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ON THE CONTINUITY OF LOCAL TIMES OF BOREL RIGHT
MARKOV PROCESSES

BY NATHALIE EISENBAUM AND HAYA KASPI

Université Paris VI-CNRS and Technion

The problem of finding a necessary and sufficient condition for the conti-
nuity of the local times for a general Markov process is still open. Barlow and
Hawkes have completely treated the case of the Lévy processes, and Marcus
and Rosen have solved the case of the strongly symmetric Markov processes.
We treat here the continuity of the local times of Borel right processes. Our
approach unifies that of Barlow and Hawkes and of Marcus and Rosen, by us-
ing an associated Gaussian process, that appears as a limit in a CLT involving
the local time process.

1. Introduction. Let X = (�,F ,Ft ,Xt , θt ,Px;x ∈ E) be a Borel right
process, having a reference measure m, with all states communicating and reg-
ular for themselves. Under these assumptions, a local time Lx

t exists at each point,
unique up to a multiplicative constant. Let uα(x, y) be the potential densities with
respect to m, and normalize the local times (choose the multiplicative constant),
so that for some (and all) α,

Ex

∫ ∞
0

e−αt dL
y
t = uα(x, y),(1)

for all x, y ∈ E, where Ex is the expectation with respect to Px . The question,
under what conditions there exists a version of (Lx

t )x∈E,t>0 so that (x, t) → Lx
t (ω)

is almost surely continuous, has occupied many researchers in the field for many
years. Although, as we shall describe below, there are some very important special
cases where this problem has been solved, the problem, for general Borel right
processes, is still unresolved.

To put this problem in context, we would like to start by highlighting some of
the most important existing results in this field. The first to address this problem
was Trotter who in [29] proved that when X is the Brownian motion on the real
line, it has a local time at all points and (normalized as above) there is a version
of (x, t) → Lx

t that is almost surely jointly continuous. In [19] Getoor and Kesten
have treated the problem for standard Markov processes that have a reference mea-
sure. They have established a sufficient condition and a necessary condition for the
above joint continuity, but with a gap between the necessary and the sufficient con-
ditions.
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Bass and Khoshnevisan in [6], Barlow in [3, 4] and Barlow and Hawkes in [5]
have treated the case of Lévy processes taking real values that have local times at
all points and for which all points communicate. In [4] the necessary and sufficient
conditions for the existence of an almost surely, jointly continuous version of the
local time (x, t) → Lx

t (ω) were found. Since this solution is in many ways the
starting point of our approach, we shall describe it here (or rather Bertoin’s [7]
“translation” of it).

Let h(a, b) = Ea(L
a
Tb

) = E0(L
0
Tb−a

) = h(0, b − a)
def= h(b − a). Then one can

show that h(x) = h(−x) and that d2(a, b) = h(b − a) defines a distance on R that
is equivalent to the Euclidean distance. Let m(y) = |{x :h(x) < y}|, where |A| is
the Lebesgue measure of the Borel set A ⊂ R. Barlow’s necessary and sufficient
condition for the continuity of the local time is the following “majorizing measure”
condition: ∫ ·

0+

√
ln

1

m(ε)
dε < ∞.(2)

In Barlow’s paper [4] the condition is stated in terms of the inverse of m, the
monotone rearrangement of h. Let h̄(x) = inf{y :m(y) > x}, then (x, t) → Lx

t has
a continuous version, iff

I (h̄) =
∫ ·

0+
h̄(x)

x(lnx)1/2 dx < ∞.(3)

It is easily seen that (2) and (3) are equivalent, but as was noticed by Barlow and
Hawkes [5], (3) is reminiscent of Fernique’s [17] and Dudley’s [11] necessary and
sufficient condition on the covariance function of a stationary Gaussian process
(φx) to have a continuous version. This Gaussian process is precisely described in
[14].

In a series of papers during the 1990s [23–27] and in their recent book [28], Mar-
cus and Rosen study sample path properties of the local time process of strongly
symmetric Markov processes. Under symmetry, the potential densities are sym-
metric and positive definite. Therefore, there exists a centered Gaussian process
(φx)x∈E such that 〈φxφy〉 = u(x, y), where u(x, y) is the 0-potential density when
the process is transient and 〈φxφy〉 = uα(x, y) for α > 0 when the process is re-
current. Now and in the sequel, 〈·〉 denotes the expectation with respect to the
Gaussian measure. The main tool for their study is the celebrated Dynkin isomor-
phism theorem (DIT) [12, 13], which states when X is transient for any measurable
function F on R

E ,

Ea,b

〈
F

(
L·

ζ + φ2·
2

)〉
=

〈
φaφb

〈φaφb〉F
(

φ2·
2

)〉
,(4)

where ζ is the life time of the Markov process X and Ea,b is the law of X born
at a and killed at its last exit from the point b. Note that when X is recurrent, the
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above identity is available for X killed at an independent exponential time with
parameter α. One should notice that the right-hand side of (4) is stated in terms of
the Gaussian process only.

Defining a distance by d2(x, y) = 〈(φx −φy)
2〉 = u(x, x)− 2u(x, y)+u(y, y),

they have used the DIT to show that (x, t) → Lx
t has a jointly continuous version

(in the distance d), iff the Gaussian process (φx) has a continuous version in that
distance. The latter happens iff for every compact set K , in the metric d , there
exists a probability measure µ on K̃ , the σ -algebra on K generated by the d-open
sets, so that

lim
δ→0

sup
x∈K

∫ δ

0

√
ln

1

µ(B(x, ε))
dε = 0,(5)

where B(x, ε) is a d-ball of radius ε around x. When (x, y) → u(x, y) is jointly
continuous those conditions translate to a condition for the joint continuity (in the
original distance) of (x, t) → Lx

t . As in the case treated by Barlow, the condi-
tion for the joint continuity of the local time is identical to the condition for the
continuity of a Gaussian process.

Extending these results beyond the symmetric and Lévy cases, and understand-
ing the intriguing connection between the conditions for the continuity of local
times of Markov processes and those of Gaussian processes is the objective of this
paper.

We shall work under the following assumptions:

(A1) All points of E are regular for themselves.
(A2) All points of E communicate.
(A3) The process is recurrent.
(A4) There exists a Borel right dual process.

The recurrence property will simplify our arguments considerably, but it is not a
very serious assumption. Indeed, by an argument due to Le Jan (see [10], Chap-
ter XII), if X is transient, one can always “revive” it in such a way that it becomes
recurrent, still keeping properties that will be used below like duality or symmetry
if the original process was symmetric. Since the continuity and other fine prop-
erties of local times are local, and recurrence is a long time behavior property
of the process, it has nothing to do with local properties, and therefore, using Le
Jan’s construction, we can extend the results to the transient case. With that in
mind, and assuming that X is recurrent, let m be the unique invariant distribu-
tion for (Pt ). (A1) and (A2) imply that m is actually a reference measure. Thus,
the potential densities uα(x, y) exist. From general theory (see [18]), we know
that a dual process X̂ exists. That is, there exists a Markov process X̂ whose po-
tential is given by Ûαf (x) = ∫

E m(dy)f (y)uα(y, x). Since X is recurrent, so is
X̂, and since X has a local time at each x ∈ E, so does X̂. In general X̂ is not
a strong Markov process. It is only a moderate Markov process, namely, it satis-
fies the strong Markov property only at (Ft ) predictable stopping times. Our fourth
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assumption (A4) and the only serious one (beyond those needed to define the prob-
lem properly) is that X̂ is actually a Borel right process as well, or that at least it
satisfies the strong Markov property at the hitting times Tx of all x ∈ E. Note that
the Lévy processes treated by Barlow satisfy this assumption (with X̂ = −X), and
the symmetric processes studied by Marcus and Rosen satisfy it with X̂ = X.

To state our main results, we shall need some additional notation. Let 0 be a
preassigned state in E and T0 be its hitting time. By recurrence, T0 < ∞ Px a.s.
for every x ∈ E. Let uT0(x, y) be the potential densities of the process XT0 , where

X
T0
t =

{
Xt, if t < T0,

, otherwise,

where 
 is a cemetery state. XT0 is the process killed at its hitting time of the
state 0. We shall show that uT0(x, y) + uT0(y, x) is both symmetric and posi-
tive definite. Thus, there exists a centered Gaussian process (φx)x∈E , such that
〈φxφy〉 = uT0(x, y) + uT0(y, x). Using this, we now define the distance d with
which we shall work:

d2(x, y) = uT0(x, x) − uT0(x, y) − uT0(y, x) + uT0(y, y) = 〈(φx − φy)
2〉.(6)

Our first result gives a sufficient condition for the continuity of the local time
process.

THEOREM 1.1. If for every compact set K , in the d metric, there exists a
probability measure µ on the Borel sets of K defined with the d-distance, so that

lim
δ→0

sup
x∈K

∫ δ

0

√
ln

1

µ(B(x, v))
dv = 0,

where B(x, ε) is a ball of d-radius ε around x, then (t, x) → Lx
t (ω) has a jointly

d-continuous version. If further (x, y) → uα(x, y) is jointly continuous, then a.s.
(x, t) → Lx

t is continuous in d and the original distances. Finally, for a compact
set K , set

ηK(δ) = sup
z∈K

∫ δ

0

√
ln

1

µ(B(z, v))
dv.

There is a positive constant C such that

lim sup
δ→0

sup
a,b∈Kd(a,b)<δ

sup
s≤t

|La
s − Lb

s |
ηK(d(a, b))

≤ C

(
sup
x∈K

Lx
t

)1/2
.

Since the sufficient condition of Theorem 1.1 is actually a necessary and suffi-
cient condition for the continuity of the Gaussian process φ (see [21]), Theorem 1.1
contains the following relation:
If (φx)x∈E has a continuous version for the distance d , then (Lx

t , x ∈ E, t ≥ 0) has
a jointly continuous version for the distance d .
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Our next two theorems deal with a central limit theorem in C(K), the space
of continuous functions on a compact set K contained in E. We believe that this
theorem provides the missing link for the converse of the above relation.

Let τa(s) = inf{t > 0 :La
t > s}. Then τa(s) is a process with stationary inde-

pendent increments. In particular, τ 0(s) is a process with stationary independent
increments, and L·

τ 0(s)
is a process with stationary independent increments taking

values in function space. We note further that, for any s, L·
τ 0(s)

has an infinitely

divisible law, and therefore, Yn(·) = L·
τ0(n)

−n
√

n
is an infinitely divisible random vari-

able, taking values in the space of functions. We refer the reader to [2] and [22] for
more on infinitely divisible processes taking values in Banach spaces.

THEOREM 1.2. If x → Y1(x) is a continuous function in the d distance, and
the majorizing measure condition of Theorem 1.1 holds, then for each compact set
K in the d metric, (Yn(x))x∈K converges weakly in C(K) to a centered Gaussian
process (φx)x∈K satisfying 〈φxφy〉 = uT0(x, y) + uT0(y, x).

The characterization of continuous Gaussian processes as those for which the
covariance distance satisfies the above majorizing measure condition yields the
following theorem as a corollary.

THEOREM 1.3. Assume that uα(x, y) are continuous, then the following are
equivalent:

1. (x, t) → Lx
t is jointly continuous and the above CLT holds.

2. The above majorizing measure condition holds.

REMARK 1.4. We have not been able to show that the continuity of the local
time process alone is a sufficient condition for the majorizing measure condition
to hold. However, in view of all existing results, we conjecture that this is really
the case. Theorem 1.3 allows one to replace the proof of sufficiency with a proof
that the continuity of x → Yn(x) implies its tightness in C(K).

Our paper is organized as follows. In Section 2 we prove some preliminary
results on the metric d(x, y) defined in (6). Those will be our main tool for proving
our results. Section 3 is devoted to the proof of Theorem 1.1 and in Section 4 we
shall prove Theorem 1.2 and Theorem 1.3 as its corollary. We shall also recall
there from [15] that in the symmetric case the tightness that is needed for the
CLT follows easily from the continuity of the associated Gaussian process and the
results of [16].
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2. Notation and preliminary results. We adopt the basic notation of Blu-
menthal and Getoor [9]. We let X, X̂ be two recurrent Borel right Markov
processes in classical duality. As can be easily shown, under (A1)–(A3), the unique
invariant measure m for this process is also a reference measure. Let uα(x, y)

be the corresponding potential densities, Uαf (x) = ∫
uα(x, y)f (y)m(dy) and

Ûαf (y) = ∫
uα(x, y)f (x)m(dx). Hence, uα(x, y) is the potential density of the

process X starting at x and uα(x, y) is the potential density of the process X̂ start-
ing at y. We will assume from now on that the processes have local times at each
point (enough to assume that one of them has a local time at each point, the other
will have it as a result), and that the local times are normalized so that

uα(x, y) = Ex

∫
e−αt dL

y
t

and similarly for the dual process,

uα(x, y) = Êy

∫
eαt dL̂x

t .

For every state x ∈ E, let Tx = inf{t > 0 :Xt = x}, we shall use the notation
Tx for the dual process as well. Denote by uTx (a, b) the potential densities of the
process killed at Tx . The two resulting processes are again in duality with respect
to m(dy). By recurrence, uTx (a, b) is finite and is equal to the increasing limit of
uα

Tx
(a, b) as α → 0. Let νx be the excursion measure from x and similarly for the

dual process, denote it by ν̂x . All excursions from a point end at this point.

LEMMA 2.1. Let x, y be two points in E. Then uTx (y, y) = uTy (x, x).

PROOF. Recall that uTx (y, y) = Ey(L
y
Tx

) = limα→0 Ey

∫ Tx

0 e−αt dL
y
t .

Therefore,

uTx (y, y)

uTy (x, x)
= lim

α→0

Ey

∫ Tx

0 e−αt dL
y
t

Ex

∫ Ty

0 e−αt dLx
t

.

Now,

uα(x, x) = Ex

∫ ∞
0

e−αt dLx
t

= Ex

∫ Ty

0
e−αt dLx

t + Ex(e
−αTy )Ey(e

−αTx )uα(x, x).

Hence,

Ex

∫ Ty

0
e−αt dLx

t = uα(x, x)
(
1 − Ex(e

−αTy )Ey(e
−αTx )

)
(7)

and similarly,

Ey

∫ Tx

0
e−αt dL

y
t = uα(y, y)

(
1 − Ey(e

−αTx )Ex(e
−αTy )

)
.(8)
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Our result will follow if we can show that

lim
α→0

uα(x, x)

uα(y, y)
= 1.

But,

uα(x, x)

uα(y, y)
= uα(x, x)

uα(y, x)

uα(y, x)

uα(y, y)
= Êx(e

−αTy )

Ey(e−αTx )
.

Since X is recurrent, so is the dual X̂ and thus,

lim
α→0

Êx(e
−αTy )

Ey(e−αTx )
= P̂x(Ty < ∞)

Py(Tx < ∞)
= 1. �

With this result at hand we now have the following:

LEMMA 2.2. For every x,y in E,

ν0(
(Lx − Ly)2) = 2

(
uT0(x, x) − uT0(x, y) − uT0(y, x) + uT0(y, y)

)
.

PROOF. Let (θt ) be the usual shift operators on the state space so that
Xs(θtω) = Xt+s(ω) and θ̂t defined similarly for the dual process:

ν0(LxLy) = ν0
(∫ T0

0
L

y
T0

(θt ) dLx
t +

∫ T0

0
Lx

T0
(θt ) dL

y
t

)
.(9)

By the Markov property that ν0 satisfies, this is equal to

ν0
(∫ T0

0
Ex(L

y
T0

) dLx
t +

∫ T0

0
Ey(L

x
T0

) dL
y
t

)

and hence, to

ν0(
1{Tx<T0}uT0(x, x)uT0(x, y) + 1{Ty<T0}uT0(y, y)uT0(y, x)

)
.

But

ν0(Tx < T0) = 1

E0(L
0
Tx

)
= 1

uTx (0,0)
= 1

uT0(x, x)
,(10)

where the last equality follows from Lemma 2.1. Inserting this into (9) yields

ν0(LxLy) = uT0(x, x)uT0(x, y)

uT0(x, x)

+ uT0(y, y)uT0(y, x)

uT0(y, y)
(11)

= uT0(x, y) + uT0(y, x). �
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COROLLARY 2.3. (uT0(x, y)+uT0(y, x), x, y ∈ E×E) is symmetric, positive
definite.

PROOF. Symmetry is obvious. Let (a1, . . . , an) be a vector in R
n, then

n∑
i=1

n∑
j=1

aiaj

(
uT0(xi, xj ) + uT0(xj , xi)

)

= ν0

((
n∑

i=1

aiL
xi

)2)
≥ 0.

�

We now define

d2(x, y) = uT0(x, x) − uT0(x, y) − uT0(y, x) + uT0(y, y).

The above results prove that d(x, y) defines a pseudo distance, and that there is a
centered Gaussian process (φx) such that

〈φx,φy〉 = uT0(x, y) + uT0(y, x).(12)

LEMMA 2.4. Set h(x, y) = Ex(L
x
Ty

), then d2(x, y) = h(x, y).

PROOF.

d2(x, y) = uT0(x, x) − uT0(x, y) − uT0(y, x) + uT0(y, y)

= h(x,0) + h(y,0) − Px(Ty < T0)h(y,0) − Py(Tx < T0)h(x,0)

= h(x,0)Py(Tx > T0) + h(y,0)Px(Ty > T0)

= uT0(x, x)
uTx (y,0)

uTx (0,0)
+ uT0(y, y)

uTy (x,0)

uTy (0,0)
.

But by Lemma 2.1, uT0(x, x) = uTx (0,0) and uT0(y, y) = uTy (0,0), and the last
term is equal to

uTx (y,0) + uTy (x,0)

= Ê0(L
y
Tx

) + Ê0(L
x
Ty

)

= P̂0(Ty < Tx)Êy(L
y
Tx

) + P̂0(Tx < Ty)Êx(L
x
Ty

)

= Êy(L
y
Tx

) = ĥ(y, x),

where the one before last equality follows from Lemma 2.1 applied to the dual
process. We now notice that since d2(x, y) is symmetric with respect to x and y,
and with respect to the dual objects, it follows that ĥ(y, x) = ĥ(x, y) = h(y, x) =
h(x, y), and our result follows. �
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REMARK 2.5. It follows from the above result that d is a real distance on E.
Indeed, for x 
= y, Px(Ty > 0) = 1 and since x is regular for itself, this implies
that Ex(L

x
Ty

) > 0 and hence, that d(x, y) > 0. If the potential densities uT0(x, y)

are jointly continuous, continuity in the topology generated by this metric implies
continuity in the original metric on E.

3. Sufficiency of the majorizing measure condition. Thanks to the results
of the previous section, the proof of sufficiency is very close to that of Bertoin’s
([7], pages 144–150).

LEMMA 3.1. For a ∈ E, set τa
t = inf{s :La

s > t}. Then for every a, b ∈ E,

P {∃s ≤ τb
y :Lb

s − La
s > x} ≤ exp

(
− x2

4yh(a, b)

)
.(13)

PROOF. By the Markov property, we may start our process at b. t → La

τb
t

is

a subordinator (which may have a jump at 0 if our process does not start at b).
La

τb
t

stays at 0 and performs its first jump at time Lb
Ta

. It has therefore no drift.

Lb
Ta

under Pb has an exponential distribution with expectation Eb(L
b
Ta

) = h(a, b).

Next let R = inf{t > Ta :Xt = b} and note that R = τb

Lb
Ta

. Since La
Ta

= 0, La
R has

again an exponential distribution with expectation Ea(L
a
Tb

) = h(a, b). Hence, the

Lévy measure of La

τb
t

is equal to 1
h2(a,b)

exp(− 1
h(a,b)

x), its Lévy exponent �(λ) is

equal to λ
λh(a,b)+1 , and exp(−λLa

τb
s

+ sλ
λh(a,b)+1) is a martingale. By the optional

sampling theorem applied to T ∧ y where T = inf{s : s − La
τb
s

> x}, we can show

that

P {T ≤ y} ≤ exp
(
−λx + λy

(
1 − 1

λh(a, b) + 1

))
.

Taking now λ = x
2yh(a,b)

gives us the required upper bound. �

Define now

Ya(q)(t) = q ∧ La
t .(14)

Then for every q > 0, a, b ∈ E, if q ∧ Lb
t − q ∧ La

t > x at some time t ≥ 0, then
the time when this occurs is bounded by τb

q . Hence,

{∃s : |Ya(q)(s) − Yb(q)(s)| > x}
= {∃s ≤ τb

q :Lb
s − La

s > x} ∪ {∃s ≤ τa
q : La

s − Lb
s > x}.

Therefore,

P {|Ya(q) − Yb(q)|u > x} ≤ 2 exp
(
− x2

4qh(a, b)

)
,(15)
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where | |u is the uniform bound with respect to time. It now follows that, for every
c > 0,

E
(
exp

(|Yb(q) − Ya(q)|2u/c
) − 1

)
= 1

c

∫ ∞
0

exp
(

x

c

)
P {|Yb(q) − Ya(q)|2u > x}dx

≤ 2

c

∫ ∞
0

exp
(

x

c

)
exp

(
x

4qh(a, b)

)
dx = 2

(
c

4qh(a, b)
− 1

)−1

.

Taking now c > 12qh(a, b), we get

E
(
exp

(|Yb(q) − Ya(q)|2u
) − 1

)
< 1.

In the language of Ledoux and Talagrand (page 298 in [21]),

‖Yb(q) − Ya(q)‖ψ ≤ d̃(a, b),

where d̃2(a, b) = 12qh(a, b) and the Young function ψ(x) = exp(x2) − 1. We
shall fix now q > 1 and abuse the notation by denoting Ya(q)(t) by Ya(t).

PROOF OF THEOREM 1.1. Step 1. By Theorem 11.14 of [21], if for a compact
set K there exists a probability measure µ on (K, d̃) such that for

lim
η→0

sup
x∈K

∫ η

0

√
ln

1

µ(B(x, ε))
dε = 0,

where B(x, ε) is a ball of radius ε in the distance d̃ around x, then for each x ∈
E, (a → Ya)a∈K has a Px almost surely continuous version with respect to the
distance d̃ . That is, there is a process(Ỹa)a∈K with continuous sample paths in the
distance d̃ (and therefore d), so that for every a ∈ K , Ya = Ỹa Px almost surely.

Let (Ỹa)a∈K be that version and define Ȳ∗(t) = sup{Ỹa(t) :a ∈ K} and �(q) =
inf{t : Ȳ∗(t) = q}. Since a → Ỹa is continuous, Ȳ∗(t) = sup{Ỹr (t) : r ∈ �}, where
� is a countable dense set in K with respect to the distance d̃ . Thus, Ȳ∗(t) is
a nondecreasing adapted process. Hence, �(q) is an (Ft ) stopping time. By the
Blumenthal 0–1 law, {�(q) = 0} is a probability 0 or 1 event for every Pz.

Step 2. �(q) > 0 for q large enough. We shall show that, for q large enough,
�(q) > 0, Px a.s. and that �(q) → ∞ as q → ∞. To do that, we shall use Propo-
sition 1 of [20]. Indeed, let

f (q,ω, a, b) = |Ỹa(τ (1)) − Ỹb(τ (1))|
and

f̃ (q,ω, a, b) = f (q,ω, a, b)

d̃(q, a, b)
,



CONTINUITY OF LOCAL TIMES 925

where

τ(1) = inf{s : Ỹ0(s) ≥ 1},
where 0 is a preassigned state, that we assume is in K . Then

Px{exp(f̃ 2(q,ω, a, b)) − 1 > α}
= Px{exp(f̃ 2(q,ω, a, b)) > 1 + α}
= Px{f 2(q,ω, a, b) > 12 ln(1 + α)qd2(a, b)}
= Px

{
f (q,ω, a, b) >

√
12q ln(1 + α)d(a, b)

}
≤ Px

{
sup
s≤τ 0

1

|La
s ∧ q − Lb

s ∧ q| >
√

12q ln(1 + α)d(a, b)

}

≤ 2 exp
(
−12q ln(1 + α)d2(a, b)

4qh(a, b)

)

≤ 2 exp
(
−12q ln(1 + α)

4q

)

= 2
(

1

1 + α

)3

,

where the first inequality follows from (15) and the third from Lemma 2.2. It fol-
lows that, for all q ,

Ex(exp(f̃ 2(q,ω, a, b))) ≤ 3.(16)

Define now

C(q) =
∫
K

∫
K

exp(f̃ 2(q,ω, a, b))µ(da)µ(db).

Then Ex(C(q)) ≤ 3, and therefore, C(q) < ∞, Px a.s. Since a → Ỹa(τ (1)) is
continuous in the d̃(= d̃(q)) distance, we can use Heinkel’s formula to deduce
that, for all (a, b) ∈ K ,

|Ỹa(τ (1)) − Ỹb(τ (1))| ≤ 20 sup
z∈K

∫ √
12qd(a,b)/2

0

(
ln

(
C(q)

µ2(B̃(z, u))

))1/2

du,

where, as before, B̃(x, v) is a ball of radius v in the d̃ distance. This after the
change of variable v = u√

3q
is equal to

20
√

3q sup
z∈K

∫ d(a,b)

0

(
ln

(
C(q)

µ2(B(z, v/2))

))1/2

dv,
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where B(z, v) is a ball of radius v in the d distance. This is bounded above by

40
√

3q sup
z∈K

∫ d(a,b)

0

(
ln

(
C(q)

µ2(B(z, v))

))1/2

dv,

which is easily shown to be bounded by

40
√

3q(lnC(q))1/2d(a, b) + √
2 sup

z∈K

∫ d(a,b)

0

(
ln

(
1

µ(B(z, v))

))1/2

dv.

For δ > 0, define

η(δ) = sup
z∈K

∫ δ

0

(
ln

(
1

µ(B(z, v))

))1/2

dv.(17)

By our assumptions, η(D) < ∞, where D is the diameter of the compact set K ,
and limδ→0 η(δ) = 0. Returning to our computation,

Ỹa(τ (1)) ≤ Ỹ0(τ (1)) + c
√

q
(
(lnC(q))1/2D + √

2η(D)
)
,

where c is a constant and D is the diameter of K in the d distance. We now recall
that Px a.s. Ỹ0(τ (1)) = 1, and so, on {�(q) ≤ τ(1)},

q ≤ 1 + c
√

q
(
(lnC(q))1/2D + √

2η(D)
)
.

Using, as in [3], the fact that y2 ≤ A+By implies that y2 ≤ 2A+B2, we see that,
on {�(q) ≤ τ(1)},

q ≤ 2 + (
c((lnC(q))1/2D + √

2η(D))
)2

.

Thus,

Px{�(q) ≤ τ(1)} ≤ Px

{(
c((lnC(q))1/2D + √

2η(D))
)2 ≥ q − 2

}
≤ Px

{
2((lnC(q))1/2D)2 + 4η2(D) ≥ q − 2

c2

}

= Px

{
lnC(q) ≥ q − 2

2c2D2 − 2η2(D)

D2

}

= Px

{
C(q) ≥ exp

(
q − 2

2c2D2 − 2η2(D)

D2

)}

≤ 3 exp
(
− q − 2

2c2D2 + 2η2(D)

D2

)
,

where the last inequality follows from the fact that Ex(C(q)) ≤ 3, this last term is
smaller than 1 for q large enough. It now follows that Px{�(q) = 0} ≤ Px{�(q) ≤
τ(1)} < 1, so that Px{�(q) = 0} = 0 for q large enough.
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Step 3. limn→∞ �(n). Repeating the above computation with q(n) = 3n and
τ(n) = inf{t > 0 :Y0(t) > n}, instead of q = 1 and τ(1), we similarly obtain

Px{�(q(n)) ≤ τ(n)} ≤ 3 exp
(
−3n − 2n

2c2D2 + 2η2(D)

D2

)

≤ A exp
(
− n

B

)
,

where A and B are constants. It now follows from the fact that τ(n) → ∞ as
n → ∞, and the Borel–Cantelli lemma that �(3n) → ∞, Px a.s., and so, the
local time has a jointly continuous version (with respect to Px ) in R+ × K for all
compact K, and thus a jointly continuous version.

Step 4. Jointly continuous potential densities. To prove the last assertion of The-
orem 1.1, we need to show that when uα(x, y) is jointly continuous, then a.s.
(t, x) → Lx(t,ω) is jointly continuous. First note that by Remark 3.4.4 of [28]
uβ(x, y) is jointly continuous for any β > 0, and thus, it can be easily shown that
uT0(x, y) is jointly continuous as well. Hence, the continuity in the d distance im-
plies continuity in the original distance [Actually, as was noted by Bertoin ([7],
page 147), this will make the distances equivalent in the sense that their induced
topologies will be the same.] We fix now a q and prove that, Px almost surely,
Ỹa(q)(t) = La

t simultaneously for all a ∈ K and t < �(q). Specifically, for each
a ∈ K, Px almost surely, La

t = Ỹa(q)(t) for all t < �(q). By Fubini’s theorem and
the occupation time density formula [8], for each continuous f with support in K ,∫ t

0
f (Xs) ds =

∫
K

f (a)Ỹa(q)(t)m(da)

for all t < �(q) Px almost surely. Letting f range over a countable dense family
in C(K) (the continuous functions with support in K), we see that the identity
above holds for all bounded measurable functions with support in K . In particular,
Px almost surely for all a ∈ K , ε > 0 and t < �(q),∫ t

0
fε,a(Xs) ds =

∫
K

fε,a(x)Ỹx(q)(t)m(dx),

where fε,a is an approximating delta function that defines the local time at a ∈ K ,
(see Theorem 3.6.3 and the discussion preceding it in Marcus and Rosen’s re-
cent book [28], that can be easily adapted to the nonsymmetric situation). Since
x → Ỹx(q)(t) is continuous, the right-hand side converges to Ỹa(q)(t) as ε → 0,
and limε→0

∫ t
0 fε,a(Xs) ds = La

t uniformly in [0,�(q)) by Theorem 3.6.3 of [28].
Thus, Ỹa(q)(t) = La

t , Px almost surely for all a ∈ K and t < �(q), so that
(a, t) → La

t is Px a.s. continuous on K × [0,�(q))). Since we have seen that
Px a.s. �(3n) → ∞, as n → ∞, it follows that (a, t) → La

t is Px a.s. continuous
on K × [0,∞) and therefore, in E × [0,∞). Since this is true for every x ∈ E, it
follows that a.s. (a, t) → La

t is continuous.
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Step 5. Modulous of continuity. To get the modulous result, we follow [3], with
Heinkel’s inequality replacing the Gracia, Rodemich, Rumsey inequality that ap-
pears there. We now return to Heinkel’s inequality with Lx

t , which we now know
is continuous in the d distance. Let K be a compact set in the d metric. For a fixed
t > 0, let q be such that supx∈K Lx

t (ω) ≤ q ≤ 2 supx∈K Lx
t (ω). Note that we have

lim inf
δ↓0

1

δ
ηK(δ) ≥ lim

δ↓0

(
ln

1

µ(B(z, δ))

)1/2

for every z in K . Hence, unless µ charges all the points of K and K is finite, we
obtain

lim
δ↓0

1

δ
ηK(δ) = +∞

[we have used the fact that for every infinite countable subset A of K ,∑
z∈A µ({z}) ≤ 1]. Of course, in the case when K is finite, the question of the

modulous of continuity is meaningless. Hence, we can choose δ(ω) > 0 small
enough such that (ln(C(q,K,ω)))1/2δ(ω) <

√
2ηK(δ(ω)). If εt (ω) is chosen to

be smaller than δ(ω), then, as in the computation of Step 2, with (La
t )a∈K replacing

(Ỹa(τ (1))a∈K) that appears there, one can show that for a, b ∈ K ,

|La
s − Lb

s | ≤ C

((
sup
x∈K

Lx
t

)1/2

ηK(d(a, b)

)

for all 0 ≤ s ≤ t and all a, b ∈ K such that d(a, b) < εt (ω). C is a constant, which
by our computations is smaller than 80, and is by no means the best possible (see
[3, 4, 6] in the Lévy case and [23] in the symmetric case). We shall not pursue this
issue any further here. �

4. The central limit theorem for local times. Trying to understand the true
reason why in all existing results the conditions for the joint continuity of the lo-
cal time are identical to those for the continuity of Gaussian processes, one is led
to seek the explanation in a suitable CLT. Indeed, let τ 0

t be the inverse of the lo-
cal time at 0, then (Lx

τ 0
t

)x∈E , is a process with stationary independent increments

with values that are functions on E0. By Lemma 2.2 and its proof, E(Lx
τ 0
n
) = n, and

E0((L
x
τ 0
n
)2) = 2uT0(x, x)n. It follows that

Lx

τ0
n
−n

√
n

converges in distribution to a cen-

tered normal random variable with variance 2uT0(x, x). The following lemma will

show that the process (
Lx

τ0
n
−n

√
n

)x∈E converges in finite-dimensional distributions to
a Gaussian process with covariance uT0(x, y) + uT0(y, x).

LEMMA 4.1.

E0

((Lx
τ 0
n

− n)(L
y

τ 0
n

− n)

n

)
= uT0(x, y) + uT0(y, x).
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PROOF. Denote by G the set of left endpoints of excursions from {t :Xt = 0}.
Then we have

E0(L
x
τ 0
n
) = E0

( ∑
s∈G,s≤τ 0

n

Lx
T0

◦ θs

)
= E0

∫ τ 0
n

0
ν0(Lx) dL0

t = n,(18)

where the second equality follows from excursion theory (compensating the sum of
jumps), and the third by a change of variable s = L0

t , and the fact that ν0(Lx) = 1
for all x ∈ E, which we have shown in the proof of Lemma 2.2. Similarly,

E0(L
x
τ 0
n
L

y

τ 0
n
) = E0

∑
s∈G,s≤τ 0

n

Lx
T0

◦ θs

∑
t∈G,t≤τ 0

n

L
y
T0

◦ θt

= E0
∑

s∈G,s≤τ 0
n

(Lx
T0

L
y
T0

) ◦ θs(19)

+ E0
∑

s∈G,s≤τ 0
n

Lx
T0

◦ θs

∑
t∈G,t≤τ 0

n ,t 
=s

L
y
T0

◦ θt .

Using excursion theory as above, the first sum of (19) is equal to

E0

∫ τ 0
n

0
ν0(LxLy) dL0

t = nν0(LxLy) = n
(
uT0(x, y) + uT0(y, x)

)
,(20)

where the last equality follows as in the proof of Lemma 2.2. Using excursion
theory again, the second term of (19) is composed of two sums. The first is equal
to

E0

∫ τ 0
n

0
ν0(Lx)E0(L

y

τ 0
n−t

) dL0
t

and the second is identical to the above with x and y interchanged. Since
ν0(Lx) = 1, this integral is equal to E0

∫ n
0 E0(L

y

τ 0
n−u

) du = E0
∫ n

0 E0(L
y

τ 0
u
) du = n2

2 .

Since the value of this term is independent of x and y, it remains the same when
interchanging x and y. Thus,

E0

((Lx
τ 0
n

− n)(L
y

τ 0
n

− n)

n

)

= n(uT0(x, y) + uT0(y, x)) + n2 − n2 − n2 + n2

n

= uT0(x, y) + uT0(y, x). �

PROOF OF THEOREM 1.2. All one needs to prove is tightness in C(K) which,
since L0

τ 0
n

− n = 0, amounts to showing that for every η > 0, ε > 0,∃δ > 0,
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∃n0 ∈ N, so that for all n ≥ n0,

P

{
sup

a,b∈K,d(a,b)<δ

|La
τ 0
n

− Lb
τ 0
n
|

√
n

> η

}
< ε.

To prove this, we shall use here again Proposition 1.1 of [20], but in view of the
computations in the last section, with some steps abridged. We shall split the proof
into a few steps.

Step 1. Definition of objects appearing in Heinkel’s inequality:

Yn(q, a, b) = sup
s≤τ 0

n

|q ∧ La
s − q ∧ Lb

s |,(21)

Ỹn(q, a, b) = Yn(q, a, b)

ρ(a, b)
,(22)

where ρ(a, b) = √
12qd(a, b). Then as in the computations preceding (16), for all

y ∈ E,

Py{exp(Ỹ 2
n (q, a, b)) − 1 > α} ≤ 2

(
1

1 + α

)3

.(23)

Hence, for all n, Ey(exp(Ỹ 2
n (q, a, b))) ≤ 3.

Define now

C(n, q) =
∫
K

∫
K

exp(Ỹ 2
n (q, a, b))µ(da)µ(db)(24)

Then Ey(C(n, q)) ≤ 3 and therefore, C(n, q) < ∞, Py a.s. for all y ∈ E.
Step 2. Application of Heinkel’s inequality. It follows from Proposition 1.1

of [20] that

|q ∧ La
τ 0
n

− q ∧ Lb
τ 0
n
| ≤ 20 sup

z∈K

∫ √
12qd(a,b)/2

0

(
ln

(
C(n, q)

µ2(B(z,u))

))1/2

du.

Following again the same arguments as in the previous section, the right-hand side
of the above inequality is bounded above by

40
√

3q

(
(lnC(n, q))1/2d(a, b) + √

2 sup
z∈K

∫ d(a,b)

0

(
ln

(
1

µ(B(z, v))

))1/2

dv

)
.

Recall the definition of η(δ) from (17). By our assumption, η(δ) → 0 as δ → 0.
Step 3. With the above result at hand, we now take q = n + λ

√
n to obtain

|(n + λ
√

n) ∧ La
τ 0
n

− (n + λ
√

n) ∧ Lb
τ 0
n
|

√
n

≤ 1√
n

40
√

3
(
n + λ

√
n
)1/2[(

ln
(
C

(
n,n + λ

√
n
)))1/2

d(a, b) + √
2η(d(a, b))

]

= 40
√

3
(

1 + λ√
n

)1/2[(
ln

(
C

(
n,n + λ

√
n
)))1/2

d(a, b) + √
2η(d(a, b))

]
.
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Returning now to the proof of tightness,

P

(
sup

d(a,b)<a,b∈K,δ

|La
τ 0
n

− Lb
τ 0
n
|

√
n

> η

)
(25)

≤ P

(
sup

a,b∈K,d(a,b)<δ

|(n + λ
√

n) ∧ La
τ 0
n

− (n + λ
√

n) ∧ Lb
τ 0
n
|

√
n

> η

)
(26)

+ P

(
sup
x∈K

Lx
τ 0
n

> n + λ
√

n

)
.(27)

Step 4. Starting with (27) and using the above inequality with a = x, b = 0, and
recalling that L0

τ 0
n

= n, we get

(
n+λ

√
n
)∧Lx

τ 0
n

≤ n+40
√

3
(
n+λ

√
n
)1/2[(

ln
(
C

(
n,n+λ

√
n
)))1/2

D+√
2η(D)

]
,

where D is the diameter of K with respect to the distance d which, by our assump-
tion, is finite as is η(D). Now on {supx∈K Lx

τ 0
n

> n + λ
√

n},
n + λ

√
n ≤ n + 40

√
3
(
n + λ

√
n
)1/2[(

ln
(
C

(
n,n + λ

√
n
)))1/2

D + √
2η(D)

]
,

so that

λ
√

n ≤ 40
√

3
(
n + λ

√
n
)1/2[(

ln
(
C

(
n,n + λ

√
n
)))1/2

D + √
2η(D)

]
,

which is equivalent to

λ

(1 + λ/
√

n)1/2 ≤ 40
√

3
[(

ln
(
C

(
n,n + λ

√
n
)))1/2

D + √
2η(D)

]
.

Thus,

P

{
sup
x∈K

Lx
τ 0
n

> n + λ
√

n

}

≤ P

{
40

√
3
[(

ln
(
C

(
n,n + λ

√
n
)))1/2

D + √
2η(D)

] ≥ λ

(1 + λ/
√

n)1/2

}
.

This last probability is equal to

P

{
ln

(
C

(
n,n + λ

√
n
)) ≥

(
λ

(1 + λ/
√

n)1/240
√

3D
−

√
2η(D)

D

)2}
.(28)

For λ big enough, so that the first term on the right-hand side of the inequality of
(28) is larger than 3 times the second, this is smaller or equal to

P

{
ln

(
C

(
n,n + λ

√
n
)) ≥ λ2

3(1 + λ/
√

n)4800D2

}

≤ 3 exp
(
− λ2C

D2(1 + λ/
√

n)

)
≤ A exp

(
− λ2

1 + λ
B

)
,



932 N. EISENBAUM AND H. KASPI

where the first inequality follows from the fact that we have shown that E(C(n,

q)) ≤ 3 for all q and n, and A,B,C are some constants.
We now choose λ big enough to satisfy all the above inequalities and make this

last bound smaller than ε/2. Note that this λ is chosen independently of n. With
this λ, we return to (26).

Step 5.

P

{
sup

d(a,b)<δ

|(n + λ
√

n) ∧ La
τ 0
n

− (n + λ
√

n) ∧ Lb
τ 0
n
|

√
n

> η

}

≤ P

{
40

√
3
(

1 + λ√
n

)1/2[(
ln

(
C

(
n,n + λ

√
n
)))1/2

δ + √
2η(δ)

]
> η

}

= P

{(
ln

(
C

(
n,n + λ

√
n
)))1/2

δ + √
2η(δ) >

η

40
√

3(1 + λ/
√

n)1/2

}
.

Choose now δ∗ small enough so that
√

2η(δ) <
η

80
√

3(1+λ)1/2 for all δ ≤ δ∗. For

δ ≤ δ∗, the above probability is smaller or equal to

P

{(
ln

(
C

(
n,n + λ

√
n
)))1/2

δ >
η

80
√

3(1 + λ/
√

n)1/2

}
,

which is equal to

P

{(
ln

(
C

(
n,n + λ

√
n
)))

>
η2c

(1 + λ/
√

n)δ2

}

≤ P

{(
ln

(
C

(
n,n + λ

√
n
)))

>
η2c

(1 + λ)δ2

}

≤ 3 exp
(
− η2c

(1 + λ)δ2

)
,

where c is a constant. Note that this bound is independent of n and one can choose
δ small enough to satisfy all the above inequalities and make it smaller than ε/2,
which proves the desired tightness. �

REMARK 4.3. Both K and C(K) are defined with respect to the metric d . If
the potential densities are jointly continuous, this will imply a corresponding CLT
with respect to the original metric.

REMARK 4.4. The following was done in [15] when the process X is sym-
metric; we present it here again for the sake of completeness. It has been shown
in [16] that (

Lx
τn

+ 1
2φ2

x;x ∈ E
) law= (1

2

(
φx + √

n
)2;x ∈ E

)
.(29)
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Subtracting n from both sides and dividing them by
√

n,(
Lx

τn
− n√
n

+ φ2
x

2
√

n
;x ∈ E

)
law=

(
φ2

x

2
√

n
+ √

2φx;x ∈ E

)

and our tightness in C(K) follows directly from the tightness of the Gaussian law.
See also [1] for tightness in the symmetric case using the DIT directly.

PROOF OF THEOREM 1.3. Under the assumption that uα(x, y) are continu-
ous, Theorems 1.1 and 1.2 show that the existence of a majorizing measure is suf-
ficient for both the continuity and the tightness in C(K) of the local time process
both with respect to the metric d and then, by the above continuity, with respect
to the original distance on E. The necessity follows from the characterization of
Gaussian processes that are continuous in the metric d , as those for which the
majorizing measure conditions are satisfied for each compact set K . �
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