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EDGE-REINFORCED RANDOM WALK ON A LADDER

BY FRANZ MERKL AND SILKE W. W. ROLLES1

University of Munich and University of Bielefeld

We prove that the edge-reinforced random walk on the ladder Z × {1,2}
with initial weights a > 3/4 is recurrent. The proof uses a known represen-
tation of the edge-reinforced random walk on a finite piece of the ladder as
a random walk in a random environment. This environment is given by a
marginal of a multicomponent Gibbsian process. A transfer operator tech-
nique and entropy estimates from statistical mechanics are used to analyze
this Gibbsian process. Furthermore, we prove spatially exponentially fast de-
creasing bounds for normalized local times of the edge-reinforced random
walk on a finite piece of the ladder, uniformly in the size of the finite piece.

1. Introduction. The oldest reinforced random walk is the edge-reinforced
random walk introduced by Diaconis in 1987. The process can be defined on any
locally finite nondirected graph as follows: Every edge is given a weight which
changes in time. Initially, all edges are given weight 1, say. In each step, the re-
inforced random walker jumps to a nearest-neighbor vertex with probability pro-
portional to the weight of the traversed edge. Each time an edge is traversed, its
weight is increased by 1.

In the late 1980s, Diaconis asked whether the edge-reinforced random walk on
Zd , d ≥ 1, is recurrent or transient. This problem is still open for all dimensions
d ≥ 2. In one dimension, the edge-reinforced random walk is recurrent. To see this,
one can use that on Z, the edge-reinforced random walk has the same distribution
as a random walk in an independent random environment. Pemantle [10] proved
a phase transition in the recurrence/transience behavior for the edge-reinforced
random walk on an infinite binary tree. He used a representation as a random walk
in an i.i.d. environment. This method completely fails for graphs with cycles.

In this article, we prove that the edge-reinforced random walk on Z × {1,2} is
recurrent. The problem is much more subtle than for acyclic graphs. We use the
fact that the edge-reinforced random walk on a finite ladder has the same distri-
bution as a random walk in an environment given by random time-independent
edge weights. These edge weights are stochastically dependent in a complicated
way. The representation as a random walk in a random environment follows from
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a de Finetti theorem for reversible Markov chains, proven in [12], which refines
a result of Diaconis and Freedman [3] in the special case of reversible chains. The
distribution of the environment is given by a joint density which was discovered by
Coppersmith and Diaconis (see [2]). Our proof relies on a generalization of their
statement, proven by Keane and Rolles [7].

It was suggested independently by Diaconis and Keane that the representation
as a random walk in a random environment may be useful to prove recurrence
for edge-reinforced random walks. Keane conjectured that, in addition, the use of
transfer operators may help to prove recurrence on the ladder. The present article
pursues such an approach for the first time successfully.

The edge-reinforced random walk studied in this article behaves very differ-
ently from the directed-edge-reinforced random walk where every undirected edge
is replaced by two directed edges which both get their own weight. The directed-
edge-reinforced random walk has the same distribution as a random walk in an
independent environment (see [8]). This representation is used in [8] to show re-
currence on Z × G for any finite graph G.

A simpler model is the once-reinforced random walk where the weight of an
edge is increased by a fixed parameter δ > 0 the first time it is traversed. From the
second traversal on, the weight of an edge does not change. This random walk is
recurrent on Z1 (e.g., [1]); however, its recurrence/transience behavior on Zd is
not known for d ≥ 2. Even for ladders Z × {1,2, . . . , d} the problem is subtle: For
δ ∈ (0,1/(d − 2)), recurrence was proved by Sellke [14]. Vervoort [16] extended
the result for very large δ. For intermediate values of δ the problem seems to be
open. Durrett, Kesten and Limic [6] showed that the once-reinforced random walk
on regular trees is transient for all δ > 0.

For the integer line, Davis [1] proved a recurrence/transience dichotomy for a
general class of reinforced random walks, including the edge-reinforced and once-
reinforced random walk on Z. Very strong localization was shown for random
walks with superlinear edge-reinforcement by Limic [9]. Vertex-reinforced ran-
dom walk localizes as well. This was proved by Pemantle and Volkov [11, 17] and
by Tarrès [15].

1.1. Results. In this article we consider an edge-reinforced random walk on
the ladder Z ×{1,2}. The edges are undirected. They are assigned time-dependent
random weights, with all initial edge weights equal to some constant a > 0. In each
step, the random walker jumps to a nearest-neighbor vertex with probability pro-
portional to the weight of the traversed edge. Whenever the random walk crosses
an edge, its weight is increased by 1.

Formally, the edge-reinforced random walk on a locally finite graph G = (V ,E)

is defined as follows: Let Xt :V N0 → V denote the canonical projection on the
t th coordinate; Xt is interpreted as the random location of the random walker at
time t . We identify an edge with the set of its endpoints. For t ∈ N0, we define
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wt(e) :V N0 → R+, the weight of edge e at time t , recursively as follows:

w0(e) := a for all e ∈ E,(1.1)

wt+1(e) :=
{

wt(e) + 1, for e = {Xt,Xt+1} ∈ E,

wt(e), for e ∈ E \ {{Xt,Xt+1}}.
(1.2)

Let P G
v0,a

denote the distribution of the edge-reinforced random walk on G start-
ing in v0 with all initial edge weights equal to a. The distribution P G

v0,a
is a proba-

bility measure on V N0 , specified by the following requirements:

X0 = v0 P G
v0,a

-a.s.,(1.3)

P G
v0,a

[Xt+1 = v|Xi, i = 0,1, . . . , t]
(1.4)

=



wt({Xt, v})∑
{e∈E : Xt∈e} wt(e)

, if {Xt, v} ∈ E,

0, otherwise.

The ladder is the graph G = (V ,E) with vertex set V := Z×{1,2} and edge set
E := {{u, v} :u, v ∈ V with ‖u − v‖1 = 1}, where ‖ · ‖1 denotes the 1-norm. We
say that the reinforced random walk is recurrent if almost all paths visit all vertices
infinitely often. Our main result reads as follows:

THEOREM 1.1. For all a > 3/4, the edge-reinforced random walk on
Z × {1,2} with all initial weights equal to a is recurrent.

The theorem includes the most interesting case a = 1. However, we do not ex-
pect the bound 3/4 to be optimal.

Fix a > 0 and n ∈ N. Let G(n) = (V (n),E(n)) with V (n) := {0,1,2, . . . , n} ×
{1,2} denote the finite ladder of length n. We consider an edge-reinforced random
walk on G(n) with all initial edge weights equal to a. For the vertices, we introduce
the following notation (see Figure 1):

i := (i,1) and i := (i,2) for i ∈ Z.(1.5)

We abbreviate P (n) := P G(n)

0,a
. Let kt (e) denote the (random) number of times the

reinforced random walker traverses the (undirected) edge e up to time t . We prove:

THEOREM 1.2. For all a > 3/4 and all n ∈ N the following holds: If e ∈ E(n)

is an edge on level i ∈ {1,2, . . . , n} of the ladder, that is, i ∈ e or i ∈ e, then we
have

P (n)

[
lim

t→∞
kt (e)

kt ({0,0}) ≤ e−c1i

]
≥ 1 − c2e

−c3i(1.6)

with constants c1, c2, c3 > 0 depending only on a.
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FIG. 1. The finite ladder.

The edge-reinforced random walk on a finite graph has the same distribution
as a random walk in a time-independent random environment. A proof can be
found in [12]; see also [4]. For a precise formulation of the result, we refer to
Theorem 2.2 below. The time-independent random environment on G(n) is given
by time-independent random weights x = (xe)e∈E(n) ∈ RE(n)

+ with respect to some
probability measure Q̃(n).

Let us explain how time-independent weights x = (xe)e∈E(n) ∈ RE(n)

+ induce a
random walk on G(n): In each step, the random walker jumps to a neighboring
vertex with probability proportional to the weight xe of the connecting edge e.
This random walk is a reversible Markov chain.

The distribution of the edge weights x = (xe)e∈E(n) constituting the random
environment equals the distribution of the limit (limt→∞ kt (e)/t)e∈E(n) , which is
P (n)-a.s. strictly positive in all components. Therefore, Theorem 1.2 states the
following: If we normalize the weights such that the edge {0,0} has weight 1, then
the weights of the edges in E(n) decay exponentially in the level of the ladder,
uniformly in n, with probability close to 1. We use Theorem 1.2 to estimate the
escape probability for the reinforced random walker on G(n).

1.2. Overview of the proofs. The representation of edge-reinforced random
walks as a random walk in a random environment is essential for the whole paper.
This representation is described in [12]; we review it in Section 2.1. In order to see
the Gibbsian structure behind the random environment x, additional auxiliary vari-
ables are introduced: These are a random spanning tree T and Gaussian random
variables y, indexed by a basis of the first homology space of the ladder.

As our third main result, Theorem 2.3 bounds the tails of ratios between com-
ponents of x and components of y. A scaling transformation is used to get rid
of the nonlocal constraint that the random environment x is supported on a high-
dimensional simplex. The spanning tree T is described by a list of local discrete
variables, subject to local matching rules. This is explained in Section 2.2.

The joint probability law of x, y and T is Gibbsian. In order to derive esti-
mates for pieces of the corresponding Hamiltonian, we need to transform x, y

and T to new local variables, described in Section 2.3. Roughly speaking, these
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new variables consist of logarithms of ratios between neighboring components of
x and y and of the local description of the spanning tree T . The total Hamiltonian
is written in these new coordinates and split into local pieces. The transformation
is technically involved.

Lower bounds for the local Hamiltonians are derived in Section 3. The proof of
these bounds requires, among other things, the solution of some linear optimiza-
tion problems. Here, the precise choice of the splitting to local pieces is essential;
a “naive” choice would not suffice.

Given the Gibbsian description of the random environment with appropriately
bounded local Hamiltonians, we use a transfer operator technique to analyze the
random environment. The transfer operator is introduced in Section 4.1; it turns
out to be a Hilbert–Schmidt operator.

In Section 4.2 we introduce an auxiliary deformation of the original Gibbs mea-
sure which has a reflection symmetry, at least in an asymptotic sense. In the lan-
guage of statistical mechanics, we apply additional “external forces” at the end-
points of the Gibbsian chain. We show that the Gibbsian chain is deformed by
these forces roughly proportional to its length. At the heart of the argument lies
an upper bound for the free energy of the deformed Gibbs measure, which is ob-
tained by the variational principle for free energies. In Section 4.3 the deformed
Gibbs measure serves to prove exponentially decreasing bounds for the random
environment.

Finally, recurrence of the edge-reinforced random walk is proven in Section 5.
The exponential bounds for the random environment and the connection between
random walks and electric networks are the key ingredients to prove recurrence
on the half-sided ladder N0 ×{1,2}. Symmetry and gluing arguments imply recur-
rence on the two-sided ladder.

2. Edge-reinforced random walk on the finite ladder. Fix a > 0 and n ∈ N.
In this section we consider the edge-reinforced random walk on the finite ladder
G(n) of length n. All initial edge weights are equal to a, and the random walker
starts in 0.

We could equally well study the walk on {−n, . . . , n} × {1,2} started at 0 in
the middle, rather than the walk on {0, . . . , n} × {1,2} started at the left boundary.
However, the version presented here is simpler, since it avoids distinguishing three
cases “to the left of the starting point,” “at the starting point” and “to the right of
the starting point” for inner points of the ladder in many estimates presented below.

If there is no risk of confusion, we omit sometimes the dependence on n in the
notation.

2.1. A random walk in a random environment. We need some notation: Let

�(n) :=
{
x = (xe)e∈E(n) ∈ (0,1]E(n)

:
∑

e∈E(n)

xe = 1

}
(2.1)
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denote the simplex. We define αt := (kt (e)/t)e∈E(n) . Clearly, αt ∈ �(n).
For v ∈ V , we denote by xv the sum of all xe with e incident to v:

xv := ∑
{e∈E:v∈e}

xe.(2.2)

Furthermore, we introduce the following abbreviations:

xi := x{i−1,i}, xi := x{i−1,i}, zi := x{i,i}.(2.3)

Figure 1 illustrates this definition.
For 1 ≤ i ≤ n, let ci denote the oriented cycle i − 1, i, i, i − 1, i − 1. Clearly,

c1, . . . , cn constitute a basis of the first homology space H1(G
(n)) (cycle space) of

G(n); note that the first Betti number dimH1(G
(n)) of G(n) equals n. Let R+ :=

(0,∞). For x ∈ RE(n)

+ , we define the matrix A(n)(x) = (A
(n)
i,j (x))1≤i,j≤n by

A
(n)
i,i (x) := ∑

e∈ci

1

xe

, A
(n)
i,j (x) := ∑

e∈ci∩cj

± 1

xe

for i �= j,(2.4)

where the signs in the last sum are chosen to be +1 or −1 depending on whether
the edge e has in ci and cj the same orientation or not. Explicitly, this means

A
(n)
i,i (x) = 1

zi−1
+ 1

xi

+ 1

xi

+ 1

zi

,

A
(n)
i,i+1(x) = − 1

zi

= A
(n)
i+1,i(x),(2.5)

A
(n)
i,j (x) = 0 for |i − j | ≥ 2.

Let T (n) denote the set of all spanning trees of G(n). Let yt denote the transpose
of a vector y, and let E(T ) denote the edge set of a tree T . For x = (xe)e∈E(n) ∈
RE(n)

+ , y = (y1, y2, . . . , yn) ∈ Rn and T ∈ T (n), we define

�(n)(x, y, T ) =
∏n

i=1[xa−3/2
i x

a−3/2
i ]∏n

i=0 z
a−3/2
i

∏
e∈E(T ) xe

x
a+1/2
0 xa

0

∏n−1
i=1 [x(3a+1)/2

i x
(3a+1)/2
i

]xa+1/2
n x

a+1/2
n

(2.6)

× exp
[
−1

2
yA(n)(x)yt

]
.

Let σ denote the Lebesgue measure on �(n), normalized so that σ(�(n)) = 1. We
set

z̃(n) :=
∫
�(n)

∫
Rn

∑
T ∈T (n)

�(n)(x, y, T ) dy σ(dx).(2.7)

The normalizing constant z̃(n) is given explicitly in Theorem 1 of [7]; in particular
it is finite.
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THEOREM 2.1 ([7], Theorem 1). The sequence (αt )t∈N converges almost
surely. The distribution of the limit is absolutely continuous with respect to the
surface measure σ on �(n) with density given by

φ(n)(x) = 1

z̃(n)

∫
Rn

∑
T ∈T (n)

�(n)(x, y, T ) dy.(2.8)

There is also a probabilistic interpretation of the arguments y in (2.6) in terms
of winding numbers of the reinforced random walk paths; for details see [7].

The edge-reinforced random walk on every finite graph has the same distribu-
tion as a random walk in a random environment where the environment is given
by weights on the edges. We state the result only for G(n):

THEOREM 2.2 ([12], Theorem 3.1). For any path (v0, v1, . . . , vt ) in G(n), the
following holds:

P (n)[Xi = vi for 0 ≤ i ≤ t] =
∫
�(n)

t∏
i=1

x{vi−1,vi}
xvi−1

φ(n)(x)σ (dx);(2.9)

here x := (xe)e∈E(n) . Hence, P (n) equals the distribution of the random walk in a
random environment on G(n) starting in 0 with environment given by random edge
weights chosen according to φ(n) dσ .

We define

�̃(n) := �(n) × Rn × T (n),
(2.10)

dQ̃(n) := [
z̃(n)]−1

�(n)(x, y, T )σ (dx) dy dT ,

where dT denotes the counting measure on T (n). The marginal of the distribu-
tion Q̃(n) with respect to the components x equals the distribution of the random
environment as a measure on �(n).

The following theorem bounds the tails of ratios between these random vari-
ables and the “winding number” random variable y2

i .

THEOREM 2.3. Let a > 3/4. With respect to Q̃(n), all the random variables

ln
xi

y2
i

, ln
xi

y2
i

, ln
zi

y2
i

and ln
∣∣∣∣yi+1

yi

∣∣∣∣(2.11)

have exponential tails, uniformly in i and n. In other words, there exist constants
c4(a) > 0 and c5(a) > 0 such that for all n ∈ N, i < n and M > 0, one has

Q̃(n)[|ϒi | ≥ M] ≤ c4e
−c5M,(2.12)

where ϒi denotes any of the four random variables in (2.11).
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For x = (xe)e∈E(n) ∈ �(n), all weights (cxe)e∈E(n) with c > 0 induce the same re-
versible Markov chain. In Theorem 2.2, the edge weights x are normalized in such
a way that

∑
e xe = 1. For our purposes, it is more convenient to set one weight,

namely z0, equal to 1; recall that we used this normalization in Theorem 1.2. The
change of normalization is made precise in Lemma 2.6. We set

�(n) := RE(n)

+ × Rn × T (n).(2.13)

The following scaling property of �(n) will be important. We omit its elemen-
tary proof.

LEMMA 2.4. Let c > 0 be a real number. For all (x, y, T ) ∈ �(n), the follow-
ing holds:

�(n)(cx, c1/2y,T ) = c−(7/2)n−1�(n)(x, y, T ).(2.14)

For x ∈ RE(n)

+ , we set s(x) := ∑
e∈E(n) xe. We define

S :�(n) → �̃(n), (x, y, T ) 	→ (
s(x)−1x, s(x)−1/2y,T

)
.(2.15)

We write |A| for the cardinality of a set A. Let δ1 denote the Dirac measure in 1.

DEFINITION 2.5. Let λ(dx) := δ1(dz0) × ∏n
i=1 dxi dxi dzi . We define

dQ(n) := (3n)!
z̃(n)

�(n)(x, y, T )λ(dx) dy dT .(2.16)

LEMMA 2.6. Q(n) is the image measure of Q̃(n) under S; that is, for any mea-
surable function f : �̃(n) → R+, the following holds:∫

�̃(n)
f dQ̃(n) =

∫
�(n)

f ◦ S dQ(n).(2.17)

In particular, for any path (v0, v1, . . . , vt ) in G(n), we have

P (n)[Xi = vi for 0 ≤ i ≤ t] =
∫
�(n)

t∏
i=1

x{vi−1,vi}
xvi−1

dQ(n)(x, y, T ).(2.18)

PROOF. Let f : �̃(n) → R+ be measurable. Then, introducing an auxiliary in-
tegration over t and using the definition (2.10) of Q̃(n),∫

�̃(n)
f dQ̃(n) =

∫
�̃(n)

∫ ∞
0

e−t f (x′, y′, T ) dt dQ̃(n)(x′, y′, T )

= 1

z̃(n)

∫
�̃(n)

∫ ∞
0

t−7n/2e−t f (x′, y′, T )(2.19)

× �(n)(x′, y′, T ) t7n/2 dt σ (dx′) dy′ dT .
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Consider the transformation �(n) → (0,∞) × �̃(n), defined by (x, y, T ) 	→
(t, x′, y′, T ) = (s(x), S(x, y, T )). Then, the measure t7n/2 dt σ (dx′) dy′ dT on the
right-hand side of (2.19) is the image measure of the measure (3n)!dx dy dT un-
der this transformation. To see this, note first that the projection to |E(n)| − 1 = 3n

components (x′
e)e∈E(n)\{e0} suffices to parametrize any point (x′

e)e∈E(n) ∈ �(n), due
to the constraint

∑
e∈E(n) x′

e = 1; here we abbreviate e0 := {0,0}. Second, the
image of the probability measure σ on the simplex �(n) under this projection
(x′

e)e∈E(n) 	→ (x′
e)e∈E(n)\{e0} equals (3n)! times the Lebesgue measure on {(x′

e)e ∈
R

E(n)\{e0}+ :
∑

e �=e0
xe < 1}; the normalizing factor (3n)! = (|E(n)| − 1)! arises since

the last set has the volume 1/(|E(n)| − 1)!. Third, the inverse transformation,
with the redundant component x′

e0
and the discrete variable T dropped, is given

by (t, (x′
e)e �=e0, y

′) 	→ ((tx′
e)e �=e0, t (1 − ∑

e �=e0
x′
e),

√
ty′) = ((xe)e �=e0, xe0, y). Its

Jacobi determinant is given by t |E(n)|−1(
√

t )n = t7n/2. Hence, by the transforma-
tion formula, the right-hand side of (2.19) equals

(3n)!
z̃(n)

∫
�(n)

s(x)−7n/2e−s(x)f
(
S(x, y, T )

)
�(n)(S(x, y, T )

)
dx dy dT

(2.20)

= (3n)!
z̃(n)

∫
�(n)

s(x)e−s(x)f
(
S(x, y, T )

)
�(n)(x, y, T ) dx dy dT ;

for the last equality we used Lemma 2.4 with c = s(x)−1. Next, we substitute x̃ =
z−1

0 x, ỹ = z
−1/2
0 y. Note that the e0-component of x̃ equals 1. Consider the transfor-

mation (x, y, T ) 	→ (z0, x̃, ỹ, T ). If we drop the redundant component x̃e0 = 1 and
the discrete variable T , then the resulting transformation (x, y) 	→ (z0, (x̃e)e �=e0, ỹ)

has the Jacobi determinant z
−(|E(n)|−1)
0 z

−n/2
0 = z

−7n/2
0 . Thus, the image measure

of dx dy dT with respect to the transformation (x, y, T ) 	→ (z0, x̃, ỹ, T ) equals
z

7n/2
0 dz0 λ(dx̃) dỹ dT ; note that the Dirac measure in λ(dx̃) arises from x̃e0 = 1.

Using S(x, y, T ) = S(x̃, ỹ, T ) and once more the transformation formula, the ex-
pression (2.20) becomes

(3n)!
z̃(n)

∫
�(n)

∫ ∞
0

z0s(x̃)e−z0s(x̃)f
(
S(x̃, ỹ, T )

)
(2.21)

× �(n)(z0x̃, z
1/2
0 ỹ, T )z

7n/2
0 dz0 λ(dx̃) dỹ dT .

By Lemma 2.4, �(n)(z0x̃, z
1/2
0 ỹ, T )z

7n/2+1
0 = �(n)(x̃, ỹ, T ). Hence, integrating

over z0 yields for the expression (2.21):

(3n)!
z̃(n)

∫
�(n)

f
(
S(x̃, ỹ, T )

)
�(n)(x̃, ỹ, T )λ(dx̃) dỹ dT

(2.22)
=

∫
�(n)

f ◦ S dQ(n).
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FIG. 2. The possible states of the tree variables.

This completes the proof of (2.17). The statement (2.18) follows immediately from
Theorem 2.2 because the quotients x{vi−1,vi}/xvi−1 do not change under the trans-
formation S. �

2.2. Building spanning trees. In this section we give a local description of the
spanning trees of G(n). In order to describe a spanning tree T , we specify for each
of the n cycles one of the states A, B , C or D shown in Figure 2.

Let T(n) := {(Ti)1≤i≤n ∈ {A,B,C,D}n : (Ti, Ti+1) �= (A,B) for all i = 1,

2, . . . , n − 1}, and recall that T (n) denotes the set of all spanning trees of G(n).
We define


tree : T(n) → T (n), 
tree((Ti)1≤i≤n) := T ;(2.23)

Ti describes which of the horizontal edges {i − 1, i}, {i − 1, i} is contained in the
spanning tree T according to Figure 2. Let us define which rungs are included
in T . The left rung {0,0} is included for T1 ∈ {A,C,D}. Figure 3 tells us for

FIG. 3. Possible transitions of the tree variables.
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i = 1, . . . , n− 1 whether the rung {i, i} is contained in the tree T . Finally, the right
rung {n,n} is included for Tn ∈ {B,C,D}.

Indeed, 
tree((Ti)1≤i≤n) yields a spanning tree of G(n).

LEMMA 2.7. The map 
tree : T(n) → T (n) is a bijection.

PROOF. Let T ∈ T (n). For each of the cycles ci (1 ≤ i ≤ n) of G(n), there is
at least one edge which is not contained in T . If {i − 1, i} /∈ E(T ), we set Ti := C.
If {i − 1, i} /∈ E(T ), we set Ti := D. Otherwise, both edges are contained in T ,
and T is connected by a vertical edge somewhere either on the left (and we set
Ti := A) or on the right (and Ti := B). Clearly, (Ti, Ti+1) �= (A,B) for all i. One
sees that 
tree maps the constructed sequence (Ti)1≤i≤n to T . Hence, 
tree is onto,
and it is not hard to see that it is one-to-one as well. �

2.3. A Gibbsian representation of the random environment. In this section we
represent Q(n) as the image measure of a Gibbsian probability measure under a
suitable transformation. This representation is essential for the analysis of the ran-
dom environment. The transformed local variables are called Xi , Xi , σi , Ti , Zi

and �i . In the terminology of statistical mechanics, one may view them as abstract
local “spin” variables. The new variables Xi,Xi,Zi,�i consist essentially of log-
arithms of ratios between neighboring old variables xe, y2

i , while σi and Ti are
discrete. First, we describe the space of these transformed local variables.

DEFINITION 2.8. We define �(n) := �left × �n
cycle × �n−1

rung × �right, where

�left = R, �cycle = R2 × {±1} × {A,B,C,D},
(2.24)

�rung = R2, �right = R.

We endow �(n) with the reference measure dω, defined as the Lebesgue measure
on R4n times the counting measure. We denote the canonical projections on �(n)

by

ωleft, (ωcycle,i)1≤i≤n, (ωrung,i)1≤i≤n−1, ωright,(2.25)

where ωleft = Z0, ωcycle,i = (Xi,Xi, σi, Ti), ωrung,i = (Zi,�i), ωright = Zn; hence
a generic element on �(n) is

ω = (
Z0, (Xi,Xi, σi, Ti)1≤i≤n, (Zi,�i)1≤i≤n−1,Zn

)
.(2.26)

Furthermore, we set

�̃(n) := {
ω ∈ �(n) :

(
Ti(ω), Ti+1(ω)

) �= (A,B)
(2.27)

for all i = 1, . . . , n − 1
}
.
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Intuitively speaking, the components of �(n) are associated to parts of the lad-
der: �left and �right belong to the left and right rung, respectively; the ith �cycle
component belongs to the ith cycle in the ladder, and the ith �rung component is
associated to the step from the ith to the (i + 1)st cycle.

Using an intuitive statistical mechanics picture, one has a chain of “compound
spins,” consisting of “inner spin variables” Xi , Xi , Zi , σi and Ti , while �i mea-
sures the “separation” between neighboring compound spins.

This is clarified by the following definition; it describes the transformation to
the new local variables. In order to simplify the notation we first define auxiliary
variables Ui , Wi and Yi .

DEFINITION 2.9. We introduce the abbreviations

Ui := 1
2 [Xi + Xi], 1 ≤ i ≤ n,(2.28)

Wi := �i + Ui+1 − Ui, 1 ≤ i ≤ n − 1,(2.29)

Yi := −Z0 −
i−1∑
j=1

Wj, 1 ≤ i ≤ n.(2.30)

Recall the abbreviations (2.3). We set

�
(n)
1 := {(

(xe)e, (yi)i, T
) ∈ �(n) : z0 = 1, yi �= 0 for all i

}
,(2.31)

and we define 
 : �̃(n) → �
(n)
1 , ω 	→ ((xe)e∈E(n) , (yi)1≤i≤n, T ), as follows:

xi = eXi(ω)+Yi(ω), xi = eXi(ω)+Yi(ω),
(2.32)

yi = σie
Yi(ω)/2, 1 ≤ i ≤ n;

z0 = 1, zi = eZi(ω)+(Yi(ω)+Yi+1(ω))/2,
(2.33)

zn = eZn(ω)+Yn(ω), 1 ≤ i ≤ n − 1;
T = 
tree

(
T1(ω), . . . , Tn(ω)

)
.(2.34)

For our analysis below, it is essential to consider as our new (capital) variables
logarithms of quotients roughly of the type xe/xe′ or xe/y

2
i , with e close to e′

and close to level i, since these variables turn out to have uniformly exponential
tails. There is some arbitrariness in the choice of the precise form of the change of
variables. Our choice was optimized so that the estimate for the local Hamiltonians
in Proposition 3.2, is valid for sufficiently small values of a.

Speaking very roughly and using the statistical mechanics picture again, Yi may
be viewed as the center of the ith compound spin, while Xi , Xi and Zi can be con-
sidered as distances of the constituents of the ith compound spin to the center. The
constituents are bound together by strong internal forces. In the intuitive picture,
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the locations Xi + Yi , Xi + Yi and Zi + 1
2(Yi + Yi+1) of the constituents are log-

arithms of the original edge weights xe. Multiplicative scaling of these weights
corresponds to shifting the whole spin chain.

We note that �
(n)
1 has full Q(n)-measure, that is, Q(n)[�(n)

1 ] = 1, and that


 : �̃(n) → �
(n)
1 is a bijection. Its inverse 
−1 :�(n)

1 → �̃(n) is expressed by the
following equations:

Xi = ln
xi

y2
i

, Xi = ln
xi

y2
i

, σi = sgnyi,

(2.35)
Ti = [
−1

tree(T )]i , 1 ≤ i ≤ n,

Z0 = ln
z0

y2
1

, Zi = ln
zi

|yiyi+1| , Zn = ln
zn

y2
n

,(2.36)

�i = 1

2

[
ln

xi

xi+1
+ ln

xi

xi+1

]
, 1 ≤ i ≤ n − 1.(2.37)

The following relations are also useful:

Yi = 2 ln |yi |
(2.38) = 1

2(X1 + X1 − Xi − Xi) − Z0 −
i−1∑
j=1

�j , 1 ≤ i ≤ n,

Wi = Yi − Yi+1 = ln
y2
i

y2
i+1

,(2.39)

�i = [Ui + Yi] − [Ui+1 + Yi+1], 1 ≤ i ≤ n − 1.(2.40)

The reason to take yi squared is its scaling behavior in (2.14).
The image measure of Q(n) with respect to the transformation 
−1 :�(n)

1 →
�̃(n) ⊂ �(n) turns out to be a Gibbs measure; we show this in Lemma 2.13. But
first, we introduce the relevant local Hamiltonians for this Gibbs measure. Since
we deform the Gibbs measure later, we introduce a “deformation parameter” η

already at this point. In the language of statistical mechanics, one may view η

as an external force, coupling to the “separation” �i between compound spins.
Without deformation, η takes the value 1/4.

In analogy to (2.28) and (2.29), we use the following abbreviations:

U = 1
2(X + X ), U ′ = 1

2(X′ + X
′
), W = � + U ′ − U.(2.41)

DEFINITION 2.10. For η ∈ R, we define Hmiddle,a,η :�cycle × �rung ×
�cycle → R ∪ {∞},

Hmiddle,a,η(X,X,σ,T |Z,�|X′,X′
, σ ′, T ′)

:= Hln,a + Hlinear,a + Htree + HexpI + HexpII + Hconstraint − η�(2.42)

= Hmiddle,a,0 − η�,
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where

Hln,a := 3a + 1

2

{
ln

[
eX+W/2 + eX′−W/2 + eZ]

(2.43)
+ ln

[
eX+W/2 + eX

′−W/2 + eZ]}
,

Hlinear,a := −(
a + 1

2

)[U + U ′ + Z],(2.44)

Htree := 1
2

[
1{T =C}X + 1{T =D}X + 1{T ′=C}X′ + 1{T ′=D}X

′]
+ [

1{T ′=B} + 1{T =A}
]
Z + 1

2

[
1{T ′=B} − 1{T =A}

]
W(2.45)

− 1
2

[
1{T =A} − 1{T =B}

]
U + 1

2

[
1{T ′=A} − 1{T ′=B}

]
U ′,

HexpI := 1
4

[
e−X + e−X + e−X′ + e−X

′]
,(2.46)

HexpII := 1
2 [σeW/4 − σ ′e−W/4]2e−Z,(2.47)

Hconstraint := +∞ · 1{T =A,T ′=B}.(2.48)

The piece Hconstraint encodes the constraint (Ti, Ti+1) �= (A,B) for the tree vari-
ables; intuitively speaking, the energy required to violate this constraint is infinite.

We define the reflection ↔ by A↔ = B , B↔ = A, C↔ = C and D↔ = D.
For ω = (X,X,σ,T ) ∈ �cycle, we define ω↔ := (X,X,σ,T ↔). We observe the
following reflection symmetry property:

Hmiddle,a,η(ω|Z,�|ω′) = Hmiddle,a,−η(ω
′↔|Z,−�|ω↔).(2.49)

The two ends of the ladder need some extra consideration:

DEFINITION 2.11. We define Hleft,a :�left × �cycle → R by

Hleft,a(Z|X,X,σ,T ) = Hleft,a := Hleft,ln,a + Hleft,tree + Hexp + U

4
,(2.50)

where

Hleft,ln,a := a ln
[
eX + eZ] + (

a + 1
2

){ln[eX + eZ] − [U + Z]},(2.51)

Hleft,tree := 1
2

[
1{T =C}X + 1{T =D}X

]
(2.52)

+ 1{T =B}Z + 1
2

[
1{T =A} − 1{T =B}

]
U,

Hexp := 1
4

[
e−X + e−X] + 1

2e−Z.(2.53)

We define Hright,a :�cycle × �right → R by

Hright,a(X,X,σ,T |Z)
(2.54)

= Hright,a := Hright,ln,a + Hright,tree + Hexp − U

4
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with

Hright,ln,a := (
a + 1

2

){
ln[eX + eZ] + ln

[
eX + eZ] − [U + Z]},(2.55)

Hright,tree := 1
2

[
1{T =C}X + 1{T =D}X

]
(2.56)

+ 1{T =A}Z − 1
2

[
1{T =A} − 1{T =B}

]
U.

The total Hamiltonian is defined to be the sum of all local pieces; here the
deformation parameter η equals 1/4:

DEFINITION 2.12. We define H(n) :�(n) → R ∪ {∞} by

H(n)(ω) := Hleft,a(ωleft|ωcycle,1)

+
n−1∑
i=1

Hmiddle,a,1/4(ωcycle,i |ωrung,i |ωcycle,i+1)(2.57)

+ Hright(ωcycle,n|ωright).

The following lemma shows that the Gibbs measure defined by the total Hamil-
tonian H(n) indeed describes the random environment for the reinforced random
walk, transformed to the local spin variables.

Recall Definition 2.9 of the bijection 
 and the definition of the reference mea-
sure dω on �(n) in Definition 2.8.

LEMMA 2.13. Let P(n) denote the image measure of Q(n) (restricted to the set
�

(n)
1 of full measure) under the map 
−1 :�(n)

1 → �(n), that is, for all measurable
functions f :�(n) → R+, we have∫

�(n)
f dQ(n) =

∫
�̃(n)

f ◦ 
 dP(n).(2.58)

Then P(n) has the following representation as a Gibbs measure:

dP(n) = [
Z(n)]−1

e−H(n)(ω) dω,(2.59)

with Z(n) := ∫
�(n) e−H(n)(ω) dω.

PROOF. The presence of Hconstraint in the Hamiltonian guarantees that e−H(n)

is indeed supported on range(
−1) = �̃(n) ⊂ �(n), that is, e−H(n) = 0 as soon as
one of the constraints (Ti, Ti+1) �= (A,B) is violated.

For f :�(n) → R+ as above, we get the following by the transformation formula
and the definition (2.16) of Q(n):∫

�̃(n)
f ◦ 
 dP(n) =

∫
�

(n)
1

f dQ(n)

(2.60)

= (3n)!
z̃(n)

∫
�̃(n)

(f ◦ 
)
(
�(n) ◦ 


)
J dω,
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with an appropriate Jacobi determinant J, specified in (2.70). Recall that the com-
ponents of ω, described in (2.26), consist of both continuous and discrete parts.
The Jacobi determinant J is taken only with respect to the continuous variables
with the constant value z0 = 1 dropped.

Because of (2.60), it suffices to show that

− ln
(
�(n)(
(ω))J(ω)

) = H(n)(ω) + c6(2.61)

holds for all ω in the domain �̃(n) of 
 with a constant c6(n) ∈ R. We rewrite the
density �(n) given in (2.6) as follows:

�(n)(x, y, T )

= exp
[
−1

2
yA(n)(x)yt

] [x1x1z
2
0]a/2+1/4

x
a+1/2
0 xa

0

[xnxnz
2
n]a/2+1/4

[xnxn]a+1/2(2.62)

×
n−1∏
i=1

[xixixi+1xi+1z
2
i ]a/2+1/4

[xixi](3a+1)/2

n∏
i=1

[xixi]−2
n∏

i=0

z−2
i

∏
e∈E(T )

xe.

Using the explicit form (2.5) of A(n), we express the argument of the first expo-
nential term as follows:

1

2
yA(n)(x)yt = 1

2

{
y2

1

z0
+ y2

n

zn

+
n∑

i=1

[
y2
i

xi

+ y2
i

xi

]
+

n−1∑
i=1

(yi − yi+1)
2

zi

}

= 1

2

{
e−Z0 + e−Zn +

n∑
i=1

[
e−Xi + e−Xi

]

+
n−1∑
i=1

[σie
Wi/4 − σi+1e

−Wi/4]2e−Zi

}
(2.63)

= Hexp(ωleft|ωcycle,1)

+
n−1∑
i=1

(HexpI + HexpII)(ωcycle,i |ωrung,i |ωcycle,i+1)

+ Hexp(ωcycle,n|ωright).

This is the exponential part of the Hamiltonian H(n). Next, we analyze the part of
the density �(n) which depends on the parameter a. For 1 ≤ i ≤ n− 1, we have by
Definition 2.9 and (2.39)

− ln
[xixixi+1xi+1z

2
i ]a/2+1/4

[xixi](3a+1)/2

= 3a + 1

2
ln

[
eXi+Yi + eXi+1+Yi+1 + eZi+(Yi+Yi+1)/2]

(2.64)
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+ 3a + 1

2
ln

[
eXi+Yi + eXi+1+Yi+1 + eZi+(Yi+Yi+1)/2]

−
(
a + 1

2

)[
Ui + Ui+1 + Zi + 3

2
Yi + 3

2
Yi+1

]

= 3a + 1

2
ln[eXi+Wi/2 + eXi+1−Wi/2 + eZi ]

+ 3a + 1

2
ln

[
eXi+Wi/2 + eXi+1−Wi/2 + eZi

]

−
(
a + 1

2

)
[Ui + Ui+1 + Zi] − 1

4
[Yi + Yi+1]

= (Hln,a + Hlinear,a)(ωcycle,i |ωrung,i |ωcycle,i+1) − 1

4
[Yi + Yi+1].

Similarly, a calculation using Definition 2.9 and in particular Y1 = −Z0 yields

− ln
[x1x1z

2
0]a/2+1/4

x
a+1/2
0 xa

0

=
(
a + 1

2

)
ln[eX1+Y1 + 1]

+ a ln
[
eX1+Y1 + 1

] −
(

a

2
+ 1

4

)
(X1 + X1 + 2Y1)(2.65)

= a ln
[
eX1 + eZ0

] +
(
a + 1

2

)
{ln[eX1 + eZ0] − U1 − Z0} − Y1

2

= Hleft,ln,a(ωleft|ωcycle,1) − Y1

2

and

− ln
[xnxnz

2
n]a/2+1/4

[xnxn]a+1/2

=
(
a + 1

2

){
ln[eXn+Yn + eZn+Yn] + ln

[
eXn+Yn + eZn+Yn

]}

−
(

a

2
+ 1

4

)
(Xn + Xn + 2Zn + 4Yn)(2.66)

=
(
a + 1

2

){
ln[eXn + eZn] + ln

[
eXn + eZn

] − Un − Zn

}
= Hright,ln,a(ωcycle,n|ωright).

These are the parts of the Hamiltonian which depend on the parameter a.
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Recall the definition of 
 from (2.32)–(2.34):



(
Z0, (Xi,Xi, σi, Ti)1≤i≤n, (Zi,�i)1≤i≤n−1,Zn

)
= (

( xi, xi)1≤i≤n, z0, (zi)1≤i≤n−1, zn, (yi)1≤i≤n, T
)

(2.67)
= ((

eXi+Yi , eXi+Yi
)
1≤i≤n,1,

(
eZi+(Yi+Yi+1)/2)

1≤i≤n−1,

eZn+Yn, (σie
Yi/2)1≤i≤n,
tree((Ti)1≤i≤n)

)
with

Yi = −Z0 + 1
2(X1 + X1 − Xi − Xi) −

i−1∑
j=1

�j(2.68)

by (2.38). Consider the map 
 with the discrete arguments σi and Ti taken fixed
and the discrete component T and the constant component z0 = 1 in the image
vector dropped. We write this map as a composition of three maps:

(Z0,X1,X1, . . . ,Xn,Xn,Z1,�1, . . . ,Zn−1,�n−1,Zn)

π	−→ (X1,X1, . . . ,Xn,Xn,Z1, . . . ,Zn,Z0,�1, . . . ,�n−1)
(2.69)

χ	−→ (X1,X1, . . . ,Xn,Xn,Z1, . . . ,Zn,Y1, . . . , Yn)

�	−→ ( x1, x1, . . . , xn, xn, z1, . . . , zn, y1, . . . , yn).

The map π is just a permutation; thus, its Jacobi determinant has absolute value 1.
Using (2.68), the Jacobi matrix Dχ is a lower triangular matrix having only
the entries +1 and −1 on the diagonal; thus its determinant has also absolute
value 1. Finally, the Jacobi matrix D� is an upper triangular matrix; the values
on the diagonal are given by ∂xi/∂Xi = eXi+Yi , ∂xi/∂Xi = eXi+Yi , ∂zj/∂Zj =
eZj+(Yj+Yj+1)/2, ∂zn/∂Zn = eZn+Yn and ∂yi/∂Yi = 1

2σie
Yi/2 with 1 ≤ i ≤ n and

1 ≤ j ≤ n − 1.
We observe that the Jacobi determinant J occurring in (2.60) equals

J = |detD(� ◦ χ ◦ π)| = |detD�|

= eZn+Yn

n∏
i=1

[1
2eYi/2eXi+Yi eXi+Yi

] n−1∏
i=1

eZi+(Yi+Yi+1)/2(2.70)

= 2−n
n∏

i=1

[eYi/2xixi]
n∏

i=0

zi.

Consequently,

− ln

[
J

n∏
i=1

[xixi]−1
n∏

i=0

z−1
i

]
= n ln 2 − 1

2

n∑
i=1

Yi.(2.71)
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It remains to analyze the part of the density �(n) which depends on the spanning
tree T . We note that

n∏
i=1

[xixi]−1
n∏

i=0

z−1
i

∏
e∈E(T )

xe = ∏
e/∈E(T )

x−1
e .(2.72)

Furthermore, using the definition of the tree variables A, B , C and D (see Figure 2)
and the possible transitions between them (see Figure 3), we obtain

− ln

[ ∏
e/∈E(T )

x−1
e

]
=

n∑
i=1

[
1{Ti=C} lnxi + 1{Ti=D} lnxi

]

+
n−1∑
i=1

[
1{Ti=A} + 1{Ti+1=B}

]
ln zi

+ 1{T1=B} ln z0 + 1{Tn=A} ln zn

(2.73)

=
n∑

i=1

[
1{Ti=C}Xi + 1{Ti=D}Xi

]

+
n−1∑
i=1

[
1{Ti=A} + 1{Ti+1=B}

]
Zi + 1{Tn=A}Zn

+ 1
2

n−1∑
i=1

[
1{Ti+1=B} − 1{Ti=A}

]
Wi + R.

The remaining term R is specified in (2.74); recall that Wi = Yi − Yi+1 by (2.39).
Using the identity 1{Ti=A} + 1{Ti=B} + 1{Ti=C} + 1{Ti=D} = 1, we see that

R =
n∑

i=1

[
1{Ti=C} + 1{Ti=D}

]
Yi +

n−1∑
i=1

[
1{Ti=A} + 1{Ti+1=B}

]Yi + Yi+1

2

+ 1{Tn=A}Yn +
n−1∑
i=1

[
1{Ti+1=B} − 1{Ti=A}

]Yi+1 − Yi

2

=
n∑

i=1

[
1 − 1{Ti=A} − 1{Ti=B}

]
Yi(2.74)

+
n−1∑
i=1

[
1{Ti=A}Yi + 1{Ti+1=B}Yi+1

] + 1{Tn=A}Yn

=
n∑

i=1

Yi + 1{T1=B}Z0.
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For the last equality, we used Y1 = −Z0 by (2.30). Combining (2.73) and (2.74)
with the definitions (2.45), (2.52) and (2.56) of Htree, Hleft,tree and Hright,tree, we
get

− ln

[ ∏
e/∈E(T )

x−1
e

]
= Hleft,tree(ωleft|ωcycle,1)

+
n−1∑
i=1

Htree(ωcycle,i |ωrung,i |ωcycle,i+1)(2.75)

+ Hright,tree(ωcycle,n|ωright) +
n∑

i=1

Yi.

Note that the terms involving Ui in Hleft,tree, Htree and Hright,tree form a telescopic
sum, which vanishes. The right-hand side in (2.75) is the part of the Hamiltonian
depending on the spanning tree T .

Next, we sum up (2.63)–(2.66), (2.71) and (2.75). Recall that in the definitions
(2.50) of Hleft,a and (2.54) of Hright,a , there are additional terms ±U/4. We get the
following result on the set �̃(n):

− ln
((

�(n) ◦ 

)|J|)

= H(n) + 1

4

n−1∑
i=1

�i − U1

4
+ Un

4

− 1

4

n−1∑
i=1

(Yi + Yi+1) − Y1

2
+ n ln 2 − 1

2

n∑
i=1

Yi +
n∑

i=1

Yi(2.76)

= H(n) + n ln 2 + 1

4

n−1∑
i=1

(�i − [Ui + Yi] + [Ui+1 + Yi+1])

= H(n) + n ln 2,

where we used (2.40) in the last step. This proves the claim (2.61). �

3. Bounds for the Hamiltonian. In this section we bound the local Hamil-
tonians from below, showing that they increase at least linearly at infinity. Unfor-
tunately, these estimates are technically involved; but fortunately, for the remain-
der, it suffices to know only the statements of Propositions 3.2 and 3.5 and of
Lemma 3.3.

3.1. Bounding Hmiddle,a,η. The key to the linear bound of Hmiddle,a,η lies in
the solution of a linear optimization problem. It seems to be more convenient to
consider a dualized problem; this is why we introduce “dual variables” κT,T ′ in the
following lemma.
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LEMMA 3.1. Let a = 1/2. Then there are κT,T ′ ≥ 0, κT,T ′ ≥ 0, κ ′
T ,T ′ ≥ 0 and

κ ′
T ,T ′ ≥ 0 with

κT,T ′ + κT,T ′ = 1
4 and κ ′

T ,T ′ + κ ′
T ,T ′ = 1

4 ,(3.1)

such that one has

Hln,1/2 + Hlinear,1/2 + Htree + Hconstraint − �

4
(3.2)

≥ κT,T ′X + κT,T ′X + κ ′
T ,T ′X′ + κ ′

T ,T ′X
′
.

PROOF. Due to the presence of Hconstraint in the claim (3.2), there is nothing to
show in the case (T , T ′) = (A,B). Thus let us assume (T , T ′) ∈ {A,B,C,D}2 \
{(A,B)}. Using ln(ex + ey + ez) ≥ max{x, y, z}, we estimate Hln,1/2, defined
in (2.43), from below by a convex combination: For all α,β, γ ,α,β, γ ≥ 0 with

α + β + γ = 1 and α + β + γ = 1,(3.3)

we get

Hln,1/2 ≥ 5

4

[
max

{
X + W

2
,X′ − W

2
,Z

}
+ max

{
X + W

2
,X

′ − W

2
,Z

}]

≥ 5

4

[
α

(
X + W

2

)
+ β

(
X′ − W

2

)
(3.4)

+ γZ + α

(
X + W

2

)
+ β

(
X

′ − W

2

)
+ γZ

]
=: K.

It suffices to show that for all 15 possible values (T , T ′) ∈ {A,B,C,D}2 \{(A,B)}
of the tree variables, there exist

α ≥ 0, β ≥ 0, γ ≥ 0, α ≥ 0, β ≥ 0, γ ≥ 0,
(3.5)

κT,T ′ ≥ 0, κT ,T ′ ≥ 0, κ ′
T ,T ′ ≥ 0, κ ′

T ,T ′ ≥ 0,

so that (3.1), (3.3) and

K + Hlinear,1/2 + Htree − �

4
= κT,T ′X + κT,T ′X + κ ′

T ,T ′X′ + κ ′
T ,T ′X

′
(3.6)

hold for all real values X, X, X′, X′
, Z and �. Indeed, the claim (3.2) follows from

(3.6) and the bound (3.4).
Equation (3.6) is equivalent to the system of equations for the coefficients of

X, X, X′, X
′
, Z and � in (3.6). This system together with (3.1), (3.3) and the

inequalities (3.5) form a system of linear equations and linear inequalities. We
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solved this system with a computer for all 15 possibilities for the tree variables
(T , T ′). Here is one possible solution:

α := 1
10

[
1{T ′=A} − 1{T ′=B} + 1{T ′=C}
− 1{T =A,T ′=D} + 1{T =B,T ′=D} + 1{T =C,T ′=D}

]
(3.7)

+ 1
5

[
3 + 1{T =A} − 1{T =B} − 2 · 1{T =C} + 1{T =C,T ′=B}

]
,

β := 1
10

[
1{T ′=B} − 1{T ′=A} − 3 · 1{T ′=C} + 1{T =A,T ′=D}

]
+ 1

5

[
2 − 1{T =A} + 1{T =B} − 1{T =B,T ′=A} + 1{T =C,T ′=B}(3.8)

+ 1{T =A,T ′=C} − 1{T =B,T ′=C} − 1{T =B,T ′=D}
]
,

γ := 1 − α − β,(3.9)

α := 4
5 + 4

51{T =A} − α,(3.10)

β := 2
5 + 4

51{T ′=B} − β,(3.11)

γ := 1 − α − β(3.12)

and

κT,T ′ := 1
4

[
1 + 1{T =C,T ′=B} − 1{T ′=B}

(3.13)
− 1{T =A,T ′=D} − 1

21{T =D,T ′=D}
]
,

κT ,T ′ := 1
4 − κT,T ′,(3.14)

κ ′
T ,T ′ := 1

4

[
1 − 1{T ′=B} − 1{T =A} + 1{T =B,T ′=B}

+ 1{T =C,T ′=B} + 1{T =A,T ′=C}
]

(3.15)

+ 1
8

[
1{T =A,T ′=D} − 1{T ′=D}

]
,

κ ′
T ,T ′ := 1

4 − κ ′
T ,T ′ .(3.16)

Indeed, an elementary but tedious calculation shows that (3.6) and the inequali-
ties (3.5) are fulfilled for our choice. We checked all the conditions with the help
of a computer algebra system, but they can also be checked by hand for the 15
combinations of the tree variables. This completes the proof. �

The following lemma bounds the local Hamiltonians “in the middle” of the
ladder. We split off the exponential part HexpII, since this refined bound is needed
in a deformation argument in Section 4.2.

PROPOSITION 3.2. For all a > 1/2 and for all η ∈ [−1/4,1/4] one has

Hmiddle,a,η ≥ Hmiddle,a,η − HexpII
(3.17)

≥ c7(a)[|X| + |X| + |Z| + |�| + |X′| + |X′|]
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with the constant c7(a) = 1
16 min{a − 1

2 ,1} > 0.

PROOF. In the estimate (3.19), we use the elementary bound

3 ln(ex + ey + ez) − x − y − z ≥ 3 max{x, y, z} − x − y − z
(3.18)

≥ 1
2 [|x − y| + |x − z| + |y − z|]

twice, for x = X + W/2, y = X′ − W/2, z = Z and for x = X + W/2, y = X
′ −

W/2, z = Z. Furthermore, we use an average between the two bounds |x1|+|x2|+
|x3|+ |x4| ≥ |x1 +x2 +x3 +x4| and |x1|+ |x2|+ |x3|+ |x4| ≥ |x1 −x3|+ |x2 −x4|
in the third step in (3.19), and we abbreviate ã = a − 1/2. This yields

(Hln,a + Hlinear,a) − (Hln,1/2 + Hlinear,1/2)

= ã

2

[
3 ln

(
eX+W/2 + eX′−W/2 + eZ)

+ 3 ln
(
eX+W/2 + eX

′−W/2 + eZ) − X − X′ − X − X
′ − 2Z

]
≥ ã

4

[
|X − X′ + W | +

∣∣∣∣X + W

2
− Z

∣∣∣∣ +
∣∣∣∣X′ − W

2
− Z

∣∣∣∣
+ |X − X

′ + W | +
∣∣∣∣X + W

2
− Z

∣∣∣∣ +
∣∣∣∣X′ − W

2
− Z

∣∣∣∣
]

(3.19)

≥ ã

4
[|X − X′ + W | + |X − X

′ + W |]

+ ã

8
[|X − X| + |X′ − X

′| + |X + X + X′ + X
′ − 4Z|]

≥ ã

4
|X + X − X′ − X

′ + 2W |

+ ã

8
[|X − X| + |X′ − X

′| + |X + X + X′ + X
′ − 4Z|].

Lemma 3.1 implies that

Hln,1/2 + Hlinear,1/2 + Htree + Hconstraint − �

4
(3.20)

≥ 1

4
[min{X,X} + min{X′,X′}]

holds. We also need the following fact: For all ε > 0, we have

min{x, y} + e−x + e−y + ε|x − y| ≥ δ(|x| + |y|),(3.21)

where δ = min{ε,1/2}. To prove this fact, we may assume y ≥ x without loss
of generality, using symmetry. Abbreviating u− := max{−u,0} and using e−u ≥
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2u−, we get the claim (3.21):

min{x, y} + e−x + e−y + ε|x − y|
≥ x + 2x− + 2y− + δ|x − y|
= |x| − δx + 2y− + δy(3.22)

≥ (1 − δ)|x| + δ|y|
≥ δ(|x| + |y|).

Combining (3.19), (3.20) and the definition (2.46) of HexpI, we conclude

Hmiddle,a,1/4 − HexpII

= (Hln,a + Hlinear,a) − (Hln,1/2 + Hlinear,1/2)

+
(
Hln,1/2 + Hlinear,1/2 + Htree + Hconstraint − �

4

)
+ HexpI

(3.23)

≥ ã

4
|X + X − X′ − X

′ + 2W |

+ ã

8
[|X − X| + |X′ − X

′| + |X + X + X′ + X
′ − 4Z|]

+ 1

4

[
min{X,X} + min{X′,X′} + e−X + e−X + e−X′ + e−X

′]
.

For the first summand in the last expression, we use the relation (2.41) be-
tween W and �. Then, two applications of the fact (3.21) with ε = ã/2,
δ = min{ã/2,1/2} yield the following lower bound for the terms (3.23):

(3.23) ≥ ã

2
|�| + ã

8
|X + X + X′ + X

′ − 4Z|

+ δ

4
[|X| + |X| + |X′| + |X′|]

≥ δ

8
|�| + δ

8
|X + X + X′ + X

′ − 4Z|
(3.24)

+ δ

4
[|X| + |X| + |X′| + |X′|]

≥ δ

8
|�| + δ

2
|Z| + δ

8
[|X| + |X| + |X′| + |X′|]

≥ δ

8
[|X| + |X| + |Z| + |�| + |X′| + |X′|].

In the case η = 1/4, this proves the second inequality in the claim (3.17). By the
symmetry property (2.49), this implies the second inequality in (3.17) in the case
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η = −1/4, too. For −1/4 < η < 1/4, Hmiddle,a,η − HexpII is a convex combina-
tion of Hmiddle,a,1/4 − HexpII and Hmiddle,a,−1/4 − HexpII. Thus we get the second
inequality in (3.17) in the general case, too. The first inequality in (3.17) follows
immediately from HexpII ≥ 0; recall its definition (2.47). �

LEMMA 3.3. For all ω = (X,X,σ,T ) ∈ �cycle, ω′ = (X′,X′
, σ ′, T ′) ∈

�cycle, ωrung = (Z,�) ∈ �rung, the map

[−1,1] � γ 	→ Hmiddle,a,0
(
ω

∣∣Z,� + γ1{σ �=σ ′}
∣∣ω′)(3.25)

is twice differentiable with the following bounds on its derivatives:

sup
−1≤γ≤1

∣∣∣∣ ∂j

∂γ j
Hmiddle,a,0

(
ω

∣∣Z,� + 1{σ �=σ ′}γ
∣∣ω′)∣∣∣∣

(3.26)
≤ c8 + HexpII(ω|ωrung|ω′)

holds for j = 1,2 with some constant c8 = c8(a) > 0.

PROOF. Let j ∈ {1,2}, and let �γ denote the map (ω|ωrung|ω′) 	→ (ω|Z,� +
1{σ �=σ ′}γ |ω′).

By (2.41), � = W + U − U ′. Hence, the terms contributing to the derivatives
under consideration are those depending on � and W . Consequently, using the
explicit form of Hmiddle,a,0 from Definition 2.10, we see that

sup
−1≤γ≤1

∣∣∣∣ ∂j

∂γ j
[Hmiddle,a,0 ◦ �γ ]

∣∣∣∣
(3.27)

≤ c9 + sup
−1≤γ≤1

∣∣∣∣ ∂j

∂γ j
[Hln,a ◦ �γ ] + ∂j

∂γ j
[HexpII ◦ �γ ]

∣∣∣∣
with a constant c9 > 0. It is not hard to see that ∂j

∂Wj ln[eX+W/2 + eX′−W/2 + eZ]
is bounded for j = 1,2. Hence,

sup
−1≤γ≤1

∣∣∣∣ ∂j

∂γ j
[Hln,a ◦ �γ ]

∣∣∣∣ ≤ c10(3.28)

with a constant c10 > 0. By the definition (2.47) of HexpII, we have

HexpII ◦ �γ = 1
2

[
e(W◦�γ )/2 − 2σσ ′ + e−(W◦�γ )/2]

e−Z(3.29)
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with W ◦ �γ = W + 1{σ �=σ ′}γ . Thus, the following hold:

sup
−1≤γ≤1

∣∣∣∣ ∂

∂γ
[HexpII ◦ �γ ]

∣∣∣∣
= sup

−1≤γ≤1

∣∣∣∣1

4

[
e(W◦�γ )/2 − e−(W◦�γ )/2]

e−Z1{σ �=σ ′}
∣∣∣∣(3.30)

≤ HexpII,

sup
−1≤γ≤1

∣∣∣∣ ∂2

∂γ 2 [HexpII ◦ �γ ]
∣∣∣∣

= sup
−1≤γ≤1

∣∣∣∣1

8

[
e(W◦�γ )/2 + e−(W◦�γ )/2]

e−Z1{σ �=σ ′}
∣∣∣∣(3.31)

≤ HexpII.

For the last inequalities in (3.30) and (3.31), we used that |e(W+γ )/2±e−(W+γ )/2| ≤
2(eW/2 − 2σσ ′ + e−W/2) for −1 ≤ γ ≤ 1 on the event {σ �= σ ′}, that is,
for −2σσ ′ = 2. The claim follows from the bounds (3.30) and (3.31) together
with (3.27) and (3.28). �

3.2. Bounding Hleft,a and Hright,a . The bounds for the boundary parts in the
total Hamiltonian are obtained roughly similarly to the bound of the “middle”
piece.

LEMMA 3.4. Let a = 3/4. The following bounds hold:

Hleft,3/4 − Hexp ≥ Z/4 and Hright,3/4 − Hexp ≥ Z/4.(3.32)

PROOF. Let T ∈ {A,B,C,D}. First we estimate Hleft,3/4. For all α,β ∈ [0,1],
we have (

a + 1
2

)
ln[eX + eZ] + a ln

[
eX + eZ]

≥ 5
4 max{X,Z} + 3

4 max{X,Z}(3.33)

≥ 5
4 [αX + (1 − α)Z] + 3

4 [βX + (1 − β)Z].
We choose

α = 1
51{T =A} + 3

51{T =B} + 2
51{T =D},(3.34)

β = 1
31{T =A} + 1{T =B} + 2

31{T =C}.(3.35)

Substituting the bound (3.33) with this choice in Definition 2.11 of Hleft,3/4, an ele-
mentary but tedious calculation shows that the bound on the left-hand side in (3.32)
is satisfied.
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Similarly, we get a bound for Hright,3/4: For all α,β ∈ [0,1], we have

(
a + 1

2

){
ln[eX + eZ] + ln

[
eX + eZ]}

≥ 5
4 [max{X,Z} + max{X,Z}](3.36)

≥ 5
4 [αX + (1 − α)Z + βX + (1 − β)Z].

This time, we choose

α = 4
51{T =A} + 2

51{T =B} + 1
51{T =C} + 3

51{T =D},(3.37)

β = α + 2
51{T =C} − 2

51{T =D}.(3.38)

Substituting (3.36) in the definition of Hright,3/4, the bound on the right-hand side
in (3.32) is also satisfied. �

PROPOSITION 3.5. For all a > 3/4, we have the following estimates:

Hleft,a ≥ c11(a)[|X| + |X| + |Z|],(3.39)

Hright,a ≥ c11(a)[|X| + |X| + |Z|],(3.40)

with the constant c11(a) = 1
2 min{a − 3

4 , 1
6} > 0.

PROOF. Let a > 3/4, and let ã = a − 3/4. Using the estimate 2 ln(ex + ey) −
x − y ≥ 2 max{x, y} − x − y = |x − y|, we obtain

Hleft,a − Hleft,3/4 = ã
{
ln

[
eX + eZ] + ln[eX + eZ] − U − Z

}
(3.41)

≥ ã

2
{|X − Z| + |X − Z|}.

Combining this with Lemma 3.4 and the bounds Hexp ≥ e−Z/2 and Z + 2e−Z ≥
|Z| yields

Hleft,a ≥ ã

2
{|X − Z| + |X − Z|} + 1

4
[Z + 2e−Z]

≥ c11(a){|X − Z| + |X − Z| + 3|Z|}(3.42)

≥ c11(a)[|X| + |X| + |Z|].
This implies the claim (3.39). The estimate (3.40) for Hright,a follows with the
same arguments; one just replaces “left” by “right.” �
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4. Statistical mechanics of the random environment.

4.1. Transfer operators. In this section we introduce a transfer operator Kη,
and we show that it is a Hilbert–Schmidt operator. A Perron–Frobenius type argu-
ment yields all the spectral information about Kη that we need.

DEFINITION 4.1. Let dωcycle denote the Lebesgue measure times the count-
ing measure on �cycle. We define the following Hilbert space:

H := L2(
�cycle,B(�cycle), dωcycle

)
.(4.1)

The scalar product in H is denoted by

〈fg〉 :=
∫
�cycle

f (ωcycle)g(ωcycle) dωcycle.(4.2)

LEMMA 4.2. Let c7(a) be as in Proposition 3.2, let c11(a) be as in Proposi-
tion 3.5 and let c12(a) := min{c7(a), c11(a)}/2. For ωcycle = (X,X,σ,T ) ∈ �cycle
and ωrung = (Z,�) ∈ �rung, we define

‖ωcycle‖ := c12(a)(|X| + |X|) and ‖ωrung‖ := c12(a)(|Z| + |�|).(4.3)

Take a random variable ϒ : �cycle × �rung × �cycle → R satisfying∣∣ϒ(ω|ωrung|ω′)
∣∣ ≤ c13e

‖ω‖+‖ωrung‖+‖ω′‖+HexpII(ω|ωrung|ω′)(4.4)

for some constant c13 > 0. For −1/4 ≤ η ≤ 1/4, the function kϒ
η :�cycle ×

�cycle → [0,∞[,
kϒ
η (ω,ω′) :=

∫
�rung

ϒ(ω|ωrung|ω′)e−Hmiddle,a,η(ω|ωrung|ω′) dωrung,(4.5)

is well defined. The integral operator (acting from the right)

K̃ϒ
η :H → H , f 	→ f K̃ϒ

η ,
(4.6)

(f K̃ϒ
η )(ω′) =

∫
�cycle

f (ω)kϒ
η (ω,ω′) dω

is a well-defined Hilbert–Schmidt operator. In the special case ϒ = 1, we write
kη := k1

η and Kη := K̃1
η .

If we drop the summand HexpII in the exponent of assumption (4.4), this as-
sumption only gets stronger, because HexpII ≥ 0 holds.

PROOF OF LEMMA 4.2. By Proposition 3.2, Hmiddle,a,η ≥ 2(‖ω‖+‖ωrung‖+
‖ω′‖)+HexpII. Hence, using (4.4), the integrand in (4.5) is bounded by c13e

−‖ω‖−‖ωrung‖−‖ω′‖.
Integrating over ωrung, we get

|kϒ
η (ω,ω′)| ≤ c14e

−‖ω‖−‖ω′‖(4.7)
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with a positive constant c14(a). In particular, kϒ
η is well defined. Consequently, the

following integral is finite:∫
�cycle

∫
�cycle

kϒ
η (ω,ω′)2 dωdω′ < ∞.(4.8)

This shows that K̃ϒ
η :H → H is a Hilbert–Schmidt operator. �

DEFINITION 4.3. When there is no risk of confusion, we use the following
notation similar to the left and right operation of matrices: We denote the adjoint
K∗

η :H → H of Kη :H → H by the same symbol Kη, but acting from the left:

K∗
η :H → H , g 	→ Kηg,

(4.9)
(Kηg)(ω) =

∫
�cycle

kη(ω,ω′)g(ω′) dω′.

In particular, 〈f Kηg〉 = 〈(f Kη)g〉 = 〈f (Kηg)〉.

LEMMA 4.4. The spectral radius λη > 0 of Kη is a simple eigenvalue of Kη

with unique (up to normalization) positive left and right eigenfunctions vη > 0 and
v∗
η > 0, that is, vηKη = vηλη and Kηv

∗
η = ληv

∗
η . Every other eigenvalue λ of Kη

has modulus |λ| < λη.

PROOF. This follows from Jentzsch’s theorem; see, for example, Theorem 6.6
in [13] or Theorem 43.8 in [18]. We verify the hypotheses of Jentzsch’s theorem:
First, Kη is compact by Lemma 4.2. Second, consider a subset S ⊂ �cycle with
the property that S and �cycle \ S have positive reference measure. We check that∫
S

∫
�cycle\S kη(ω,ω′) dω dω′ > 0. Indeed, for T ∈ {A,B,C,D}, let �T := R2 ×

{±1} × {T } ⊂ �cycle. Recall that kη(ω,ω′) > 0 iff (ω,ω′) /∈ �A × �B . Note that
�C ∩ S or �C \ S has strictly positive reference measure, and kη(ω,ω′) > 0 for
all (ω,ω′) ∈ (�C ∩ S) × (�cycle \ S) and for all (ω,ω′) ∈ S × (�C \ S). Thus, the
hypotheses of Jentzsch’s theorem are fulfilled.

The same argument applies to K∗
η . Furthermore, it follows from the corollary to

Proposition 5.1 on page 328 of [13] that λη is an (algebraically) simple eigenvalue.
�

We state an immediate consequence of this lemma:

COROLLARY 4.5. Let vη, v∗
η be normalized such that 〈vηv

∗
η〉 = 1. Let

Mη :H → H , f 	→ f Mη = 〈f v∗
η〉vη. Then as n → ∞, λ−n

η Kn
η (acting from

the right) converges to Mη exponentially fast with respect to the operator norm
‖ · ‖H→H .
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DEFINITION 4.6. We define gleft, gright :�cycle → R by

gleft(ωcycle) :=
∫

R
e−Hleft(Z,ωcycle) dZ,(4.10)

gright(ωcycle) :=
∫

R
e−Hright(ωcycle,Z) dZ.(4.11)

LEMMA 4.7. One has gleft ∈ H and gright ∈ H .

PROOF. By Proposition 3.5, Hright,a ≥ ‖ωcycle‖ + c12(a)|Z|. Hence,

‖gright‖2
H =

∫
�cycle

[∫
R

e−Hright(ωcycle,Z) dZ

]2

dωcycle < ∞,(4.12)

and gright ∈ H . Replacing in the above argument “right” by “left,” we conclude
that gleft ∈ H . �

4.2. A deformation of the Gibbs measure. This section contains one of the
central pieces of the whole proof of recurrence: We deform the Gibbs measure
by changing η = 1/4 to the “more symmetric” value η = 0. In the language of
statistical physics, the “spin chain” at the “physical” value η = 1/4 is exposed
to “external forces” of opposite directions at its two ends, causing the “symme-
try breaking term” η�i in the Hamiltonian. The origin of this symmetry breaking
term is the different scaling of the term x0 belonging to the starting point in the
density (2.6). We compensate this external force artificially by setting η = 0, that
is, by applying an external “counter-force,” at least for the part of the spin chain
between level 0 and level j . We define the corresponding “artificially deformed”
Gibbs measure νn,j :

LEMMA 4.8. For n ∈ N and j < n, let

�j := 1
4

j∑
i=1

�i,(4.13)

Zn,j := EP(n)[e−�j ].(4.14)

Then Zn,j is finite; thus the following probability measure is well defined:

dνn,j := e−�j

Zn,j

dP(n).(4.15)

PROOF. Using Definition 2.13, we know Zn,jZ
(n) = ∫

e−H(n)−�j dω. Note
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that

H(n)(ω) + �j(ω)

= Hleft,a(ωleft|ωcycle,1)

+
j∑

i=1

Hmiddle,a,0(ωcycle,i |ωrung,i |ωcycle,i+1)(4.16)

+
n−1∑

i=j+1

Hmiddle,a,1/4(ωcycle,i |ωrung,i |ωcycle,i+1)

+ Hright,a(ωcycle,n|ωright)

holds; recall Definitions 2.10 and 2.12. As a consequence of the bounds (3.39),
(3.40) and (3.17) for Hleft,a , Hright,a and Hmiddle,a,η, the term e−H(n)(ω)−�j (ω) tends
to 0 exponentially fast as at least one component of ω tends to ±∞. Thus Zn,j is
finite, and we get

dνn,j = e−H(n)(ω)−�j (ω)

Zn,jZ(n)
dω.(4.17) �

LEMMA 4.9. Let ϒ :�cycle × �rung × �cycle → R be a random variable such
that the bound (4.4) holds. Then the expectation of ϒ(ωcycle,i |ωrung,i |ωcycle,i+1)

with respect to νn,j exists and is uniformly bounded for i, j, n with i < n and
j < n. It can be written as follows:

Eνn,j
[ϒ(ωcycle,i |ωrung,i |ωcycle,i+1)]

=




〈gleftK
i−1
0 K̃ϒ

0 K
j−i
0 K

n−j−1
1/4 gright〉

〈gleftK
j
0 K

n−j−1
1/4 gright〉

, for i ≤ j < n,

〈gleftK
j
0 K

i−j−1
1/4 K̃ϒ

1/4K
n−i−1
1/4 gright〉

〈gleftK
j
0 K

n−j−1
1/4 gright〉

, for j < i < n.

(4.18)

PROOF. We abbreviate K̂η := λ−1
η Kη and ϒi := ϒ(ωcycle,i |ωrung,i |ωcycle,i+1).

Using Fubini’s theorem, (4.16), Lemma 4.2 and Definition 4.6, we calculate for
1 ≤ i ≤ j < n:

Eνn,j
[ϒi] =

∫
�(n) ϒie

−H(n)−�j dω∫
�(n) e−H(n)−�j dω

= 〈gleftK
i−1
0 K̃ϒ

0 K
j−i
0 K

n−j−1
1/4 gright〉

〈gleftK
j
0 K

n−j−1
1/4 gright〉

(4.19)

= λ−1
0

〈gleftK̂
i−1
0 K̃ϒ

0 K̂
j−i
0 K̂

n−j−1
1/4 gright〉

〈gleftK̂
j
0 K̂

n−j−1
1/4 gright〉

.
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Note that the denominator in the last expression does not vanish. This shows that
Eνn,j

[ϒi] exists and is given by (4.18).
We claim that

inf
j,m∈N0

〈gleftK̂
j
0 K̂m

1/4gright〉 > 0.(4.20)

To prove this claim, we observe that for every fixed j and m,

〈gleftK̂
j
0 K̂m

1/4gright〉 > 0(4.21)

holds, since this is a scalar product of positive functions. Furthermore, Corol-
lary 4.5 implies

‖gleftK̂
j
0 − 〈gleftv

∗
0〉v0‖H ≤ c15e

−c16j(4.22)

for some constants c15, c16 > 0. As a consequence, we get for every fixed m ≥ 0:

lim
j→∞〈gleftK̂

j
0 K̂m

1/4gright〉 = 〈gleftv
∗
0〉〈v0K̂

m
1/4gright〉 > 0;(4.23)

note that we have again scalar products of positive functions. Similarly, again by
Corollary 4.5, we know K̂m

1/4gright → v∗
1/4〈v1/4gright〉 in H (exponentially fast) as

m → ∞. Consequently, we get for every fixed j ≥ 0:

lim
m→∞〈gleftK̂

j
0 K̂m

1/4gright〉 = 〈gleftK̂
j
0 v∗

1/4〉〈v1/4gright〉 > 0.(4.24)

Finally, as j and m tend to ∞ simultaneously, we get

lim
j→∞
m→∞

〈gleftK̂
j
0 K̂m

1/4gright〉 = 〈gleftv
∗
0〉〈v0v

∗
1/4〉〈v1/4gright〉 > 0.(4.25)

Combining (4.21), (4.23), (4.24) and (4.25) yields our claim (4.20).
Furthermore, we claim that 〈gleftK̂

i−1
0 K̃ϒ

0 K̂
j−i
0 K̂

n−j−1
1/4 gright〉 is uniformly

bounded in i, j, n. Indeed, the sequence (gleftK̂
i−1
0 )i∈N is bounded in H ; it even

converges. Similarly, K̂
j−i
0 K̂

n−j−1
1/4 gright is bounded in H , too; recall that K̂0 and

K̂1/4 have the leading simple eigenvalue 1. Thus the numerator on the right-hand
side of (4.18) in the case i ≤ j < n is uniformly bounded. Similarly, the expres-
sion 〈gleftK

j
0 K

i−j−1
1/4 K̃ϒ

1/4K
n−i−1
1/4 gright〉, that is, the numerator on the right-hand

side of (4.18) in the case j < i < n, is also uniformly bounded in i, j, n. Finally,
the denominator is uniformly bounded away from 0. This completes the proof of
the lemma. �

We apply Lemma 4.9 to the random variables ec17Zi , ec17�i , ec17Xi and ec17Xi

with some sufficiently small constant c17(a) > 0. Then the exponential Chebyshev
inequality yields immediately the following consequence:
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COROLLARY 4.10. There exist positive constants c18(a) and c17(a), such that
for all n ∈ N, j < n and M > 0, one has

νn,j [|ϒ | ≥ M] ≤ c18e
−c17M(4.26)

whenever ϒ is any of the random variables Zi , �i , Xi or Xi with any admissible i.
In particular, for j = 0 we have a bound for νn,0 = P(n).

PROOF OF THEOREM 2.3. We apply the transformations (2.17) and (2.58) to
express probabilities with respect to Q̃(n) in terms of P(n). Using the expressions
(2.35)–(2.40) for Zi , �i , Xi and Xi , the theorem follows from Corollary 4.10.
Note that ln |yi+1/yi | = −Wi/2 = −�i/2+Xi/4+Xi/4−Xi+1/4−Xi+1/4 and
ln(zi/y

2
i ) = Zi − Wi/2 hold for 1 ≤ i ≤ n − 1, and that linear combinations of

random variables with exponential tails have exponential tails as well. �

The following lemma states the basic symmetry for η = 0: For η = 0, the “sep-
aration” � between neighboring spins has expectation 0, at least “far away from
the boundary of the ladder.”

Recall the definition (4.6) of the integral operator K̃�
0 .

LEMMA 4.11. We have 〈v0K̃
�
0 v∗

0〉 = 0.

PROOF. Let η ∈ [−1/4,1/4]. Recall Definition 2.10 of Hmiddle,a,η and its re-
flection symmetry property (2.49). Using the definition (4.5) of kϒ

η , this reflection
symmetry yields k1

η(ω,ω′) = k1−η(ω
′↔,ω↔) and k�

η (ω,ω′) = −k�−η(ω
′↔,ω↔).

Let f ∈ H . We set f ↔(ω) := f (ω↔). The symmetry properties of k1
η and k�

η

imply

(f Kη)
↔(ω′) =

∫
f (ω)k1

η(ω,ω′↔) dω

=
∫

f (ω↔)k1−η(ω
′,ω) dω(4.27)

= K−η(f
↔)(ω′)

and

(f K̃�
η )↔(ω′) =

∫
f (ω)k�

η (ω,ω′↔) dω

= −
∫

f (ω↔)k�−η(ω
′,ω) dω(4.28)

= −K̃�−η(f
↔)(ω′).

We apply (4.27) for the eigenfunction vη: ληv
↔
η = (vηKη)

↔ = K−η(v
↔
η ).

Hence, using the uniqueness of the eigenfunctions up to normalization (Lem-
ma 4.4), we conclude v∗−η = c19(η)v↔

η for some constant c19(η) > 0. We calculate,
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using (4.28),

〈v0K̃
�
0 v∗

0〉 = 〈(v∗
0)↔(v0K̃

�
0 )↔〉 = −〈(v∗

0)↔K̃�
0 v↔

0 〉 = −〈v0K̃
�
0 v∗

0〉.(4.29)

This yields the claim. �

The next lemma applies this reflection symmetry to finite ladders: In the sym-
metric case (η = 0), the separation �i between neighboring spins does not get
too large, even in the presence of boundary terms, by an “approximate” reflection
symmetry.

LEMMA 4.12. There are positive constants c20(a), c16(a), c21(a) and c22(a),
such that for all i, j, n ∈ N with i ≤ j < n the following bound holds (uniformly
in n): ∣∣Eνn,j

[�i]
∣∣ ≤ c20e

−c16i + c21e
−c22(j−i).(4.30)

PROOF. Recall that K̂η = λ−1
η Kη. The representation (4.19) implies that

Eνn,j
[�i] = λ−1

0

〈gleftK̂
i−1
0 K̃�

0 K̂
j−i
0 K̂

n−j−1
1/4 gright〉

〈gleftK̂
j
0 K̂

n−j−1
1/4 gright〉

.(4.31)

By (4.20), the denominator in the last expression is bounded away from zero. Thus
it suffices to derive a bound for the numerator.

Recall that the sequence (K̂m
1/4gright)m∈N0 is bounded. Using Corollary 4.5 once

more, this implies for some constants c22(a), c23(a), c24(a) > 0, uniformly in m:

‖K̂l
0K̂

m
1/4gright − v∗

0〈v0K̂
m
1/4gright〉‖H

≤ ‖(K̂∗
0 )l − M∗

0 ‖H→H‖K̂m
1/4gright‖H(4.32)

≤ c23e
−c22l ,

‖v∗
0〈v0K̂

m
1/4gright〉‖H ≤ c24.(4.33)

Using Lemma 4.11, we obtain

|〈gleftK̂
i−1
0 K̃�

0 K̂l
0K̂

m
1/4gright〉|

= |〈gleftK̂
i−1
0 K̃�

0 K̂l
0K̂

m
1/4gright〉 − 〈gleftK̂

i−1
0 K̃�

0 v∗
0〉〈v0K̂

m
1/4gright〉

+ 〈gleftK̂
i−1
0 K̃�

0 v∗
0〉〈v0K̂

m
1/4gright〉

(4.34)
− 〈gleftv

∗
0〉〈v0K̂

�
0 v∗

0〉〈v0K̂
m
1/4gright〉|

≤ ‖gleftK̂
i−1
0 ‖H‖K̃�

0 ‖H→H‖K̂l
0K̂

m
1/4gright − v∗

0〈v0K̂
m
1/4gright〉‖H

+ ‖gleftK̂
i−1
0 − 〈gleftv

∗
0〉v0‖H‖K̃�

0 ‖H→H‖v∗
0〈v0K̂

m
1/4gright〉‖H .
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Combining this with (4.22), ( 4.32), (4.33) and using the facts that (gleftK̂
i−1
0 )i∈N

is bounded in H and that K̃�
0 is a bounded linear operator, we conclude:

|〈gleftK̂
i−1
0 K̃�

0 K̂l
0K̂

m
1/4gright〉| ≤ c26e

−c22l + c25e
−c16(i−1),(4.35)

uniformly in m, with some positive constants c25(a) and c26(a). Substituting the
bounds (4.35) and (4.20) in (4.31) yields the claim (4.30). �

Intuitively speaking, the spin chain described by P(n) is exposed to some exter-
nal forces between level 0 and level j that are missing in νn,j . In order to estimate
the effect of these external forces, we compare P(n) with another “artificial” de-
formation ν̃n,j,γ of νn,j . This deformation is obtained by taking the image with
respect to some “deformation map” �γ,j . Roughly speaking, one may view ν̃n,j,γ

as an artificial “caricature version” of P(n), which is easier to compare with νn,j

than P(n) itself.

DEFINITION 4.13. For γ ∈ R and j < n, we define the bijection �γ,j :
�(n) → �(n),

�γ,j (ω) := (
ωleft, (ωcycle,i)i=1,...,n, (ω̃rung,i,j,γ )i=1,...,n−1,ωright

)
,(4.36)

where

ω̃rung,i,j,γ :=(
Zi,�i + γ1{σi �=σi+1,i≤j}

)
.(4.37)

Thus only the components �i with i ≤ j get shifted by γ , but only in the case
σi �= σi+1; all other components are left unchanged. Let ν̃n,j,γ denote the image
measure of νn,j with respect to �γ,j .

By deforming the spin chain with �γ,j , a deformation of the separation �j

between distant spins roughly proportional to j is induced. This is shown in the
following lemma.

LEMMA 4.14. There are positive constants c27(a) and c28(a), such that for
all γ ∈ (0,1] and for all n, j, i ∈ N with i ≤ j < n, we have the following bounds:∣∣Eνn,j

[�j ]
∣∣ ≤ c27,(4.38)

νn,j [σi �= σi+1] ≥ c28,(4.39)

Eν̃n,j,γ
[�j ] ≥ c28jγ − c27.(4.40)

PROOF. Using the definition (4.13) of �j , the claim (4.38) follows immedi-
ately by summing the bound (4.30) over i = 1, . . . , j . To prove (4.39), we consider
the map Si : �(n) → �(n),

Si(ω) := (
ωleft, (ω̃cycle,ι,i)ι=1,...,n, (ωrung,ι)ι=1,...,n−1,ωright

)
(4.41)
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with

ω̃cycle,ι,i = (
Xι,Xι,

(
1{ι≤i} − 1{ι>i}

)
σι, Tι

)
,(4.42)

that is, just the sign components σι in ω with ι > i get flipped; all other com-
ponents are left unchanged. We calculate the Radon–Nikodym derivative of the
image measure Si[νn,j ] with respect to νn,j : The density of νn,j is given by (4.17).
The part of the Hamiltonian depending on the signs σι is HexpII; recall Definition
2.10, in particular (2.47). Thus, we have

dSi[νn,j ]
dνn,j

= exp[−HexpII(σi,Wi,Zi,−σi+1)]
exp[−HexpII(σi,Wi,Zi, σi+1)]

(4.43)
= exp[−2σiσi+1e

−Zi ].
We calculate:

νn,j [σi �= σi+1] = (Si[νn,j ])[σi = σi+1]
(4.44)

= Eνn,j

[
exp[−2σiσi+1e

−Zi ]1{σi=σi+1}
]
,

hence

2νn,j [σi �= σi+1] = Eνn,j

[
1{σi �=σi+1} + exp[−2e−Zi ]1{σi=σi+1}

]
.(4.45)

By Corollary 4.10, the distributions of the random variables Zi with respect to νn,j

are tight, uniformly in n, j and i. Hence, the claim (4.39) follows from (4.45).
Finally, in order to prove (4.40), we observe for i ≤ j

Eν̃n,j,γ
[�i] = Eνn,j

[
�i + γ1{σi �=σi+1}

] ≥ Eνn,j
[�i] + c28γ(4.46)

by Definition 4.13 and (4.39). Hence, we get the claim (4.40) using (4.38):

Eν̃n,j,γ
[�j ] ≥ Eνn,j

[�j ] + c28γj ≥ c28γj − c27.(4.47) �

The following lemma considers deformations of the local Hamiltonians in the
“separation variable” �i . It is an ingredient for a deformation argument, below.

Recall the definition (4.37) of ω̃rung,i,j,γ .

LEMMA 4.15. For i ≤ j ≤ n, the map fi,j,n : [−1,1] → R,

fi,j,n(γ ) := Eνn,j
[Hmiddle,a,0(ωcycle,i |ω̃rung,i,j,γ |ωcycle,i+1)](4.48)

is twice differentiable with the following bound on its derivative:

sup
−1≤γ≤1

|f ′′
i,j,n(γ )| ≤ 2c29(4.49)

for some constant c29 = c29(a) > 0.
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PROOF. By Lemma 3.3, the map γ 	→ Hmiddle,a,0(ωcycle,i |ω̃rung,i,j,γ |ωcycle,i+1)

is twice differentiable, and its derivatives satisfy

sup
−1≤γ≤1

∣∣∣∣ ∂k

∂γ k
Hmiddle,a,0(ωcycle,i |ω̃rung,i,j,γ |ωcycle,i+1)

∣∣∣∣
(4.50)

≤ c8 + HexpII(ωcycle,i |ωrung,i |ωcycle,i+1)

for k = 1,2. Hence, by Lebesgue’s dominated convergence theorem, it suffices to
show that

Eνn,j
[HexpII(ωcycle,i |ωrung,i |ωcycle,i+1)](4.51)

is uniformly bounded. Recall that HexpII ≥ 0 by its definition (2.47). Hence, the
bound (4.4) holds for ϒ = HexpII, and consequently, Lemma 4.9 implies that (4.51)
is uniformly bounded in i, j, n. �

Next, we derive a bound for the relative entropy between νn,j and ν̃n,j , quadratic
in γ , and linear in the length j .

LEMMA 4.16. For all γ ∈ [−1,1] and for all j, n ∈ N with j < n, we have

Eν̃n,j,γ

[
ln

dν̃n,j,γ

dνn,j

]
≤ c29jγ 2(4.52)

with the constant c29(a) taken from Lemma 4.15.

PROOF. From Definition 4.13, we know ν̃n,j,γ = �γ,j [νn,j ] and �−1
γ,j =

�−γ,j . This implies

dν̃n,j,γ

dνn,j

◦ �γ,j = dνn,j

dν̃n,j,−γ

(4.53)

and thus

Eν̃n,j,γ

[
ln

dν̃n,j,γ

dνn,j

]
= Eνn,j

[
ln

dνn,j

dν̃n,j,−γ

]
=: h(γ ).(4.54)

Let us calculate the Radon–Nikodym derivative in the last expectation: Recall the
representation (4.17) of νn,j . Since the reference measure dω on �(n) is invariant
with respect to the map �γ,j , we conclude

dν̃n,j,−γ = e−H(n)◦�γ,j−�j◦�γ,j

Zn,jZ(n)
dω.(4.55)



2088 F. MERKL AND S. W. W. ROLLES

Combining (4.17) and (4.55), and using Definition 4.13 and (4.16) for H(n) + �j ,
we get

ln
dνn,j

dν̃n,j,−γ

= H(n) ◦ �γ,j + �j ◦ �γ,j − H(n) − �j

=
j∑

i=1

[Hmiddle,a,0(ωcycle,i |ω̃rung,i,j,γ |ωcycle,i+1)(4.56)

− Hmiddle,a,0(ωcycle,i |ωrung,i |ωcycle,i+1)].
Using Lemma 4.15, this implies that the relative entropy h(γ ) is twice differen-
tiable with respect to γ ∈ [−1,1]. Furthermore, h(γ ) ≥ 0 holds, and h(0) = 0 fol-
lows from ν̃n,j,0 = νn,j . Consequently h(γ ) reaches its minimum value 0 at γ = 0;
thus h′(0) = 0 is valid. Using Taylor’s formula, (4.56) and the bound (4.49), we
conclude for some ξ = ξ(γ ) ∈ [0,1]

h(γ ) = γ 2

2
h′′(ξγ ) = γ 2

2

j∑
i=1

f ′′
i,j,n(ξγ ) ≤ c29jγ 2.(4.57)

Thus, the claim (4.52) follows from (4.54). �

The following proposition is the key ingredient to prove recurrence of reinforced
random walks: It bounds exponential moments for the “separation variables” �j .
Here it becomes clear what the deformed measure ν̃n,j,γ is good for: it just serves
to bound the free energy difference between the νn,j and P(n) via a variational
principle for free energies.

PROPOSITION 4.17. For some positive constants c27(a) and c1(a), we have
the following bound for all j, n ∈ N with j < n:

EP(n)[e−�j ] ≤ ec27−c1j .(4.58)

PROOF. From (4.14) and (4.15), we know

lnEP(n)[e−�j ] = lnZn,j = − ln
dνn,j

dP(n)
− �j .(4.59)

We take 0 < γ ≤ 1 sufficiently small (to be specified below). Using that the relative
entropy between ν̃n,j,γ and P(n) is nonnegative, we conclude from (4.59):

lnZn,j ≤ Eν̃n,j,γ

[
ln

dν̃n,j,γ

dP(n)

]
+ lnZn,j

= Eν̃n,j,γ

[
ln

dν̃n,j,γ

dP(n)
− ln

dνn,j

dP(n)
− �j

]
(4.60)
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= Eν̃n,j,γ

[
ln

dν̃n,j,γ

dνn,j

]
− Eν̃n,j,γ

[�j ]

≤ c29jγ 2 − c28jγ + c27.

We used the bound (4.40) and Lemma 4.16 in the last step. Taking a fixed γ > 0
so small that −c1 := c29γ

2 − c28γ < 0, the claim (4.58) follows. �

4.3. Exponential decay of the random edge weights. In this section we prove
exponential bounds for the random environment.

PROOF OF THEOREM 1.2. Let e ∈ E(n) be an edge on level i of the ladder,
and let c1 be as in Proposition 4.17. By Theorem 2.1 and the definition (2.10)
of Q̃(n),

P (n)

[
lim

t→∞
kt (e)

kt ({0,0}) ≤ e−c1i

]
= Q̃(n)

[
xe

z0
≤ e−c1i

]
(4.61)

= Q(n)

[
xe

z0
≤ e−c1i

]
.

Note that

Yi = −Z0 −
i−1∑
j=1

Wj = −Z0 − 4�i−1 − Ui + U1(4.62)

by (2.30), (2.38) and (4.13). Using Lemma 2.13 and the transformation of variables
(2.32)/(2.33), the right-hand side of (4.61) equals

(4.61) = P(n)[e−4�i−1+ϒi ≤ e−c1i],(4.63)

where ϒi = Xi − Z0 − Ui + U1 if xe = xi , ϒi = Xi − Z0 − Ui + U1 if xe = xi ,
ϒi = Zn − Z0 + U1 − Un if xe = zn and i = n, and ϒi = Zi − Wi/2 − Z0 − Ui +
U1 = Zi −Z0 +U1 − (�i +Ui +Ui+1)/2 if xe = zi with i ∈ {1,2, . . . , n− 1}; the
last case follows from (2.39) and (2.29). Recall that Ui = (Xi + Xi)/2 by (2.28).
We use (4.58) and the exponential Chebyshev inequality to obtain

P(n)[−4�i−1 ≥ −2c1i] ≤ ec27−c1(i−2)/2.(4.64)

Applying Corollary 4.10 with j = 0 yields

P(n)[ϒi ≥ c1i] ≤ c30e
−c31i(4.65)

with some positive constants c30(a), c31(a) > 0. Combining the bounds (4.64) and
(4.65) with (4.63), we obtain the claim (1.6):

(4.61) ≥ 1 − ec27−c1(i−2)/2 − c30e
−c31i .(4.66) �
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5. Recurrence. In this section we prove Theorem 1.1. Recall that we call the
reinforced random walk recurrent if almost all paths visit all vertices infinitely
often.

LEMMA 5.1. On any graph G, the edge-reinforced random walk is recurrent
if almost all paths return to the starting point infinitely often.

PROOF. A Borel–Cantelli argument shows that for any u, v ∈ V with {u, v} ∈ E

the following holds:

P G
v0,a

[u is visited infinitely often and v is visited at most finitely often]
(5.1)

= 0.

(Details can be found in the proof of Corollary 3.1 in [12].) Hence, the claim
follows by induction. �

LEMMA 5.2. For all a > 3/4, the edge-reinforced random walk on N0 ×{1,2}
starting in 0 with all initial weights equal to a is recurrent.

PROOF. For x ∈ RE+, let Qx denote the distribution of the nonreinforced ran-
dom walk on N0 × {1,2} starting at 0 which jumps from u to v with probability
proportional to the weight x{u,v} of the edge {u, v}. Let A

(n)
k denote the event that

the random walker returns ≥ k times to 0 before hitting the set {n,n}. We set
A(n) := A

(n)
1 .

Our proof uses the connection between random walks and electric networks.
Consider the graph N0 × {1,2} as an electric network, where edge e has the con-
ductance xe or equivalently the resistance x−1

e . Let R(n)(x) denote the resistance
between 0 and the set {n,n} of the finite ladder G(n). Then C(n)(x) = 1/R(n)(x) is
the effective conductance. Recall that x0 = z0 + x1 = 1 + x1 ≥ 1 Q(n)-a.s. The es-
cape probability Qx[(A(n))c] can be expressed as follows (see, e.g., Section 1.3.4
of [5]):

Qx

[(
A(n))c] = C(n)(x)

x0
≤ C(n)(x) = 1

R(n)(x)
Q(n)-a.s.(5.2)

By Rayleigh’s monotonicity law (Section 1.4 of [5]), the effective resistance of
an electric network decreases if some of the individual resistances decrease. In
particular, the network obtained from the ladder G(n) by shorting together each of
the vertices {i, i} has an effective resistance R̃(n)(x) ≤ R(n)(x). We calculate

R̃(n)(x) =
n∑

i=1

1

xi + xi

≥ 1

xn + xn

.(5.3)
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Denoting by b ∧ c the minimum of b and c, we conclude

Qx

[(
A(n))c] ≤ 1

R(n)(x)
∧ 1

(5.4)

≤ 1

R̃(n)(x)
∧ 1 ≤ ( xn + xn) ∧ 1 Q(n)-a.s.

By the strong Markov property, Qx[A(n)
k ] = (Qx[A(n)])k . Using (2.18), we obtain

P (n)[A(n)
k

] =
∫
�(n)

Qx

[
A

(n)
k

]
Q(n)(dx dy dT )

≥
∫
�(n)

(
Qx

[
A(n)])kQ(n)(dx dy dT )(5.5)

≥
∫
�(n)

[
1 − [( xn + xn) ∧ 1]]kQ(n)(dx dy dT ).

Let Bn := {lnxn ≤ −c1n and lnxn ≤ −c1n}. Theorem 2.1 and Lemma 2.6 imply
that the distribution of the limiting vector (limt→∞ kt (e)/kt ({0,0}))e under P (n)

equals Q(n) because z0 = 1 Q(n)-a.s. Hence, we conclude from Theorem 1.2 that

P (n)[A(n)
k

] ≥
∫
Bn

[
1 − [( xn + xn) ∧ 1]]kQ(n)(dx dy dT )

≥ Q(n)[Bn](1 − 2e−c1n ∧ 1)k(5.6)

≥ (1 − 2c2e
−c3n)(1 − 2e−c1n ∧ 1)k.

The probability that the reinforced random walk starting in 0 does not return to 0
before hitting {n,n} is the same for the finite ladder G(n) and for N0 × {1,2}.
Consequently, if we denote by P + the distribution of the edge-reinforced random
walk on N0 × {1,2} starting at 0 with all initial edge weights equal to a, then
P +[A(n)

k ] = P (n)[A(n)
k ], and we conclude

P +[return ≥ k times to 0] = P +
[ ∞⋃

n=1

A
(n)
k

]

(5.7)
= lim

n→∞P (n)[A(n)
k

] = 1.

Since k is arbitrary, we conclude that the reinforced random walk on the half-ladder
returns to 0 infinitely often with probability 1. The claim follows from Lemma 5.1.

�

PROOF OF THEOREM 1.1. Because of (5.1) and Lemma 5.1, it is enough to
show that the set {0,0} is visited infinitely often.

For v0 ∈ V and x = (xe)e∈E ∈ RE+, we denote by Pv0,x the distribution of the
edge-reinforced random walk on Z ×{1,2} starting in v0 with initial edge weights
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given by x. If xe = a for all e, we write simply P . The distributions of the edge-
reinforced random walk on N0 × {1,2} and −N0 × {1,2} are denoted by P + and
P −, respectively.

Let τ0 := 0, and for i ≥ 0, let τi be the ith return time to the set {0,0}. We denote
by ρi the hitting time of the set {−1,−1,1,1} after time τi . By (5.1), ρi < ∞
P -a.s. on the set {τi < ∞}.

We prove by induction on i ∈ N0 that τi < ∞ holds P -a.s. This is clearly true
for i = 0. For the induction step from i to i + 1, assume that the claim holds for i.
Then, ρi < ∞ P -a.s., and we obtain

P [τi+1 < ∞] = P [τi+1 < ρi]
+ P [τi+1 > ρi] · P [τi+1 < ∞| τi+1 > ρi]

(5.8)
= P [τi+1 < ρi]

+ P [τi+1 > ρi] ·
∫

PXρi
,wρi

[visit {0,0}]dP.

Let us consider a fixed realization of Xρi
and wρi

. Since PXρi
,wρi

[visit {0,0}]
depends only on the edge weights on one of the two half-ladders N0 × {1,2} or
−N0 ×{1,2}, this probability agrees with the corresponding one for the reinforced
random walk on the half-ladder. Hence, for some ∗ ∈ {−,+} and some finite path
(v0 = 0, v1, . . . , vt = Xρi

) we have

PXρi
,wρi

[visit {0,0}]
(5.9)

= P ∗[visit{0,0} after time t |Xs = vs for all s ≤ t].
By Lemma 5.2, the reinforced random walk on N0 × {1,2} is recurrent. By

symmetry, the same is true for the reinforced random walk on −N0 × {1,2}. In
particular, for these two processes, almost all paths return to {0,0}. Hence, the con-
ditional probability on the right-hand side of (5.9) equals 1. It follows from (5.8),
that P [τi+1 < ∞] = 1, that is, the reinforced random walk on Z × {1,2} returns
to {0,0} at least i + 1 times. By the induction principle, there are P -a.s. infinitely
many visits to the set {0,0}, and the claim follows. �
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