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Misinformation in the conjugate prior for the

linear model with implications for free-knot

spline modelling

Christopher J. Paciorek∗

Abstract. In the conjugate prior for the normal linear model, the prior variance for
the coefficients is a multiple of the error variance parameter. However, if the prior
mean for the coefficients is poorly chosen, the posterior distribution of the model
can be seriously distorted because of prior dependence between the coefficients and
error variance. In particular, the error variance will be overestimated, as will the
posterior variance of the coefficients. This occurs because the prior mean, which
can be thought of as a weighted pseudo-observation, is an outlier with respect to the
real observations. While this situation will be easily noticed and avoided in simple
models, in more complicated models, the effect can be easily overlooked. The
issue arises in the unit information (UI) prior, a conjugate prior in which the prior
contributes information equal to that in one observation. In particular, a successful
Bayesian nonparametric regression model — Bayesian Adaptive Regression Splines
(BARS) — that relies on the UI prior for its model selection step suffers from this
problem, and addressing the problem within the Bayesian paradigm alters the
penalty on model dimensionality.

Keywords: Bayes factor, BIC, model selection, nonparametric regression, unit
information prior

1 Introduction

Consider the simple normal mean problem with observations, Yi, i = 1, . . . , n, indepen-
dent and identically distributed, Yi ∼ N(µ, σ2). The conjugate normal inverse-gamma
prior is

µ|σ2 ∼ N(µ0, σ
2/n0)

σ2 ∼ IG(a, b), (1)

where n0 is a parameter that can be interpreted as the number of prior observations.
Gelman et al. (2003, p. 71) discuss this prior and note the prior dependence between
µ and σ2, saying that it provides a way to calibrate the prior for µ based on the scale
of measurement of the observations. They also mention that additional uncertainty
is introduced into the model based on the difference between the prior mean and the
sample mean. Here I expand on that to note that when the prior mean is far from
the sample mean and n0 is not close to zero, this additional uncertainty can cause the
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model to overestimate both the error variance and the posterior variance of µ, as the
deviation of the prior mean from the posterior estimate cascades through the model.
The prior dependence causes the data to inform σ2 not just through their deviation from
the estimate of µ, but also through the deviation of the estimated µ from µ0. In essence
a poorly chosen prior mean is a pseudo-observation that is an outlier with respect to
the true observations. The situation is similar for the general linear model, for which
the conjugate prior takes the form

β ∼ N(β0, cσ2(BT B)−1), (2)

where B is the design matrix and c scales the prior. George and Foster (2000) discuss
this prior in detail for the variable selection problem in the normal linear model. The
conjugate prior with c = 1/g is the g-prior of Zellner (1986).

One important form of the conjugate prior is the unit information (UI) prior. The
UI prior for a parameter, ψ, is defined to have variance equal to the inverse Fisher
information arising from one observation (Kass and Wasserman 1995). A normal UI
prior would be

ψ ∼ N
(

ψ0, I−1
ψψ(ψ0,θ)

)

,

where I−1
ψψ is the inverse of the block of the Fisher information matrix corresponding to

ψ. This inverse is the asymptotic variance of the MLE, ψ̂, assuming that the information
matrix is block diagonal with respect to a nuisance parameter, θ. Kass and Wasserman
(1995) and Pauler (1998) consider the UI prior as a default prior and show that with
this prior, the Bayes factor for model selection can be approximated by the Schwarz
criterion, also known as the Bayes information criterion (BIC). Earlier suggestions of
such a prior include Jeffreys (1967) and Zellner and Siow (1980). Returning to the
normal mean problem, the UI prior for µ is

µ ∼ N(µ0, σ
2),

where σ2 is the error variance. Since the prior variance for µ is the same as the variance
of an observation, the prior contributes one unit of information to the posterior. One
can think of the prior mean, µ0, as one pseudo-observation, or prior observation. This is
a special case of the general conjugate prior (1), in which the prior contributes as much
information as n0 observations. Similarly, the UI prior for the linear model has c = n in
(2), and the resulting conditional posterior precision matrix for β|σ2 is 1

σ2

(

1
n

+ 1
)

BT B,
with the prior contributing the term 1

n
. The prior contributes one unit of information,

or 1
n

as much information as the likelihood. DiMatteo et al. (2001) use this prior for a
free-knot spline nonparametric regression model, with B a cubic B-spline basis matrix
that varies with the number and location of knots. The knots are parameters in the
model and are estimated via Markov chain Monte Carlo (MCMC).

The conjugate prior for the linear model provides a convenient closed form posterior,
and its UI form has intuitive appeal and is related to using BIC for model selection.
However, if the prior mean is poorly chosen, the resulting posterior can give badly
distorted inference for both the posterior variance of the parameter of interest and
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for the posterior distribution of the error variance, as I show for a simple example
in section 2. In section 3, I discuss what happens in a more complicated model, the
nonparametric regression model of DiMatteo et al. (2001), why one might overlook the
problem in practice, and why it is difficult to resolve the problem when the UI prior
is used for model selection purposes. I close with some suggestions for detecting and
avoiding the problem.

2 Prior misinformation

To illustrate the problem more concretely, I take the simple normal mean problem as an
illustrative example and use the unit information form of the conjugate prior. Let the
observations, Yi, i = 1, . . . , n, be independent and identically distributed, Yi ∼ N(µ, σ2),
with the UI prior, µ ∼ N(µ0, σ

2), and, without loss of generality, take µ0 = 0. Next, take
the improper prior, π(σ2) ∝ 1

σ2 , which is IG(0, 0). The argument does not depend on
this prior, and a proper conjugate inverse-gamma (IG) prior could be substituted here.

The conditional posterior is µ|σ2,y ∼ N
(

n
n+1 ȳ, σ2

n+1

)

. The fraction n
n+1 shrinks the

posterior mean slightly toward 0, or more generally the prior mean. With a reasonable
amount of data, the influence of the prior mean will be limited, so if interest focuses
solely on the point estimate, the effect of the conjugate prior is limited. However,
the limited effect on the posterior mean may lead one to overlook the effect on the
uncertainty estimates. Consider the marginal posterior for σ2,

σ2|y ∼ IG

(

n

2
,
1

2

(

ns2 +

∑

y2
i

n + 1

))

,

where s2 ≡
∑

(yi−ȳ)2

n+1 , which gives us a point estimate,

E(σ2|y) =
ns2 +

∑

y2

i

n+1

n − 2
.

This posterior is similar to the posterior for σ2 under a noninformative prior for µ

except for the term,
∑

y2

i

n+1 , which can be consequential when the data are far from zero,

and inflates the estimate for σ2. The expression in the second parameter of the IG

posterior can be expressed as ns2 +
∑

y2

i

n+1 =
∑

(yi − n
n+1 ȳ)2 + ( n

n+1 ȳ)2, where the first
term accounts for the squared deviations of the observations from the posterior mean
of µ and the second term is the deviation of the prior pseudo-observation (µ0 = 0
in this case) from the posterior mean for µ. While the second term does not appear
asymptotically, in finite samples, as I will show next, the estimate for σ2 can be seriously
inflated. Of more serious concern in many applications, an inflated estimate of σ2 inflates

V(µ|σ2,y) = σ2

n+1 , and therefore the marginal variance of µ,

V(µ|y) =
1

n + 1





ns2 +
∑

y2

i

n+1

n − 2



 ,
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which contains the extra term,
∑

y2

i

n+1 , which is not present under an improper prior for
µ.

Consider a simple example of 100 observations with ȳ = 10 and
∑

(yi − n
n+1 ȳ)2 =

100 · 1. If µ0 = 0, the pseudo-observation at zero introduced into the model by the UI
prior is an outlier with respect to the data. The posterior mean for µ is 100

101 · 10 ≈ 10,
which is reasonable. But the estimate of the second parameter in the IG distribution

for σ2 is inflated by 1
2

(

100
101 · 10

)2
over that of an improper prior. The resulting mean of

the IG posterior for σ2 is 1.42, which is much larger than the mean squared deviation

of 12. Correspondingly, V(µ|y) =
(

1.42

101

)

≈
(

1.4
10

)2
is inflated by a factor of 1.42 over

the estimate from an improper prior, σ2

n
=
(

1
10

)2
. With smaller deviations of the

observations from their mean or with a larger value of Ȳ , the effect would be more
pronounced. We see that the effect of the single outlying pseudo-observation from the
UI prior can be substantial.

I do not want to overstate the situation. If we take the conjugate prior, µ ∼
N(0, σ2/n0), with n0 small, the effect on the uncertainty estimates diminishes as n0 → 0,
so in the general conjugate prior, we can resolve the problem by using small n0. Fur-
thermore, in simple models, one will probably recognize when the prior mean is poorly
chosen. However, I will show that the UI form of the conjugate prior is of particular
interest in important models in which the problem arises in practice and cannot always
be easily solved.

3 The unit information prior and free-knot spline mod-

elling

The practical importance of this feature of the conjugate prior arises because the UI prior
has been suggested as a default prior and has been used in successful Bayesian models
— in particular, the nonparametric regression model, Bayesian Adaptive Regression
Splines (BARS). In this model, the UI prior is specifically chosen because of its role
in model selection. Furthermore, the prior is placed on the coefficients of the B-spline
basis with varying numbers and locations of knots, which makes it difficult to choose a
reasonable prior mean or to know when the prior mean is poorly chosen.

3.1 The UI prior in BARS

DiMatteo et al. (2001) specify a free-knot spline nonparametric regression model known
as BARS, with an unknown number and location of knots. Conditional on the number,
k, and location of knots, ξ, they specify the regression function,

f(x) =

k+2
∑

j=1

βjbj(x),
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where bj(·) is the jth B-spline basis function and β is a vector of basis coefficients.
Letting B denote the basis matrix formed from the basis functions and suppressing its
dependence on (k, ξ), the UI prior for β is

β ∼ Nk+2(0, nσ2(BT B)−1),

where σ2 is the error variance parameter, with improper prior, π(σ2) ∝ 1/σ2.
DiMatteo et al. (2001) fit the model by reversible-jump MCMC to account for the
change in model dimension as knots are added and deleted.

Similar calculations to those done in the previous section for the simple normal mean
problem can be performed here, for the case of normal data, conditional on the number
and location of knots. We see that the posterior mean for β, β̄, is shrunk toward zero
relative to the MLE, β̂: β̄ = E(β|k, ξ,y) = n

n+1 (BT B)−1BTy = n
n+1 β̂. Once again,

this has limited practical impact with reasonable sample size. The posterior distribution
for the error variance is

σ2|k, ξ,y ∼ IG

(

n

2
,
1

2
(yTy − yT Bβ̄)

)

,

with a posterior mean of

E(σ2|k, ξ,y) =
yTy − yT Bβ̄

n − 2
=

∑

r̄2
i + 1

n+1y
T f̄

n − 2
, (3)

where r̄i = yi− f̄i is the residual from the ith posterior mean fitted value, f̄i. If we were
to use an improper prior for β, π(β) ∝ 1, rather than the UI prior, the posterior mean
would be

E(σ2|k, ξ,y) =
yTy − yT Bβ̂

n − 2
=

∑

r̂2
i

n − 2

Relative to the expected value from an improper prior, in which the estimate of the
error variance is based solely on the squared residuals, the posterior mean from the UI

prior is inflated by 1
n+1y

T f̄ = 1
n
f̄

T
f̄ . Returning to (3), the inflation is of concern when

the second term in the numerator, which involves the sum of squares of the function

values, f̄
T
f̄ , is large relative to the first term, which involves the residuals. This occurs

when the signal to noise ratio is large and the sample size is small; it can happen even if
∫

f(x)dx ≈ 0. The basic problem with the UI prior in this situation is that some basis

coefficients need to be large in order to represent a function for which f Tf is large, but
the prior specifies that the coefficients have zero mean and prior variance based on σ2. If
the noise variance is small, this introduces a conflict in the estimation of σ2 between the
small residual variation about the function estimate and the large deviations between
the estimated coefficients and their prior mean of zero. In the full free-knot model, the
number and location of knots are also sampled during the model fitting, but the effect
of the UI prior on the estimation of the error variance — and therefore the uncertainty
in the basis coefficients and resulting regression function — remains.

This can be material in practice. DiMatteo et al. (2001) demonstrate the success of
BARS on three test datasets, the first of which has a mean function that is not near
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zero, combined with small error variance. As shown in Paciorek (2003, Sec. 4.6.1), while
the posterior mean of the regression function for this first dataset is estimated well, the
estimate of the error variance is inflated by a factor of almost 2 (estimated to be 1.5
compared to the true value of 0.81). If draws of the error variance are used in computing
uncertainty estimates for the regression function, the problem carries through to one’s
uncertainty about the estimated function.

In this example, one could solve the problem and retain the Bayesian estimation of
σ2 by subtracting off the mean of the data. However, this simple solution does not work
when the function is centered on zero but has a high signal to noise ratio. Consider
the function f(x) = 10 · sin(2πx) for n = 30 observations on a grid over x ∈ (0, 1) and
σ2 = 1. Fitting this for 1000 simulations using a fixed five-knot B-spline basis allows me
to estimate E(σ2|y), averaging over the 1000 simulations, as 2.59, compared to the true
value of 1. Similarly, fitting one simulated dataset using BARS gives an estimate for
σ2 of 2.32. This example has been carefully chosen as a scenario in which the Bayesian
error variance estimate is inflated, with large signal to noise ratio and small n, but
it illustrates that subtracting off the mean of the data does not completely solve the
problem. As we will see next, avoiding the UI prior raises other complications.

3.2 The UI prior and model selection

The UI prior is used in BARS not only for the convenience of a conjugate prior, which
allows one to integrate β and σ2 out of the model and sample only (k, ξ) in the MCMC,
but more importantly because it plays a critical role in model selection. BARS moves
between models of different dimensions by adding and deleting knots via a reversible-
jump algorithm. The ratio of marginal likelihoods, which is the Bayes factor (BF), plays
the key role in determining whether to change model dimension. Consider the ratio when
the proposed model contains one more knot than the current model, k∗ = k + 1,

BF =
f(y|k∗, ξ∗)

f(y|k, ξ)
=

1√
n + 1

(

yT (I − n(n + 1)−1B(BT B)−1B)y

yT (I − n(n + 1)−1B∗(B∗T B∗)−1B∗)y

)
n

2

=
1√

n + 1

(

∑

r̄2
i + 1

n
f̄

T
f̄

∑

r̄∗2i + 1
n
f̄
∗T
f̄
∗

)
n

2

=
1√

n + 1





∑

r̂2
i + 1

n+1 f̂
T
f̂

∑

r̂∗2i + 1
n+1 f̂

∗T
f̂
∗





n

2

, (4)

where B∗ = B
k∗,ξ∗ (i.e., the proposed B-spline basis matrix), and where the last equality

is expressed in terms of maximum likelihood estimates. Ignoring the additional UI-

induced term, 1
n
f̄

T
f̄ , in both numerator and denominator, the BF is approximately

equal to exp(−BIC/2) with the dimensionality penalty being
√

n + 1. The
√

n + 1
term, when considered on the log scale, corresponds to the BIC penalty, log n, on the
log likelihood ratio for models differing by one parameter. In addition to the theoretical
appeal of the BIC-type penalty induced by the UI prior, this particular penalty has been
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successful in simulations and ongoing applied work (DiMatteo et al. 2001; Kass et al.
2003; Wallstrom et al. 2004).

The value of c in the general conjugate prior, β ∼ N(0, cσ2(BT B)−1), determines the
penalty,

√
c + 1, that replaces

√
n + 1 in the BF (4). Particular choices of c correspond

to AIC and the risk inflation criteria (RIC) (Foster and George 1994), so choice of c may
depend on one’s utilities for model selection (Clyde 2001). However, AIC corresponds
to c < n, while RIC corresponds to c = p2, where p = k + 2 is the varying number of
basis functions, and may also result in c < n. Since c < n gives a more informative
prior than the UI prior, neither criterion seems useful for addressing the estimation of
σ2 in BARS. In a similar context to BARS, but based on knot selection from a fixed
set of knots, Smith and Kohn (1996) found that c = 100 worked well, with their results
insensitive to 10 < c < 1000.

An alternative approach that attempts to address the effect of c on the estimation
of σ2 would be to make the conjugate prior for β more diffuse, taking c > n. However,
increasing c increases the penalty on larger models in (4) relative to the BIC-type
penalty of the BF resulting from the UI prior. It is well-known that BF calculations
require proper priors and that diffuse priors favor smaller models (Kass and Raftery
1995; Gelman et al. 2003), because the marginal likelihood with diffuse priors averages
the conditional likelihood over extreme values of the parameters. It may be possible
to choose a value of c that produces a penalty term that performs well in practice —
perhaps better than c = n — and also provides a reasonable estimate of σ2. However,
it is difficult to know what this value should be, particularly given that c = n has
performed well and corresponds to BIC. In summary, there is no avoiding the dependence
of the Bayes factor and model selection in this context on the prior for β and the resulting
potential conflict in choosing c between the model selection criterion and estimation of
σ2. In the next section I suggest some alternative modifications to the UI prior.

3.3 Modifying the UI prior

Subtracting off the mean of the data will solve the problem in many cases; I suggest this
as an initial general solution. To determine if the UI prior is still biasing the estimate
of the error variance and the posterior variance of the function estimate, I suggest
comparing the estimate of σ2 from the posterior to a classical estimate of σ2, for example,
computing a classical estimate at every MCMC iteration, σ̃2

t =
∑

(yi − ft,i)
2/(n − p),

t = 1, . . . , T , or more simply σ̃2 =
∑

(yi − f̄i)
2/(n − p̄) where the overbar indicates the

posterior mean estimates. If the estimates are sufficiently different, which should only
occur when the signal to noise ratio is high and the number of observations small, one
could consider the following approaches.

Ideally we could choose a prior mean, β0, that is reasonable, but since the prior is
conditional on (k, ξ), this is difficult to do. An ad hoc alternative that has an empirical
Bayes flavor and aims to retain the approximate penalty of

√
n + 1 is to fix the error

variance term in the prior variance for β, taking β ∼ N(0, s2n(BT B)−1), where s2 is a
reasonable estimate of σ2. This might be an estimate based on σ̃2 from an initial model
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run. We no longer have a joint conjugate model for (β, σ2), but we can still integrate
β out of the model, adding a sampling step for σ2 to the MCMC. This approach gives

approximately the
√

n + 1 penalty, because the marginal likelihood, f(y|k,ξ,σ2)
f(y|k∗,ξ∗,σ2) , has a

penalty of
√

s2n/σ2 + 1, which for s2 ≈ σ2 is
√

n + 1.

An alternative, which is the current approach in BARS (Wallstrom et al. 2005), is
to not be fully Bayesian where σ2 is concerned, using a plug-in estimate based on the
residuals. One can use a classical estimate of σ2 at each iteration and use these values
when estimating the uncertainty in β.

George and Foster (2000), in the context of variable selection in the normal linear
model, suggest the use of empirical Bayes or fully Bayes analysis for c, allowing the data
to help determine the model selection penalty term. One difficulty with the empirical
Bayes approach applied to BARS is that the marginal likelihood used to estimate c
involves an intractable integral over the locations of the knots; the uncountable number
of sets of knot locations also makes numerical maximization difficult. To avoid such
difficulties, George and Foster (2000) suggest conditioning on the model (i.e., (k, ξ) in

BARS), and using ĉk,ξ = max(β̂
T

k,ξB
T
k,ξBk,ξβ̂k,ξ/(σ2p)− 1, 0), which would correspond

to changing the penalty in (4) at every MCMC iteration, as well as sampling σ2 within
the chain. They show that the conditional approach is asymptotically equivalent to
using BIC. Finally, George and Foster (2000) suggest placing a diffuse prior on c and
sampling from its posterior during the MCMC. These approaches deserve consideration;
the key issue is how well they balance model selection with estimation of σ2 in situations
in which c ≤ n can cause the estimate of σ2 to be distorted.
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