε > 0. We can assume that a = 0. The case a < 0 is reduced to this one by
considering the new Brownian motion B̃t = Bt−a − B−a and the new function
f̃ (x) = f (x − a).

We have to prove that, for any t ∈ [0, T ],
supp Law(Xu − Xt ; t ≤ u ≤ T | Ft ) = C0[t, T ] a.s.,

where Ft = σ(Xs; s ≤ t). Obviously, it is sufficient to prove the above property
with Ft replaced by the larger filtration Gt = σ(Bs :−∞ < s ≤ t). With this sub-
stitution, it is obviously sufficient to check the property only for t = 0. We then
have

Law(Xu;0 ≤ u ≤ T | G0)(ω)

= Law
(∫ u

0
f (v − u)dBv

+
∫ 0

−∞
(
f (v − u) − f (v)

)
dBv;0 ≤ u ≤ T

∣∣∣ G0

)
(ω)

= Law
(∫ u

0
f (v − u)dBv + ϕ(u,ω);0 ≤ u ≤ T

)
,

where ϕ(·,ω) is the path of the process Y = ∫ 0
−∞(f (v − ·) − f (v)) dBv corre-

sponding to the elementary outcome ω.
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The above equality means that the conditional law of (Xu)u∈[0,T ] given G0 is
nothing but the unconditional law of (

∫ u
0 f (v −u)dBv)u∈[0,T ] shifted by the func-

tion ϕ(u,ω). As the two laws differ by such a shift, it is sufficient to prove that

supp Law
(∫ u

0
f (v − u)dBv;0 ≤ u ≤ T

)
= C0[0, T ].(2.1)

It follows from the Girsanov theorem that, for any g ∈ L2[0, T ],

Law
(∫ u

0
f (v − u)dBv;u ≤ T

)

∼ Law
(∫ u

0
f (v − u)dBv +

∫ u

0
f (v − u)g(v) dv;u ≤ T

)
.

Hence, if a function ψ belongs to the left-hand side of (2.1), then the same is
true for ψ + ∫ ·

0 f (v − ·)g(v) dv. Using now the nonemptiness of the support and
recalling Lemma 2.1, we obtain (2.1), which completes the proof. �

3. Example. Let (Xn)n=0,...,N be a Gaussian random sequence such that

Var(Xn − Xn−1 | Xi; i ≤ n − 1) > 0 ∀n = 1, . . . ,N.(3.1)

Using induction in m, it is then easy to see that X satisfies the discrete-time version
of the CFS condition:

supp Law(Xi : i = n + 1, . . . ,m | Xi : i = 0, . . . , n) = R
m−n

(3.2)
∀0 ≤ n < m ≤ N.

Let us remark that (3.2) obviously implies (3.1), so that the latter property serves
as a criterion for the CFS for discrete-time Gaussian processes.

Surprisingly enough, in continuous time such a simple criterion does not hold,
as shown by the next example.

EXAMPLE 3.1. Let B be a Brownian motion. For n ∈ Z+, denote an = 1 −
2−n and let

Xn
t = bn

∫ t

0
I (an ≤ s ≤ an+1) dBs

+ bn22n+3
∫ 1

an

(Bs∧an+1 − Ban) ds

∫ t

0
I (s ≥ an+1) ds, t ∈ [0,1].

The constants bn are strictly positive and decrease to zero fast enough to ensure
that

∞∑
n=0

sup
t∈[0,1]

|Xn
t | < ∞ a.s.
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Then the process

Xt =
∞∑

n=0

Xn
t , t ∈ [0,1]

is continuous and Gaussian. For any 0 ≤ s < t ≤ 1, the difference Xt − Xs can be
represented as ξ1 + ξ2, where ξ1 is σ(Xu;u ≤ s)-measurable and ξ2 is nondegen-
erate and depends on the increments of B after time s. Hence,

Var(Xt − Xs | Xu;u ≤ s) > 0 ∀0 ≤ s < t ≤ 1.

On the other hand,∫ 1

0
Xt dt =

∞∑
n=0

∫ 1

0
Xn

t dt

=
∞∑

n=0

bn

∫ 1

an

(Bs∧an+1 − Ban) ds

[
1 + 22n+3

∫ 1

an+1

(s − an+1) ds

]
= 0,

so that the CFS condition is violated for X already for t = 0.
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