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CONDITIONED SQUARE FUNCTIONS FOR
NONCOMMUTATIVE MARTINGALES1

BY NARCISSE RANDRIANANTOANINA

Miami University

We prove a weak-type (1, 1) inequality involving conditioned versions
of square functions for martingales in noncommutative Lp-spaces associated
with finite von Neumann algebras. As application, we determine the optimal
orders for the best constants in the noncommutative Burkholder/Rosenthal
inequalities from [Ann. Probab. 31 (2003) 948–995]. We also discuss
BMO-norms of sums of noncommuting order-independent operators.

1. Introduction. The role played by martingales in the development of clas-
sical probability and analysis is well known as evidenced in the books [5, 7, 8, 21].
In recent years, many classical inequalities from classical martingale theory have
been reformulated to include noncommutative martingales. Several articles on the
subject of noncommutative martingales have appeared in the literature recently.
We refer the reader to a recent survey by Xu [35] for an up-to-date exposition of
this topic.

In this paper, we continue this line of research by studying conditioned square
functions of noncommutative martingales. Recall that conditioned square function
inequalities evolved from a classical result of Rosenthal [32] on p-moment of
sums of independent mean-zero random variables back in the 1970s which was
later generalized by Burkholder for the context of martingales [2] as follows: let
2 ≤ p < ∞ and let (Fn) be a filtration on a probability space (�,F ,P). Given
f ∈ Lp , the conditional expectations (En) and the martingale difference sequence
are given by

En(x) = E(f |Fn) and dn = En(f ) − En−1(f ).

Then the following equivalence holds:( ∑
n≥1

‖dn‖p
p

)1/p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|dn|2)
)1/2∥∥∥∥∥

p

∼cp ‖f ‖p,

where A ∼c B means c−1A ≤ B ≤ cA. This equivalence was inspired by Rosen-
thal’s inequality for sums of independent mean-zero random variables (fn) as he
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obtained the above equivalence for dn = fn and En−1(d
2
n) is the scalar ‖fn‖2

2.
The second term of the left-hand side of the above equivalence is called the con-
ditioned square function of the martingale (fn)n≥1. Our main motivation comes
from a remarkable article [16] by Junge and Xu where they extended the Burk-
holder/Rosenthal inequalities stated above in two directions. First, they found the
right analogue of Burkholder inequalities for noncommutative martingales and
second, the insight provided by the noncommutative case led to the right formu-
lation of the corresponding inequality for the range 1 < p ≤ 2. To highlight the
difference, we recall that in strong contrast with the classical case, (conditioned)
square functions in the noncommutative case take several forms due to the row and
column possibilities in the definition of martingale Hardy spaces and other related
spaces. To motivate our consideration, recall that if 1 < p ≤ 2, and x = (xn)n≥1
is a noncommutative martingale, the norm on the (noncommutative) conditioned
Hardy space hp introduced in [16] reads

‖x‖hp = inf

{( ∑
n≥1

‖an‖p
p

)1/p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|bn|2)
)1/2∥∥∥∥∥

p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|c∗
n|2)

)1/2∥∥∥∥∥
p

}

where the infimum runs over all decompositions dn = an + bn + cn, with a, b

and c being martingale difference sequences. With this norm, the noncommutative
Burkholder/Rosenthal inequalities for 1 < p ≤ 2 from [16] can be formulated as
follows:

‖x‖hp ∼cp sup
n

‖xn‖p.(1.1)

The crucial fact here is that for the case 1 < p ≤ 2, the hp-norm requires that
the given martingale be decomposed into three different martingales according to
diagonal, column and row parts, respectively.

Inspired by (1.1) we consider the extremal case p = 1. Our main result (see
Theorem 3.1) appears as decompositions of martingale difference sequences in the
same spirit as in the definition of the hp-norm when 1 < p < 2. We can roughly
state this as follows (see Theorem 3.1 for the full statement): there exists an ab-
solute constant K > 0 such that if (dn)n≥1 is a martingale difference sequence in a
noncommutative L2-space associated with a finite von Neumann algebra M, then
there exists a decomposition dn = an + bn + cn satisfying the following weak-type
(1, 1) inequality:∥∥∥∥∥

∑
n≥1

an ⊗ en,n

∥∥∥∥∥
L1,∞(M⊗B(l2))

+
∥∥∥∥∥
( ∑

n≥1

En−1(|bn|2)
)1/2∥∥∥∥∥

1,∞
(1.2)
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+
∥∥∥∥∥
( ∑

n≥1

En−1(|c∗
n|2)

)1/2∥∥∥∥∥
1,∞

≤ K

∥∥∥∥∥
∑
n≥1

dn

∥∥∥∥∥
1

,

where (ei,j )i,j≥1 denotes the canonical matrix unit of B(l2).
As in the weak-type (1, 1) inequality for square functions [31], our approach

heavily depends on a noncommutative version of the classical Doob maximal in-
equality due to Cuculescu [3]. The proof is constructive and follows a line of ideas
similar to that in [31]. The decomposition, however, has to be different since we
have three separate terms as stated above.

Using general interpolation techniques and duality, our main result provides a
new proof of the noncommutative analogue of Burkholder/Rosenthal inequalities
from [16]. In fact, this approach improves considerably the estimates of the best
constants from [16]. We obtain the optimal order of all the constants except for
one case (see Theorem 4.1 below).

The paper is organized as follows: in Section 2, we briefly introduce the con-
struction of noncommutative spaces and recall the general setup of martingales in
noncommutative spaces along with formulations of various square functions that
we will need throughout the paper. In Section 3, we formulate the appropriate
weak-type (1, 1) inequality related to conditioned square functions. In Section 4,
we revisit the noncommutative Burkholder/Rosenthal inequalities from [16]. Sec-
tion 5 is devoted to study of sums of independent operators of mean zero in the
sense of [16] and [35]. In the last section, we discuss some related results that
point to some open problems.

2. Preliminary definitions. We use standard notation in operator algebras.
We refer to [20, 33] for background on von Neumann algebra theory. Throughout
all von Neumann algebras are assumed to be finite. Let M be a finite von Neumann
algebra with a normal faithful finite trace τ . The identity element of M is denoted
by 1. For 1 ≤ p ≤ ∞, we denote by Lp(M, τ ) [or simply Lp(M)] the noncommu-
tative Lp-space associated with (M, τ ) (see, e.g., [6, 24]). Note that if p = ∞, we
consider as customary L∞(M, τ ) as the von Neumann algebra M with the usual
operator norm and recall that for 1 ≤ p < ∞, the norm on Lp(M, τ ) is defined by

‖x‖p = (τ (|x|p))1/p, x ∈ Lp(M, τ ),

where |x| is the usual modulus of x.
Assume that M is a ∗-subalgebra of B(H) for a complex Hilbert space H .

The elements of Lp(M, τ ) can be viewed as closed densely defined operators on
H . A closed densely defined operator a on H is said to be affiliated with M if
u∗au = a for all unitary u in the commutant M′ of M. A closed densely defined
operator a on H affiliated with M is said to be τ -measurable if there exists λ ≥ 0
such that τ(χ(λ,∞)(|a|)) < ∞ where χ(λ,∞)(|a|) denotes the spectral projection of



1042 N. RANDRIANANTOANINA

|a| corresponding to the characteristic function χ(λ,∞)(·). For a measurable oper-
ator a, the generalized singular value function µ(a) is defined by

µt(a) = inf
{
λ ≥ 0 : τ

(
χ(λ,∞)(|a|)) ≤ t

}
, t ≥ 0.

We refer to [9] for details and properties of the function µ(·).
Of special interest in this paper is the noncommutative weak L1-spaces as-

sociated with (M, τ ) and denoted by L1,∞(M, τ ). It is the collection of all
τ -measurable operators x for which the quasi-norm

‖x‖1,∞ := sup
t>0

tµt (x) = sup
λ>0

λτ
(
χ(λ,∞)(|x|))(2.1)

is finite. The following quasi-triangle inequality on elements of L1,∞(M, τ ) holds
and will be used repeatedly in the sequel. A short proof can be found in [31],
Lemma 1.2.

LEMMA 2.1. For any x1, x2 in L1,∞(M, τ ) and λ > 0,

λτ
(
χ(λ,∞)(|x1 + x2|)) ≤ 2λτ

(
χ(λ/2,∞)(|x1|)) + 2λτ

(
χ(λ/2,∞)(|x2|)).

For a complete, detailed and up-to-date presentation of noncommutative inte-
gration and noncommutative spaces, we refer to the recent survey [28].

Let us now recall the general setup for noncommutative martingales. Let
(Mn)n≥1 be an increasing sequence of von Neumann subalgebras of M such that
the union of Mn’s is weak∗-dense in M. For each n ≥ 1, it is well known that there
is a unique normal faithful conditional expectation En from M onto Mn such that
τ ◦ En = τ . Moreover, En extends to a contractive projection from Lp(M, τ ) onto
Lp(Mn, τ |Mn) for every 1 ≤ p < ∞ which we will still denote by En.

DEFINITION 2.2. A noncommutative martingale with respect to the filtration
(Mn)n≥1 is a sequence x = (xn)n≥1 in L1(M, τ ) such that

En(xn+1) = xn for all n ≥ 1.

If additionally, x ∈ Lp(M, τ ) for some 1 ≤ p < ∞, then x is called an
Lp-martingale. In this case, we set

‖x‖p := sup
n≥1

‖xn‖p.

If ‖x‖p < ∞, then x is called a bounded Lp-martingale. The difference sequence
dx = (dxn)n≥1 of a martingale x = (xn)n≥1 is defined by

dxn = xn − xn−1

with the usual convention that x0 = 0. For concrete natural examples of noncom-
mutative martingales, we refer to [27, 35].
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We will now describe square functions of noncommutative martingales. Fol-
lowing [27], we will consider the following row and column versions of square
functions: for a finite martingale x = (xn)n≥1, we denote by dx the difference
sequence as defined above. Set

SC(x) =
( ∑

k≥1

|dxk|2
)1/2

and SR(x) =
( ∑

k≥1

|dx∗
k |2

)1/2

.

For 1 ≤ p ≤ ∞ and any finite sequence a = (an)n≥1 in Lp(M, τ ), set

‖a‖Lp(M;l2C) =
∥∥∥∥∥
( ∑

n≥1

|an|2
)1/2∥∥∥∥∥

p

, ‖a‖Lp(M;l2R) =
∥∥∥∥∥
( ∑

n≥1

|a∗
n|2

)1/2∥∥∥∥∥
p

.

We recall the definitions of martingale Hardy spaces. Let 1 ≤ p < ∞; for a finite
Lp-martingale x, set

‖x‖H
p
C(M) = ‖dx‖Lp(M;l2C) and ‖x‖H

p
R(M) = ‖dx‖Lp(M;l2R).

The space H
p
C(M) [resp. H

p
R(M)] is defined as the completion of the collection

of finite Lp-martingales under the norm ‖ · ‖H
p
C(M) (resp. ‖ · ‖H

p
R(M)). The Hardy

space of noncommutative martingales is defined as follows: if 1 ≤ p < 2,

Hp(M) = H
p
C(M) + H

p
R(M)

equipped with the norm

‖x‖Hp(M) = inf
{‖y‖H

p
C(M) + ‖z‖H

p
R(M)

}
where the infimum runs over all pairs (y, z) ∈ H

p
C(M) × H

p
R(M) such that x =

y + z. For 2 ≤ p < ∞,

Hp(M) = H
p
C(M) ∩ H

p
R(M)

equipped with the intersection norm

‖x‖Hp(M) = max
{‖x‖H

p
C(M),‖x‖H

p
R(M)

}
.

Below and throughout the rest of the paper we write ap ≈ bp as p → p0 to
abbreviate the statement that there are two absolute positive constants K1 and K2
such that

K1 ≤ ap

bp

≤ K2 for p close to p0.

A fundamental result involving Hardy spaces is the noncommutative Burkholder–
Gundy inequalities which we now state for further use.
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THEOREM 2.3 (Noncommutative Burkholder–Gundy inequalities [19, 27, 31]).
Let 1 < p < ∞ and let x = (xn)

∞
n=1 be an Lp-martingale. Then x is bounded in

Lp(M, τ ) if and only if x belongs to Hp(M). If this is the case, then

α−1
p ‖x‖Hp(M) ≤ ‖x‖p ≤ βp‖x‖Hp(M).(BGp)

Moreover, we have the following estimates for the best constants in (BGp):

(i) αp ≈ (p − 1)−1 as p → 1;
(ii) αp ≈ p as p → ∞;

(iii) βp ≈ 1 as p → 1;
(iv) βp ≈ p as p → ∞.

These are the optimal orders of the constants αp and βp .

The equivalence (BGp) was first proved in the seminal paper [27]. The optimal
orders of the constants involved follow from results in [19] and [31].

We now consider the conditioned versions of square functions and Hardy spaces
developed in [15, 16].

Let 1 ≤ p < ∞. For a finite sequence a = (an)n≥1 in M, we define (recalling
that E0 = E1)

‖a‖L
p
cond(M;l2C) :=

∥∥∥∥∥
( ∑

n≥1

En−1(a
∗
nan)

)1/2∥∥∥∥∥
p

.

It was shown in [15] that ‖ · ‖L
p
cond(M;l2C) is a norm on the vector space of all fi-

nite sequences in M ∩ L1(M, τ ). The completion of the space of finite sequences
in M equipped with the norm ‖ · ‖L

p
cond(M;l2C) will be denoted by L

p
cond(M; l2

C)

and is the conditioned version of the space Lp(M; l2
C) defined earlier. Similarly,

we can define the conditioned row space L
p
cond(M; l2

R). A crucial fact that we
will need in the sequel is that both spaces L

p
cond(M; l2

C) and L
p
cond(M; l2

R) can
be realized as closed subspaces column and row (resp.) of the noncommuta-
tive space Lp(M ⊗B(l2(N2))) associated to the semifinite von Neumann algebra
M ⊗B(l2(N2)). For complete details on these facts we refer to [15].

Let x = (xn)n≥1 be a finite martingale in L2(M, τ ); we set

σC(x) =
( ∑

n≥1

En−1(|dxn|2)
)1/2

and σR(x) =
( ∑

n≥1

En−1(|dx∗
n |2)

)1/2

.

These will be called the column and row conditioned square functions, respec-
tively. Observe that for 1 ≤ p < ∞,

‖σC(x)‖p = ‖dx‖L
p
cond(M;l2C) and ‖σR(x)‖p = ‖dx‖L

p
cond(M;l2R).

Let h
p
C(M) [resp. h

p
R(M)] denote the closure in L

p
cond(M; l2

C) [resp.
L

p
cond(M; l2

R)] of all finite martingales in M (here we identified a martingale with
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its martingale difference sequence). Let h
p
D(M) be the subspace of lp(Lp(M, τ ))

consisting of martingale difference sequences. Following [16], we define the con-
ditioned version of martingale Hardy spaces as follows: if 1 ≤ p < 2,

hp(M) := h
p
D(M) + h

p
C(M) + h

p
R(M)

equipped with the norm

‖x‖hp(M) = inf
{‖xD‖h

p
D(M) + ‖xC‖h

p
C(M) + ‖xR‖h

p
R(M)

}
,

where the infimum runs over all triples (xD, xC, xR) ∈ h
p
D(M)×h

p
C(M)×h

p
R(M)

such that xn = xD
n + xC

n + xR
n for all n ≥ 1. For 2 ≤ p < ∞,

hp(M) := h
p
D(M) ∩ h

p
C(M) ∩ h

p
R(M)

equipped with the norm

‖x‖hp(M) = max
{‖x‖h

p
D(M),‖x‖h

p
C(M),‖x‖h

p
R(M)

}
.

For 1 ≤ p < ∞, it is known from [16] that the linear space hp(M) is a Banach
space.

3. A weak-type inequality for conditioned square functions. We will retain
all notation introduced in the preliminaries. Unless specified otherwise, all adapted
sequences are understood to be with respect to a fixed filtration of von Neumann
subalgebras of M. The principal result of this section is Theorem 3.1 below which
can be viewed as a natural extension of the noncommutative Burkholder inequali-
ties from [16] to the case p = 1.

THEOREM 3.1. There is an absolute constant K > 0 such that if x =
(xn)1≤n≤N is a finite L2-bounded martingale, then there exist three adapted se-
quences a = (an)1≤n≤N , b = (bn)1≤n≤N and c = (cn)1≤n≤N in L2(M, τ ) such
that:

(α) for every 1 ≤ n ≤ N , we have the decomposition

dxn = an + bn + cn;
(β) the L2-norms satisfy

‖a‖L2(M,l2C) + ‖b‖L2(M,l2C) + ‖c‖L2(M,l2R) ≤ K‖x‖2;
(γ ) the conditioned square functions satisfy the weak-type inequality:∥∥∥∥∥

N∑
n=1

an ⊗ en,n

∥∥∥∥∥
L1,∞(M⊗B(l2N))

+
∥∥∥∥∥
(

N∑
n=1

En−1(|bn|2)
)1/2∥∥∥∥∥

1,∞

+
∥∥∥∥∥
(

N∑
n=1

En−1(|c∗
n|2)

)1/2∥∥∥∥∥
1,∞

≤ K‖x‖1,

where (ei,j )1≤i,j≤N denotes the canonical matrix unit of B(l2
N).
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As in previous weak-type results, our approach depends very heavily on a non-
commutative version of the classical Doob weak-type (1,1) maximal inequality,
due to Cuculescu [3] (which we will recall below). We also note that through the
standard decomposition of a general martingale into four positive martingales, the
general case can be deduced easily from the special case of a positive martingale.
Hence, without loss of generality, we can and do assume that the finite martingale
x = (xn)1≤n≤N is a positive martingale and ‖x‖1 = 1.

3.1. The decomposition of the martingale difference sequence. We will ex-
plicitly describe the decomposition as stated. We start with the proposition (due to
Cuculescu [3]) below which can be viewed as a substitute for the classical weak-
type (1,1) boundedness of maximal functions. We will state a version that incor-
porates the different properties that we need in the sequel. A short proof of the
form stated below can be found in [29].

PROPOSITION 3.2 [3]. For every λ > 0, there exists a finite sequence of de-
creasing projections (q

(λ)
n )1≤n≤N in M with:

(a) for every 1 ≤ n ≤ N , q
(λ)
n ∈ Mn;

(b) q
(λ)
n = q

(λ)
n−1 · χ(0,λ](q(λ)

n−1xnq
(λ)
n−1) = χ(0,λ](q(λ)

n−1xnq
(λ)
n−1) · q(λ)

n−1. In particu-

lar, q
(λ)
n commutes with q

(λ)
n−1xnq

(λ)
n−1;

(c) q
(λ)
n xnq

(λ)
n ≤ λq

(λ)
n ;

(d) (q
(λ)
n )1≤n≤N is a decreasing sequence and τ(1 − q

(λ)
N ) ≤ λ−1.

The construction is based on the finite sequences (q
(2k)
n )1≤n≤N for k ≥ 1. Fol-

lowing [30, 31], for 1 ≤ n ≤ N , we set

p0,n :=
∞∧

k=0

q(2k)
n

(3.1)

pi,n :=
∞∧
k=i

q(2k)
n −

∞∧
k=i−1

q(2k)
n for i ≥ 1.

Elementary but useful properties of the sequences (pi,n)i≥0 that are relevant to
our proof are collected in the following lemma.

LEMMA 3.3 ([30], Proposition 1.4). For 1 ≤ n ≤ N , the sequence of projec-
tions (pi,n)i≥0 is pairwise disjoint with the following properties:

(a) for every 1 ≤ n ≤ N and i ≥ 0, pi,n ∈ Mn;
(b)

∑∞
i=0 pi,n = 1 ( for the strong operator topology);

(c) for every m0 ≥ 0,
∑m0

i=0 pi,n ≤ q
(2m0 )
n .
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As in [30], we observe that for n ≥ 1, x = ∑∞
j=0

∑∞
i=0 pi,nxpj,n−1 for all x ∈

L1(M, τ ) (where the double sum may be taken using the L1-norm). The (finite)
sequences a, b and c are defined as follows:

an :=



0, if n = 1,∞∑
j=0

∑
i>j

(pi,n − pi,n−1pi,n) dxnpj,n−1, if 2 ≤ n ≤ N ;(3.2)

bn :=




∞∑
j=0

∑
i≤j

pi,1 dx1pj,1, if n = 1,

∞∑
j=0

∑
i≤j

pi,n dxnpj,n−1, if 2 ≤ n ≤ N ;

(3.3)

cn :=




∞∑
j=0

∑
i>j

pi,1 dx1pj,1, if n = 1,

∞∑
j=0

∑
i>j

pi,n−1pi,n dxnpj,n−1, if 2 ≤ n ≤ N .

(3.4)

It is clear from this construction that for every 1 ≤ n ≤ N , an, bn and cn belong
to L2(Mn, τ |Mn) and dxn = an + bn + cn. Moreover, using boundedness of the
triangular truncations in L2(M, τ ), it is straightforward that condition (β) of the
theorem is satisfied. Thus, it remains to prove the weak-type (1, 1) inequality as
stated in condition (γ ) of Theorem 3.1.

3.2. Proof of the weak-type (1,1) inequalities. The proof is separated into two
parts highlighted in Propositions A and B below.

PROPOSITION A. There exists an absolute constant κ > 0 such that∥∥∥∥∥
∑
n≥1

an ⊗ en,n

∥∥∥∥∥
L1,∞(M⊗B(l2N))

≤ κ.

We will start by recording some basic lemmas for further use in the proof. For a
given operator x ∈ M, we denote by l(x) [resp. r(x)] the left (resp. right) support
projection of x (see, e.g., [33], page 134, for definitions). We need the following
observation:

LEMMA 3.4. Let n ≥ 2 and i ≥ 1. Then:

(i) r(pi,n − pi,n−1pi,n) ≤ pi,n;

(ii) l(pi,n − pi,n−1pi,n) ≤ ∧∞
k=i−1 q

(2k)
n−1 − ∧∞

k=i−1 q
(2k)
n .
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PROOF. The first statement is trivial from the definition of right support pro-
jections. For the left support projections, we observe from the definition of pi,n’s

and the fact that (q
(2k)
n )n≥1 is decreasing that for n ≥ 2 and i ≥ 1,

pi,n − pi,n−1pi,n =
∞∧

k=i−1

q
(2k)
n−1

∞∧
k=i

q(2k)
n −

∞∧
k=i−1

q(2k)
n .

The statement then follows directly from the definition of left support projections.
�

LEMMA 3.5. For n ≥ 2 and i ≥ 1, set ri,n = r(pi,n − pi,n−1pi,n); then for
every m0 ∈ N,

∑
n≥2

τ

( ∑
i≥m0+1

ri,n

)
≤ 4.2−m0 .

PROOF. First, note that for every n ≥ 2 and i ≥ 1, ri,n is equivalent to
l(pi,n − pi,n−1pi,n) (see, e.g., [33], Proposition 1.5, page 292) and therefore from

Lemma 3.4, we get that τ(rn,i) = τ(l(pi,n − pi,n−1pi,n)) ≤ τ(
∧∞

k=i−1 q
(2k)
n−1 −∧∞

k=i−1 q
(2k)
n ). Hence, from this estimate, we deduce that

∑
n≥2

τ

( ∑
i≥m0+1

ri,n

)
≤ ∑

n≥2

τ

( ∑
i≥m0+1

∞∧
k=i−1

q
(2k)
n−1 −

∞∧
k=i−1

q(2k)
n

)

= ∑
i≥m0+1

τ

( ∑
n≥2

∞∧
k=i−1

q
(2k)
n−1 −

∞∧
k=i−1

q(2k)
n

)

= ∑
i≥m0+1

τ

( ∞∧
k=i−1

q
(2k)
1 −

∞∧
k=i−1

q(2k)

)

≤ ∑
i≥m0+1

τ

(
1 −

∞∧
k=i−1

q(2k)

)

= ∑
i≥m0+1

τ

( ∞∨
k=i−1

(
1 − q(2k)))

≤ ∑
i≥m0+1

∑
k≥i−1

τ
(
1 − q(2k)).

Thus, we conclude from Proposition 3.2 that

∑
n≥2

τ

( ∑
i≥m0+1

ri,n

)
≤ ∑

i≥m0+1

( ∑
k≥i−1

2−k

)
= 4.2−m0,
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which proves the lemma. �

LEMMA 3.6. For n ≥ 2, let hn = ∑
i≥0 pi,n − pi,n−1pi,n ∈ Mn and set

h := ∑
n≥2

hn ⊗ en,n ∈ M ⊗B(l2
N).

Then max{‖h‖∞,‖h‖2} ≤ 2.

PROOF. Note that ‖h‖∞ = supn≥2 ‖hn‖∞ and for every n ≥ 2, hn = 1 −∑
i≥1 pi,n−1pi,n. Since |∑i≥1 pi,n−1pi,n|2 = ∑

i≥1 pi,npi,n−1pi,n ≤ 1, the first
assertion follows. For the L2-norm, it is clear that ‖hn‖2

2 = ∑
i≥1 ‖pi,n −

pi,n−1pi,n‖2
2 ≤ ∑

i≥1 τ(ri,n). From Lemma 3.5, we deduce that

‖h‖2
2 ≤ ∑

n≥2

∑
i≥1

τ(ri,n) ≤ 4

which shows the desired estimate on the L2-norm. �

We are now ready to provide the proof of Proposition A.

PROOF OF PROPOSITION A. We denote by tr the usual trace of B(l2
N). From

the definition of ‖ ·‖1,∞, it is enough to show the existence of a numerical constant
κ > 0 such that for every λ > 0,

τ ⊗ tr

(
χ(λ,∞)

(∣∣∣∣∣
∑
n≥2

an ⊗ en,n

∣∣∣∣∣
))

≤ κλ−1.(3.5)

Since the trace τ ⊗ tr is not normalized, we have to verify (3.5) for the full range
0 < λ < ∞. We separate the proof into two separate cases according to λ ≥ 1 or
0 < λ < 1.

Case 1. Assume that λ ≥ 1. For this case, it is enough to verify (3.5) for λ =
2m0 for m0 ≥ 0. To simplify the notation, we set 
 := ∑

n≥2 an ⊗ en,n.
We first observe that


 = h · ∑
n≥2

( ∑
j≥0

∑
i>j

ri,ndxnpj,n−1

)
⊗ en,n

= h · ∑
n≥2

( ∑
j≥0

∑
i>j

(ri,n ⊗ en,n) · (dxn ⊗ en,n) · (pj,n−1 ⊗ en,n)

)
.

Consider the following projection in M ⊗B(l2
N):

v0 := ∑
n≥2

( ∑
i≥m0+1

ri,n

)
⊗ en,n.(3.6)
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Then from the estimate in Lemma 3.5, we have τ ⊗ tr(v0) ≤ 4λ−1. Moreover, we
can write 
 using the projection v0 as


 = h · ∑
n≥2

(
m0∑
j=0

∑
j<i≤m0

ri,ndxnpj,n−1

)
⊗ en,n + h · v0 · �,

where � = ∑
n≥2(

∑
j≥0

∑
i>max(j,m0)

ri,ndxnpj,n−1)⊗en,n. We can split the trace
according to Lemma 2.1 and get

τ ⊗ tr
(
χ(λ,∞)(|
|)) ≤ 2τ ⊗ tr

(
χ(λ/2,∞)(|h · �|)) + 2τ ⊗ tr

(
χ(λ/2,∞)(|h · v0 · �|))

where � = ∑
n≥2(

∑m0
j=0

∑
j<i≤m0

ri,ndxnpj,n−1) ⊗ en,n. A fortiori,

τ ⊗ tr
(
χ(λ,∞)(|
|)) ≤ 8‖h‖2∞λ−2‖�‖2

2
(3.7)

+ 2τ ⊗ tr
(
χ(λ2/4,∞)(hv0��∗v0h

∗)
)
.

Observe (see, e.g., [9]) that

τ ⊗ tr
(
χ(λ2/4,∞)(hv0��∗v0h

∗)
)

=
∫ ∞

0
χ(λ2/4,∞){µt(hv0��∗v0h

∗)}dt

≤
∫ ∞

0
χ(λ2/4‖h‖2∞,∞){µt(v0��∗v0)}dt

where the singular value µt(·) is relative to M ⊗B(l2
N). Therefore,

τ ⊗ tr
(
χ(λ2/4,∞)(hv0��∗v0h

∗)
) ≤ τ ⊗ tr(v0) ≤ 4λ−1.

Moreover, it is clear that for every s ≥ 1,
∑m0

i=0 ri,s ≤ ∑m0
i=0 pi,s ≤ q

(λ)
s and thus

� = ∑
n≥2(

∑m0
j=0

∑
j<i≤m0

ri,n(q
(λ)
n dxnq

(λ)
n−1)pj,n−1) ⊗ en,n. From the

L2-boundedness of triangular truncations, it follows that

‖�‖2
2 ≤ ∑

n≥2

∥∥q(λ)
n dxnq

(λ)
n−1

∥∥2
2.

Combining the above estimates, (3.7) implies

τ ⊗ tr
(
χ(λ,∞)(|
|)) ≤ 32λ−2

∑
n≥2

∥∥q(λ)
n dxnq

(λ)
n−1

∥∥2
2 + 8λ−1.(3.8)

Therefore it remains to estimate ‖q(λ)
n dxnq

(λ)
n−1‖2

2 for n ≥ 2. This is done in the next
lemma.

LEMMA 3.7. For every 2 ≤ n ≤ N , ‖q(λ)
n dxnq

(λ)
n−1‖2 ≤ ‖q(λ)

n xnq
(λ)
n −

q
(λ)
n−1xn−1q

(λ)
n−1‖2 and

∥∥q(λ)
1 x1q

(λ)
1

∥∥2
2 +

N∑
n=2

∥∥q(λ)
n xnq

(λ)
n − q

(λ)
n−1xn−1q

(λ)
n−1

∥∥2
2 ≤ 2λ.
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PROOF. We will simply write qn for q
(λ)
n . For every 2 ≤ n ≤ N , we note that

qn ≤ qn−1 and qn commutes with qn−1xnqn−1 [Proposition 3.2(c)]. Therefore,

‖qndxnqn−1‖2
2 = τ(qn dxnqn−1 dxnqn)

= τ
(
qn(xn − xn−1)qn−1(xn − xn−1)qn

)
= τ(|[qn−1xnqn−1 − qn−1xn−1qn−1]qn|2)
= τ(|[qnxnqn − qn−1xn−1qn−1]qn|2)
≤ ‖qnxnqn − qn−1xn−1qn−1‖2

2.

The proof of the second inequality can be found in [31], Proposition E. �

We can now conclude by combining (3.8) and Lemma 3.7 that

τ ⊗ tr
(
χ(λ,∞)(|
|)) ≤ 72λ−1.

Thus the proof for the case λ ≥ 1 is complete.

Case 2. Assume 0 < λ < 1. Let m0 = 1 and let v0 be the corresponding pro-
jection in M ⊗B(l2

N) as in (3.5) above. Then (as in the previous case), we write


 = h · v0 · � + h ·
( ∑

n≥2

r1,nq
(2)
n dxnq

(2)
n−1p0·n−1 ⊗ en,n

)
.

As τ ⊗ tr(v0) ≤ 2, the argument in the previous case gives

τ ⊗ tr
(
χ(λ,∞)(|
|))

≤ 2τ ⊗ tr

(
χ(λ/2,∞)

(∣∣∣∣∣h ·
( ∑

n≥2

r1,nq
(2)
n dxnq

(2)
n−1p0·n−1 ⊗ en,n

)∣∣∣∣∣
))

+ 4

≤ 4λ−1

∥∥∥∥∥h ·
( ∑

n≥2

r1,nq
(2)
n dxnq

(2)
n−1p0·n−1 ⊗ en,n

)∥∥∥∥∥
1

+ 4

= 4λ−1
∑
n≥2

∥∥hnr1,nq
(2)
n dxnq

(2)
n−1p0·n−1

∥∥
1 + 4

≤ 4λ−1
∑
n≥2

‖hn‖2
∥∥q(2)

n dxnq
(2)
n−1

∥∥
2 + 4.

Since ‖h‖2 = (
∑

n≥2 ‖hn‖2
2)

1/2 ≤ 2, Hölder’s inequality implies

τ ⊗ tr
(
χ(λ,∞)(|
|)) ≤ 8λ−1

( ∑
n≥2

∥∥q(2)
n dxnq

(2)
n−1

∥∥2
2

)1/2

+ 4.
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We now apply Lemma 3.7 to conclude that

τ ⊗ tr
(
χ(λ,∞)(|
|)) ≤ 32λ−1 + 4 ≤ 36λ−1.

This proves (3.5) for the case 0 < λ < 1 and combined with the previous case, the
proof of Proposition A is complete. �

PROPOSITION B. There exists an absolute constant κ > 0 so that∥∥∥∥∥
( ∑

n≥1

En−1(|bn|2)
)1/2∥∥∥∥∥

1,∞
+

∥∥∥∥∥
( ∑

n≥1

En−1(|c∗
n|2)

)1/2∥∥∥∥∥
1,∞

≤ κ.

PROOF. We begin by highlighting the forms of the conditioned square func-
tions relative to the sequences b and c. The proof of the following lemma is just a
notational adjustment of [30], Lemma 2.2 and is left to the interested reader.

LEMMA 3.8. For the sequences defined above, we have:

(a) |b1|2 = ∑∞
l=0

∑∞
j=0

∑
i≤min(l,j) pl,1 dx1pi,1 dx1pj,1;

(b) En−1(|bn|2) = ∑∞
l=0

∑∞
j=0

∑
i≤min(l,j) pl,n−1En−1[dxnpi,n dxn]pj,n−1 for

2 ≤ n ≤ N ;
(c) |c∗

1|2 = ∑∞
l=1

∑∞
j=1

∑
i<min(l,j) pl,1 dx1pi,1 dx1pj,1;

(d) for 2 ≤ n ≤ N ,

En−1(|c∗
n|2)

=
∞∑
l=1

∞∑
j=1

∑
i<min(l,j)

pl,n−1En−1[pl,ndxnpi,n−1 dxnpj,n]pj,n−1,

where the sums are taken using the L1-norm.

From the preceding lemma, we remark that En−1(|bn|2) and En−1(|c∗
n|2) are es-

sentially of the same form so we will provide the complete detail on the appropriate
estimate of ‖(∑n≥1 En−1(|bn|2))1/2‖1,∞ and only point out the (minimal) adjust-
ment needed for ‖(∑n≥1 En−1(|c∗

n|2))1/2‖1,∞. In particular, we need to verify the
existence of an absolute constant κ > 0 such that∥∥∥∥∥

( ∑
n≥1

En−1(|bn|2)
)1/2∥∥∥∥∥

1,∞
≤ κ.(3.9)

As above, this is equivalent to showing the existence of a numerical constant κ > 0
such that for every λ > 0,

τ

(
χ(λ,∞)

(( ∑
n≥1

En−1(|bn|2)
)1/2))

≤ κλ−1.(3.10)
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We note that since τ is normalized, it is enough to verify the existence of such
constant for λ = 2m0 where m0 ≥ 0. The proof basically follows the steps used in
the previous proposition. Throughout the proof, let σC := (

∑
n≥1 En−1(|bn|2))1/2.

Consider the projection

w0 :=
m0∑
i=0

pi,N =
∞∧

k=m0

q
(2k)
N(3.11)

and

γ0 =
∣∣∣∣∣

m0∑
j=0

∑
i≤j

pi,1 dx1pj,1

∣∣∣∣∣
2

(3.12)

+
N∑

n=2

m0∑
l=0

m0∑
j=0

∑
i≤min(l,j)

pl,n−1En−1[dxnpi,n dxn]pj,n−1.

It is clear that τ(1 − w0) ≤ ∑
k≥m0+1 τ(1 − q

(2k)
N ) ≤ 2−m0 = λ−1. Moreover, since

for every 1 ≤ s ≤ N , w0 ≤ ∑m0
i=1 pi,s , we have w0σ

2
Cw0 = w0γ0w0. We deduce

from Lemma 2.1 that

τ
(
χ(λ,∞)(σC)

) ≤ 2τ
(
χ(λ/2,∞)(|σCw0|)) + 2τ

(
χ(λ/2,∞)

(|σC(1 − w0)|))
≤ 2τ

(
χ(λ2/4,∞)(w0γ0w0)

) + 2λ−1

≤ 8λ−2‖w0γ0w0‖1 + 2λ−1.

We remark that since the expectations are τ -invariant,

‖w0γ0w0‖1 ≤
∥∥∥∥∥

m0∑
j=0

∑
i≤j

pi,1 dx1pj,1

∥∥∥∥∥
2

2

+ τ

(
N∑

n=2

m0∑
l=0

m0∑
j=0

∑
i≤min(l,j)

pl,n−1En−1[dxnpi,n dxn]pj,n−1

)

=
∥∥∥∥∥

m0∑
j=0

∑
i≤j

pi,1 dx1pj,1

∥∥∥∥∥
2

2

+ τ

(
N∑

n=2

m0∑
j=0

∑
i≤j

pj,n−1 dxnpi,n dxnpj,n−1

)
.

Moreover, from the fact that
∑m0

i=1 pi,s ≤ q
(λ)
s when 1 ≤ s ≤ m0, we have

‖w0γ0w0‖1 ≤
∥∥∥∥∥

m0∑
j=0

∑
i≤j

pi,1
(
q

(λ)
1 dx1q

(λ)
1

)
pj,1

∥∥∥∥∥
2

2
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+ τ

(
N∑

n=2

m0∑
j=0

pj,n−1
(
q

(λ)
n−1 dxnq

(λ)
n dxnq

(λ)
n−1

)
pj,n−1

)

≤ ∥∥q(λ)
1 dx1q

(λ)
1

∥∥2
2 +

N∑
n=2

∥∥q(λ)
n dxnq

(λ)
n−1

∥∥2
2.

We can now apply Lemma 3.7 to conclude that

τ
(
χ(λ,∞)(σC)

) ≤ 18λ−1.(3.13)

For the second part of the proposition, let σR := (
∑

n≥1 En−1(|c∗
n|2))1/2. A no-

tational adjustment of the argument used above leads to the inequality

τ
(
χ(λ,∞)(σR)

) ≤ 8λ−2 + 2λ−1

with

 ≤ ∥∥q(λ)
1 dx1q

(λ)
1

∥∥2
2 + τ

(
N∑

n=2

m0∑
j=0

∑
i≤j

pj,n−1[pj,n dxnpi,n−1 dxnpj,n]pj,n−1

)

≤ ∥∥q(λ)
1 dx1q

(λ)
1

∥∥2
2 + τ

(
N∑

n=2

m0∑
j=0

pj,n−1
[
pj,nq

(λ)
n dxnq

(λ)
n−1 dxnq

(λ)
n pj,n

]
pj,n−1

)

≤ ∥∥q(λ)
1 dx1q

(λ)
1

∥∥2
2 +

N∑
n=2

‖q(λ)
n−1 dxnq

(λ)
n

∥∥2
2,

and thus as above,  ≤ 2λ and therefore it follows that

τ
(
χ(λ,∞)(σR)

) ≤ 18λ−1.(3.14)

Proposition B follows from combining (3.13) and (3.14). �

The weak-type (1,1) inequality in Theorem 3.1 clearly follows by combining
Propositions A and B. The proof is complete.

REMARK 3.9. (i) In the proofs of Propositions A and B above, one can also
use the noncommutative analogue of Gundy’s decomposition recently obtained
in [26]. This, however, does not lead to substantial simplification of the more tra-
ditional approach used above.

(ii) We note that the decomposition in Theorem 3.1 is only with adapted se-
quences. We do not know if such decomposition can be accomplished with mar-
tingale difference sequences. From the Cauchy–Schwarz inequality on conditional
expectations, it follows that Proposition B is still valid with (bn − En−1(bn))n≥1
and (cn − En−1(cn))n≥1 in place of (bn)n≥1 and (cn)n≥1, respectively. At this time
we do not know if Proposition A holds with (an − En−1(an))n≥1. This, however,
will not affect the argument used in the main application in the next section. See
Proposition 3.10 below for a particular case where the decomposition can be done
with martingale difference sequences.
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After the first draft of this paper was written, we learned that J. Parcet had
proved in [25] two nonequivalent weak-type (1,1) inequalities analogous to Burk-
holder inequalities (see [25], Theorem A, Theorem B, Corollary C). His paper,
however, considered only classical martingales on probability spaces. It turns out
that Theorem 3.1 above when applied to classical martingales gives the same re-
sult as [25], Corollary C. His primary tool is the classical Davis decomposition. We
also obtain a noncommutative analogue of [25], Theorem B under similar assump-
tion. Following [25] for classical martingales, we say that a positive noncommu-
tative martingale x = (xn)n≥1 is k-regular (for some constant k > 1) if for every
n ≥ 2,

xn ≤ kxn−1.

PROPOSITION 3.10. There is an absolute constant C > 0 such that if x =
(xn)n≥1 is a k-regular L2-bounded martingale, then we can decompose x = y + z

as sum of two martingales satisfying the inequality

‖σC(y)‖1,∞ + ‖σR(z)‖1,∞ ≤ Ck2‖x‖1.

It should be noted that in strong contrast with the general case, the conditioned
Hardy norms for k-regular martingales do not require the diagonal term. This dif-
ference was already observed by Parcet in [25] for classical martingales. We also
refer the reader to [10], pages 124–127, for the case of (commutative) predictable
martingale f with sup |fn| ∈ L1. Our proof below has to be different from the clas-
sical case since as expected we have to take into account the decomposition into
row and column parts. The decomposition, however, is exactly the same as the one
used in the case of square functions from [31].

SKETCH OF THE PROOF OF PROPOSITION 3.10. Define the martingales y =
(yn)n≥1 and z = (zn)n≥1 exactly as in [31]:

dy1 :=
∞∑

j=0

∑
i≤j

pi,1 dx1pj,1,

(3.15)

dyn :=
∞∑

j=0

∑
i≤j

pi,n−1 dxnpj,n−1 for n ≥ 2;

and

dz1 :=
∞∑

j=0

∑
i>j

pi,1 dx1pj,1,

(3.16)

dzn :=
∞∑

j=0

∑
i>j

pi,n−1 dxnpj,n−1 for n ≥ 2.
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We refer to [31] for the fact that (dyn)n≥1 and (dzn)n≥1 are martingale difference
sequences and satisfy dxn = dyn + dzn for n ≥ 1. The proof on the estimate of
‖σC(y)‖1,∞ + ‖σR(z)‖1,∞ is quite elementary and essentially follows the steps
used in Proposition B above so we will only sketch the main points.

As in the proof of Proposition B, it suffices to estimate τ(χ(λ,∞)(σC(y))) for
dyadic λ = 2m0 where m0 ∈ N. We remark first that for n ≥ 2,

En−1(|bn|2) =
∞∑
l=0

∞∑
j=0

∑
i≤min(l,j)

pl,n−1En−1[dxnpi,n−1 dxn]pj,n−1.

If w0 is the projection defined in (3.11), then

τ
(
χ(λ,∞)(σC(y))

) ≤ 2τ
(
χ(λ/2,∞)(|σC(y)w0|)) + 2τ(1 − w0)

≤ 8λ−2‖σC(y)w0‖2
2 + 2λ−1.

A just notational adjustment of the argument used in the proof of Proposition B
leads to

‖σC(y)w0‖2
2 ≤ ∥∥q(λ)

1 dx1q
(λ)
1

∥∥2
2 + ∑

n≥2

∥∥q(λ)
n−1 dxnq

(λ)
n−1

∥∥2
2.

Splitting the quantity q
(λ)
n−1 dxnq

(λ)
n−1 to q

(λ)
n−1 dxnq

(λ)
n + q

(λ)
n−1dxn(q

(λ)
n−1 − q

(λ)
n ) for

all n ≥ 2 gives

‖σC(y)w0‖2
2 ≤

(∥∥q(λ)
1 dx1q

(λ)
1

∥∥2
2 + 2

∑
n≥2

∥∥q(λ)
n−1 dxnq

(λ)
n

∥∥2
2

)

+ 2
∑
n≥2

∥∥q(λ)
n−1 dxnq

(λ)
n−1

(
q

(λ)
n−1 − q(λ)

n

)∥∥2
2

= I + II.

It follows from Lemma 3.7 that I ≤ 4λ. For II, it is immediate that

II ≤ 2
∑
n≥2

∥∥q(λ)
n−1 dxnq

(λ)
n−1

∥∥2
∞τ

(
q

(λ)
n−1 − q(λ)

n

)
.

Since x is k-regular, we deduce for all n ≥ 2 that∥∥q(λ)
n−1 dxnq

(λ)
n−1

∥∥∞ ≤ ∥∥q(λ)
n−1xnq

(λ)
n−1

∥∥∞ + ∥∥q(λ)
n−1xn−1q

(λ)
n−1

∥∥∞
≤ (k + 1)

∥∥q(λ)
n−1xn−1q

(λ)
n−1

∥∥∞ ≤ (k + 1)λ.

Therefore,

II ≤ 2(k + 1)2λ2τ
(
1 − q

(λ)
N

)
≤ 2(k + 1)2λ.
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Hence, ‖q(λ)
1 dx1q

(λ)
1 ‖2

2 + ∑
n≥2 ‖q(λ)

n−1 dxnq
(λ)
n−1‖2

2 ≤ 4λ + 2(k + 1)2λ. Combining
all the above estimates, we conclude that

τ
(
χ(λ,∞)(σC(y))

) ≤ [34 + 16(k + 1)2]λ−1.

The proof for ‖σR(z)‖1,∞ is identical. �

4. Best constants for noncommutative Burkholder inequalities. The fol-
lowing is the principal result of this section.

THEOREM 4.1. Let 1 < p < ∞. There exist two constants δp > 0 and ηp > 0
(depending only on p) such that for any finite martingale x in Lp(M, τ ),

δ−1
p ‖x‖hp(M) ≤ ‖x‖p ≤ ηp‖x‖hp(M).(Bp)

Moreover, we have the following estimates for the best constants in (Bp):

(i) δp ≈ (p − 1)−1 as p → 1;
(ii) δp ≈ p as p → ∞;

(iii) ηp ≈ 1 as p → 1;
(iv) there exists an absolute constant C such that ηp ≤ Cp for p > 2.

The inequalities (Bp), known as the noncommutative Burkholder inequalities,
were originally proved by Junge and Xu in [16]. The main purpose here is to
provide the right order of growth for the best constants. The proof in [16] started
from establishing the case p ≥ 2 and then deduced the case 1 < p < 2 through
duality argument. Our approach follows the opposite direction: first we deduce the
case 1 < p < 2 using Theorem 3.1 combined with real interpolations, then deduce
the range p ≥ 2 by duality. This approach has advantages as it leads to the orders of
growth of the constants as stated in Theorem 3.1. We treat the two cases 1 < p ≤ 2
and p > 2 in two separate subsections.

4.1. Noncommutative Burkholder inequalities for 1 < p ≤ 2.

PROPOSITION C. Let 1 < p < 2. There exists two constants δp > 0 and
ηp > 0 (depending only on p) such that for any finite martingale x in Lp(M, τ ),

δ−1
p ‖x‖hp(M) ≤ ‖x‖p ≤ ηp‖x‖hp(M).(Bp)

Moreover, δp ≈ (p −1)−1 as p → 1 and ηp ≈ 1 as p → 1. These orders of growth
are optimal.

We remark that ηp ≈ 1 as p → 1 was already obtained in [16]. Moreover, it is
also noted in [16] that for 1 < p < 2, ‖x‖Hp ≤ 21/p‖x‖hp so from Theorem 2.3,
we have αp ≤ 21/pδp and therefore we obtain the estimate of δp from below. Thus,
it remains to estimate δp from above. This is a direct application of Theorem 3.1
via interpolation.
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LEMMA 4.2. There exists an absolute constant C such that for 1 < p < 2,
δp ≤ C(p − 1)−1.

Our main tool is real interpolation, principally the J -method. We will review the
general setup of the J -method. Our main reference for facts about interpolation is
the book [1].

A pair of (quasi)-Banach spaces (E0,E1) is called a compatible couple if
they embed continuously into some topological vector space X. This allows
us to consider the spaces E0 ∩ E1 and E0 + E1 equipped with ‖x‖E0∩E1 =
max{‖x‖E0,‖x‖E1}, ‖x‖E0+E1 = inf{‖x0‖E0 +‖x1‖E1 :x = x0 +x1, x0 ∈ E0, x1 ∈
E1}, respectively.

For a compatible couple (E0,E1), we define for any x ∈ E0 ∩ E1, and t > 0,

J (x, t;E0,E1) = max
{‖x‖E0, t‖x‖E1

}
.

If the compatible couple (E0,E1) is clear from the context, we will simply write
J (x, t) in place of J (x, t;E0,E1).

We will work with the discrete version of the J -method which we will now de-
scribe: for 0 < θ < 1 and 1 ≤ p < ∞, we denote by λθ,p the space of all sequences
(αν)

∞
ν=−∞ for which

‖(αν)‖λθ,p =
{∑

ν∈Z

(2−νθ |αν |)p
}1/p

< ∞.

DEFINITION 4.3. Let (E0,E1) be a compatible couple and suppose that 0 <

θ < 1, and 1 ≤ p < ∞. The interpolation space (E0,E1)θ,p,J consists of elements
x ∈ E0 + E1 which admits a representation

x = ∑
ν∈Z

uν (convergence in E0 + E1),(4.1)

with uν ∈ E0 ∩ E1 and such that

‖x‖θ,p,J = inf
{‖{J (uν,2ν)}‖λθ,p

}
< ∞,

where the infimum is taken over all representations of x as in (4.1).

PROOF OF LEMMA 4.2. It suffices to verify the lemma for positive finite
L2-martingale x = (xn)1≤n≤N . For 1 < p < 2, let 0 < θ < 1 such that 1/p =
(1 − θ) + θ/2. For ε > 0, fix (uν)

∞
ν=−∞ in L2(M, τ ) such that

xN = ∑
ν∈Z

uν

and

‖xN‖θ,p;J + ε ≥ ‖{J (uν,2ν)}‖λθ,p ,
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where the J -functional and the interpolation are relative to the interpolation couple
(L1(M),L2(M)).

For each ν ∈ Z, Theorem 3.1 guarantees the existence of an absolute constant
K > 0, and three finite adapted sequences a(ν), b(ν) and c(ν) in L2(M, τ ) such
that:

(1) En(uν) − En−1(uν) = a
(ν)
n + b

(ν)
n + c

(ν)
n for all 1 ≤ n ≤ N ;

(2) J (
∑

n≥1 a
(ν)
n ⊗ en,n, t) ≤ KJ(uν, t) for every t > 0;

(3) J ((
∑

n≥1 En−1(|b(ν)
n )|2))1/2, t) ≤ KJ(uν, t) for every t > 0;

(4) J ((
∑

n≥1 En−1(|c(ν)
n

∗|2))1/2, t) ≤ KJ(uν, t) for every t > 0,

where the J -functionals in the left-hand side of the inequality in (2) above are
taken relative to the interpolation couple (L1,∞(M ⊗B(l2)),L2(M ⊗B(l2))) and
those from the left hand sides of (3) and (4) are taken with respect to the interpo-
lation couple (L1,∞(M),L2(M)). From this, we can deduce that∥∥∥∥∥

{
J

( ∑
n≥1

a(ν)
n ⊗ en,n,2ν

)}∥∥∥∥∥
λθ,p

≤ K
(‖xN‖θ,p;J + ε

)
,(4.2)

∥∥∥∥∥
{
J

(( ∑
n≥1

En−1
(∣∣b(ν)

n

∣∣2))1/2

,2ν

)}∥∥∥∥∥
λθ,p

≤ K
(‖xN‖θ,p;J + ε

)
(4.3)

and ∥∥∥∥∥
{
J

(( ∑
n≥1

En−1
(∣∣c(ν)

n

∗∣∣2))1/2

,2ν

)}∥∥∥∥∥
λθ,p

≤ K
(‖xN‖θ,p;J + ε

)
.(4.4)

From (4.2) and the definition of ‖·‖θ,p;J , we get that for any finite subset S ⊂ Z,
∥∥∥∥∥

∑
ν∈S

∑
n≥1

a(ν)
n ⊗ en,n

∥∥∥∥∥[L1,∞(M ⊗B(l2)),L2(M ⊗B(l2))]θ,p;J
≤ K

(‖xN‖θ,p;J + ε
)
,(4.5)

and therefore the series
∑

ν∈Z(
∑

n≥1 a
(ν)
n ⊗ en,n) is (unconditionally) convergent

in the Banach space [L1,∞(M ⊗B(l2)),L2(M ⊗B(l2))]θ,p;J ; hence if we set

a := ∑
ν∈Z

a(ν),

then the sequence a = (an)n≥1 satisfies∥∥∥∥∥
∑
n≥1

an ⊗ en,n

∥∥∥∥∥[L1,∞(M ⊗B(l2)),L2(M ⊗B(l2))]θ,p;J
≤ K

(‖xN‖θ,p;J + ε
)
.(4.6)
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For the other sequences, we remark from the definition of the J -functionals that

J

(( ∑
n≥1

En−1
(∣∣b(ν)

n

∣∣2))1/2

,2ν

)

= max

{∥∥∥∥∥
( ∑

n≥1

En−1
(∣∣b(ν)

n

∣∣2))1/2∥∥∥∥∥
1,∞

,2ν

∥∥∥∥∥
( ∑

n≥1

En−1
(∣∣b(ν)

n

∣∣2))1/2∥∥∥∥∥
2

}
.

Now we consider the conditioned space L2
cond(M; l2

C) as a subspace of the space
L2(M ⊗B(l2(N2))) according to [15] and view (b(ν)) as a column vector with
entries from L2(M ⊗B(l2(N2))). Then for every ν ∈ Z,

J

(( ∑
n≥1

En−1
(∣∣b(ν)

n

∣∣2))1/2

,2ν

)

= J
(
b(ν),2ν;L1,∞(

M ⊗B(l2(N2))
)
,L2(

M ⊗B(l2(N2))
))

.

Then (4.3) becomes∥∥{
J

(
b(ν),2ν;L1,∞(

M ⊗B(l2(N2))
)
,L2(

M ⊗B(l2(N2))
))}∥∥

λθ,p

(4.7)
≤ K

(‖xN‖θ,p;J + ε
)
.

Set b := ∑
ν∈Z b(ν). Then b is a double indexed sequence (bn,k) with bn,k ∈

L1(Mn, τ |Mn) for all k ∈ N and satisfies

‖b‖[L1,∞(M ⊗B(l2(N2))),L2(M ⊗B(l2(N2)))]θ,p;J ≤ K
(‖xN‖θ,p;J + ε

)
.(4.8)

We note that a similar argument can be applied to the finite sequences c(ν)’s. That
is, if c := ∑

ν∈Z c(ν), then as a row vector, we have

‖c‖[L1,∞(M ⊗B(l2(N2))),L2(M ⊗B(l2(N2)))]θ,p;J ≤ K
(‖xN‖θ,p;J + ε

)
.(4.9)

We remark that since for every ν ∈ Z, the sequences a(ν), b(ν) and c(ν) are adapted,
it follows that a, b and c are adapted sequences. Moreover, it is clear from the
construction that for 1 ≤ n ≤ N ,

dxn = an + bn + cn.

We proceed by invoking a general fact about interpolations of noncommutative
spaces. First, we recall from the general equivalence theorem on real interpola-
tions that the same inequalities as in (4.6), (4.8), (4.9) can be made with any real
interpolation method (with possible change on the absolute constant). Second, it is
now understood that for any semifinite von Neumann algebra N equipped with a
semifinite normal trace ϕ, the following interpolation results hold:

[L1,∞(N , ϕ),L2(N , ϕ)]θ,p = Lp(N , ϕ) (with equivalent norms)
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and

[L1(N , ϕ),L2(N , ϕ)]θ,p = Lp(N , ϕ) (with equivalent norms).

More precisely, [28], Corollary 2.2, page 1467 implies that it is enough to track
the order of the constants for the commutative case. In order to achieve this, we
need a few facts. For f ∈ L2,

C(1 − θ)−1/2‖f ‖Lp ≤ ‖f ‖[L1,∞,L2]θ,p,K
(4.10)

and

‖f ‖[L1,∞,L2]θ,p,K
≤ c(θ)‖f ‖[L1,∞,L2]θ,p,J

,(4.11)

where c(θ) = ∫ ∞
0 sθ min(1, s−1) ds/s = θ−1(1 − θ)−1. The first inequality can be

deduced from [13], Theorem 4.3, while the second is in [1], pages 44–45. On the
other hand, it is implicit in the proof of [1], Theorem 5.2.1, pages 109–110 that if
1/p + 1/q = 1, then for every g ∈ L∞,

‖g‖q ≤ 2‖g‖[L∞,L2]1−θ,q,K
.

By duality, we have that for every f ∈ L2, ‖f ‖[L∞,L2]∗1−θ,q,K
≤ 2‖f ‖p . We now

appeal to general duality between the K-method and the J -method to conclude
that for every f ∈ L2,

‖f ‖θ,p,J ≤ ‖f ‖[L∞,L2]∗1−θ,q,K
≤ 2‖f ‖p(4.12)

(we note that the constant 1 in the first inequality follows from dualizing the first
part of the proof of [1], Theorem 3.7.1, pages 54–55).

Combining (4.6) and (4.8)–(4.12) we can conclude that there exists an absolute
constant C > 0 such that∥∥∥∥∥

∑
n≥1

an ⊗ en,n

∥∥∥∥∥
Lp(M ⊗B(l2))

+ ‖b‖Lp(M ⊗B(l2(N2))) + ‖c‖Lp(M ⊗B(l2(N2)))

≤ Cθ−1(‖x‖p + ε).

From the construction of a, b and c, this is equivalent to the existence of an ab-
solute constant C > 0 such that( ∑

n≥1

‖an‖p
p

)1/p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|b2
n|)

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|c∗
n

2|)
)1/2∥∥∥∥∥

p
(4.13)

≤ C(p − 1)−1(‖x‖p + ε).

We remark that the sequences a, b and c are adapted but are not necessarily mar-
tingale difference sequences. To complete the proof, it is enough to set for n ≥ 1,

dxD
n = an − En−1(an),

dxC
n = bn − En−1(bn),

dxR
n = cn − En−1(cn).
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Then (dxD
n )n≥1, (dxC

n )n≥1 and (dxC
n )n≥1 are martingale difference sequences with

dxn = dxD
n + dxC

n + dxR
n for 1 ≤ n ≤ N . The fact that any conditional expecta-

tion E is a contractive projection in Lp(M, τ ) and satisfies E(y)∗E(y) ≤ E(y∗y)

implies that from (4.13) we can deduce( ∑
n≥1

‖dxD
n ‖p

p

)1/p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|dxC
n |2)

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
( ∑

n≥1

En−1(|dxR
n

∗|2)
)1/2∥∥∥∥∥

p

(4.14)

≤ C′(p − 1)−1(‖x‖p + ε)

with C′ = 2C. Taking the infimum over ε > 0, we conclude from the definition of
the hp-norm that

‖x‖hp(M) ≤ C′(p − 1)−1‖x‖p,

which shows that δp ≤ C′(p − 1)−1 for 1 < p < 2. Thus the proof is complete.
�

4.2. Noncommutative Burkholder inequalities for p ≥ 2.

PROPOSITION D. Let 2 ≤ p < ∞. There exist two constants δp > 0 and
ηp > 0 (depending only on p) such that for any finite martingales in Lp(M, τ ),

δ−1
p ‖x‖hp(M) ≤ ‖x‖p ≤ ηp‖x‖hp(M).(4.15)

Moreover, δp ≈ p as p → ∞ and ηp ≤ Cp as p → ∞ ( for some absolute con-
stant C).

The fact that δp ≥ Cp is already known from [19], Remark 10. For the re-
maining estimates, we will use duality arguments. The main ingredient here is a
conditioned version of the duality between column (resp. row) spaces developed
in [16] which we now state.

LEMMA 4.4 ([16], Lemma 6.5). Let 1 < p < ∞ and 1/p+1/p′ = 1. Then for

any b ∈ L
p′
cond(M; l2

C), the functional ξb : L
p
cond(M; l2

C) → C defined by ξb(a) =∑
n≥1 τ(b∗

nan) is continuous with

‖ξb‖ ≤ ‖b‖
L

p′
cond(M;l2C)

≤ γp′‖ξb‖,
where γp′ is the constant from the noncommutative Stein inequality [27]. Con-
versely, any functional ξ ∈ (L

p
cond(M; l2

C))∗ is given by some sequence b in

L
p′
cond(M; l2

C). A similar statement holds for conditioned row spaces.
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LEMMA 4.5 ([16], Lemma 6.4). Let 1 ≤ p < ∞. For any finite sequence a =
(an)n≥1 in M, define

R(a) = (En(an))n≥1 and R′(a) = (En−1(an))n≥1.

Then R and R′ extend to contractive projections on L
p
cond(M; l2

C) and L
p
cond(M;

l2
R). Consequently, h

p
C(M) [resp. h

p
R(M)] is a 2-complemented subspace of

L
p
cond(M; l2

C) [resp. L
p
cond(M; l2

R)].

Using Lemmas 4.4 and 4.5, it is straightforward to verify that if 2 ≤ p < ∞ and
1/p + 1/p′ = 1, then δp ≤ 2γpηp′ and ηp ≤ δp′ . The conclusion follows from the
facts that γp ≈ p as p → ∞ (see [19]) and ηp′ ≈ 1 and δp′ ≈ p as p → ∞ from
Proposition C.

We conclude this section with the following remark.

REMARK 4.6. (i) Denote by η
(com)
p and δ

(com)
p the corresponding best con-

stants for the commutative case. We recall that when p → ∞, the optimal order
of growth of η

(com)
p and δ

(com)
p is 0(p/ logp) and 0(

√
p ), respectively. The first is

a result of Johnson, Schechtman and Zinn from [14] for the case of p-moments
of sums of independent mean-zero random variables which was generalized by
Hitczenko [12] for the more general case of martingales. The second also appeared
in [12]. Thus at the time of this writing, the exact order of growth of the constant ηp

(when p → ∞) is still open. We can only state the existence of absolute constants
C1 and C2 such that C1p/(logp) ≤ ηp ≤ C2p when p is large enough.

(ii) If we denote by η
(Ros)
p and δ

(Ros)
p the corresponding best constants for the

case of sums of (noncommutative) independent sequences, then the estimates
η

(Ros)
p ≤ Cp and δ

(Ros)
p ≤ Cp (for some absolute constant C) when p > 2 were

also obtained in [16].

5. Noncommutative Rosenthal inequalities and BMO-spaces. We start by
recalling the definitions of BMO-spaces for noncommutative martingales intro-
duced in [27]. Let

BMOC(M) :=
{
a ∈ L2(M, τ ) : sup

n≥1
‖En|a − En−1a|2‖∞ < ∞

}
.

Then BMOC(M) becomes a Banach space when equipped with the norm

‖a‖BMOC
=

(
sup
n≥1

‖En|a − En−1a|2‖∞
)1/2

.

Similarly, we define BMOR(M) as the space of all a with a∗ ∈ BMOC(M)

equipped with the natural norm ‖a‖BMOR(M) = ‖a∗‖BMOC(M). The space
BMO(M) is the intersection of these two spaces:

BMO(M) := BMOC(M) ∩ BMOR(M)
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with the intersection norm

‖a‖BMO = max
{‖a‖BMOC

,‖a‖BMOR

}
.

We recall that as in the classical case, for 1 < p < ∞, M ⊂ BMO(M) ⊂
Lp(M, τ ). For more information on martingale BMO-spaces, we refer to
[16, 17, 23, 27].

In this section, we consider the case of independence studied in [18, 35].

DEFINITION 5.1. (i) Let N be a von Neumann subalgebra of M and let EN

be the associated trace-preserving normal conditional expectation onto N . A se-
quence (An)n≥1 of von Neumann subalgebras of M is called order independent
with respect to EN (or N ) if for every n ≥ 1, every a ∈ An and b in the von
Neumann subalgebra generated by (A1, . . . ,An−1),

EN (ab) = EN (a)EN (b).

(ii) A sequence (an)n≥1 in Lp(M, τ ) (2 ≤ p ≤ ∞) is called independent with
respect to EN if there is an order-independent sequence (An)n≥1 of von Neumann
subalgebras of M such that an ∈ Lp(An) for all n ≥ 1.

If N = C1 [then EN = τ(·)1], we simply say “independent” with respect to τ .

We refer to [18, 35] for natural examples of independent sequences.

REMARK 5.2. Let (An)n≥1 be an independent sequence of von Neumann sub-
algebras and an ∈ Lp(An) with EN (an) = 0. Then (an)n≥1 is a martingale differ-
ence sequence in Lp(M, τ ).

Indeed, if for n ≥ 1, we set Mn to be the von Neumann subalgebra generated
by (A1, . . . ,An), then (Mn)n≥1 is an increasing filtration of von Neumann subal-
gebras of M. Let En be the associated conditional expectations. Then the indepen-
dence assumption implies that for every b ∈ Mn−1, EN (En−1(an)b) = EN (anb) =
EN (an)EN (b). Therefore, En−1(an) = EN (an) = 0. Thus (an)n≥1 is a martingale
difference sequence with respect to the filtration (Mn)n≥1.

The next result can be viewed as an extension of the noncommutative Rosen-
thal inequalities from [18, 35] to the case p = ∞. A precursor of this result for
commuting sequences can be found in [22].

THEOREM 5.3. Let N be a von Neumann subalgebra of M with the asso-
ciated normal conditional expectation EN . Let (an)n≥1 ⊂ M be an independent
sequence with respect to EN such that EN (an) = 0. Then∥∥∥∥∥

∑
n≥1

an

∥∥∥∥∥
BMO

∼C sup
n≥1

‖an‖∞ +
∥∥∥∥∥
( ∑

n≥1

EN (ana
∗
n + ana

∗
n)

)1/2∥∥∥∥∥∞
.
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In particular, if N = C1, then∥∥∥∥∥
∑
n≥1

an

∥∥∥∥∥
BMO

∼C sup
n≥1

‖an‖∞ +
( ∑

n≥1

‖an‖2
2

)1/2

.

(Here the BMO-norm is relative to the filtration described above.)

PROOF. First, we consider a general inequality for martingales. If x = (xn)n≥1
is a noncommutative martingale in L2(M, τ ), then (see, e.g., [27]) for every n ≥ 1,

En|x∞ − xn−1|2 = En

( ∑
k≥n

|dxk|2
)

(5.1)

= |dxn|2 + En

( ∑
k≥n+1

Ek−1(|dxk|2)
)
.

Taking the norm in M and supremum over n ≥ 1, we deduce that

‖x‖BMOC
≤ sup

n≥1
‖dxn‖∞ + ‖σC(x)‖∞.

Observe that σC(x)2 ≤ ∑
n≥1 En−1(|dxn|2 + |dx∗

n |2). Combining with similar ar-
gument for the BMOR-norm, we have

‖x‖BMO ≤ sup
n≥1

‖dxn‖∞ +
∥∥∥∥∥
( ∑

n≥1

En−1(|dxn|2 + |dx∗
n |2)

)1/2∥∥∥∥∥∞
.(5.2)

Now, let (an)n≥1 be an independent sequence with respect to EN . Then by the
remark above (an)n≥1 is a martingale difference sequence and therefore (5.2) ap-
plies. Moreover, the independence assumption implies that for every n ≥ 1,

En−1(a
∗
nan + a∗

nan) = EN (a∗
nan + a∗

nan).

Hence (5.2) becomes∥∥∥∥∥
∑
n≥1

an

∥∥∥∥∥
BMO

≤ sup
n≥1

‖an‖∞ +
∥∥∥∥∥
( ∑

n≥1

EN (a∗
nan + ana

∗
n)

)1/2∥∥∥∥∥∞
.

Thus one inequality is proved. For the reverse inequality, we note that if a =∑
n≥1 an, then from (5.1) we have

En|a − En−1a|2 = |an|2 + EN

( ∑
k≥n+1

a∗
k ak

)
.

In particular, En|a − En−1a|2 ≥ |an|2 and therefore

‖a‖BMOC
≥ sup

n
‖an‖∞.
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Moreover,

EN

( ∑
n≥1

a∗
nan

)
= EN (a∗

1a1) + ∑
n≥2

EN (a∗
nan)

≤ EN (a∗
1a1) + E1|a − E0a|2.

Hence, ∥∥∥∥∥
∑
n≥1

EN (a∗
nan)

∥∥∥∥∥∞
≤ ‖a1‖2∞ + ‖a‖2

BMOC
.

Similar argument with the adjoint operators gives∥∥∥∥∥
∑
n≥1

EN (ana
∗
n)

∥∥∥∥∥∞
≤ ‖a1‖2∞ + ‖a‖2

BMOR
.

Combining the last two inequalities, we have∥∥∥∥∥
∑
n≥1

EN (a∗
nan + ana

∗
n)

∥∥∥∥∥∞
≤ 2‖a1‖2∞ + 2‖a‖2

BMO.

We can now conclude that

sup
n≥1

‖an‖∞ +
∥∥∥∥∥
( ∑

n≥1

EN (a∗
nan + ana

∗
n)

)1/2∥∥∥∥∥∞
≤ (

1 + √
3

)‖a‖BMO.

Thus the proof of the theorem is complete. �

Following [35], from the preceding theorem, we can deduce the following
Khintchine-type inequality relative to BMO-spaces.

COROLLARY 5.4. Let (an)n≥1 be an independent (with respect to τ ) sequence
in M with τ(an) = 0 for all n ≥ 1. Assume that

inf
n≥1

‖an‖2 = α > 0 and sup
n≥1

‖an‖∞ = β < ∞.

Let B be a finite von Neumann algebra equipped with normal tracial state ν. Then
for any finite sequence b = (bn)n≥1 in B,∥∥∥∥∥

∑
n≥1

an ⊗ bn

∥∥∥∥∥
BMO(M ⊗B)

∼C ‖b‖L∞(B,l2C)∩L∞(B,l2R).

The proof follows verbatim the argument of [35], Corollary 6.3, and is left to the
interested reader. We should compare Corollary 5.4 with Voiculescu’s inequality
from [34]. This translates into the following statement: let A = A1 ∗ A2 ∗ · · · ∗ An
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denote the reduced free product of a finite sequence A1,A2, . . . ,An of von Neu-
mann algebras respectively equipped with tracial states τ1, τ2, . . . , τn. Then given
a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An mean-zero (freely independent) random variables
in A and b1, b2, . . . , bn ∈ B, then combining Voiculescu’s inequality and Corol-
lary 5.4, we have∥∥∥∥∥

∑
k≥1

ak ⊗ bk

∥∥∥∥∥
BMO(A⊗B)

∼C

∥∥∥∥∥
∑
k≥1

ak ⊗ bk

∥∥∥∥∥
A⊗B

.

6. Concluding remarks and related open problems. (i) The optimal orders
of growth of the constants in Theorem 4.1 remain valid for the more general mar-
tingales on Haagerup’s Lp-spaces using Haagerup’s approximation [11]. This fol-
lows from a general deduction of martingale inequalities in type-III cases from
finite cases, achieved by Junge and Xu (still unpublished notes).

(ii) In [25], another weak-type inequality was considered for classical martin-
gales as extension of Burkholder inequality which we state explicitly:

THEOREM 6.1 ([25], Theorem A). Let (�,F ,P) be a probability space and
let (fn)n≥1 be a martingale in L1(�,F ,P); then there exist two martingales
(gn)n≥1 and (hn)n≥1 with fn = gn + hn for all n ≥ 1 that satisfy∥∥∥∥∥

∑
n≥1

|dhn|
∥∥∥∥∥

1,∞
+

∥∥∥∥∥
( ∑

n≥1

En−1(|dgn|2)
)1/2∥∥∥∥∥

1,∞
≤ K sup

n≥1
‖fn‖1.

An example given in [25] shows that this formulation is not comparable to the
one considered in this paper. The decomposition in Theorem 6.1 is exactly the clas-
sical Davis decomposition. It is noted in [25] that this weak-type inequality does
not imply the Burkholder inequality through interpolation. In fact from the well-
known property of the Davis decomposition, namely ‖∑

n≥1 |dhn|‖p ≤ cp‖f ‖p

for 1 < p < ∞ [4], it is probably more accurate to describe Theorem 6.1 as a
weak-type (1, 1) extension of the classical Davis theorem. It is still unknown if
Theorem 6.1 has noncommutative analogues.

(iii) Combining the noncommutative Burkholder–Gundy inequalities (Theo-
rem 2.3) and the noncommutative Burkholder inequalities (Theorem 4.1), we can
state:

PROPOSITION 6.2. Let 1 < p < ∞. There exist two constants κp > 0 and
υp > 0 (depending only on p) such that for any finite martingale x in Lp(M, τ ),

κ−1
p ‖x‖hp(M) ≤ ‖x‖Hp(M) ≤ υp‖x‖hp(M).

Moreover:

(i) κp = 0((p − 1)−1) as p → 1;
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(ii) κp = 0(p) as p → ∞;
(iii) υp ≈ 1 as p → 1;
(iv) υp = 0(

√
p ) as p → ∞.

We do not know if these orders of growth are optimal.
(iv) We end the paper with a note on the conditioned Hardy space h1. Let us

recall the classical Davis theorem for commutative martingales (see [4]):∥∥∥∥∥
(∑

n

|dfn|2
)1/2∥∥∥∥∥

1

∼C

∥∥∥∥ sup
n

|fn|
∥∥∥∥

1
.

If we denote by H1
max the space of commutative martingales (fn)n≥1 with

supn |fn| ∈ L1, then the Davis theorem means that in the commutative case

H1 = H1
max (with equivalent norms).

Note that h1 ⊂ H1. It turns out the (commutative) conditioned Hardy space h1

coincides with the other two Hardy spaces. Indeed, [10], Theorem IV1.2, page 127,
together with the classical Davis decomposition imply that there is a constant C

such that ‖f ‖h1 ≤ C‖f ‖H1
max

for every martingale f . Therefore we can state that
for commutative martingales,

h1 = H1 = H1
max (with equivalent norms).

The noncommutative case is surprisingly different as noted in [19]. Indeed, it was
shown in [19], Corollary 14, that H1 and H1

max do not coincide in general. Moti-
vated by the commutative case, one could ask about the position of the space h1

with respect to H1 (or H1
max) for the noncommutative case.
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