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LOGARITHMIC SOBOLEV INEQUALITY
FOR ZERO-RANGE DYNAMICS

BY PAOLO DAI PRA AND GUSTAVO POSTA

Università di Padova and Politecnico di Milano

We prove that the logarithmic Sobolev constant for zero-range processes
in a box of diameter L grows as L2.

1. Introduction. Let � be a cube in Z
d , and c : N → [0,+∞) be a function

such that c(0) = 0 and c(n) > 0 for every n > 0. The zero-range process associated
to c(·) is a stochastic system of moving particles in �, which evolves according
to the following rule: for each site x ∈ �, containing ηx particles, with probabil-
ity rate c(ηx), one particle jumps from x to one of its nearest neighbors chosen
with equal probability. Waiting jump times of different sites are independent. This
process conserves the total number of particles N ; for each N ≥ 1, the zero-range
process restricted on configurations with N particles is a finite irreducible Markov
chain, whose unique invariant measure νN

� is proportional to

∏
x∈�

1

c(ηx)! ,(1.1)

where

c(n)! =
{

1, for n = 0,

c(n)c(n − 1) · · · c(1), otherwise.

Moreover, the process is reversible with respect to νN
� . Note that in the special

case c(n) = λn, the process reduces to a system of independent simple symmetric
random walks.

Under suitable growth conditions on c(·) (see [7]), the zero range process may
be defined in the infinite lattice Z

d . In this case the extremal invariant measures
form a one parameter family of infinite product measures, with marginals

µρ[ηx = k] = 1

Z(α(ρ))

α(ρ)k

c(k)! ,(1.2)

where ρ ≥ 0, Z(α(ρ)) is the normalization, and α(ρ) is uniquely determined by
the condition µρ[ηx] = ρ (we use here the notation µ[f ] for

∫
f dµ).

Zero-range processes have been extensively studied in terms of their hydrody-
namic scaling (see [7]). In proving the hydrodynamic limit for interacting particle
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systems, estimates on the spectral gap of the generator of the process are often
essential. Although such estimates can be avoided for zero-range processes, due to
their special structure, the question on how the spectral gap depends on the volume
arises naturally. Let EνN

�
be the Dirichlet form associated to the zero-range process

in � = [0,L]d ∩ Z
d with N particles. Then the following Poincaré inequality

holds for each f ∈ L2(νN
� ) (see [8]):

νN
� [f,f ] ≤ CL2EνN

�
(f, f ),(1.3)

where C may depend on the dimension d but not on N or L. In other terms,
(1.3) says that the spectral gap of the Markov generator associated to EνN

�
shrinks

proportionally to 1
L2 , independently of the number of particles N .

Our aim in this paper is to strengthen (1.3) by proving the logarithmic Sobolev
inequality: for each f > 0,

EntνN
�
(f ) ≤ CL2EνN

�

(√
f ,

√
f
)
,(1.4)

where EntνN
�
(f ) = νN

� [f logf ] − νN
� [f ] logνN

� [f ]. Note that, in the case
c(n) = λn, inequality (1.4) is well known to hold. In that case the system is com-
prised of independent particles. For a single particle (N = 1), inequality (1.4)
reduces to the well-known estimates of the logarithmic Sobolev constant of a sym-
metric random walk. The case of N > 1 independent particles follows from the
tensor property of the logarithmic Sobolev inequality.

By taking hydrodynamic scaling, it is possible to derive from (1.4) various
smoothing properties of the nonlinear semigroup associated with the partial dif-
ferential equation

∂tu = 1
2�(α(u)).(1.5)

In recent years, Poincaré and logarithmic Sobolev inequalities have been proved
for a number of interacting particle systems, both in presence (see [2, 10]) and in
absence (see [12, 15]) of conservation laws, when the possible number of par-
ticles allowed for any site is bounded. When the particle number per site is un-
bounded, very few results are available for conservative dynamics, we can only
cite [8] and [14]. In particular, to our knowledge, there is no conservative system
with unbounded particle number per site for which the logarithmic Sobolev in-
equality has been proved to have diffusive scaling. The interest for results in this
direction is illustrated in [7], page 423. A common tool in the works concerning
dynamics with conservation of the number of particles is the use of ergodic prop-
erties of associated nonconservative dynamics. Such dynamics are chosen in such
a way that the grand canonical invariant measure for the conservative dynamics
at a given particle density (µρ in our case) is reversible for the nonconservative
one. For example, the nonconservative process corresponding to zero-range is the
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one for which particle numbers at different sites are independent, and, for a given
site x, ηx evolves according to a birth and death process with death rate c(ηx) and
constant birth rate α(ρ). Let us denote by En.c.

�,ρ the Dirichlet form for this process;
the following Poincaré inequality is shown in [8]:

µρ[f,f ] ≤ CEn.c.
�,ρ(f, f ),(1.6)

where C is independent of both ρ and L. In the proof of (1.3), that is by induction
on L, a result even stronger than (1.6) is used in [8]. Similarly, in the proof of the
logarithmic Sobolev inequality for Kawasaki dynamics (see [2]), one relies on the
fact that the corresponding nonconservative dynamics (Glauber dynamics) satisfy
a logarithmic Sobolev inequality with a constant independent on both density and
volume. Thus, following the same principle, the proof of (1.4) would require the
logarithmic Sobolev inequality

Entµρ (f ) ≤ CEn.c.
�,ρ

(√
f ,

√
f
)
.(1.7)

However, under the most commonly used conditions on c(·), this inequality fails,
in the sense that there is no constant C such that (1.7) holds for every f > 0 (even
for ρ and L fixed). For instance, we already noticed that, in the case c(n) = λn,
(1.4) holds, but it is not hard to show that (1.7) does not. Technically speaking, this
is one of the key difficulties in the proof of (1.4).

The proof of (1.4) is by induction on |�|. Two schemes are available: the so
called martingale method, introduced in [10], where, roughly speaking, one point
is added to � at each step of the induction; the duplication method used in [2],
where the volume of � is doubled at each step. For Kawasaki dynamics, as well for
the proof of (1.3), the two methods are essentially equivalent. This is not the case
for (1.4): following the martingale method, a serious difficulty arises at a very early
stage of the proof, for a simple reason that is illustrated in Section 3.2. Although
the essence of our strategy is borrowed from the one in [2], the lack of (1.7) and
unboundedness of particle density have required substantial and nontrivial original
work.

The proof turns out to be very long and technical. In a first stage we show that
the logarithmic Sobolev inequality holds with a constant independent of N , that is,

EntνN
�
(f ) ≤ s(L)EνN

�

(√
f ,

√
f
)
,

with no reasonable control on the growth of s(L). This part, that comes for free for
Kawasaki dynamics as well as for any system with bounded density of particles, is
contained in [4], and we summarize it here without proofs. In the second stage, that
we give here in detail, we set up a second induction in |�| to get the L2-growth,
that is well known to be optimal. This second induction relies on the so-called two
blocks-type estimates; the idea of using these estimates in the context of logaritmic
Sobolev inequalities is due to Lu and Yau [10]. We have organized the paper in
such a way that the strategy of the proof is outlined free of the main technicalities.
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Thus, after having introduced our notation and stated our main result (Section 2),
the whole proof is outlined in Section 3. The proofs of the main estimates used in
Section 3 are contained in Sections 4 and 5, except for a relevant technical tool,
a comparison inequality between νN

� and µN/|�|, that is proved in Section 6.

2. Notation and main result. Throughout this paper, for a given probability
space (	,F ,µ) and f :	 → R measurable, we use the following notation for
mean value and covariance:

µ[f ] :=
∫

f dµ, µ[f,g] := µ
[
(f − µ[f ])(g − µ[g])]

and, for f ≥ 0,

Entµ(f ) := µ[f logf ] − µ[f ] logµ[f ],
where, by convention, 0 log 0 = 0. Similarly, for G a sub-σ -field of F , we let
µ[f |G] to denote the conditional expectation, and

µ[f,g|G] := µ
[
(f − µ[f |G])(g − µ[g|G])|G]

the conditional covariance.
If A ⊂ 	, we denote by 1(x ∈ A) the indicator function of A. If B ⊂ A is finite

we will write B ⊂⊂ A. For any x ∈ R, we will write �x	 := inf{n ∈ Z :n ≥ x}.
Let � be a possibly infinite subset of Z

d , and 	� = N
� be the corresponding

configuration space, where N = {0,1,2, . . . } is the set of natural numbers. Given
a configuration η ∈ 	� and x ∈ �, the natural number ηx will be referred to as the
number of particles at x. Moreover, if �′ ⊂ �, η�′ will denote the restriction of η

to �′. For two elements σ, ξ ∈ 	�, the operations σ ± ξ are defined component-
wise (for the difference whenever it returns an element of 	�). In what follows,
given x ∈ �, we make use of the special configuration δx , having one particle at x

and no other particle. For f :	� → R and x, y ∈ �, we let

∂xyf (η) := f (η − δx + δy) − f (η).

Consider, at a formal level, the operator

L�f (η) := ∑
x∈�

∑
y∼x

c(ηx) ∂xyf (η),(2.1)

where y ∼ x means |x − y| = 1, and c : N → R+ is a function such that c(0) = 0
and inf{c(n) :n > 0} > 0. In the case of � finite, for each N ∈ N \ {0}, L� is
the infinitesimal generator of an irreducible Markov chain on the finite state space
{η ∈ 	� : η̄� = N}, where

η̄� := ∑
x∈�

ηx
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is the total number of particles in �. The unique stationary measure for this
Markov chain is denoted by νN

� and is given by

νN
� [{η}] := 1

ZN
�

∏
x∈�

1

c(ηx)! ,(2.2)

where c(0)! := 1, c(k)! := c(1) · · · c(k), for k > 0, and ZN
� is the normalization

factor. The measure νN
� will be referred to as the canonical measure. Note that the

system is reversible for νN
� , that is, L� is self-adjoint in L2(νN

� ) or, equivalently,
the detailed balance condition

c(ηx)ν
N
� [{η}] = c(ηy + 1)νN

� [{η − δx + δy}](2.3)

holds for every x ∈ � and η ∈ 	� such that ηx > 0.
Consider now a real number ρ > 0. By the usual statistical mechanics formal-

ism, we introduce the grand canonical probability measure with average density
of particles ρ:

µρ[{η}] := α(ρ)η̄�ν
η̄�

� [{η}]∑
ξ∈	�

α(ρ)ξ̄�ν
ξ̄�

� [{ξ}]
= 1

Z(α(ρ))

∏
x∈�

α(ρ)ηx

c(ηx)! ,(2.4)

where α(ρ) is chosen so that µρ[ηx] = ρ, x ∈ �, and Z(α(ρ)) is the correspond-
ing normalization. Clearly, µρ is a product measure with marginals given by (1.2).
Note that α(ρ) is the inverse of the function α �→ 1

Z(α)

∑
n

nαn

c(n)! , that is analytic and
strictly increasing in some interval of the form (0, α∗). The inverse function theo-
rem for analytic functions guarantees that α(ρ) is well defined and it is an analytic
function of ρ ∈ [0, ρ∗), for some ρ∗ ∈ (0,+∞]. Under mild additional assump-
tions (e.g., limn c(n) = +∞, see [7], Chapter 2, Lemma 3.3), α(·) is defined in the
whole half line (0,+∞). The normalization will be sometimes denoted by Z(α)

or Z(ρ), depending which parameter needs to be emphasized. Note that L� is
self-adjoint in L2(µρ) too, since identity (2.3) holds with µρ in place of νN

� .
When � is infinite, existence and uniqueness in law of a Feller process gen-

erated by L� requires conditions on the rate function c(·). It is shown in [7],
Section 2.6, that a sufficient condition is that c(·) is Lipschitz:

CONDITION 2.1 (LG).

sup
k∈N

|c(k + 1) − c(k)| := a1 < +∞.

As remarked in [8] for the spectral gap, diffusive scaling of the logarithmic
Sobolev inequality requires extra-conditions; in particular, our main result would
not hold true in the case c(k) = c1(k ∈ N \ {0}). The following condition, which is
the same assumed in [8], is a monotonicity requirement on c(·) that rules out the
case just mentioned.
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CONDITION 2.2 (M). There exists k0 > 0 and a2 > 0 such that c(k) − c(j) ≥
a2 for any j ∈ N and k ≥ j + k0.

We state here without proof some direct consequences of Conditions 2.1 and 2.2.
The proofs of some of them can be found in [8].

PROPOSITION 2.3.

1. There exists A0 > 0 such that A−1
0 k ≤ c(k) ≤ A0k for any k ∈ N.

2. Let σ 2(ρ) := µρ[ηx, ηx], then

0 < inf
ρ>0

σ 2(ρ)

ρ
≤ sup

ρ>0

σ 2(ρ)

ρ
< +∞.(2.5)

3. Let α(ρ) be the function appearing in (2.4); then

0 < inf
ρ>0

α(ρ)

ρ
≤ sup

ρ>0

α(ρ)

ρ
< +∞.(2.6)

For � infinite, the grand canonical measures µρ are well defined, and, under
Condition 2.1, it can be shown that L� can be extended from cylindrical func-
tions to L2(µρ); moreover, the grand canonical measures are all stationary for the
system. In the rest of the paper the same symbol µρ will denote both the grand
canonical probability measure on any � ⊂ Z

d and its one-dimensional marginal,
which is a probability on N.

In what follows, we choose � = [0,L]d ∩ Z
d . In order to state our main result,

we define the Dirichlet form corresponding to L� and νN
� :

EνN
�
(f, g) = −νN

� [f L�g] = 1
2

∑
x∈�

∑
y∼x

νN
� [c(ηx) ∂xyf (η) ∂xyg(η)].(2.7)

THEOREM 2.1. Assume that Conditions 2.1 and 2.2 hold. Then there exists a
constant C > 0 that only depends on a1, a2 and d , such that, for every choice of
N ≥ 1, L ≥ 2 and f :	� → R, f ≥ 0, we have

EntνN
�
(f ) ≤ CL2EνN

�

(√
f ,

√
f
)
.(2.8)

3. Outline of the proof. The proof will be given in one dimension. The ex-
tension to higher dimensions follows the analogous extension for the spectral gap,
that is given in [7], Appendix 3.3.

3.1. Step 1: duplication. The idea is to prove Theorem 2.1 by induction
on |�|. Suppose |�| = 2L, so that � = �1 ∪ �2, |�1| = |�2| = L, where �1,�2
are two disjoint adjacent segments in Z. By a basic identity on the entropy, we
have

EntνN
�
(f ) = νN

�

[
EntνN

� [·|η̄�1 ](f )
] + EntνN

�

(
νN
�

[
f |η̄�1

])
.(3.1)
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Note that νN
� [·|η̄�1] = ν

η̄�1
�1

⊗ ν
N−η̄�1
�2

. Thus, by the tensor property of the entropy
(see [1], Theorem 3.2.2),

νN
�

[
EntνN

� [·|η̄�1 ](f )
] ≤ νN

�

[
Ent

ν
η̄�1
�1

(f ) + Ent
ν

N−η̄�1
�2

(f )
]
.(3.2)

Now, let s(L,N) be the maximum of the logarithmic Sobolev constant for the
zero-range process in volumes � with |�| ≤ L and less that N particles, that is,
s(L,N) is the smallest constant such that

Entνn
�
(f ) ≤ s(L,N)Eνn

�

(√
f ,

√
f
)
,

for all f > 0, |�| ≤ L and n ≤ N . Then, by (3.2),

νN
�

[
EntνN

� [·|η̄�1 ](f )
]

≤ s(L,N)νN
�

[
E

ν
η̄�1
�1

(√
f ,

√
f
) + E

ν
N−η̄�1
�2

(√
f ,

√
f
)]

(3.3)

= s(L,N)EνN
�

(√
f ,

√
f
)
.

Identity (3.1) and inequality (3.3) suggest estimating s(L,N) by induction on L.
The hardest thing is to make appropriate estimates on the term EntνN

�
(νN

� [f |η̄�1]).
Note that this term is the entropy of a function depending only on the number of
particles in �1.

3.2. Step 2: logarithmic Sobolev inequality for the distribution of the number of
particles in �1. Let

γ N
� (n) = γ (n) := νN

�

[
η̄�1 = n

]
.

γ (·) is a probability measure on {0,1, . . . ,N} that is reversible for the birth and
death process with generator

Aϕ(n) :=
[
γ (n + 1)

γ (n)
∧ 1

](
ϕ(n + 1) − ϕ(n)

)
(3.4)

+
[
γ (n − 1)

γ (n)
∧ 1

](
ϕ(n − 1) − ϕ(n)

)
and Dirichlet form

D(ϕ,ϕ) = −〈ϕ,Aϕ〉L2(γ ) =
N∑

n=1

[γ (n) ∧ γ (n − 1)](ϕ(n) − ϕ(n − 1)
)2

.

Logarithmic Sobolev inequalities for birth and death processes are studied in [13].
The nontrivial proof that conditions in [13] are satisfied by γ (n) leads to the fol-
lowing result, whose proof is in [4].
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PROPOSITION 3.1. The Markov chain with generator (3.4) has a logarithmic
Sobolev constant proportional to N , that is, there exists a constant C > 0 such
that, for all ϕ ≥ 0,

Entγ (ϕ) ≤ CND
(√

ϕ,
√

ϕ
)
.

REMARK 3.2. At this point it is possible to see why we use the duplication
approach of [2] instead of the martingale method of Lu and Yau [10]. Indeed,
assume �2 is as above, �1 is a single point and c(n) = λn. In this case γ (·) is a
Binomial with N trials and probability of success 1/L. It is well known (see [5])
that the associated birth and death process (3.4) has a logarithmic Sobolev constant
of order N log(L). The extra factor log(L) does not get fixed by the rest of our
argument.

We now apply Proposition 3.1 to the second summand of the right-hand side of
(3.1), and we obtain

EntνN
�

(
νN
�

[
f |η̄�1

])

≤ CN

N∑
n=1

[γ (n) ∧ γ (n − 1)]
[√

νN
�

[
f |η̄�1 = n

] −
√

νN
�

[
f |η̄�1 = n − 1

] ]2

(3.5)

≤ CN

N∑
n=1

γ (n) ∧ γ (n − 1)

νN
� [f |η̄�1 = n] ∨ νN

� [f |η̄�1 = n − 1]
× (

νN
�

[
f |η̄�1 = n

] − νN
�

[
f |η̄�1 = n − 1

])2
,

where we have used the inequality (
√

x − √
y )2 ≤ (x−y)2

x∨y
, x, y > 0.

3.3. Step 3: study of the term νN
� [f |η̄�1 = n]−νN

� [f |η̄�1 = n−1]. One of the
key points in the proof of Theorem 2.1 consists in finding the “right” representation
for the discrete gradient νN

� [f |η̄�1 = n] − νN
� [f |η̄�1 = n − 1], which appears in

the right-hand side of (3.5). The following result is proved in [4].

PROPOSITION 3.3. For every f and every n = 1,2, . . . ,N , we have

νN
�

[
f |η̄�1 = n

] − νN
�

[
f |η̄�1 = n − 1

]
= γ (n − 1)

γ (n)

1

nL

(
νN
�

[ ∑
x∈�1,y∈�2

h(ηx)c(ηy) ∂yxf
∣∣∣η̄�1 = n − 1

]
(3.6)

+ νN
�

[
f,

∑
x∈�1,y∈�2

h(ηx)c(ηy)
∣∣∣η̄�1 = n − 1

])
,
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where

h(n) := n + 1

c(n + 1)
.

Moreover, by exchanging the roles of �1 and �2, the right-hand side of (3.6) can
be equivalently written as, for every n = 0,1, . . . ,N − 1,

− γ (N − n)

γ (N − n + 1)

1

(N − n + 1)L

×
(
νN
�

[ ∑
x∈�1,y∈�2

h(ηy)c(ηx) ∂xyf
∣∣∣η̄�1 = n

]
(3.7)

+ νN
�

[
f,

∑
x∈�1,y∈�2

h(ηy)c(ηx)
∣∣∣η̄�1 = n

])
.

The representations (3.6) and (3.7) will be used for n ≥ N
2 and n < N

2 , respec-
tively. For convenience, we rewrite (3.6) and (3.7) as

νN
�

[
f |η̄�1 = n

] − νN
�

[
f |η̄�1 = n − 1

] =: A(n) + B(n),(3.8)

where

A(n) :=




γ (n − 1)

γ (n)

1

nL

× νN
�

[ ∑
x∈�1,y∈�2

h(ηx)c(ηy) ∂yxf
∣∣∣η̄�1 = n − 1

]
, for n ≥ N

2
,

− γ (N − n)

γ (N − n + 1)

1

(N − n + 1)L

× νN
�

[ ∑
x∈�1,y∈�2

h(ηy)c(ηx) ∂xyf
∣∣∣η̄�1 = n

]
, for n <

N

2
,

(3.9)

and

B(n) :=




γ (n − 1)

γ (n)

1

nL

× νN
�

[
f,

∑
x∈�1,y∈�2

h(ηx)c(ηy)
∣∣∣η̄�1 = n − 1

]
, for n ≥ N

2
,

− γ (N − n)

γ (N − n + 1)

1

(N − n + 1)L

× νN
�

[
f,

∑
x∈�1,y∈�2

h(ηy)c(ηx)
∣∣∣η̄�1 = n

]
, for n <

N

2
.

(3.10)
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Thus, our next aim is to get estimates on the two terms in the right-hand side
of (3.8). It is useful to stress that the two terms are qualitatively different. The
first term, A(n), contains discrete gradients of f . It is mainly this term that is
responsible for the growth L2 of the logarithmic Sobolev constant. Estimates on
A(n) are essentially insensitive to the precise form of c(·). Indeed, the dependence
of A(n) on L and N is of the same order as in the case c(n) = λn, that is, the
case of independent particles. Quite differently, the term B(n) vanishes in the case
of independent particles, since, in that case, the term

∑
x∈�1,y∈�2

h(ηx)c(ηy) is
a.s. constant with respect to νN

� [·|η̄�1 = n − 1]. Thus, B(n) somewhat depends
on interaction between particles. Note that our model is not necessarily a “small
perturbation” of a system of independent particles; there is no small parameter
in the model that guarantees that B(n) is small enough. Essentially all technical
results of this paper are concerned with estimating B(n).

3.4. Step 4: estimates on A(n). The following proposition, proved in [4], gives
the key estimate on A(n).

PROPOSITION 3.4. There is a constant C > 0 such that

A2(n) ≤ CL2

N

(
νN
�

[
f |η̄�1 = n

] ∨ νN
�

[
f |η̄�1 = n − 1

])

×
[
γ (n − 1)

γ (n)
EνN

� [·|η̄�1=n−1]
(√

f ,
√

f
) + EνN

� [·|η̄�1=n]
(√

f ,
√

f
)]

.

Let us try to see where we are now. Let us ignore, for the moment, the term B(n),
that is, let us pretend that B(n) ≡ 0. Thus, by (3.8) and Proposition 3.4, we would
have (

νN
�

[
f |η̄�1 = n

] − νN
�

[
f |η̄�1 = n − 1

])2

≤ CL2

N

(
νN
�

[
f |η̄�1 = n

] ∨ νN
�

[
f |η̄�1 = n − 1

])
(3.11)

×
[
γ (n − 1)

γ (n)
EνN

� [·|η̄�1=n−1]
(√

f ,
√

f
) + EνN

� [·|η̄�1=n]
(√

f ,
√

f
)]

.

Inserting (3.11) into (3.5), we get, for some possibly different constant C,

EntνN
�

(
νN
�

(
f |η̄�1

)) ≤ CL2EνN
�

(√
f ,

√
f
)
,(3.12)

where we have used the obvious identity:

νN
�

[
EνN

� [·|G]
(√

f ,
√

f
)] = EνN

�

(√
f ,

√
f
)
,(3.13)

which holds for any σ -field G. Inequality (3.12), together with (3.1) and (3.3),
yields

s(2L,N) ≤ s(L,N) + CL2.(3.14)
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Thus, if we can show that

sup
N

s(2,N) < +∞,(3.15)

(see Proposition 3.7 next) then Theorem 2.1 would follow from (3.14). In all this,
however, we have totally ignored the contribution of B(n).

3.5. Step 5: preliminary analysis of B(n). We confine ourselves to the analysis
of B(n) for n ≥ N

2 , since the case n < N
2 is identical. Consider the covariance

that appears in the right-hand side of the first formula of (3.10). By elementary

properties of the covariance and the fact that νN
� [·|η̄�1] = ν

η̄�1
�1

⊗ ν
N−η̄�1
�2

, we get

νN
�

[
f,

∑
x∈�1,y∈�2

h(ηx)c(ηy)
∣∣∣η̄�1 = n − 1

]

= νn−1
�1

[ ∑
x∈�1

h(ηx)ν
N−n+1
�2

[
f,

∑
y∈�2

c(ηy)

]]
(3.16)

+ νn−1
�1

[
νN−n+1
�2

[f ], ∑
x∈�1

h(ηx)

]
νN−n+1
�2

[ ∑
y∈�2

c(ηy)

]
.

It follows by Conditions 2.1 and 2.2 (see Proposition 2.3) that, for some constant
C > 0, h(ηx) ≤ C and c(ηy) ≤ Cηy . Thus, a simple estimate on the two summands
in (3.16) yields, for some C > 0,

B2(n) ≤ γ 2(n − 1)

γ 2(n)

(
C

n2 νN−n+1
�2

[
νn−1
�1

[f ], ∑
y∈�2

c(ηy)

]2

(3.17)

+ C(N − n + 1)2

n2L2 νn−1
�1

[
νN−n+1
�2

[f ], ∑
x∈�1

h(ηx)

]2)
.

Thus, our next aim is to estimate the two covariances in (3.17). We establish two
levels of estimates for these covariances. We first recall the “rough estimates”
on B(n) obtained in [4], which use elementary properties of νN

� . These estimates,
together with the duplication argument mentioned above, will allow to prove that,
for all L,

sup
N

s(L,N) ≡ s(L) < +∞,(3.18)

without, however, any reasonable information on the growth of s(L) in L. Then we
will obtain sharper estimates (two-blocks estimates) on B(n) in the case of L large
enough, say, L ≥ L0. Repeating the duplication argument starting from size L0,
we will then succeed in obtaining the right L2-growth of s(L). Note that, to begin
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this duplication argument, we need to know that supN s(N,L0) < +∞, which is
by no means a trivial fact. It should be remarked that, for dynamics with exclusion
rules [2, 16], this problem does not appear.

3.6. Rough estimates on B(n): entropy inequality and estimates on moment
generating functions. By (3.17), estimating B2(n) consists in estimating two co-
variances. In general, covariances can be estimated by the following entropy in-
equality that holds for every probability measure ν (see [1], Section 1.2.2):

ν[f,g] = ν
[
f (g − ν[g])] ≤ ν[f ]

t
logν

[
et(g−ν[g])] + 1

t
Entν(f ),(3.19)

where f ≥ 0 and t > 0 is arbitrary. Since in (3.17) we need to estimate the square
of a covariance, we write (3.19) with −g in place of g, and obtain

|ν[f,g]| ≤ ν[f ]
t

log
(
ν
[
et(g−ν[g])] ∨ ν

[
e−t (g−ν[g])]) + 1

t
Entν(f ).(3.20)

Therefore, we first get estimates on the moment generating functions ν[e±t (g−ν[g])],
and then optimize (3.20) over t > 0.

In [2], for Kawasaki dynamics, estimates for moment generating functions with
respect νN

� are obtained in two main steps: 1. One replaces the canonical ensemble
νN
� with the corresponding grand canonical ensemble, by using results on equiv-

alence of ensembles. 2. The nonconservative (Heat Bath) dynamics for the grand
canonical ensemble have a logarithmic Sobolev constant that is uniform in the
volume, from which estimates on moment generating functions follow (see [1],
Section 7.4.1) by the so-called Herbst argument. In our model there are difficulties
for both steps. For step 1, we can prove equivalence of ensemble only for � large,
so the case of small � must be treated separately. For step 2, as we pointed out
in the Introduction, there is no logarithmic Sobolev inequality for the nonconser-
vative dynamics corresponding to the zero-range process. Actually, it would not
be hard to show that good estimates for moment generating functions follow, via
Herbst argument, from a weaker modified logarithmic Sobolev inequality (the en-
tropy inequality in [3]). This inequality holds true [3] in the case c(n) = λn, but
nothing is known under our assumptions on c(·).

Our approach is to give estimates on special moment generating functions,
where ad-hoc arguments can be used. Note that the covariances in (3.17) involve
functions of η�1 or η�2 . In the next two propositions we write � for �1 and �2,
and denote by N the number of particles in �. Their proof can be found in [4].

PROPOSITION 3.5. Let x ∈ �. Then there is a constant AL depending on
L = |�| such that, for every N > 0 and t ∈ [−1,1],

νN
�

[
et(c(ηx)−νN

� [c(ηx)])] ≤ eALNt2
(3.21)

and

νN
�

[
etN(h(ηx)−νN

� [h(ηx)])) ≤ ALeAL(Nt2+√
N |t |).(3.22)



LOG-SOBOLEV INEQUALITY FOR ZERO-RANGE 2367

Using (3.19), (3.20) and (3.22) and optimizing over t > 0, we get estimates on
the covariances appearing in (3.17).

PROPOSITION 3.6. There exists a constant CL depending on L = |�| such
that the following inequalities hold:

νN
�

[
f,

∑
x∈�

c(ηx)

]2

≤ CLNνN
� [f ]EntνN

�
(f ),(3.23)

νN
�

[
f,

∑
x∈�

h(ηx)

]2

≤ CLN−1νN
� [f ][νN

� [f ] + EntνN
�
(f )

]
.(3.24)

Inserting these new estimates in (3.17), we obtain, for some possibly differ-
ent CL,

B2(n) ≤ CLγ 2(n − 1)

γ 2(n)
νN
�

[
f |η̄�1 = n − 1

]

×
(

N − n + 1

n2 νn−1
�1

[
Ent

νN−n+1
�2

(f )
]

(3.25)

+ (N − n + 1)2

n3

(
νN
�

[
f |η̄�1 = n − 1

] + νN−n+1
�2

[
Entνn

�1
(f )

]))
.

In order to simplify (3.25), we use Proposition 7.5 in [4], which gives

n

C(N − n + 1)
≤ γ (n − 1)

γ (n)
≤ Cn

N − n + 1
(3.26)

for some C > 0. It follows that

γ 2(n − 1)

γ 2(n)

N − n + 1

n2 ≤ C2

N − n + 1
≤ γ (n − 1)

γ (n)

C3

n

and

γ 2(n − 1)

γ 2(n)

(N − n + 1)2

n3 ≤ C2

n
.

Thus, (3.25) implies, for some CL > 0 depending on L, recalling also that n ≥ N
2 ,

N
γ (n) ∧ γ (n − 1)

νN
� [f |η̄�1 = n] ∨ νN

� [f |η̄�1 = n − 1]B
2(n)

≤ CLγ (n − 1)
(
νN
�

[
f |η̄�1 = n − 1

]
(3.27)

+ νn−1
�1

[
Ent

νN−n+1
�2

(f )
] + νN−n+1

�2

[
Entνn

�1
(f )

])
.
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Now, we bound the two terms

Ent
νn−1
�1

(f ) and Ent
νN−n+1
�2

(f )

by, respectively,

s(N,L)E
νn−1
�1

(√
f ,

√
f
)

and s(N,L)E
νN−n+1
�2

(√
f ,

√
f
)
,

and insert these estimates in (3.6). What comes out is then used to estimate (3.5),
after having obtained the corresponding estimates for n < N

2 . Recalling the esti-
mates for A(n), straightforward computations yield

EntνN
�

(
νN
�

[
f |η̄�1

])
(3.28)

≤ CLEνN
�

(√
f ,

√
f
) + CLνN

� [f ] + CLs(N,L)EνN
�

(√
f ,

√
f
)
,

for some CL > 0 depending on L. Inequality (3.28), together with (3.3), gives, for
a possibly different constant CL > 0,

EntνN
�
(f )

(3.29)
≤ CLEνN

�

(√
f ,

√
f
) + CLνN

� [f ] + CLs(N,L)EνN
�

(√
f ,

√
f
)
.

To deal with the term νN
� [f ] in (3.29), we use the following well-known argument.

Set f̄ = (
√

f − νN
� [√f ])2. By the Rothaus inequality (see [1], Lemma 4.3.8),

EntνN
�
(f ) ≤ EntνN

�
(f̄ ) + 2νN

�

[√
f ,

√
f
]
.

Using this inequality and replacing f by f̄ in (3.29), we get, for a different CL,

EntνN
�
(f )

≤ CLEνN
�

(√
f ,

√
f
) + CLνN

�

[√
f ,

√
f
] + CLs(N,L)EνN

�

(√
f ,

√
f
)

(3.30)

≤ DLEνN
�

(√
f ,

√
f
) + DLs(N,L)EνN

�

(√
f ,

√
f
)
,

where, in the last line, we have used the Poincaré inequality (1.3). Therefore,

s(2L,N) ≤ DL[s(L,N) + 1],(3.31)

that implies (3.18), provided we prove the following “basis step” for the induction.

PROPOSITION 3.7.

sup
N

s(2,N) < +∞.

The proof of Proposition 3.7 is also given in [4], Proposition 3.6. As we pointed
out above, (3.31) gives no indication on how s(L) = supN s(N,L) grows with L.
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3.7. Two blocks estimates on B(n). Our goal here is to improve the estimates
in Proposition 3.6, for large �. Following the terminology in [10, 16], we refer to
these estimates as the “two blocks estimates.”

We begin by considering the covariance in (3.23). First note that this covariance
is left unchanged if we replace c(n) by c̃(n) := c(n) − δn, where δ is a parameter
that may depend on N and L, and whose value, for reasons that will be apparent
later, will be set to δ = α′(N/L) for N/L not too small, and δ = α(N/L)

N/L
for N/L

small. Then we partition � into disjoint blocks C1,C2, . . . ,Cm that we assume,
with no loss of generality, to have equal size l = L/m. Denote by G the σ -field
generated by η̄C1, η̄C2, . . . , η̄Cm . Note that

νN
� [·|G] = ν

η̄C1
C1

⊗ ν
η̄C2
C2

⊗ · · · ⊗ ν
η̄Cm

Cm
.(3.32)

Thus, the usual formula for conditional covariances gives

νN
� [f,g] = νN

�

[
νN
� [f,g|G]] + νN

�

[
f, νN

� [g|G]],
and we obtain

νN
�

[
f,

∑
x∈�

c̃(ηx)

]
= νN

�

[
νN
�

[
f,

∑
x∈�

c̃(ηx)
∣∣∣G

]]
(3.33)

+ νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]
.(3.34)

We now treat the two summands (3.33) and (3.34). The term (3.33) is much sim-
pler, and it is actually insensitive to the choice of δ and l. The following result will
be proved in Section 4.

PROPOSITION 3.8. There is a constant C, possibly depending on l, such that

νN
�

[
νN
�

[
f,

∑
x∈�

c̃(ηx)
∣∣∣G

]]2

≤ CNνN
� [f ]νN

�

[
EntνN

� [·|G](f )
]
.(3.35)

Now, by (3.18), the zero-range process on Ck with nk particles satisfies the
logarithmic Sobolev inequality with a constant s depending on l but not on nk .
Moreover, by (3.32) and the tensor property of the entropy (3.2), it follows that

EntνN
� [·|G](f ) ≤

m∑
k=1

νN
�

[
Ent

ν
η̄Ck
Ck

(f )|G
]
≤ s

m∑
k=1

νN
�

[
E

ν
η̄Ck
Ck

(√
f ,

√
f
)∣∣G]

.

Thus, averaging with respect to νN
� , we easily obtain

νN
�

[
EntνN

� [·|G](f )
] ≤ sEνN

�

(√
f ,

√
f
)
,

and from Proposition 3.8, we obtain the following corollary.
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COROLLARY 3.9. There is a constant C, possibly depending on l, such that

νN
�

[
νN
�

[
f,

∑
x∈�

c̃(ηx)
∣∣∣G

]]2

≤ CNνN
� [f ]EνN

�

(√
f ,

√
f
)
.(3.36)

Estimating (3.34) is much harder. Here the choice δ becomes essential, as well
as the possibility of choosing l and L large. The starting point is again to estimate
the covariance in (3.34) by the entropy inequality (3.20). The challenge now is
to get sharp estimates on the moment generating function. Both these estimates
and the optimization of (3.20) over t require considerable work, that we do no
summarize in this preliminary section. The outcome is the following inequality.

PROPOSITION 3.10. For every ε > 0, we can choose l = lε , L0 = L0,ε , and a
finite constant Cε such that, for L ≥ L0,

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]2

≤ NνN
� [f ][Cεν

N
� [f ] + CεL

2EνN
�

(√
f ,

√
f
) + ε EntνN

�
(f )

]
.

By putting together the estimates in Corollary 3.9 and Proposition 3.10, we get
the following result.

COROLLARY 3.11. For every ε > 0, there exists a finite constant Cε such that

νN
�

[
f,

∑
x∈�

c(ηx)

]2

(3.37)
≤ NνN

� [f ][Cεν
N
� [f ] + CεL

2EνN
�

(√
f ,

√
f
) + ε EntνN

�
(f )

]
.

To complete our two blocks estimate on B(n), we have to estimate the second
covariance in (3.17). The argument follows the same lines as for the first covari-
ance.

PROPOSITION 3.12. For every ε > 0, there exists a finite constant Cε such
that

νN
�

[
f,

∑
x∈�

h(ηx)

]2

(3.38)

≤ L2

N
νN
� [f ][Cεν

N
� [f ] + CεL

2EνN
�

(√
f ,

√
f
) + ε EntνN

�
(f )

]
.
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3.8. Concluding the proof. Now, as we did in (3.25)–(3.27), we use the in-
equalities obtained in Corollary 3.11 and Proposition 3.12 in order to estimate
B2(n) (for n ≥ N

2 , the other case being identical), and we obtain the following
refinement of (3.27), holding for L sufficiently large:

N
γ (n) ∧ γ (n − 1)

νN
� [f |η̄�1 = n] ∨ νN

� [f |η̄�1 = n − 1]B
2(n)

≤ γ (n − 1)
(
Cεν

N
�

[
f |η̄�1 = n − 1

]
(3.39)

+ CεL
2EνN

� [·|η̄�1=n−1]
(√

f ,
√

f
)

+ ε EntνN
� [·|η̄�1=n−1](f )

)
.

Thus, inserting these estimates in (3.6) and then in (3.5), we obtain, for some C > 0
independent of ε,

EntνN
�

(
νN
�

[
f |η̄�1

])
≤ CL2EνN

�

(√
f ,

√
f
) + Cεν

N
� [f ](3.40)

+ CεL
2EνN

�

(√
f ,

√
f
) + Cε EntνN

�

(
νN
�

[
f |η̄�1

])
.

Thus, by (3.1), (3.3) and (3.40), choosing ε so that Cε < 1, eliminating the term
νN
� [f ] as in (3.30), for some C > 0, we get

EntνN
�
(f ) ≤ s(L,N)EνN

�

(√
f ,

√
f
) + CL2EνN

�

(√
f ,

√
f
)
,(3.41)

that gives

s(2L,N) ≤ s(L,N) + CL2,

from which the conclusion follows.
The rest of this paper is devoted to the proof of all results concerning two-blocks

estimates that have been previously stated without proof.

4. Two blocks estimates I: proofs of Propositions 3.8 and 3.10. We begin
with the proof of Proposition 3.8, which is a simple modification of the one of
Proposition 3.6, given in [4].

PROOF OF PROPOSITION 3.8. By (3.32) and the entropy inequality (3.19),
we have

νN
�

[
f,

∑
x∈�

c(ηx)
∣∣∣G

]

≤ νN
� [f |G]

t

m∑
k=1

logν
η̄Ck

Ck

[
exp

(
t
∑
x∈Ck

(
c(ηx) − ν

η̄Ck

Ck
[c(ηx)])

)]

+ 1

t
EntνN

� [·|G](f ).
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We now estimate each term ν
η̄Ck

Ck
[exp(t

∑
x∈Ck

(c(ηx)−ν
η̄Ck

Ck
[c(ηx)]))] using Propo-

sition 3.5, obtaining, for 0 < t ≤ 1,

νN
�

[
f,

∑
x∈�

c(ηx)
∣∣∣G

]
≤ νN

� [f |G]
t

CNt2 + 1

t
EntνN

� [·|G](f ),

for some constant C depending on l but not on N . After averaging over νN
� , we get

νN
�

[
νN
�

[
f,

∑
x∈�

c(ηx)
∣∣∣G

]]
≤ CNtνN

� [f ] + νN
�

[
1

t
EntνN

� [·|G](f )

]
.(4.1)

At this point we observe that (4.1) holds with −c in place of c. Thus, in this last
inequality we can square both sides, and then optimize over t as follows. Set

t2∗ =
νN
� [EntνN

� [·|G](f )]
NνN

� [f ] .

If t∗ ≤ 1, then plugging t∗ in (4.1), we get the inequality in (3.35), for a possibly
different C > 0. For t∗ > 1, using point 1 of Proposition 2.3, we get the simple
bounds, for some C > 0,

νN
�

[
νN
�

[
f,

∑
x∈�

c(ηx)
∣∣∣G

]]2

≤ CN2νN
� [f ]2 ≤ CN2t2∗νN

� [f ]2

= CNνN
� [f ]νN

�

[
EntνN

� [·|G](f )
]
,

and (3.35) follows in this case too. �

We now turn to the proof of Proposition 3.10. In this proof we set ρ = N
L

.
As customary in two block estimates [2, 8], we treat separately the case of small
density.

The following lemma will be used in various parts of the proof.

LEMMA 4.1. For every ρ > 0 and t ∈ R,

µρ

[
et(c−α)] ≤ eαa1t

2ea1|t |
,

where α = α(ρ) and a1 is the constant appearing in Condition 2.1.

PROOF. We follow the well-known Herbst argument. Let T be the shift de-
fined by Tf (n) = f (n + 1). A simple computation shows that

µρ[cf ] = αµρ[Tf ].(4.2)

Moreover, by Condition 2.1,

‖T c − c‖+∞ ≤ a1.(4.3)
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Now let

φ(t) := µρ[etc].
Suppose, first, t > 0. We have

tφ′(t) − φ(t) logφ(t) = tµρ[cetc] − µρ[etc] logµρ[etc]
≤ αtµρ

[
et(T c) − etc],

where we have used (4.2) and the fact that, by Jensen’s inequality,

− logµρ[etc] ≤ −αt.

Thus, using the inequality |ex − ey | ≤ |x − y|e|x−y|ex and (4.5), we get

tφ′(t) − φ(t) logφ(t) ≤ αa1t
2ea1tφ(t).

Letting ψ(t) := logφ(t)
t

, this last inequality becomes

ψ ′(t) ≤ αa1e
a1t .

Since

lim
t↓0

ψ(t) = µρ(c) = α,

we have

ψ(t) ≤ αea1t

that becomes

µρ

[
et(c−α)] = φ(t)e−αt ≤ eαt(ea1t−1) ≤ eαa1t

2ea1t

.

To deal with a negative t , we need to show that, for t > 0,

µρ

[
e−t (c−α)] ≤ eαa1t

2ea1t

,

which is shown by repeating the above argument. �

REMARK 4.2. The estimates on φ(t) in the proof of Lemma 4.1 and the fact
that c(n) ≥ εn for some ε > 0 imply that, for some C > 0,

µρ[etηx ] ≤ eCtρeCt

.
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4.1. Case of density away from zero. In this section we assume ρ ≥ ρ0 > 0,
where ρ0 is a constant that will be fixed later. Some of the constants in the estimates
that follow may depend on ρ0. In what follows we assume νN

� [f ] = 1. We begin
with the entropy inequality, for t > 0:

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]

≤ 1

t
logνN

�

[
exp

(
t

m∑
k=1

(
ν

η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− νN

�

[ ∑
x∈Ck

c̃(ηx)

]))]
(4.4)

+ 1

t
EntνN

�
(f ).

We have to estimate a moment generating function. One of the ingredients to im-
prove the estimate given in Proposition 3.5 is to replace the canonical ensemble
νN
� by the grand-canonical ensemble µρ . We argue as follows. Define

ak := ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− νN

�

[ ∑
x∈Ck

c̃(ηx)

]
.

By the Cauchy–Schwarz inequality

νN
�

[
exp

(
t

m∑
k=1

(
ν

η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− νN

�

[ ∑
x∈Ck

c̃(ηx)

]))]

= νN
�

[
exp

(
t

m∑
k=1

ak

)]
(4.5)

≤
{
νN
�

[
exp

(
2t

∑
1≤k<m/2

ak

)]
νN
�

[
exp

(
2t

∑
m/2≤k<m

ak

)]}1/2

.

Now, for both factors in (4.5), assuming L large enough, we may use the inequality
between ensembles given in the following proposition, whose proof is left for the
final section of this paper. For generality, this proposition is stated (and proved) in
any dimension d ≥ 1.

PROPOSITION 4.1. Fix δ0 ∈ (0,1); then there exist v0 and A0 > 0 such that,
for any �′ ⊂ � ⊂⊂ Z

d with |�| ≥ v0 and |�′|/|�| ≤ δ0,

νN
� [η�′ = σ�′ ] ≤ A0µN/|�|[η�′ = σ�′ ],(4.6)

for any σ�′ ∈ 	�′ , N ∈ N \ {0}.
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Thus, using (4.6) with ρ = N/L in (4.5), we obtain, for some C > 0,

νN
�

[
exp

(
t

m∑
k=1

(
ν

η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− νN

�

[ ∑
x∈Ck

c̃(ηx)

]))]

(4.7)

≤ C

{
µρ

[
exp

(
2t

∑
1≤k<m/2

ak

)]
µρ

[
exp

(
2t

∑
m/2≤k<m

ak

)]}1/2

.

The next step consists in replacing, in the terms ak in (4.7), the expectation
νN
� [∑x∈Ck

c̃(ηx)] by the corresponding µρ-expectation. We recall that, according
to Corollary 6.4 in [8], there is a constant C > 0 such that

|νN
� [c(ηx)] − µρ[c(ηx)]| ≤ C

L

√
1 + ρ.(4.8)

Thus, using (4.8) in (4.7) and the fact that µρ is a product measure, we get

νN
�

[
exp

(
t

m∑
k=1

(
ν

η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− νN

�

[ ∑
x∈Ck

c̃(ηx)

]))]

(4.9)

≤ CeCt
√

Nµρ

[
exp

(
2t

(
ν

η̄C1
C1

[ ∑
x∈C1

c̃(ηx)

]
− µρ

[ ∑
x∈C1

c̃(ηx)

]))]L/l

.

To get estimates on the expectation in (4.9), observe that, adding and subtracting
µη̄C1/l[∑x∈C1

c̃(ηx)] and using the Cauchy–Schwarz inequality, we obtain

µρ

[
exp

{
t

(
ν

η̄C1
C1

[ ∑
x∈C1

c̃(ηx)

]
− µρ

[ ∑
x∈C1

c̃(ηx)

])}]
(4.10)

≤ {µρ[e2tY ]µρ[e2tW ]}1/2,

where

Y := ν
η̄C1
C1

[ ∑
x∈C1

c̃(ηx)

]
− µη̄C1/l

[ ∑
x∈C1

c̃(ηx)

]

− µρ

[
ν

η̄C1
C1

[ ∑
x∈C1

c̃(ηx)

]
− µη̄C1/l

[ ∑
x∈C1

c̃(ηx)

]]

and

W := µη̄C1/l

[ ∑
x∈C1

c̃(ηx)

]
− µρ

[ ∑
x∈C1

c̃(ηx)

]

− µρ

[
µη̄C1/l

[ ∑
x∈C1

c̃(ηx)

]
− µρ

[ ∑
x∈C1

c̃(ηx)

]]
.
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Now our aim is to get separate estimates on the two factors µρ[e2tY ] and µρ[e2tW ]
in (4.10).

4.1.1. Estimates of the factor µρ[e2tY ] in (4.10). In this section we will show
that, for a suitable constant C > 0, the first factor of (4.10) is bounded above by

exp
[
Cρt2eCt

√
ρeCt ]

.(4.11)

Let X be a real random variable, and E(X) its expectation. By a straightforward
Taylor expansion, the following inequality holds:

E(eX) ≤ exp
[
E(X) + 1

2E
(
X2e|X|)].(4.12)

Using (4.12) and (4.8), we obtain

µρ[etY ] ≤ exp

{
Ct2µρ

[(
ν

η̄C1
C1

[ ∑
x∈C1

c̃(ηx)

]
− µη̄C1/l

[ ∑
x∈C1

c̃(ηx)

])2

etY

]}

≤ exp
{
Ct2µρ

[(
1 + η̄C1

l

)
e
Ct

√
1+η̄C1/l

]}
(4.13)

≤ exp
{
Ct2µρ

[(
1 + η̄C1

l

)2]1/2

µρ

[
e

2Ct
√

1+η̄C1/l ]1/2
}

≤ exp
{
Ct2ρµρ

[
e

2Ct
√

1+η̄C1/l ]}
,

where C > 0 is some constant that may change in the different steps (we have used

here the simple inequality µρ[(1+ η̄C1
l

)2]1/2 ≤ Cρ for ρ ≥ ρ0, which follows from
the variance estimates in Proposition 2.3).

The next step consists in estimating the expectation µρ[e2Ct
√

1+η̄C1/l ] in (4.13).
We make use of the following simple lemma.

LEMMA 4.3. Let X ≥ 0 be a random variable, and g : [0,+∞) → [0,+∞)

be a function such that, for all t ≥ 0,

E(etX) ≤ etg(t)E(X).(4.14)

Then, for all t ≥ 0,

E
(
et

√
X) ≤ exp

[
t
√

2g(2t) + g(t)
√

E(X)
] + et .(4.15)

PROOF. Let k = 2g(2t) + g(t). Then, using the inequality
√

x ≤ x + 1, the
Cauchy–Schwarz inequality and the Chebyshev inequality,

E
(
et

√
X) ≤ E

(
et

√
X1

(
X < kE(X)

)) + E
(
et

√
X1

(
X ≥ kE(X)

))
≤ et

√
kE(X) + etE

(
etX1

(
X ≥ kE(X)

))
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≤ et
√

kE(X) + et [E(e2tX)]1/2[P (
X ≥ kE(X)

)]1/2

≤ et
√

kE(X) + etetg(2t)E(X)

√
E(etX)

etkE(X)

≤ et
√

kE(X) + et exp
[
t

2
E(X)(2g(2t) + g(t) − k)

]

≤ et
√

kE(X) + et . �

We now go back to the estimate of (4.13). First, by the inequality
√

1 + x ≤ 1 +√
x, we have µρ[exp(2Ct

√
1 + η̄C1/l )] ≤ exp(2Ct)µρ[exp(2Ct

√
η̄C1/l )]. Now,

we apply Lemma 4.3 to X = η̄C1/l. Note that µρ[η̄C1/l] = ρ and, by what was
observed in Remark 4.2, µρ[exp(t η̄C1/l)] ≤ exp(DρteDt ), for some D > 0. It
follows by Lemma 4.3 that

µρ

[
e

2Ct
√

η̄C1/l] ≤ exp
[
2C

√
2De4CDt + De2CDt

√
ρt

] + e2Ct .

Putting it all together, we have that, for a suitable constant C > 0, the first factor
of (4.10) is bounded above by (4.11).

4.1.2. Estimates of the factor µρ[e2tW ] in (4.10). In this section we will prove
that, for a suitable constant,

µρ[etW ] ≤ exp
[
Ct2ρeCtl

√
ρeCt2l2ρeCtl ]

.(4.16)

We begin by recalling that c̃(n) = c(n) − δn. It is only at this point that the
choice of δ becomes relevant. Note that, since µρ[c̃] = α(ρ) − δρ, if we define

F := α

(
η̄C1

l

)
− α(ρ) − δ

(
η̄C1

l
− ρ

)
− µρ

[
α

(
η̄C1

l

)
− α(ρ) − δ

(
η̄C1

l
− ρ

)]
,

we have

µρ[etW ] = µρ[eltF ].(4.17)

Now we set δ = α′(ρ), in order for F to be a first-order Taylor expansion.
To get estimates on µρ[eltF ], we proceed as follows. Using the inequality
ex ≤ 1 + x + 1

2x2e|x| on eltF , and the fact that µρ[F ] = 0, we have that

µρ[etlF ] ≤ 1 + 1
2 l2t2µρ

[
F 2etl|F |].

Then using the inequality 1 + x ≤ ex , which holds for x > 0, and the Cauchy–
Schwarz inequality, we get

logµρ[eltF ] ≤ 1
2 t2l2(µρ[F 4])1/2(µρ

[
e2t l|F |])1/2

.(4.18)

We now estimate separately the two expectations in the right-hand side of (4.18).
For the estimate of µρ[F 4], we proceed as in Lemma 3.4 in [8]. We remark that
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the same expectation was estimated in [8], but their estimate is not good for us. We
would rather follow here the deeper argument they used to estimate µρ[F 2]. Let

Z := 1

l

∑
x∈C1

ηx − ρ

σ(ρ)
,(4.19)

where σ 2(ρ) = µρ[n,n]. By Lemma 5.2 in [8], each µρ -moment of ηx−ρ
σ(ρ)

is
bounded in ρ ≥ ρ0. Fix a constant β > 0.

• For |Z| > β , the following rough estimate on F that comes from Lipschitz con-
tinuity of α suffices:

|F | ≤ Cσ(ρ)|Z|,
for some C > 0. Thus, possibly modifying the value of C, we have

µρ[F 41(|Z| > β)]
≤ Cσ 4(ρ)µρ[Z41(|Z| > β)]

≤ σ 4(ρ)

β4 µρ[Z8]
(4.20)

≤ Cσ 4(ρ)

l8β4

{ ∑
x,y,z,w∈C1

µρ

[
(ηx − ρ)2

σ 2(ρ)

(ηy − ρ)2

σ 2(ρ)

(ηz − ρ)2

σ 2(ρ)

(ηw − ρ)2

σ 2(ρ)

]

+ ∑
x,y,z∈C1

µρ

[
(ηx − ρ)3

σ 3(ρ)

(ηy − ρ)3

σ 3(ρ)

(ηz − ρ)2

σ 2(ρ)

]}

≤ C(β)ρ2

l4 ,

where C(β) > 0 depends on β . In the above derivation we have used the facts:
(a) when the eighth power of Z is developed, if a term ηx−ρ

σ(ρ)
appears with power

one, the corresponding expectation is zero; (b) σ 2(ρ) ≤ Cρ for some C > 0 (see
Proposition 2.3).

• Suppose |Z| ≤ β . In this case∣∣∣∣ η̄C1

l
− ρ

∣∣∣∣ ≤ βσ(ρ).

Thus, by the standard estimate on the remainder of a Taylor expansion,

|F | ≤ sup{α′′(s) : |s − ρ| ≤ βσ(ρ)}Z2σ 2(ρ) ≤ C(β)σ(ρ)Z2,(4.21)

where the estimate

sup{α′′(s) : |s − ρ| ≤ βσ(ρ)} ≤ D(β)

σ(ρ)
,(4.22)
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for every ρ ≥ ρ0 and some D(β) > 0, comes from Lemma 3.5 in [8]. It follows
that

µρ[F 41(|Z| ≤ β)] ≤ C(β)σ 4(ρ)µρ[Z8] ≤ C(β)ρ2

l4 ,(4.23)

where µρ[Z8] is estimated as in (4.20).

Thus, by (4.20) and (4.23),

µρ[F 4] ≤ Cρ2

l4 ,(4.24)

for some C > 0.
We now estimate the other term in (4.18), namely, µρ[e2t l|F |]. We use again the

rough estimate

|F | ≤ Cσ(ρ)|Z|.
We get

µρ

[
e2t l|F |] ≤ µρ

[
eCtlσ (ρ)|Z|] ≤ µρ

[
e
Ct

∑
x∈C1

|ηx−ρ|] ≤ µρ

[
eCtl|η0−ρ|].(4.25)

A simple consequence of Condition 2.2 is that there exists a constant C > 0 such
that

|n − ρ| ≤ C(|c(n) − c(ρ)| + 1),

where c(ρ), ρ > 0, is obtained by linear interpolation from c(n), n ∈ N. Moreover,
Lemma 5.8 in [8] states that

|c(ρ) − α(ρ)| ≤ C
√

ρ

for some C > 0 and every ρ > 0. Thus,

|n − ρ| ≤ C|c(n) − α(ρ)| + C
√

ρ + C.(4.26)

By (4.25), (4.26), the inequality e|x| ≤ ex + e−x and Lemma 4.1, we get

µρ

[
e2t l|F |] ≤ eCtl

√
ρµρ

[
eCtl|c(η0)−α(ρ)|] ≤ 2eCtl

√
ρeCt2l2ρeCtl

.(4.27)

Now, we insert all our estimates in (4.18), and we obtain (4.16).

4.1.3. Final form of the entropy inequality. Note that the estimate given
in (4.16) for the second factor of (4.10) is worse than the one given in (4.11) for
the first factor of (4.10). We can therefore go back to (4.10) and obtain

µρ

[
exp

(
t

(
ν

η̄C1
C1

[ ∑
x∈C1

c̃(ηx)

]
− µρ

[ ∑
x∈C1

c̃(ηx)

]))]

(4.28)
≤ exp

[
Ct2ρeCtl

√
ρeCt2l2ρeCtl ]

.
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Now, using (4.5), (4.7) and (4.9), we obtain

νN
�

[
exp

(
t

m∑
k=1

(
ν

η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− νN

�

[ ∑
x∈Ck

c̃(ηx)

]))]

(4.29)

≤ CeCt
√

N exp
[
Ct2 N

l
eCtl

√
ρeCt2l2ρeCtl

]
.

With this estimate, the entropy inequality (4.4) becomes

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]

(4.30)

≤ C

t
+ C

√
N + Ct

N

l
eCtl

√
ρeCt2l2ρeCtl + 1

t
EntνN

�
(f ).

We now note that the whole argument leading to (4.30) is insensitive to the re-

placement of
∑m

k=1 ν
η̄Ck

Ck
[∑x∈Ck

c̃(ηx)] with its additive inverse. Inequality (4.30)
holds therefore for the absolute value of the left-hand side, which gives, for some
possibly different C > 0,

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]2

(4.31)

≤ C

t2 + CN + Ct2 N2

l2 eCtl
√

ρeCt2l2ρeCtl + C

t2 Ent2
νN
�

(f ).

4.1.4. Optimization of the entropy inequality. For the optimization of (4.31),
we set

t2∗ :=
1 ∨ [M EntνN

�
(f )]

N
,

where M is a large constant that will be chosen later. We must consider two differ-
ent regimes:

CASE 1. t∗ ≤ M
l
√

ρ
∧ M .

CASE 2. t∗ > M
l
√

ρ
∧ M .

Case 1 is more or less modifications of the corresponding argument in the one-
block estimate. Case 2 is much more delicate. We use many ideas contained in [2],
but we have additional problems due to the unboundedness of particle numbers.
The possibility of getting good estimates depends, as we shall see, on the fact that
the ρ-dependence in (4.31) come through the product t

√
ρ, and not tρ, that would

have required much less work. This justifies the struggle in the previous pages.



LOG-SOBOLEV INEQUALITY FOR ZERO-RANGE 2381

CASE 1. t∗ ≤ M
l
√

ρ
∧ M .

Inserting t∗ in (4.31), we get, for some possibly different C > 0,

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]2

(4.32)

≤ CN + C

(
M

l
eCMeCM2eCM + 1

M

)
N EntνN

�
(f ).

By suitably choosing l and M , for a given ε > 0, this last term is smaller than

CεN + εN EntνN
�
(f ).(4.33)

So far we have assumed f normalized, that is, νN
� [f ] = 1. For the general case,

we may replace f by f/νN
� [f ], and we obtain an inequality stronger that (3.37),

for this Case 1.

CASE 2. t∗ > M
l
√

ρ
∧ M .

Suppose, first, t∗ > M , that is, 1 <
Ent

νN
�

(f )

MN
. Recalling νN

� (f ) = 1, rough esti-
mates give

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]2

≤ CN2 ≤ CN

M
EntνN

�
(f ),

that is better than (4.32). We are thus left with the hardest case, M
l
√

ρ
< t∗ ≤ M . We

have ∣∣∣∣∣νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]∣∣∣∣∣
≤

∣∣∣∣∣νN
�

[
f,

m∑
k=1

µη̄Ck
/l

[ ∑
x∈Ck

c̃(ηx)

]]∣∣∣∣∣(4.34)

+
∣∣∣∣∣νN

�

[
f,

m∑
k=1

(
ν

η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]
− µη̄Ck

/l

[ ∑
x∈Ck

c̃(ηx)

])]∣∣∣∣∣.(4.35)

We begin by estimating (4.35), which is the easiest of the previous two terms.
By (4.8), the expression in (4.35) in bounded above by

CνN
�

[
f

m∑
k=1

√
1 + η̄Ck

l

]
.(4.36)
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By concavity of
√·,

m∑
k=1

√
1 + η̄Ck

l
≤ m

√
1 + N

L
.

Since M
l
√

ρ
≤ t∗ implies 1 ≤ l

√
ρ

MN

√
EntνN

�
(f ), we get

(4.35) ≤ Cml
√

1 + ρ

√
ρ

MN

√
EntνN

�
(f )

(4.37)

≤ C′Lρ

√
EntνN

�
(f )

√
MN

≤ C′
√

M

√
N EntνN

�
(f ).

We now turn to the estimate of (4.34). This will require a large number of inter-
mediate steps. We begin by writing∣∣∣∣∣νN

�

[
f,

m∑
k=1

µη̄Ck
/l

[ ∑
x∈Ck

c̃(ηx)

]]∣∣∣∣∣
≤

∣∣∣∣∣νN
�

[
f ·

m∑
k=1

(
µη̄Ck

/l

[ ∑
x∈Ck

c̃(ηx)

]
− µρ

[ ∑
x∈Ck

c̃(ηx)

])]∣∣∣∣∣(4.38)

+
∣∣∣∣∣νN

�

[
m∑

k=1

(
µη̄Ck

/l

[ ∑
x∈Ck

c̃(ηx)

]
− µρ

[ ∑
x∈Ck

c̃(ηx)

])]∣∣∣∣∣.(4.39)

We now estimate (4.38). From the same argument, the estimate of (4.39) will come
for free. Note that

µη̄Ck
/l

[ ∑
x∈Ck

c̃(ηx)

]
− µρ

[ ∑
x∈Ck

c̃(ηx)

]
= lFk,(4.40)

where

Fk = α

(
η̄Ck

l

)
− α(ρ) − α′(ρ)

(
η̄Ck

l
− ρ

)
.

We now use essentially the same argument as for the estimate of the right-hand
side of (4.17). Set

Zk := 1

l

∑
x∈Ck

ηx − ρ

σ(ρ)
.

We have seen above [see (4.21)] that, for a given β > 0, the inequality

|Fk| ≤ C(β)σ(ρ)|Zk|2(4.41)
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holds on the set {|Zk| ≤ β}, where C(β) ↑ +∞ as β ↑ +∞. For the case |Zk| > β ,
we write

Fk = α(ρ + σ(ρ)Zk) − α(ρ) − α′(ρ)σ (ρ)Zk =: H(Zk).

Since α′ is bounded (see formulas (1.3) and (5.2) in [8]), |H ′(z)| ≤ Cσ(ρ) for
some C > 0, so that

|Fk| ≤ Cσ(ρ)|Zk|.(4.42)

It follows from (4.41) and (4.42) that, if we choose β so that C(β)β > C and
define

G(z) :=
{

C(β)z2, for |z| ≤ β,

β2C(β) + 2βC(β)(|z| − β), for |z| > β,
(4.43)

we have

|Fk| ≤ σ(ρ)G(Zk).(4.44)

Note that G(·) is a C1 convex function, and, for some C > 0, G(z) ≤ C(|z| ∧ z2).
By convexity of G(·),

m∑
k=1

G(Zk) ≤ 1

m

m∑
k,p=1

G

(
η̄Ck

− η̄Cp

lσ (ρ)

)
.

Thus,

(4.38) ≤ l

m
σ(ρ)

m∑
k,p=1

νN
�

[
f · G

(
η̄Ck

− η̄Cp

lσ (ρ)

)]

= l

m
σ(ρ)

m∑
k,p=1

νN
�

[
f,G

(
η̄Ck

− η̄Cp

lσ (ρ)

)]
(4.45)

+ l

m
σ(ρ)

m∑
k,p=1

νN
�

[
G

(
η̄Ck

− η̄Cp

lσ (ρ)

)]
.(4.46)

To estimate (4.45) and (4.46), we introduce the σ -fields

Fk,p = σ {ηx :x /∈ Ck ∪ Cp}.
Note that

νN
�

[
G

(
η̄Ck

− η̄Cp

lσ (ρ)

)∣∣∣Fk,p

]
= ν

η̄Ck
+η̄Cp

Ck∪Cp

[
G

(
η̄Ck

− η̄Cp

lσ (ρ)

)]

≤ C

l2σ 2(ρ)
ν

η̄Ck
+η̄Cp

Ck∪Cp

[(
2η̄Ck

− k
)2]∣∣

k=η̄Ck
+η̄Cp

,
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where we have used the inequality G(z) ≤ Cz2. The distribution of η̄Ck
under

ν
η̄Ck

+η̄Cp

Ck∪Cp
has been analyzed in Lemmas 8.2 and 8.6 of [4], where we have obtained

uniform Gaussian estimates, that imply

νN
�

[
G

(
η̄Ck

− η̄Cp

lσ (ρ)

)∣∣∣Fk,p

]
≤ C(η̄Ck

+ η̄Cp)

l2σ 2(ρ)
.(4.47)

In particular,

m∑
k,p=1

νN
�

[
G

(
η̄Ck

− η̄Cp

lσ (ρ)

)∣∣∣Fk,p

]
≤ 2CmN

l2σ 2(ρ)
.(4.48)

Thus,

(4.46) ≤ 2CN

lσ(ρ)
≤ C′

√
N

M
EntνN

�
(f ),(4.49)

where the inequality t∗ > M
l
√

ρ
has been used.

We now estimate (4.45). By the usual formula for the conditional covariance,

l

m
σ(ρ)

m∑
k,p=1

νN
�

[
f,G

(
η̄Ck

− η̄Cp

lσ (ρ)

)]

= l

m
σ(ρ)

m∑
k,p=1

νN
�

[
f, νN

�

[
G

(
η̄Ck

− η̄Cp

lσ (ρ)

)∣∣∣Fk,p

]]
(4.50)

+ l

m
σ(ρ)

m∑
k,p=1

νN
�

[
νN
�

[
f,G

(
η̄Ck

− η̄Cp

lσ (ρ)

)∣∣∣Fk,p

]]
.(4.51)

Using (4.48) and νN
� (f ) = 1, we get for (4.50) the same upper bound as for (4.46).

The key is now to estimate (4.51). In what follows, for compactness of notation,

we write νk,p[·] for νN
� [·|Fk,p] and Gk,p for G(

η̄Ck
−η̄Cp

lσ (ρ)
). The covariance

νk,p[f,Gk,p]
is left unchanged if we replace f by f − νk,p[√f ]2 = (

√
f − νk,p[√f ])(√f +

νk,p[√f ]). Thus, by the Cauchy–Schwarz inequality,

|νk,p[f,Gk,p]|
≤ {

νk,p

[(√
f − νk,p

[√
f
])2|Gk,p − νk,p[Gk,p]|]

(4.52)
× νk,p

[(√
f + νk,p

[√
f
])2|Gk,p − νk,p[Gk,p]|]}1/2

=: {D1D2}1/2.
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In the above expression, Gk,p is bounded from above by C
|η̄Ck

−η̄Cp |
lσ (ρ)

, for some
C > 0. Its νk,p-expectation is estimated again via the Gaussian estimates in Lem-
mas 8.2 and 8.6 of [4], giving

νk,p[Gk,p] ≤ C

√
η̄Ck

+ η̄Cp

lσ (ρ)
.

Thus,

D1 ≤ Cνk,p

[(√
f − νk,p

[√
f
])2

( |η̄Ck
− η̄Cp |

lσ (ρ)
+

√
η̄Ck

+ η̄Cp

lσ (ρ)

)]

≤ C

lσ(ρ)
νk,p

[(√
f − νk,p

[√
f
])2]

(4.53)

×
(

1

t
logνk,p

[
e
t |η̄Ck

−η̄Cp |] +
√

η̄Ck
+ η̄Cp

)

+ 1

t

C

lσ (ρ)
Entνk,p

((√
f − νk,p

[√
f
])2)

,

where we used the by now usual entropy inequality (3.19). The estimates on the
moment generating function

νk,p

[
e
t |η̄Ck

−η̄Cp |] = ν
η̄Ck

+η̄Cp

Ck∪Cp

[
e

2t |η̄Ck
−(η̄Ck

+η̄Cp )/2|]
can be done through arguments that we used already. We therefore only sketch the
steps needed:

1. By comparison between ensembles, using (4.6) as in (4.7), we reduce the prob-
lem to estimating a moment generating function with respect to the grand

canonical measure µρk,p
, with ρk,p = η̄Ck

+η̄Cp

2l
.

2. We are then left to estimate quantities of the form

µρk,p

[
et |ηx−ρk,p|].(4.54)

3. Lemma 4.1 allows us to estimate

µρk,p

[
et |c(ηx)−α(ρk,p)|] ≤ 2eCρk,pt2eCt

,(4.55)

for some C > 0. Now, for r > 0, let c(r) be obtained by linear interpolation
of c(n), n ∈ N. A simple consequence of Condition 2.2 is that there exists a
constant C > 0 such that

|r − s| ≤ C
(|c(r) − c(s)| + 1

)
(4.56)

for every r, s > 0. Moreover, by Lemma 5.8 in [8],

|c(r) − α(r)| ≤ C
√

r(4.57)
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for every r > 0. Putting (4.56) and (4.57) together, we get

|ηx − ρk,p| ≤ C|c(ηx) − α(ρk,p)| + C
√

η̄Ck
+ η̄Cp .(4.58)

4. Using (4.55) and (4.58), we get

νk,p

[
e
t |η̄Ck

−η̄Cp |] ≤ C exp
[
Ct

√
η̄Ck

+ η̄Cp + Ct2(η̄Ck
+ η̄Cp

)
eCt ].(4.59)

Collecting these last estimates and (4.53), we obtain, for t ≤ 1,

D1 ≤ C

lσ(ρ)
νk,p

[√
f ,

√
f
][1

t
+

√
η̄Ck

+ η̄Cp + t
(
η̄Ck

+ η̄Cp

)]
(4.60)

+ 1

t

C

lσ (ρ)
Entνk,p

((√
f − νk,p

[√
f
])2)

.

To optimize (4.60), we set

t2∗ := 1 ∨ (Entνk,p
((

√
f − νk,p[√f ])2))/νk,p[√f ,

√
f ]

η̄Ck
+ η̄Cp

.

If t∗ ≤ 1, inserting t∗ in (4.60), we get

D1 ≤ C

lσ(ρ)
νk,p

[√
f ,

√
f
]

(4.61)

×
(√

η̄Ck
+ η̄Cp +

√
η̄Ck

+ η̄Cp

√√√√Entνk,p
((

√
f − νk,p[√f ])2)

νk,p[√f ,
√

f ]
)
.

On the other hand, for t∗ > 1,

D1 ≤ C(η̄Ck
+ η̄Cp)

lσ (ρ)
νk,p

[√
f ,

√
f
]

≤
C
√

η̄Ck
+ η̄Cp

lσ (ρ)

√
νk,p

[√
f ,

√
f
]
Entνk,p

((√
f − νk,p

[√
f
])2)

,

that implies (4.61). Now, let Ek,p(·, ·) be the Dirichlet form of the zero-range
process in Ck ∪ Cp , where one point of Ck is assumed to be nearest neighbor
to one of Cp , so that exchange of particles is allowed. By (3.18), this process sat-
isfies a logarithmic Sobolev inequality with a constant s(l) depending only on l.
Therefore,

Entνk,p

((√
f − νk,p

[√
f
])2) ≤ s(l)Ek,p

(√
f ,

√
f
)
.(4.62)

Thus, by (4.61) and (4.62),

D1 ≤
C
√

η̄Ck
+ η̄Cp

lσ (ρ)
νk,p

[√
f ,

√
f
]

(4.63)

+
C
√

η̄Ck
+ η̄Cp

lσ (ρ)

√
νk,p

[√
f ,

√
f
]
s(l)Ek,p

(√
f ,

√
f
)
.
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Going back to (4.52), we have to estimate D2. This estimate goes along the
same lines as the one for D1, giving

D2 ≤
C
√

η̄Ck
+ η̄Cp

lσ (ρ)
νk,p[f ]

(4.64)

+
C
√

η̄Ck
+ η̄Cp

lσ (ρ)

√
νk,p[f ]s(l)Ek,p

(√
f ,

√
f
)
.

Now we consider the product D1D2. We can use the spectral gap estimate
νk,p[√f ,

√
f ] ≤ s(l)Ek,p(

√
f ,

√
f ) and the trivial bound νk,p[√f ,

√
f ] ≤

νk,p[f ] to obtain, for some new constant C that may depend on l,

D1D2 ≤ C(η̄Ck
+ η̄Cp)

σ 2(ρ)
νk,p[f ]Ek,p

(√
f ,

√
f
)
.(4.65)

So, by the Cauchy–Schwarz inequality and the fact that η̄Ck
+ η̄Cp is Fk,p-measu-

rable, we get

νN
�

[√
D1D2

] ≤ C

σ(ρ)

√
νN
�

[(
η̄Ck

+ η̄Cp

)
νk,p[f ]]νN

�

[
Ek,p

(√
f ,

√
f
)]

(4.66)

= C

σ(ρ)

√
νN
�

[(
η̄Ck

+ η̄Cp

)
f
]
νN
�

[
Ek,p

(√
f ,

√
f
)]

.

Thus, if C is some constant possibly dependent on l which may change from step
to step, by (4.52), (4.66) and Jensen’s inequality, we have

|(4.51)| ≤ l

m
σ(ρ)

m∑
k,p=1

νN
�

[√
D1D2

]

≤ C
1

m

m∑
k,p=1

√
νN
�

[(
η̄Ck

+ η̄Cp

)
f
]
νN
�

[
Ek,p

(√
f ,

√
f
)]

(4.67)

≤ C
1

m

m∑
k,p=1

√
νN
�

[
η̄Ck

f
]
νN
�

[
Ek,p

(√
f ,

√
f
)]

≤ C
∑
k

√√√√νN
�

[
η̄Ck

f
] 1

m

∑
p

νN
�

[
Ek,p

(√
f ,

√
f
)]

.

Now consider the term

νN
�

[
Ek,p

(√
f ,

√
f
)] = ∑

x∈Ck

∑
y∈Ck,y∼x

νN
�

[
c(ηx)

(
∂xy

√
f
)2]

+ ∑
x∈Cp

∑
y∈Cp,y∼x

νN
�

[
c(ηx)

(
∂xy

√
f
)2](4.68)

+ νN
�

[(
c
(
ηxk

) + c
(
ηxp

))(
∂xk,xp

√
f
)2]

,
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where xk and xp are the two sites in, respectively, Ck and Cp that may ex-
change particles. The first two summand in (4.68) are both bounded above by
EνN

�
(
√

f ,
√

f ). To bound the third summand, we use the following standard argu-
ment. Assume xp = xk + h, h > 0. Then, by Jensen’s inequality,

νN
�

[
c
(
ηxk

)(
∂xk,xp

√
f
)2]

= νN
�

[
c
(
ηxk

)( h∑
i=1

∂xk+i−1,xk+i

√
f
(
η − δxk

+ δxk+i−1
))2]

(4.69)

≤ h

h∑
i=1

νN
�

[
c
(
ηxk

)(
∂xk+i−1,xk+i

√
f
(
η − δxk

+ δxk+i−1
))2]

= h

h∑
i=1

νN
�

[
c
(
ηxk+i−1

)(
∂xk+i−1,xk+i

√
f (η)

)2]
,

where the last equality is a simple consequence of the detail balance (2.3). Clearly,
since h ≤ L, this last term is bounded above by LEνN

�
(
√

f ,
√

f ). Putting it all
together, we have∑

p

νN
�

[
Ek,p

(√
f ,

√
f
)] ≤ CmLEνN

�

(√
f ,

√
f
)

(4.70)

for some C > 0. Using (4.70), we can continue (4.67), obtaining, using Jensen’s
inequality again and νN

� (f ) = 1,

|(4.51)| ≤ C
∑
k

√
νN
�

[
η̄Ck

f
]
LEνN

�

(√
f ,

√
f
)

≤ Cm

√√√√νN
�

[
1

m

∑
k

η̄Ck
f

]
LEνN

�

(√
f ,

√
f
)

(4.71)

≤ C
√

NL

√
EνN

�

(√
f ,

√
f
)
.

Now, going back to (4.45), (4.46), (4.49), (4.50), (4.51) and (4.71), we have

(4.38) ≤ √
N

[
C
√

EntνN
�
(f )

√
M

+ DlL

√
EνN

�

(√
f ,

√
f
) ]

,(4.72)

where Dl depends on l, but C does not. This is very important since, in this
whole argument, l and M are taken large, but not in an independent way. This
last estimate easily extends to (4.39): in this case only the term (4.46) survives.
Finally, putting together (4.37) and (4.72), and choosing M large enough, we
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have

νN
�

[
f,

m∑
k=1

ν
η̄Ck

Ck

[ ∑
x∈Ck

c̃(ηx)

]]2

(4.73)
≤ N

[
CεL

2EνN
�

(√
f ,

√
f
) + ε EntνN

�
(f )

]
.

This completes the analysis of Case 2. Together with the estimates obtained
for Case 1, the proof of Proposition 3.10 is completed for densities away from
zero.

4.2. Case of small density. For the case of small density, the two blocks ar-
gument is irrelevant. We indeed succeed in proving Corollary 3.11 directly. We
restate Corollary 3.11 in more convenient terms for small densities.

LEMMA 4.4. For every ε > 0, there exists ρ0 > 0 and a constant Cε > 0 such
that, for N

L
≤ ρ0,

νN
�

[
f,

∑
x∈�

c(ηx)

]2

≤ NνN
� [f ](Cεν

N
� [f ] + ε EntνN

�
(f )

)
.(4.74)

PROOF. Without loss of generality, we again assume νN
� [f ] = 1. One more

time we begin with the entropy inequality. Letting ρ = N/L, we have

νN
�

[
f,

∑
x∈�

c(ηx)

]

= νN
�

[
f,

∑
x∈�

(
c(ηx) − α(ρ)

ρ
ηx

)]

(4.75)

≤ 1

t
logνN

�

[
exp

(
t
∑
x∈�

(
c(ηx) − α(ρ)

ρ
ηx − νN

�

[
c(ηx) − α(ρ)

ρ
ηx

]))]

+ 1

t
EntνN

�
(f ).

The next step consists in using the comparison between ensembles as in (4.5)–(4.13):
we do not repeat the argument. Taking into account that

µρ

[
c(ηx) − α(ρ)

ρ
ηx

]
= 0,

we are lead to the following estimate:

νN
�

[
exp

(
t
∑
x∈�

(
c(ηx) − α(ρ)

ρ
ηx − νN

�

[
c(ηx) − α(ρ)

ρ
ηx

]))]

(4.76)
≤ CeC

√
Nt (µρ

[
et(c(ηx)−(α(ρ)/ρ)ηx)])L.
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The point is now to estimate the moment generating function

µρ

[
et(c(ηx)−(α(ρ)/ρ)ηx)].

By an extension of Lemma 4.1, we would get an estimate of the form
exp[Cαt2ec|t |], where α = α(ρ). Recalling that α and ρ have the same order as
ρ ↓ 0, this estimate is not good for ρ (or α) small. We now show that the right
order, for small α and t , is eCα2t2

, and not eCαt2
. Indeed, let

F(t, α) := µρ

[
et(c(ηx)−(α/ρ(α))ηx)],

where we choose to take α rather than ρ = ρ(α) as main parameter. F(t, α) is an
entire analytic function, since α

ρ(α)
extends analytically at α = 0 where it takes the

value c(1), as shown by a direct computation. Note that F is of the form

F(t, α) = µρ

[
etϕ(α,n)],(4.77)

with

ϕ(α,n) = c(n) − α

ρ(α)
n.

We have

F(0, α) ≡ 1,(4.78)

∂tF (0, α) = µρ(ϕ(α,n)) ≡ 0,(4.79)

so that

∂t∂
k
αF (0,0) = 0(4.80)

for all k ≥ 0. Finally,

∂2
t F (0, α) = µρ[ϕ2(α,n)],

from which it follows that

∂α ∂2
t F (0, α) = −Z′(α)

Z(α)
µρ[ϕ2(α,n)]

+ 1

Z(α)

+∞∑
n=1

nϕ2(α,n)
αn−1

c(n)!(4.81)

+ 2µρ[ϕ(α,n) ∂αϕ(α,n)].
It is therefore easy to see that

∂α ∂2
t F (0,0) = 0,(4.82)

provided

ϕ(0,0) = ϕ(0,1) = 0,(4.83)
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which is seen by direct inspection.
Fix now a constant M > 0. By (4.78), (4.80) and (4.82), it follows that the

inequality

F(t, α) ≤ eCMα2t2
(4.84)

holds for every t ∈ [0,M] and ρ ≤ 1, where CM is a constant that may depend
on M . Thus, using (4.75), (4.76) and (4.84), we have

νN
�

[
f,

∑
x∈�

c(ηx)

]
≤ C

t
+ C

√
N + CMNρt + 1

t
EntνN

�
(f ),(4.85)

for t ∈ [0,M] and ρ ≤ 1. We again observe that the same estimate is obtained if∑
x∈� c(ηx) is replaced by its opposite. It follows that, for some possibly differ-

ent C,CM ,

νN
�

[
f,

∑
x∈�

c(ηx)

]2

≤ C

t2 + CN + CMN2ρ2t2 + 1

t2 Ent2
νN
�

(f ).(4.86)

For optimizing (4.86), we set

t2∗ =
1 ∨ M[EntνN

�
(f )]

N
.(4.87)

If t∗ ≤ M , then we can plug it in (4.86), obtaining

νN
�

[
f,

∑
x∈�

c(ηx)

]2

(4.88)

≤ 2CN + CMNρ2(1 ∨ [
M EntνN

�
(f )

]) + N

M
EntνN

�
(f ).

In the case t∗ > M , we have

1 ≤ 1

MN
EntνN

�
(f ),

and so

νN
�

[
f,

∑
x∈�

c(ηx)

]2

≤ CN2 ≤ CN

M
EntνN

�
(f ).(4.89)

Using (4.88) and (4.89), choosing first M large enough and then ρ0 small enough,
the statement of Lemma 4.4 follows, for νN

� [f ] = 1. The general case comes easily
applying this last result to f/νN

� [f ]. �
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5. Two blocks estimates II: proof of Proposition 3.12. We rewrite (3.38) in
the form

νN
�

[
f,

∑
x∈�

ρh(ηx)

]2

(5.1)
≤ NνN

� [f ][Cεν
N
� [f ] + CεL

2EνN
�

(√
f ,

√
f
) + ε EntνN

�
(f )

]
.

This is the same as (3.37), with ρh(ηx) in place of c(ηx). We now simply follow
the whole proof of (3.37), and show that the replacement of c(ηx) with ρh(ηx)

does not cause any harm, up to minor modifications.
The first part of the argument (3.32)–(3.35) goes through with no changes, ex-

cept that, in proving (3.35) with ρh(ηx) in place of c(ηx), we use the estimates
in (3.22) rather than the ones in (3.21). Thus, the statement that corresponds to
Corollary 3.9 follows.

Thus, all we have to show is that there is choice of δ = δ(ρ) such that the
statement of Proposition 3.10 holds replacing c̃(ηx) with ρh(ηx) − δηx .

5.1. Case of density away from zero. We now follow the proof given in Sec-
tion 4.1, for ρ ≥ ρ0, for some ρ0 > 0. The steps described in equations (4.4)–(4.7)
require no changes, since they are only based on the fact that c̃(ηx) depends only
on ηx . The first step that needs justification is (4.8), which now reads

|νN
� [ρh(ηx)] − µρ[ρh(ηx)]| ≤ C

L

√
1 + ρ.(5.2)

This follows from Corollary 6.1 in [8], provided we prove that

µρ[h(ηx), h(ηx)] ≤ C

ρ
(5.3)

for some C > 0. Inequality (5.3) can be proved in various ways. Perhaps the fastest
one makes use of the Poincaré inequality (1.6)

µρ[f,f ] ≤ Bµρ

[
c(n)[f (n − 1) − f (n)]2],(5.4)

that holds for each f having finite µρ-variance, where C is a constant that does
not depend on ρ. Thus,

µρ[h(ηx), h(ηx)] ≤ Cµρ

[
c(n)

[
n

c(n)
− n + 1

c(n + 1)

]2]

≤ Cµρ

[
c(n)

[
1

c(n)c(n + 1)

[
n
(
c(n + 1) − c(n)

)]]2]
(5.5)

≤ Dµρ

[
1

c(n + 1)

]
,
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where, in the last step, we have used the fact that c(·) is Lipschitz and that n
c(n)

is
bounded and bounded away from zero (Proposition 2.3). Finally, a direct compu-
tation shows that

µρ

[
1

c(n + 1)

]
= 1

α

Z(α) − 1

Z(α)
≤ 1

α
,(5.6)

which, together with (5.5) and (5.4), proves (5.3). At this point, inequality (4.10)
for the new c̃ follows immediately.

The estimate of the first factor of (4.10) simply uses (4.8), so now we use (5.2)
instead. The second factor requires some work. As in the estimate of the right-hand
side of (4.17), it can be rewritten in the form µρ[eltG], where

G = ρ

[
η̄C1/l

α(η̄C1/l)
− ρ

α(ρ)

]
− δ

(
η̄C1

l
− ρ

)
.(5.7)

Set γ (ρ) = ρ
α(ρ)

and

δ = ργ ′(ρ) = ρ

[
1

α(ρ)
− ρα′(ρ)

α2(ρ)

]
.(5.8)

Now, after replacing F with G in (4.18), we distinguish the two cases |Z| > β and
|Z| ≤ β , for some β > 0 suitably chosen, where Z was defined in (4.19).

• For the case |Z| > β , in order to obtain the inequality that corresponds to (4.20),
we must show

|G| ≤ Cσ(ρ)|Z|.(5.9)

We examine separately the two summands in (5.7). For the term δ(η̄C1/l − ρ),
the bound in (5.9) is obvious. For the term

ρ

[
η̄C1/l

α(η̄C1/l)
− ρ

α(ρ)

]
,

we set x = η̄C1
l

. We must show that

|γ (x) − γ (ρ)| ≤ C

ρ
|x − ρ|.(5.10)

Since γ is bounded, inequality (5.10) is obvious for |x − ρ| >
ρ
2 . For the case

|x − ρ| ≤ ρ
2 , it is enough to observe that

sup
{
|γ ′(x)| :x ≥ ρ

2

}
≤ C

ρ
,

as it follows from γ ′(ρ) = α(ρ)−ρα′(ρ)

α2(ρ)
and the fact that ρ and α(ρ) have the

same order at both zero and +∞ (Proposition 2.3).
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• For the case |Z| ≤ β , we have, similarly to (4.21),

|G| ≤ ρ sup{γ ′′(s) : |s − ρ| ≤ βσ(ρ)}Z2σ 2(ρ).(5.11)

Note that

γ ′′(s) = −2α′(s)
α2(s)

+ 2s(α′(s))2

α3(s)
− sα′′(s)

α2(s)
.(5.12)

Since ρ ≥ ρ0, we may assume that β is small enough (depending on ρ0) so that
|s −ρ| ≤ βσ(ρ) ⇒ s ≥ ρ

2 . The first two summands in (5.12) are bounded by C
s2 .

The third is the dominant one. By (4.22), it is bounded by C
sσ(s)

. Therefore,

|G| ≤ C(β)σ(ρ)Z2,(5.13)

which completes the inequality that corresponds to (4.21).

At this point, the part of the proof from (4.23) to (4.31) requires no changes.
In the optimization of the entropy inequality (Section 4.1.4), no modifications

are needed for Case 1. For Case 2, the differences begin in (4.40), where Fk must
be replaced by

Gk = ρ

[
η̄Ck

/ l

α(η̄Ck
/ l)

− ρ

α(ρ)

]
− ργ ′(ρ)

(
η̄Ck

l
− ρ

)
.

The inequalities corresponding to (4.41) and (4.42) are obtained as for (5.9)
and (5.13). After this point, the proof makes no further reference to c̃, and no
changes are required.

5.2. Case of small density. In this case we have to prove the analog of
Lemma 4.4 with ρh(ηx) in place of c(ηx). We replace the first line of (4.75) by

νN
�

[
f,ρ

∑
x∈�

h(ηx)

]
= νN

�

[
f,

∑
x∈�

(
ρh(ηx) − ρ2

α

)]
.(5.14)

The proof is identical to that of Lemma 4.4, except that the function ϕ(α,n)

in (4.77) is now replaced by

ϕ(α,n) = ρ
n + 1

c(n + 1)
− ρ2

α
.

Equalities (4.77) and (4.83) hold, so no further change is needed.

6. Comparison between canonical and grand canonical measure: proof of
Proposition 4.1. We begin by two technical lemmas, giving uniform estimates on
the canonical measure, in different regimes of density. Define p

ρ
�(n) := µρ[η̄� =

n] for ρ > 0, n ∈ N and � ⊂⊂ Z
d . The idea is to get a Poisson approximation

of p
N/|�|
� (n) for very small values of N/|�| and to use the uniform local limit

theorem (see Theorem 6.1 in [8]) for the other cases.
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LEMMA 6.1. For every N0 ∈ N \ {0}, there exists a finite constant A0 such
that

sup
0<n≤N≤N0

∣∣∣∣pN/|�|
� (n) − Nn

n! e−N

∣∣∣∣ ≤ A0

|�|
for any � ⊂⊂ Z

d .

PROOF. Let ρ := N/|�| and assume, without loss of generality, that 0 ∈ �.
Notice that

µρ[η̄� = n]
= µρ

[
η̄� = n

∣∣∣max
x∈�

ηx ≤ 1
]
µρ

[
max
x∈�

ηx ≤ 1
]

+ µρ

[
η̄� = n

∣∣∣max
x∈�

ηx > 1
]
µρ

[
max
x∈�

ηx > 1
]
.

We begin by proving that

µρ

[
max
x∈�

ηx > 1
]

= O(|�|−1),(6.1)

uniformly in 0 < N ≤ N0.
Indeed,

µρ

[
max
x∈�

ηx > 1
]

= 1 − (1 − µρ[η0 > 1])|�|

and

µρ[η0 > 1] = 1

Z(ρ)

+∞∑
k=2

α(ρ)k

c(k)! = α(ρ)2

Z(ρ)

+∞∑
k=0

α(ρ)k

c(k + 2)!

= α(ρ)2

Z(ρ)

+∞∑
k=0

c(k)!
c(k + 2)!

α(ρ)k

c(k)! .

Since c(k)!/c(k + 2)! is uniformly bounded, we have µρ[η0 > 1] ≤ B1α(ρ)2 =
O(|�|−2), uniformly in 0 < N ≤ N0. Thus,

(1 − µρ[η0 > 1])|�| = (
1 − O(|�|−2)

)|�| = O(|�|−1),

which establishes (6.1).
Now let

ρ̃ :=
+∞∑
k=0

kµρ[η0 = k|η0 ≤ 1].
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A trivial calculation shows that

ρ̃ = µρ[η01(η0 ≤ 1)]
µρ[η0 ≤ 1] = µρ[η0] − µρ[η01(η0 > 1)]

µρ[η0 ≤ 1] = ρ − µρ[η01(η0 > 1)]
µρ[η0 ≤ 1] .

Moreover,

µρ[η01(η0 > 1)] = 1

Z(ρ)

+∞∑
k=2

kα(ρ)k

c(k)! = α(ρ)2

Z(ρ)

+∞∑
k=0

(k + 2)α(ρ)k

c(k + 2)!

≤ B2α(ρ)2

Z(ρ)

+∞∑
k=0

(k + 2)α(ρ)k

c(k)!
= B2α(ρ)2(ρ + 2) = O(|�|−2),

and finally,

ρ̃ = ρ + O(|�|−2)

1 + O(|�|−2)
= ρ + O(|�|−2).(6.2)

Observe that, for any n ∈ {0, . . . , |�|}, we have

µρ

[
η̄� = n

∣∣∣max
x∈�

ηx ≤ 1
]

=
( |�|

n

)
ρ̃(1 − ρ̃)|�|−n.(6.3)

This comes from the fact that the random variables {ηx :x ∈ �}, under the prob-
ability measure µρ[·|maxx∈� ηx ≤ 1], are Bernoulli independent random variables
with mean ρ̃. The remaining part of the proof follows the classical argument of
approximation of the binomial distribution with the Poisson distribution. Using
(6.2) and (6.3), after some simple calculations, we get

µρ

[
η̄� = n

∣∣∣max
x∈�

ηx ≤ 1
]

=
( |�|

n

)
ρ̃(1 − ρ̃)|�|−n

= |�|!
n!(|�| − n)!

[
N

|�| + O(|�|−2)

]n[
1 − N

|�| + O(|�|−2)

]|�|−n

= 1

n! [N + O(|�|−1)]n
[
1 − N

|�| + O(|�|−2)

]|�|

× |�|(|�| − 1) · · · · · (|�| − n + 1)

|�|n
[
1 − N

|�| + O(|�|−2)

]−n

= Nn

n! e−N + O(|�|−1)



LOG-SOBOLEV INEQUALITY FOR ZERO-RANGE 2397

uniformly in 0 < N ≤ N0 and 0 ≤ n < N . This proves that there exist positive
constants v1 and B3 such that if � ⊂⊂ Z

d is such that |�| > v1, then∣∣∣∣pN/|�|
� (n) − Nn

n! e−N

∣∣∣∣ ≤ B3

|�|
uniformly in N ∈ N \ {0} with N ≤ N0 and n ∈ N with n ≤ N . The general case
follows easily because the set of n ∈ N, N ∈ N \ {0} and � ⊂⊂ Z

d such that
n ≤ N ≤ N0, |�| ≤ v1 and 0 ∈ � is finite. �

PROPOSITION 6.2. For any ρ0 > 0, there exist finite positive constants A0, n0
and v0 such that

1.

sup
n∈N

∣∣∣∣
√

σ 2(ρ)|�|pρ
�(n) − 1√

2π
e−(n−ρ|�|)2/(2σ 2(ρ)|�|)

∣∣∣∣ ≤ A0√
σ 2(ρ)|�|

(6.4)

for any ρ ≤ ρ0 and any � ⊂⊂ Z
d such that σ 2(ρ)|�| ≥ n0.

2.

sup
ρ>ρ0
n∈N

∣∣∣∣
√

σ 2(ρ)|�|pρ
�(n) − 1√

2π
e−(n−ρ|�|)2/(2σ 2(ρ)|�|)

∣∣∣∣ ≤ A0√|�|(6.5)

for any � ⊂⊂ Z
d such that |�| ≥ v0.

PROOF. This is a special case of the local limit theorem for µρ (see Theo-
rem 6.1 in [8]). �

PROOF OF PROPOSITION 4.1. Assume that n := ν�σ�′ ∈ {0, . . . ,N}, and
observe that

νN
� [η�′ = σ�′ ] = µN/|�|[η�′ = σ�′, η̄� = N]

µN/|�|[η̄� = N]

= µN/|�|[η�′ = σ�′, η̄�\�′ = N − n]
µN/|�|[η̄� = N]

= µN/|�|[η�′ = σ�′ ] · µN/|�|[η̄�\�′ = N − n]
µN/|�|[η̄� = N] .

Thus, we have to bound from above the ratio

µN/|�|[η̄�\�′ = N − n]
µN/|�|[η̄� = N] = p

N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

.

Fix ρ0 > 0 and consider three different cases.
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Small density case. There exists N0 > 0 such that

sup
N0≤N≤ρ0|�|
n∈Z,�⊂⊂Zd

p
N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

< +∞.

Proof of small density case. Assume N/|�| ≤ ρ0. By point 1 of Proposi-
tion 6.2, there exist positive constants B0 and n0 such that∣∣∣∣

√
σ 2(N/|�|)|� \ �′|pN/|�|

�\�′ (N − n)

− 1√
2π

e−(N−n−(N/|�|)|�\�′|)2/(2σ 2(N/|�|)|�\�′|)
∣∣∣∣

≤ B0√
σ 2(N/|�|)|� \ �′|

uniformly in N/|�| ≤ ρ0, σ 2(N/|�|)|�\�′| ≥ n0 and n ∈ Z. Moreover, by (2.5),
there exist B1 > 0 such that

σ 2(N/|�|)|� \ �′| ≥ B−1
1 N

|� \ �′|
|�| ≥ B−1

1 (1 − δ0)N ≥ n0,

for any N ≥ B1n0/(1 − δ0). Similarly, for any N ≥ 8πB2
0B1/(1 − δ0), we have

σ 2(N/|�|)|� \ �′| ≥ B−1
1 (1 − δ0)N ≥ 8πB2

0 .

Thus, for any N ≥ N0 := �[n0 ∨ (8πB2
0 )]B1(1 − δ0)

−1	 such that N ≤ ρ0|�|, we
get √

σ 2(N/|�|)|� \ �′|pN/|�|
�\�′ (N − n) ≤ 1√

2π
+ B0√

σ 2(N/|�|)|� \ �′|
(6.6)

≤ 1√
2π

+ 1√
8π

= 3

2
√

2π
,

uniformly in n ∈ N. Similarly, since∣∣∣∣
√

σ 2(N/|�|)|�|pN/|�|
� (N) − 1√

2π

∣∣∣∣ ≤ B0√
σ 2(N/|�|)|�|

uniformly in N/|�| ≤ ρ0, σ 2(N/|�|)|�| ≥ n0 and n ∈ Z, by choosing N ≥ N0,
again we get√

σ 2(N/|�|)|�|pN/|�|
� (N) ≥ 1√

2π
− B0√

σ 2(N/|�|)|�|
(6.7)

≥ 1√
2π

− 1√
8π

= 1

2
√

2π
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for any N ≥ N0 such that N ≤ ρ0|�| and for any n ∈ Z. By (6.6) and (6.7), we get

p
N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

≤ 3

√
|�|

|� \ �′| ≤ 3√
1 − δ0

for any n ∈ Z, N0 ≤ N ≤ ρ0|�|.

Very small density case. For any fixed N0 > 0,

sup
0<N≤N0

n∈Z,�⊂⊂Zd

p
N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

< +∞.

Proof of very small density case. In this case we use the trivial bound
p

N/|�|
�\�′ (N − n) ≤ 1 on the numerator and for the denominator, we use Lemma 6.1,

which implies that there exists a positive constant B2 such that, for any 0 < N ≤ N0,

p
N/|�|
� (N) ≥ NN

N ! e−N − B2

|�|
for any � ⊂⊂ Z

d . It follows that

p
N/|�|
� (N) ≥ sup

0<N≤N0

NN

N ! e−N − B2

|�| ≥ 1

2
sup

0<N≤N0

NN

N ! e−N

for any 0 < N ≤ N0, � ⊂⊂ Z
d with

|�| ≥ v1 := 2B2

sup0<N≤N0
(NN/N !)e−N

.

This proves that

sup
0<N≤N0

n∈Z,|�|≥v1

p
N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

< +∞,

the general case follows trivially because the set of N ∈ N \ {0} and 0 ∈ � ⊂⊂ Z
d

such that N ≤ N0 such that |�| < v1 is finite.

Normal and large density case. There exists v0 > 0 such that

sup
N>ρ0|�|,n∈Z

�⊂⊂Zd ,|�|>v0

p
N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

< +∞.
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Proof of normal and large density case. Assume that N/|�| > ρ0. Then, by
point 2 of Proposition 6.2, there exist positive constants B3 and v2, the latter de-
pending on δ0, such that, for any �′ ⊂ � ⊂⊂ Z

d with |�| ≥ v2 and |�′|/|�| ≤ δ0,
we have ∣∣∣∣

√
σ 2(N/|�|)|� \ �′|pN/|�|

�\�′ (N − n)

− 1√
2π

exp
[
−(N − n − (N/|�|)|� \ �′|)2

2σ 2(N/|�|)|� \ �′|
]∣∣∣∣ ≤ B3√|� \ �′|

and ∣∣∣∣
√

σ 2(N/|�|)|�|pN/|�|
� (N) − 1√

2π

∣∣∣∣ ≤ B3√|�|
uniformly in N/|�| > ρ0, and n ∈ Z. Now take

v0 := v2 ∨ 8πB2
3

1 − δ0
.

Then for any � such that |�| ≥ v0, we have√
σ 2(N/|�|)|� \ �′|pN/|�|

�\�′ (N − n)

≤ 1√
2π

+ B3√|� \ �′| ≤ 1√
2π

+ B3√
(1 − δ0)|�|

≤ 1√
2π

+ 1

2
√

2π
= 3

2
√

2π

and√
σ 2(N/|�|)|�|pN/|�|

� (N) ≥ 1√
2π

− B3√|�| ≥ 1√
2π

− 1

2
√

2π
= 1

2
√

2π
,

uniformly in N/|�| > ρ0, and n ∈ Z. This implies

p
N/|�|
�\�′ (N − n)

p
N/|�|
� (N)

≤ 3

√
|�|

|� \ �′| ≤ 3√
1 − δ0

for any n ∈ Z, N > ρ0|�|, �′ ⊂ � ⊂⊂ Z
d with |�| ≥ v0 and |�′|/|�| ≤ δ0.

This completes the proof of (4.6). �
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