CORRECTION NOTE

TYPICAL CONFIGURATION FOR ONE-DIMENSIONAL RANDOM FIELD KAC MODEL ${ }^{1}$

By Marzio Cassandro, Enza Orlandi and Pierre Picco
Università di Roma, Università di Roma Tre and CPT-CNRS

Estimate (3.39) which appears in the proof of Proposition 3.4 in [Ann. Probab. 27 (1999) 1414-1467] is wrong. We present below a corrected proof which introduces an extra factor 2 in equations (3.34) and (3.35). This has no consequence in the rest of the paper since Proposition 3.4 is used to estimate only ratios; see (3.23) and (3.25).

In Proposition 3.4 in [1], the condition $m \in\{-1,-1+2 /|B|,-1+4 /|B|, \ldots, 1-$ $2 /|B|, 1\}$ has to be added. This is harmless since Proposition 3.4 is used for proving Proposition 3.1, where this assumption is done. Moreover, (3.34) and (3.35) must be replaced respectively by

$$
\begin{equation*}
\Psi_{z, \alpha, m}=\frac{2}{\sqrt{2 \pi|B|} \sigma_{z}}\left(1 \pm \frac{66}{|B| \sigma_{z}^{2}}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{z, \alpha, m}=\frac{2}{\sqrt{2 \pi|B| \sigma_{z}}}\left(1 \pm \frac{66}{g(|B|)}\right) . \tag{1.2}
\end{equation*}
$$

Below we outline the arguments to get (1.2), the case of (1.1) is similar.
In the proof of Proposition 3.4, inequality (3.39) is clearly wrong for $k= \pm \pi$. Since, for $y \in[0,1]$, we have $\left|y e^{-2 i k}+(1-y)\right|^{2}=1-2 y(1-y)(1-\cos (2 k))$ and $1-s \leq e^{-s}$ for all $s \in \mathbb{R}$, it is easy to see that

$$
\begin{equation*}
\left|\frac{\cosh (x \pm i k)}{\cosh (x)}\right| \leq \exp \left[-\frac{1-\cos (2 k)}{4 \cosh ^{2} x}\right] \tag{1.3}
\end{equation*}
$$

that replaces (3.39). Then, using $\cos (x) \leq 1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}$, it can be checked that, for $k \in[0, \pi]$,

$$
\begin{equation*}
1-\cos (2 k) \geq 2\left(1-\frac{\pi^{2}}{12}\right)\left(k^{2} \wedge(k-\pi)^{2}\right) \tag{1.4}
\end{equation*}
$$

[^0]from which one gets, for $k \in[0, \pi]$,
\[

$$
\begin{equation*}
|\Phi(z, \alpha, k)| \leq \exp \left[-\frac{\left(1-\pi^{2} / 12\right)\left(k^{2} \wedge(k-\pi)^{2}\right)}{2}|B| \sigma_{z}^{2}\right] \tag{1.5}
\end{equation*}
$$

\]

where $\Phi(z, \alpha, k)$ is defined in (3.38) and σ_{z} is defined in (3.28) in [1]. Formula (1.5) replaces (3.40) in [1]. As a consequence, (3.41) has to be replaced by

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\rho}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathbb{1}_{\{\rho<|k| \leq \pi-\rho\}} \Phi(z, \alpha,-k) e^{i k m|B|} d k \tag{1.6}
\end{equation*}
$$

Then choosing as in [1], $\rho=\left(\sigma_{z} \sqrt{|B|}\right)^{-1} f(|B|)$ with

$$
\begin{equation*}
f(|B|)=\sqrt{\frac{2}{1-\pi^{2} / 12} \log g(|B|)} \tag{1.7}
\end{equation*}
$$

where g is as in Proposition 3.4 in [1], one gets

$$
\begin{equation*}
\left|\widetilde{\mathscr{E}}_{\rho}\right| \leq \frac{1}{\sqrt{2 \pi|B|} \sigma_{z}}\left(\frac{2}{\sqrt{\pi\left(1-\pi^{2} / 12\right) \log g(|B|)}}\right) \frac{1}{g(|B|)}, \tag{1.8}
\end{equation*}
$$

that replaces (3.48) in [1]. Calling as in [1] [see (3.45)],

$$
\begin{equation*}
\Psi_{z, \alpha, m}(\rho)=\frac{1}{2 \pi} \int_{-\rho}^{+\rho} e^{i k|B| m} \Phi(z, \alpha, k) d k \tag{1.9}
\end{equation*}
$$

introducing the two quantities

$$
\begin{align*}
& I_{2}=\frac{1}{2 \pi} \int_{-\pi}^{-\pi+\rho} e^{i k|B| m} \Phi(z, \alpha, k) d k \tag{1.10}\\
& I_{3}=\frac{1}{2 \pi} \int_{\pi-\rho}^{\pi} e^{i k|B| m} \Phi(z, \alpha, k) d k
\end{align*}
$$

After simple algebra, using that $m=-1+\frac{2 l}{|B|}$ for some $l \in \mathbb{Z}$ and elementary change of variables, one gets the crucial relation

$$
\begin{equation*}
I_{2}+I_{3}=\Psi_{z, \alpha, m}(\rho) \tag{1.11}
\end{equation*}
$$

Now $\Psi_{z, \alpha, m}$ defined in (3.37) satisfies

$$
\begin{equation*}
\Psi_{z, \alpha, m}=2 \Psi_{z, \alpha, m}(\rho)+\widetilde{\mathscr{E}}_{\rho} \tag{1.12}
\end{equation*}
$$

The extra factor 2 we mention in the abstract is the one in (1.12). Using the same computations done after (3.45) in [1], one gets (1.2).

REFERENCE

[1] Cassandro, M., Orlandi, E. and Picco, P. (1999). Typical configurations for onedimensional random field Kac model. Ann. Probab. 27 1414-1467. MR1733155
M. Cassandro

Dipartimento di Fisica
Università di Roma "La Sapienza"
infM-Sez. di Roma. P. le A. Moro
00185 RomA
Italy
E-MAIL: cassandro@roma1.infn.it
E. Orlandi

Dipartimento di Matematica
Università di Roma Tre
L.go S.Murialdo 1

00156 Roma
Italy
E-MAIL: orlandi@mat.uniroma3.it
P. PICCO

CPT, UMR CNRS 6207
Université de Provence Aix-Marseille 1
Université de la Mediterranée Aix-Marseille 2
et Université de Toulon et du Var
Luminy, Case 907, 13288
Marseille Cedex 9
France
E-MAIL: picco@cpt.univ-mrs.fr

[^0]: Received June 2005; revised September 2005.
 ${ }^{1}$ Supported by CNR-CNRS-Project 8.005, INFM-Roma; MURST/Cofin 01-02/03-04.
 AMS 2000 subject classifications. 60K35, 82B20, 82B43.
 Key words and phrases. Phase transition, random walk, random environment, Kac potential.

