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CHOQUET EXPECTATION AND PENG’S g-EXPECTATION

BY ZENGJING CHEN,! TAO CHEN AND MATT DAVISON?
Shandong University and University of \Western Ontario

In this paper we consider two ways to generalize the mathematical
expectation of a random variable, the Choquet expectation and Peng’s
g-expectation. An open question has been, after making suitable restrictions
to the class of random variables acted on by the Choquet expectation, for
what class of expectation do these two definitions coincide? In this paper
we provide a necessary and sufficient condition which proves that the only
expectation which lies in both classes is the traditional linear expectation.
This settles another open question about whether Choquet expectation may be
used to obtain Monte Carlo-like solution of nonlinear PDE: It cannot, except
for some very special cases.

1. Introduction. The concept of expectation is clearly very important in
probability theory. Expectation is usually defined via

Eé:/_o;xdF(x),

where F(x) := P(¢ < x) is the distribution of random variabke with respect to
the probability measur®. Alternatively, the expectatioB¢ can be written as

0 +00
(0.1) E& =/_OO[P<5 > 1) —1]dr+[o P > 1) d1,

which implies the relation between mathematical expectation and probability
measure. One of the properties of mathematical expectation is its linearity: for
given random variables andn,

(0.2) E( +n)=E§+ En.
This is equivalent to the additivity of probability measure, that is,

(0.3) P(A+B)=P(A)+P(B) ifANB=0.
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From this viewpoint, we sometimes call mathematical expectation (resp. proba-
bility measure) linear mathematical expectation (resp. linear probability measure).
It is easy to define conditional expectation using the additivity of mathematical

expectations, that is, the conditional expectatioof a random variablé under

a giveno-field # is a ¥ -measurable random variable such that

(0.4) EEIn=Enly, VAcF.

It is well known that linear mathematical expectation is a powerful tool for dealing
with stochastic phenomena. However, there are many uncertain phenomena which
are not easily modeled using linear mathematical expectations. Economists have
found that linear mathematical expectations result in the Allais paradox and
the Ellsberg paradox, see Allais (1953) and Ellsberg (1961). How to deal with
uncertain phenomena which cannot be well explained by linear mathematical
expectations? One idea is to examine nonlinear expectations. How should
nonlinear mathematical expectations be defined? Choquet (1953) extended the
probability measureP in (0.1) to a nonlinear probability measuve(also called

the capacity) and obtained the following definitié€) of nonlinear mathematical
expectations (called the Choquet expectation):

0 +00
C) :=/Oo[v<s zr)—l]dr+fo V(E =0 d.

BecauseV no longer has property (0.3), the above Choquet expectatign
usually no longer has property (0.2). Choquet expectations have many applications
in statistics, economics, finance and physics. Unfortunately, scientists also find
that it is difficult to define conditional Choquet expectations in terms of Choquet
expectations. Many papers study the Choquet expectation and its applications, see,
for example, Anger (1977), Dellacherie (1970), Graf (1980), Sarin and Wakker
(1992), Schmeidler (1989), Wakker (2001), Wasserman and Kadane (1990)
and the references therein. Peng (1997, 1999) introduced a kind of nonlinear
expectation (he calls it thg-expectation) via a particular nonlinear backward
stochastic differential equation (BSDE for short). Using Peng&sxpectation,
it is easy to define conditional expectations in the same way as in (0.4). Some
applications of Peng'g-expectation in economics are considered in Chen and
Epstein (2002). An open guestion raised by Peng is the following: What is the
relation between Choquet expectation and Pegegixpectation? We note that
Peng’sg-expectations can be defined only in a BSDE framework, while Choquet
capacities and expectations makes sense in more general settings. In this paper
when we compare the two objects, we do so after making suitable restrictions
to Choquet expectations. That said, does there exist a Choquet expectation
whose restriction to the domaiﬂz(sz,}‘, P) of g-expectation is equal to a
g-expectation?

An earlier work by Chen, Kulperger and Sulem (2002) shows that the answer is
yes for certain special random variables. In this paper we shall further study this
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guestion and obtain a necessary and sufficient condition for this open question.
This settles another open question about whether Choquet expectation may be
used to obtain Monte Carlo-like solution of nonlinear partial differential equations
(PDE): It cannot, except for some very special cases.

2. Notation and lemmas. In this section we introduce the concepts of
Choquet expectation and Peng'&xpectation. For convenience, we include some
related lemmas used in this paper.

Capacity and Choquet expectation. We now introduce the concepts of capacity
and Choquet expectation.

DEFINITION 1. 1. Random variablesandn are called comonotonic if
[£(w) = &(@)]n(w) —n@)]=0  VYo,o' Q.

2. (Comonotonic additivity). A real functional F on L%(Q2, ¥, P) is called
comonotonic additive if

FE+n)=FE&) + F() whenevek andn are comonotonic

3. A setfunctionV : ¥ — [0, 1] is called a capacity if:
() V(@)=0,V(Q) =1;
(i) If A,Be ¥ andA C B, thenV(A) < V(B);
(iii) If A, 1 A, thenV(A,) 1 V(A), n — oo.
4. LetV be a capacity € L2(2, ¥, P) and denote (¢) by

0 00
C():= LM(V(S zt)—l)dt+/0 V(E=>1t)dt.

We callC (&) the Choquet expectation 6fwith respect to capacity .

Dellacherie (1970) showed that comonotonic additivity is a necessary condition
for a functional to be represented by a Choquet expectation.

BSDEs and g-expectation. Let (22, #,P) be a probability space with filtra-
tion (¥5)s>0, and let(W;),>0 be a standard-Brownian motion. For ease of ex-
position, we assumé = 1. The results of this paper can be easily extended to the
cased > 1. Suppose that¥y) is theo -filtration generated byW;),>o, that is,

Fs=0{W;;0=r=s}.

Let 7 >0, Fr = F andg = g(y,z,1):R x RY x [0,T] — R be a function
satisfying

(H.1) Y(y,2) eRx RY, g(y,z,1) is continuous in andfOT 2%(0,0, 1) dt < oo;
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(H.2) g is uniformly Lipschitz continuous in(y, z), that is, there exists a
constaniC > O suchthav'y,y' € R, z,z' € R?, |g(y,z,1) — g(y/, 2, 1)| <
Cly = yl+lz=2);

(H.3) g(y,0,1)=0,Y(y,1) e Rx [0, T].

Let M(O,T,R") be the set of all square integrabR’-valued, ¥;-adapted
processesv, } with

T
E/ |v,|2dt < 00.
0

For eachr € [0, T], let LZ(Q, F:, P) be the set of all#;-measurable random
variables. Pardoux and Peng (1990) considered the following backward stochastic
differential equation:

T T
1) yz=é‘+ft g(ys,zs,S)ds—ft zs d Wy,

and showed the following result:

LEMMA 1. Supposethat g satisfies (H.1)—(H.3)and & € L?(Q2, #, P). Then
BSDE (1) has a unique solution (y, z) € M(0, T; R) x M (0, T; R?).

Using the solution of BSDE (1), Peng (1997) introduced the concept of
g-expectation via BSDE (1).

DEFINITION 2. Supposg satisfies (H.1)—(H.3). Givea e L?(Q, , P), let
(v, z) be the solution of BSDE (1). We denote Pengrexpectation o by &,[£]
and define it

&gl&]:= yo.

From the definition ofg-expectation, Peng (1997) introduced the concept of
conditionalg-expectation:

LEMMA 2. For any & € L%(Q2, ¥, P), there exists unique n € L%(Q, %, P)
such that
Eel1aé]=E&;llan] VAeF.

We call n the conditional g-expectation of & and write n as &,[£|¥;]. Of course,
such conditional expectations can be defined only for sub o -algebraswhich appear
in the filtration {#;}. Furthermore, &,[£|#;] is the value of the solution {y;} of
BSDE (1) attimer. That is,

Egl&1F1] = yi.



CHOQUET AND PENG EXPECTATION 1183

Theg-expectatiore, -] preserves many of the properties of classical mathemat-
ical expectation. However, it does not preserve linearity. See, for example, Peng
(1997) or Briand et al. (2000) for details.

LEMMA 3. 1.If c isaconstant, then &;[c] =c.

. 1f &1 > &2, then &,[£1] > &g [&2].

. 8g[8g[§|~%]] = gg[g]

. If & is ¥;-measurable, then &,[£|F;] =&.

. For the real function g defined on R x RY x [0, T), if & isindependent of %;,
then &, [£| ] = &,[£].

b owN

From the definition og-expectation, it is natural to defireprobability thus:

DEFINITION 3. For givenA € ¥, denoteP,(A) by
Py(A) = &, 14].

We call P;(A) the g-probability of A. Obviously, P, (-) is a capacity.

To simplify notation, we sometimes rewrigg-expectation&,[-], conditional
g-expectationg,[-|#;] and g-probability Py (-) asé&,l[-1, Eul-|F:], Pu.(-), respec-
tively, if g(v, z, 1) = ulz|.

REMARK 1. 1. g-expectation and conditional-expectation depend on the
choice of the functiong, if g is nonlinear, therg-expectation is usually also

nonlinear.

2. If g =0, setting conditional expectatiofi[-|#;] on both sides of BSDE (1)
yields y; = &[£|F:] = E[£|F:], yo = &[&] = E[£]. This implies another
explanation for mathematical expectation: Within the particular framework of
a Brownian filtration, conditional mathematical expectations with respegt to
are the solution of a simple BSDE and mathematical expectation is the value of
this solution at time = 0.

The following example is a special case of Theorem 2.2 in Chen and Epstein
(2002).

ExampLE 1. Letu :={u,} be a continuous function ofD, T]. Suppose
g(yv,z,t) = usz| and P is a set of probability measures denoted by

P :Qv AO° ) [ 1w ds G vedW,
. . dP . b

v, is F;-adapted antb, | < |u,|, a.e.t € [0, T]}.

Then for anyt € L2(2, , P), we have:
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() g-expectatiorg,[£]:

EE, n =0,
inf Epl&], 0,
§.0€1= | 0ep ol§] m<
sup Eglé], w > 0.
QeP
(i) Conditional g-expectation:
E[§]F:], n=0,
essinfE F1, 0,
EulE|F]=1 0er olsl#] =
essSUEql¢|F],  u>0.
QeP
(i) g-probability (capacity)V A € ¥,
P(A), w=0,
inf O(A 0
Pu(A) = QIQfQ( ), wn <0,

sup Q(A), > 0.

QeP

The following are two key lemmas that we shall use in the next section:
Lemma 4 is from Briand et al. (2000). We rewrite it in the following form.
Lemma 5 is from Peng (1997):

LEMMA 4. Suppose {X,} isof the following form:
dX; = b, dW;,
b is a continuous, bounded adapted processes. Then
lim Eg[ Xs|F1] — E[Xs|F1]

s—>t s —1

where the limit isin the sense of L2(2, F, P).

:g(Xtabht)’

LEMMA 5. If g is convex (resp. concave) in (y,z), then for any &,
neL%Q,F,P),

Eolé +nlF 1= (resp.=) & 17 ]+ &lnlF],  1€[0,T].
3. Mainresult. The main result in this paper is the following theorem:

THEOREM 1. Suppose that g satisfies (H.1)—(H.3). Then there exists a
Choquet expectation whose restriction to L2(2, F, P) isequal to a g-expectation
if and only if ¢ does not depend on y and is linear in z, that is, there exists
a continuous function v(¢) such that

gy, z,t) =v(t)z.
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The strategy of the proof is the following. First, we shall show tha,if] is
a Choquet expectation on the set of all random variables with the formWr,
then g is of the form g(y,z,t) = u.lz| + viz. Second, we further show if
g-expectation is a Choquet expectation on the set of all random variables with
the formIw, >1; and/j1<w, <2;, thenu, = 0.

Lemma 6 is the first step. The first part of Lemma 6 shows the uniqueness of
capacity:

LEMmA 6. If there exists a Choquet capacity V such that the associated
Choquet expectation on L2($2, ¥, P) isequal to a g-expectation, then:

(i) V(A)=P,(A),YAeF;

(ii) There exist two continuous functions u,, v(¢) on [0, 7] such that g isof the
form

gy, z,t) = ulzl +v(H)z.

PrROOF (i) Let C (&) be the Choquet expectation fvith respect tdv, if
E§]1=C(§) VEe LA(Q, F, P).

In particular, for anyA € #, let us choos& = I, thus, &[/a] = C(1a).
By the definition of Choquet expectatiof,(/4) = V(A) and P,(A) = &,[14],
completing the proof of (i).

(i) If &[-] is a Choquet expectation abk?(Q2, F, P), then by Dellacherie’s
theorem in Dellacherie (1970§,[-] is comonotonic additive. That is,
(2)  &l& +nl= &[]+ Elnl whenevegE andn are comonotonic.

Choose constants, z1, 1), (y2, z2, 1) € R? x [0, T such thatz1zo > 0. For any
T €[t, T], denotet = y1 + za(W; — W) andn = y2 + zo(W; — W)).

It is easy to check that andn are comonotonic and independent#&f Note
that ¢ is deterministic and; andz;, i = 1, 2, are constants. Applying part 5 of
Lemma 3,

Egl&|F:] = &1, Egn|F:] = & lnl, Egl& + nlFil = Egl€ +nl.
This with (2) implies
Egl§ +nlF:] — E[§ +nlF:]
T—1
_ l§lF ] — EI§]#] . Egln|Fi] — E[nl%].
T—1 T—1
Let T — ¢ on both sides of (3) to obtain, using Lemma 4,

®3)

@ gy1+y2,z1+z2, 1) =g(y1,21, 1) + g(y2, 22, 1)

Vz1z2>0,y1, 2 € R,
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which implies thalg is linear with respect tg in R andz in Ry (or R_).
Thus, for any(y,z,t) € R? x [0, T], note thatg(y,0,7) =0 in (H.3) and
apply (4) to obtain

8§, z,1) = g(y + 0, 2l[;0) + 21jz<0}, 1)
=g(y, 2lizz01, 1) + (0, 21 1z<0), 1)
=g(y+0,0+zlz>0), 1) +g(0, = (=2) I 1z<0), 1)
=¢2(y,0,0) +g(0,zl;:>0), 1) + &(0, —(—2) [ 1z<0}. 1)
=¢(0,1,0zlz=0 — g(0, =1, 1)z 1 - <0y
=8(0,1,0z" +¢(0, -1, 1)(—=2)"

|z|+z+ 2(0, -1, )Izl—z

g(o’ l?t)+g(09_l9t) g(o,l,t)—g(o,—l,t)
> |z] + > Z.

The second equality is becausk,~o; - zI[;<g = 0.

Setp, := £QLDTLOLD gngy () .= £OLD=LOLD 15 complete the proof.
O

20,11

Next, we show thafu; = 0 for r € [0, T]. We need the following lemmas.
Lemma 7 is a special case of the comonotonic theorem in Chen, Kulperger and
Wei (2005):

LEMMA 7. Suppose @ is a function such that ®(Wr) e L%(Q, F, P). Let
(vt, z;) bethe solution of
T T
(5) yi= W+ [ lzlds = [ zaw,,
where i, isa continuous function on [0, T'].
() If ®isincreasing, thenz, >0, ae r [0, T].
(i) If ® isdecreasing, thenz, <0,a.e [0, T].

PROOF (Sketched for the reader’'s convenience). Eox 0, let g.(z,1) =
wivz2 + ¢, theng, is a smoothC2-function which— i, |z| ase — 0.
Let {y2"*, z6"*} o<s<T1) be the solution of the BSDE:

T T
o= ®Wr Wit + [ pa2tedr— [ zaW,  0ss<T,
N

N

and{y>*, zl-*}0<s<7) be the solution of the BSDE:

T T
Vs = O(Wr — W; +x) + mmdr—/ o dW,, 0<s<T.
Y S
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By the convergence theorem of BSDE, see Proposition 2.1 in El Karoui, Peng and
Quenez (1997),

50", 25" Yozs<m) = I, 20 Y o<s<1) ase — 0

in the sense of( (0, T; R) x M(0, T; RY).

Moreover, if we chooser = 0, r = 0 in {y/*, z/*}, then {y29, z09} is the
solution of BSDE (5). Thus, if we can show for eack [0, T], z5"* > 0, a.e.
s € [0, T1, by the convergence theorem of BSDE in El Karoui, Peng and Quenez
(1997), we have!* > 0, thus,z, = 220> 0.

Without loss of generality, we assume thét is a smooth C2-function,
otherwise, we can choose a sequence of sma@ttHunctions ®, such that
o, — ® ase — 0.

Let u(r, x) = yo"*. Then the general Feynman—Kac formula, see Proposi-
tion 4.3 in El Karoui, Peng and Quenez (1997) or Ma, Protter and Yong (1994),

implies thatu, solves the PDE

du, N }321425
ot 2 0x
ug(T,x)=d(x),0<r<T.

+g£(x’t) :O’

Moreover,
erx _ Ous(s, Wy —Wy)
§ 9x '

On the other hand, by the comparison theorem of PRE, x) is increasing irnx
if ® is increasing, thus,

dug(t,x) -

ax -

This implies that{'* > 0, s > 0. Lettinge — 0 and(x, r) = (0, 0), we obtain ().
Similarly, we can obtain (ii) if® is decreasing. The proof is completd.]

0.

Furthermore, we can prove the following:

LEMMA 8. Let u, beacontinuousfunctionon [0, 7] and (y, z) bethe solution
of BDE

T T
(6) yt=s+ft us|zs|ds—ft 2y dWj.
(I) |f§ = I[WTZJ-]’ thenz, >0Vt €0, T).

(i) If & = ©(Wr), where ® is a bounded function with strictly positive
derivative ®',thenz; > 0,Vt € [0, T).
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(i) 1f &€ = Ipsw,>15, then P x A({(w, 1) : z;(w) < 0}) > O,
where 2 denotes Lebesgue measureon [0, T) and P x A denotes the product of the
probability measure P and the Lebesgue measure A.

ProoF (i) Note that the indicator function/[,>1) is increasing, so by
Lemma 7z, >0, a.et € [0, T]. This implies that the BSDE (6) is actually a linear
BSDE:

T T
Vi = lIiwy =11+ Mszsds_/ zs dWs.
t t

Let
. t
W,=W, —/ wsds,
0
then
T —_—
(7) yi = lwy>1 —/ zsdWs.
t

Let Q be the probability measure defined by

do 1T, T
— =eXxp ——= d dwg |.
dP p[zo“ss+ffJ““ S]

By Girsanov’s lemma(W,)o<;<r is a Q-Brownian motion.
Set conditional expectatio®p[-|¥#;] on both sides of BSDE (7). From the
Markov property,

Iiwp>1| %]
1

Wr>1—/7 M;dS]uf]

ol
ol
[ walF]
ol!

Q Iy Wtzl—foTll-st—Wt]

=F
E
E

Wr—W,; zl—fOT s ds—
Note thato (Wy; s <t) =0 (W, s <
Vi = EQ[I

1) becauseu, is a real function irr, thus,
Wr—W,>1— /& u ds—W,]|‘7(Wt)]-
SinceW7 — W, andW, are independent, we have
e = EQ[I[WTfW,zlffOT s dsfh]]|h=W,‘

ButWry — W, ~N(, T — 1), therefore,
o0

= (x)dx| _,
g 1—f0TMst—h(p ‘h=Wr

wheregp(x) is the density function of the normal distributio®(0, T — ¢).
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By the relation between; andz;, see Corollary 4.1 in El Karoui, Peng and
Quenez (1997), we have

T —
=<p(1—/ ,usds—Wt)>0,
h:Wf 0

thatis,z; > 0,a.er [0, T).
(ii) Similar to the proof of (i) and noting the fact thé' > 0, it is easy to check

_

AT

00 o T
Z;=/ d>/<x+Wt+/ ;Lsds>(p(x)dx>0, tel0,7T),
—00 0
wheregp(x) is the density function of the normal distributidf 0, T — 7).

(i) For given & = I;2>w,>1), We assume the conclusion of (i) is false, then
z; >0, a.er €[0, T), which implies that BSDE (6) is actually a linear BSDE:

T T
Yt = I[ZZWTzl] + / MsZsds — / 25 dWs.
t t

That is,
T _
(8) Vi = l2>wp>1 —/ zsdWs,
t

where

- t

Wl‘ = Wl‘ — / MUs ds.

0
Asin (i), let

dQ—ex[lfT 2d+/T dW}
gp SO o | medst | uedWs ).

Applying Girsanov’s lemma agaitV,)o<,<r is a Q-Brownian motion.
Set conditional expectatiof'p[-|#;] on both sides of BSDE (8). Note that
o(Ws;s <t)=a(Wy;s <1),
i = Eg[l2=wr=1 %]

=Eollp i 1y a5, =Wy W21 1 1y as-w,1| %]

2—J¢ usds—W>Wr—W,>1— [ jusds—W,] lo (W]

[
o
©Q
— T —

22— & usds—h=Wr—W,>1—fI u; ds—h]] |h=W, .
SinceWr — W, ~N(@O, T —1),

2—[d psds—h

(p(x)dx‘h__ .

Ve = _W,

1— T s ds—h
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Therefore, applying the relation betwegnandz; again,

o
ah h:W[

T . T _
=<P(1—/o Mst—Wz)—<P(2_/O ,U«st—Wt)
_ ex [_ 1-Jo Msds—Wt)z}
V2T —1) H 2T —1)

_ 71 ex _(2_ foT s ds _Wt)z]
NZZZviEDn) 2T —1) '

However, it is easy to check that

it =

o T
z;>0,re[0,T) whenW; <%’—/ s ds;
0

T
z; <0,t€[0,T) whenWw,; > %’ —/ W ds,
0
which implies
P(z; >0 >0, P(z;<0)>0 a.erel0,T),
thus, P x A((w,t):z:(w) < 0) > 0. We obtain a contradiction. The proof is

complete. O

Let L2(Q, F, P) [resp. L2(Q2, F, P)] be the set of all nonnegative (resp.
nonpositive) random variables Inz(Q F, P).

LEMMA 9. Suppose that g is a convex (or concave) function. If &[] is
comonotonic additiveon L2 (Q, F, P) [resp. L2 (Q, ¥, P)], then &[-| F] |salso

comonotonic additive on L2 (2, F, P) [resp. L2 (Q, ¥, P)] for any t € [0, T).

PROOF We show the above result ab? (2, F, P); the result onL? (<,
¥, P) can be proved in the same way.

Becauses,[-] is comonotonic additive o2 (2, F, P), then¥&, n € L2 (Q,
F, P), we have

9) &€ +n] = &;[&] + &;[n] wheneve andn are comonotonic.
We now showv't € [0, T)
(10)  &4[& + n|Fi1 = &4[E1F11 + &4[n]F:]1 wheneveg andn are comonotonic.
First, we assume thatis a convex function. Then by Lemma 5,
Egl§ +nlFi] < &lE1F1] + Eglnl F1] Vi el[0,T].
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If (10) is false, then there existse [0, T'] such that
P(w:&[§ +nlF:] < &I[E1F] + EglnlF:]) > 0.
Let
A={w:&[& +n|Fi] < EIEIF] + Eln| F:1}.
ObviouslyA € #, and
TA&g[E + | Fi] < 1a&g[E|F:] + 14 &[] F2].

Set g-expectation&,[-] on both sides of the above inequality. By the strict
comparison theorem of BSDE, see Peng (1997), we have

(11) E[1a&lE +nlFi1] < Eglla&,lE1F:] + 148, 0| F1).

Observing the above inequality, apply the convexity afgain to the right-hand
side of (11) and use part 3 of Lemma 3 to obtain

E {IAE[E|Fi] 4+ 148 [0 Fi1} < E,[IaEg[E|Fi1] + €4 [1aEg[n| F41]
= Eg[1a8]+ Egllan].
But the left-hand side of (11) is
Eg[1aE,€ + n|Fi1] = E4[1aE + Lan].
Thus,
(12) EglI1a€ + 1an] < EG[IaE1+ Egllan).

Furthermore, sincé and n are positive and comonotonic, obviouslyé and
1,1 are also positive and comonotonic, by the assumptiorétfjatis comonotonic
additive, and Dellacherie’s (1970) theorem,

(13) Eglla& + 1an] = Eg[1a&]+ E;[1an].
Inequality (12) contradicts (13), thus,
Egl§ +n|Fil = Eg[§1F1] + Eglnl F1] VielO,T].
Next, if g is concave, then, by Lemma 5,
El& + nlFil = EglE|F1] + Egln| F1] Vi elO,T].
The rest can be proved in a fashion similar to result (i)l

Combining Dellacherie’s (1970) theorem and Lemma 9, we immediately obtain
the following:

COROLLARY 1. Under the assumption of Lemma 9, if &[] is a Choquet
expectation on L2(Q, F, P) [resp. L2(Q, F, P)], then for each ¢ € [0, T,
8,[-|F:] isalso a Choguet expectation on L2 (Q, F, P) [resp. L2 (Q, F, P)].
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We now study the case wheges of the formg(z, y, z) = u¢|z|. Obviously, if
u; >0,7€[0,T], theng is convex and ifu; <0,¢ € [0, T, g is concave.

LEMMA 10. Let u, # 0beacontinuousfunctionon [0, T]and g(z, 1) = p¢|z].
There exists no Choguet expectation agreeing with &,,[-] on L%(Q, F, P).

PROOFE Assume the result of this lemma is false, ti&i-] is a Choquet ex-
pectation or.?(Q2, , P). By Dellacherie’s (1970) theorer8,,[-] is comonotonic
additive onL2(2, F, P).

We now choose two special random varialfies- Ijw, -1 andéz = Ij2sw,>1]-

Let (v',z),i =1, 2, be the solutions of the following BSDEs corresponding to
&1 andéy, respectively,

T T
yf=él-+/ us|zs|ds—/ WdW,, i=1.2
t t

If (5;,7;) is the solution of BSDE,

T T
?t=<sl+52)+/t us|zs|ds—/ Z, dW,,
t

theny! = €,[£1| F11, y? = Eul€2 F1] andy, = 6, (61 + &2/ F].

It is easy to show that; and &, are positive and comonotonic. As we have
assumed thatg-expectation&,[-] is a Choquet expectation, thus,[] is
comonotonic additive with respect tg, &. By Lemma 9,§&,[-|#;] is also
comonotonic additive with respect £g, &2, that is,

Euls1 + 2| Fi] = Eulba1l Fi] + Eulé2] F] Vtel0,T].
This can be written in another form, namely
(14) Y=y +y? Vtel0T]

Let (X, W) be the finite variation process generated by the semi-martiigaled
Brownian motionW, then, from (14),

T W)y =0 +y2 Wy, =L Wy + 0% W), Vielo,T],
but
d(y, w), . diytwy, o  d{yZ W),

“STa 0 YT a0 YT T4

Thus,
2t =z,1+zt2 a.erel0,T]
Applying the above inequality to (14), note that (14) can be rewritten as
2

T T T . T
@+e+ [ wllds— [ zsdws=§j(s,-+/ e Z;dws).
t t t t

i=1
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We can obtain
1, .2,_ 1 2
welzy + 271 = welzy | + pelzf| a.ere[0,T].
Sinceu; # 0, therefore,
(15) 12t 422 =2t + 122 aere[0, Tl

Obviously, (15) is true if and only if!z? > 0.
However, from Lemma 8, we knosz\jL >0,a.ere[0,T] and

P x A((w,1) :zf(w) <0)>0.
Thus, P x A((w, 1) : z-(w)z2(w) < 0) > 0, which implies
P x M(@, 1)1z (@) + 22(@)] < |z} (@)] + 2/ (@)]) > O,
which contradicts (15). The lemma'’s proof is completgl

From the above proof, applying the strict comparison theorem of BSDE in Peng
(1997), we have the following:

COROLLARY 2. If u;#0,Vt €0, T]. Let &1 = Iw,>1; and &2 = Io>w; >1),
obviously &1 and &, are comonotonic, but &,.[£1 + &2] < &, [£1] + &,.[€2].

We now prove our main theorem.
PROOF OFTHEOREM 1.
sufficiency.  If g(y, z, t) = vz, foranyé € L2(Q2, F, P), let us consider BSDE
T T
y=4§ +/ VsZs ds —/ zs dWs.
t t
Let W, = W, — [§vsds, then
T _
yt=$—/ z2sdWs.
t
By Girsanov’s lemma(W,)o<;<r is a Q-Brownian motion undep defined by
d 1 T T
—Q=exp[—— vfds+/ vdeS]
0 0
Thus,

Egl6|1F1]1 = Egl§]#:], EglE1=Egl§].

This impliesg-expectation is a classical mathematical expectation. Obviously, the
classical mathematical expectation can be represented by the Choquet expectation.
So the sufficiency proof is complete.
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Necessity. For any & € L%(Q, F, P), by Lemma 6(ii), there exist two
continuous functions of0, T'] such that

gy, z, 1) = ulz| +v(0)z.

Without loss of generality, we assumg(r) = 0, € [0, T], otherwise, by
Girsanov’'s lemma, we can rewrite the BSDE

T T
yt:§+[ (MS|ZSI+VsZs)dS_/t 25 dWs

as
T T
(16) yt=s+ft us|zs|ds—[t 2 dW,,

where Wy := W, — [y v(r)dr, (W )o<i<r iS @ Q-Brownian motion underQ
defined by

d 1 T T
a0 =exp[—— vszder/ vdes]
0 0

We can consider our question on the probability spaze#, Q).

Assumeu # 0, then there existg such thaf,, # 0. Without loss of generality,
we assumer,, > 0.

Sinceu, is continuous, then there exists a regiongfay|[7, T C [0, T] such
thatvr e [7, T], u; > O.

The next step of the proof is to localize in time so as to use Lemma 10.

Let &1 = [iw; —w;>1 and & = li2>wy —w;=1)- Obviously, & and & are
comonotonic.

We now show that

Eulé1+ 2] < Euléa] + Eulé2l,

which implies that&,[-] is not comonotonic additive for comonotonic random
variablest and».

Let W, = Wi, — Wy, then{W,:0<s < T —1} is (F,) Brownian motion,
where

Fl=0{W,:0<r<s}=o{Wr, —W;:0<r <s}.

)
Using the above notatiorg; and & can be rewritten ag; = I[W?_-zl] and
§2= I, -1
For the givens; and &2, let g, = .47 and (Y', Z') be the solutions of the
following BSDEs with terminal valu¢; andé&», respectively, o0, T — ¢]:

. T-1 i T-t . o
17) v =sl~+/ as|z;|ds—/ ZidW,, 1[0, T—1,i=12
t t
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and(Y, Z) be the solution of the BSDE:

_ T . T,

(18) Y;=§‘1—|—Sz+/ aSIZS|ds—/ Z.dW,,  te[0,T -1
t t

Sincea; = p; #0,V1 € [0, T — 7], by Corollary 2,

(19) Y, <Y +Y. te[0,T—17.

On the other hand, for the givén andé&», consider the BSDE of0, T']:

. T . T .
@) =&+ [ wldlds— [ daw, i=Ll2rel0T],
t t
and
T ) T .
(21) Yt=$1+$z+ft uslz’slds—/t ZLdWy, t€[0,T].
Comparing (17) with (20) and (18) with (21),
Y =yi, i=1,2; Y, =9, 1[0, T —1].

Buty! = &,[£11F:], 2 = Eul&2| F1] andy, = &,[£1 + &2/ F].

Thus,

Yo=8u&)1, i=12  Yo=&,l&+&l

Applying (19),
EulE1+ &2] < Eul61] + E,l&2],

which contradicts the comonotonic additivity &f[-]. Thus,u(r) =0V € [0, T].
The proof is complete. [

An interesting application of Theorem 1 is the following:

COROLLARY 3. Suppose i # 0 and let &,[-] be the maximal (minimal)
expectations defined in Example 1, then maximal (minimal ) expectation is not a
Choquet expectation on L2(Q2, ¥, P).

REMARK 2. 1. In the proofs of Lemma 6(ii) and Theorem 1, we only use
random variables having the form z W, and/jw; ¢(a,);- Thus, Lemma 6(ii) and
Theorem 1 actually imply that if and only j is linear inz, then g-expectation
is a Choquet expectation on the set of all random variables with the form
f(Wr) e L3, F, P).

2. Becauseg-expectation depends on the choice gf if g is nonlinear
in z, Theorem 1 implies thafg-expectation is not a Choquet expectation
onL?(Q, F, P).
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3. Itis well understood that mathematical expectation is linear in the sense of
EG+n=EE+En  VEnelXQ,¥,P).

For the Choquet expectation, the above equality is still true wheand

are comonotonic. However, for the-expectation, ifg is nonlinear, the above
additivity no longer holds even for comonotonic random variables. From this
viewpoint, our result implies Pengisexpectation usually is more nonlinear than
the Choquet expectation dif(2, ¥, P).

4. Feynman—Kac formula and Choquet expectation. Letu be the solution
of the partial differential equation (PDE)

du(t,x)  19%u(t,x)
a2 ax2
u(0,x) = f(x), t>0,x €R.

(22)

By the famous Feynman—Kac formula, the solutigin, x) of PDE (22) can be
represented by mathematical expectation:

(23) u(t,x)=Ef(W; +x),

where{W;} is a standard Brownian motion arfdis a bounded function.

Formula (23) makes it possible to solve linear PDE using Monte Carlo methods
(the limit law theorem for additive probabilities).

We consider the following example of a nonlinear PDE. bk the solution of
PDE:

u(t,x) 13%u,x) N ( 8u(t,x))
= — u,
ot 2 9x2 0x

u(0,x) = f(x), t>0,

(24)

whereg is a function satisfying (H.1)—(H.3) in Section 2.

If there exists a capacity such that the solution of PDE (24) can be represented
by a Choquet expectation, then applying the limit law theorem for nonadditive
probabilities in Marinacci (1999) would suggest a Monte Carlo-like method could
be used to solve nonlinear PDE (24). Unfortunately, our result shows that this is
not generally possible.

THEOREM 2. In the Brownian setting as above, denote by u/(z,x) the
solution of PDE (24). If g(y, z) is nonlinear in z, then there is no capacity such
that the associated Choquet expectation C satisfies u ¢ (¢, x) = C[ f(W; + x)] for
all bounded functions f and for all x.
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PROOF Let {W,} be a Brownian motion, by the general Feynman-Kac
formula, see, for example, El Karoui, Peng and Quenez (1997) or Ma, Protter and
Yong (1994)u ¢(z, x) can be represented, lgyexpectation, that is,

up(t,x) =8 f(W;+x)].
Applying Theorem 1 and part 1 of Remark 2 completes the proof of this theorem.
O

REMARK 3. Theorems 1 and 2 state thatgifis nonlinear inz, we cannot
find a capacity such that the associated Choquet expectatiog-arpectation
Eq[ f(W; + x)] satisfy

(25) Eglf (Wi +0)]1=CLf(W; +x)]

for all bounded functiong and for allx.

However, if we further restrictf to a set containing only those bounded
functions having strictly positive derivatives, we still can find a nonlinear function
g and a Choquet expectation such that equation (25) is true. The following is
an example.

EXAMPLE 2. Supposeu # 0 is a constant, leg(z) = u|z|. Obviously g is
nonlinear, but we have

Eg[f (Wi +x)]1= Eo[f(W; +x)]

for all bounded functionsf with strictly positive derivatives and for alt,
providedQ is a probability measure defined by

d0 —2uPTHuW

Indeed, let(y, z5) be the solution of the BSDE

t t
ys=f(Wz+X)+/ /lerldr—/ 2 dW,, O<s<t.

By Lemma 8(ii),z, > 0O, r € [0, r) for all bounded functiong’ with strictly positive
derivatives. Thus, the above BSDE is actually a linear BSDE

t t
ys=f(W,+x)+/ ,uzrdr—/ 2 dW,, O0<s<t.
S N

Let W, = W, — ur. Girsanov's lemma then implies th&#,} is a O-Brownian
motion underQ denoted in (26). Moreover, the above BSDE can be rewritten as

t ~
27) ys=f<Wf+x)—/ o dW,, O0<s<t.

N
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Setting conditional expectatiaip[-|F;] on both sides of BSDE (27),
ys = Eolf (Wi +x)| 5], O<s=<rt.
In particular, if we lets = 0, by the definition ofg,[-1,

E[f(W; +x)] = yo.
Thus,

Elf (Wi +x)1=Eglf(W; +x)]

for all bounded functiong with strictly positive derivatives and for afl.
Note both thatQ does not depend on the choice pfand that mathematical
expectation is a Choquet expectation. The proof is complete.
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