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LÉVY PROCESSES: CAPACITY AND HAUSDORFF DIMENSION

BY DAVAR KHOSHNEVISAN AND YIMIN XIAO

University of Utah and Michigan State University

We use the recently-developed multiparameter theory of additive Lévy
processes to establish novel connections between an arbitrary Lévy process
X in Rd , and a new class of energy forms and their corresponding capacities.
We then apply these connections to solve two long-standing problems in the
folklore of the theory of Lévy processes.

First, we compute the Hausdorff dimension of the imageX(G) of a
nonrandom linear Borel setG ⊂ R+, whereX is an arbitrary Lévy process
in Rd . Our work completes the various earlier efforts of Taylor [Proc.
Cambridge Phil. Soc. 49 (1953) 31–39], McKean [Duke Math. J. 22 (1955)
229–234], Blumenthal and Getoor [Illinois J. Math. 4 (1960) 370–375,
J. Math. Mech. 10 (1961) 493–516], Millar [Z. Wahrsch. verw. Gebiete 17
(1971) 53–73], Pruitt [J. Math. Mech. 19 (1969) 371–378], Pruitt and Taylor
[Z. Wahrsch. Verw. Gebiete 12 (1969) 267–289], Hawkes [Z. Wahrsch. verw.
Gebiete 19 (1971) 90–102,J. London Math. Soc. (2) 17 (1978) 567–576,
Probab. Theory Related Fields 112 (1998) 1–11], Hendricks [Ann. Math. Stat.
43 (1972) 690–694,Ann. Probab. 1 (1973) 849–853], Kahane [Publ. Math.
Orsay (83-02) (1983) 74–105,Recent Progress in Fourier Analysis (1985b)
65–121], Becker-Kern, Meerschaert and Scheffler [Monatsh. Math. 14 (2003)
91–101] and Khoshnevisan, Xiao and Zhong [Ann. Probab. 31 (2003a) 1097–
1141], where dimX(G) is computed under various conditions onG, X or
both.

We next solve the following problem [Kahane (1983)Publ. Math. Orsay
(83-02) 74–105]:When X is an isotropic stable process, what is a necessary
and sufficient analytic condition on any two disjoint Borel sets F,G ⊂ R+
such that with positive probability, X(F) ∩X(G) is nonempty? Prior to this
article, this was understood only in the case thatX is a Brownian motion
[Khoshnevisan (1999)Trans. Amer. Math. Soc. 351 2607–2622]. Here, we
present a solution to Kahane’s problem for an arbitrary Lévy processX,
provided the distribution ofX(t) is mutually absolutely continuous with
respect to the Lebesgue measure onRd for all t > 0.

As a third application of these methods, we compute the Hausdorff
dimension and capacity of the preimageX−1(F ) of a nonrandom Borel set
F ⊂ Rd under very mild conditions on the processX. This completes the
work of Hawkes [Probab. Theory Related Fields 112 (1998) 1–11] that covers
the special case whereX is a subordinator.
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1. Introduction. It has been long known that a typical Lévy processX :=
{X(t)}t≥0 in Rd maps a Borel setG⊂R+ to a random fractalX(G). For example,
Blumenthal and Getoor (1960) have demonstrated that whenX is anα-stable Lévy
process inRd , then for all Borel setsG⊂R+,

dimX(G)= d ∧ α dimG a.s.,(1.1)

where dim denotes Hausdorff dimension. In plain words, anα-stable process maps
a set of Hausdorff dimensionβ to a set of Hausdorff dimensiond ∧αβ. For earlier
works in this area, see Taylor (1953) and McKean (1955), and for background on
Hausdorff dimension and its properties, see Falconer (1990) and Mattila (1995).

Blumenthal and Getoor (1961) extended (1.1) to a broad class of Lévy
processes. For this purpose, they introduced the upper indexβ and lower indices
β ′, β ′′ of a general Lévy processX and, in addition, the lower indexσ of a
subordinator. Blumenthal and Getoor [(1961), Theorems 8.1 and 8.5] established
the following upper and lower bounds for dimX(G) in terms of the upper indexβ
and lower indicesβ ′ andβ ′′ of X: For everyG⊂R+, almost surely,

dimX(G)≤ β dimG if β < 1,

(1.2)
dimX(G)≥

{
β ′ dimG, if β ′ ≤ d,

1∧ β ′′ dimG, if β ′ > d = 1.

They showed, in addition, that whenX is a subordinator, then

σ dimG≤ dimX(G)≤ β dimG a.s.(1.3)

The restrictionβ < 1 of (1.2) was removed subsequently by Millar [(1971),
Theorem 5.1]. Blumenthal and Getoor [(1961), page 512] conjectured that, given
a Borel setG⊂ [0,1], there exists a constantλ(X,G) such that

dimX(G)= λ(X,G) a.s.(1.4)

Moreover, they asked a question that we rephrase as follows:Given a Lévy
process X, is it always the case that dimX(G) = dimX([0,1]) · dimG for
all nonrandom Borel sets G ⊆ R+? Surprisingly, the answer to this question
is “no” [Hendricks (1972) and Hawkes and Pruitt (1974)]. To paraphrase from
Hawkes and Pruitt [(1974), page 285], in general, dimX(G) depends on other
characteristics of the setG than its Hausdorff dimension. Except in the case where
X is a subordinator [Hawkes (1978), Theorem 3], this question had remained
unanswered.

One of our original aims was to identify precisely what these characteristics
are. As it turns out, the complete answer is quite unusual; see Theorem 2.2. For an
instructive example, also Theorem 7.1.

In the slightly more restrictive case thatX is asymmetric α-stable Lévy process,
Kahane [(1985b), see Theorem 8] proved that for any Borel setG⊂R+,

Hγ (G)= 0 �⇒ Hαγ (X(G))= 0 a.s.(1.5)
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Here, Hβ denotes theβ-dimensional Hausdorff measure. If, in addition, we
assume thatαγ < d, then Kahane’s theorem states further that

Cγ (G) > 0 �⇒ Cαγ (X(G)) > 0 a.s.,(1.6)

whereCβ denotes theβ-dimensional Bessel–Riesz capacity which we recall at the
end of this introduction.

As regards a converse to (1.6), Hawkes (1998) has recently proven that ifX is a
stablesubordinator of indexα ∈ (0,1), then for any Borel setG⊂R+ and for all
γ ∈ (0,1),

Cγ (G) > 0 ⇐⇒ Cαγ (X(G)) > 0 a.s.(1.7)

The arguments devised by Hawkes (1998) use specific properties of stable
subordinators, and do not apply to other stable processes. On the other hand,
Kahane’s proof of (1.5) depends crucially on the self-similarity of strictly stable
processes. Thus, these methods do not apply to more general Lévy processes.

Our initial interest in such problems came from the surprising fact that the
existing literature does not seem to have a definitive answer for the following
question:

QUESTION1.1. Can one find a nontrivial characterization of whenCγ (X(G))

is positive for ad-dimensional Brownian motionX?

The main purpose of this paper is to close the gaps in (1.5) and (1.6) and their
counterparts for the preimages ofX. While doing so, we also answer Question 1.1
in the affirmative. [The answer is the most natural one: “Cγ (X(G)) > 0 if and only
if Cγ /2(G) > 0”; cf. Theorem 7.1.]

Our methods rely on a great deal of the recently-developed potential theory
for additive Lévy processes; see Khoshnevisan and Xiao (2002, 2003) and
Khoshnevisan, Xiao and Zhong (2003a). While the present methods are quite
technical, they have the advantage of being adaptable to very general settings.
Therefore, instead of working with special processes such as stable processes,
we state our results for broad classes of Lévy processes. Moreover, the present
methods allow us to solve the following long-standing problem: “Given a Lévy
processX in Rd , and two disjoint setsF,G ⊂ R+, when is X(F) ∩ X(G)

nonempty?” Kahane (1983) studied this problem for a symmetric stable Lévy
processX in Rd and proved that

Cd/α(F ×G) > 0 �⇒ P{X(F)∩X(G) �=∅}> 0
(1.8)

�⇒ Hd/α(F ×G) > 0.

Kahane [(1983), page 90] conjectured thatCd/α(F × G) > 0 is necessary and
sufficient for P{X(F)∩X(G) �=∅}> 0. Until now, this problem had been solved
only whenX is a Brownian motion [Khoshnevisan (1999), Theorem 8.2].
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For a Lévy processX in Rd , we investigate the Hausdorff dimension and
capacity of the preimageX−1(R), whereR ⊂ Rd is a Borel set. WhenX is
isotropic α-stable, Hawkes (1971) has proven that ifα ≥ d, then for every Borel
setR ⊂Rd ,

dimX−1(R)= α + dimR− d

α
a.s.,(1.9)

and ifα < d, then

sup
{
θ > 0 : P{dimX−1(R)≥ θ}> 0

}= α + dimR− d

α
.(1.10)

More recently, Hawkes (1998) has studied the capacity ofX−1(R) further in the
case thatX is a symmetricα-stable Lévy process inR. We are able to extend his
result to a large class of Lévy processes; see Theorem 3.1 and Corollary 3.2 below.

We conclude this introduction by introducing some notation that will be used
throughout.

We writeP (F ) for the collection of all Borel-regular probability measures on
a given Borel spaceF .

Given a Borel measurable functionf : Rd →[0,∞], we define the “f -energy”
[of someµ ∈P (Rd)] and “f -capacity” (of some measurableG⊂Rd ) as follows:

Ef (µ) :=
∫ ∫

f (x − y)µ(dx)µ(dy),

(1.11)

Cf (G) :=
[

inf
µ∈P (G)

Ef (µ)

]−1

.

We refer to such a functionf as agauge function. Occasionally, we writeEf (µ)

for a bounded measurablef : Rd →C, as well.
Given a numberβ > 0, we reserveCβ and Eβ for Cf and Ef , respectively,

where the gauge functionf is f (t) := ‖t‖−β . Cβ andEβ are, respectively, the
(β-dimensional) Bessel–Rieszcapacity andenergy to which some references were
made earlier. More information about the Bessel–Riesz capacity and its connection
to fractals can be found in Mattila (1995), Kahane (1985a) and Khoshnevisan
(2002). For a lively discussion of the various connections between random fractals,
capacity and fractal dimensions, see Taylor (1986).

An important aspect of our proofs involves artificially expanding the parameter
space fromR+ to R1+p

+ for an arbitrary positive integerp. For this, we introduce
some notation that will be used throughout: Anyt ∈R1+p is written ast := (t0, �t ),
where �t := (t1, . . . , tp) ∈ Rp. This allows us to extend anyµ ∈ P (R+) to a

probability measureµ on R1+p
+ as follows:

µ(dt) := µ(dt0)e
−∑p

j=1 tj d�t .(1.12)

Finally, the Lebesgue measure onRd is denoted byλd , and for any integerk and
all x, y ∈ Rk , we writex ≺ y in place of the statement thatx is less than or equal
to y, coordinatewise; that is,xi ≤ yi for all i ≤ k.
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2. The image of a Borel set. The first main result of this paper is the most
general theorem on the Bessel–Riesz capacity of the imageX(G) of a Lévy
processX in Rd . This, in turn, provides us with a method for computing dimX(G)

for a nonrandom Borel setG⊂R+. Our computation involves terms that are solely
in terms of the Lévy exponent� of X and the setG. Hence, Corollary 2.6 verifies
the conjecture (1.4) of Blumenthal and Getoor (1961).

Before stating our formula for dimX(G), we introduce some notation.
Given anyξ ∈Rd , we define the functionχξ : R→C as follows:

χ�
ξ (x) := χξ (x) := e−|x|�(sgn(x)ξ) ∀x ∈R.(2.1)

We will write the more tediousχ�
ξ in favor of χξ only when there are more than

one Lévy exponent in the problem at hand and there may be ambiguity as to which
Lévy exponent is in question.

Below are some of the elementary properties of this functionχξ .

LEMMA 2.1. For any ξ ∈ Rd , supx∈R |χξ (x)| ≤ 1. Moreover, given any
µ ∈P (R+), Eχξ (µ) ≥ 0 for all ξ ∈ Rd . In particular, Eχξ (µ) ∈ [0,1] is real-
valued.

PROOF. We note that for anys, t ≥ 0, and for allξ ∈Rd ,

E
[
eiξ ·(X(t)−X(s))]= χξ (t − s).(2.2)

This shows thatχξ is pointwise bounded in modulus by one. Moreover, by the
Fubini–Tonelli theorem, given anyµ ∈ P (R+), we can integrate the preceding
display[µ(dt)µ(ds)] to deduce that

Eχξ (µ)= E
[∣∣∣∣∫ eiξ ·X(t) µ(dt)

∣∣∣∣2],(2.3)

which completes our proof.�

We are finally ready to present the first main contribution of this paper. The
following theorem closes the gaps in (1.6) and (1.7) for a general Lévy process.

THEOREM 2.2. Suppose X := {X(t)}t≥0 is a Lévy process in Rd , and denote
its Lévy exponent by �. Then for any Borel set G⊂R+, and for all β ∈ (0, d),

Cβ(X(G))= 0 a.s.
(2.4)

⇐⇒ ∀µ ∈P (G) :
∫

Rd
Eχξ (µ)‖ξ‖β−d dξ =+∞.

REMARK 2.3. For a closely-related, though different, result, see
Khoshnevisan, Xiao and Zhong [(2003a), Theorem 2.1].
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The proof of Theorem 2.2 is long, as it requires a good deal of the
multiparameter potential theory of additive Lévy process; thus, this proof is
deferred to Section 5. In the meantime, the remainder of this section is concerned
with describing some of the consequences of Theorem 2.2.

First of all, note that whenX is symmetric,χξ is a positive real function. Thus,
we can apply the theorem of Fubini and Tonelli to deduce the following in the
symmetric case:∫

Rd
Eχξ (µ)‖ξ‖β−d dξ =

∫ ∫ [∫
Rd

e−|x−y|�(ξ)‖ξ‖β−d dξ

]
µ(dx)µ(dy).(2.5)

In other words, we have the following consequence of Theorem 2.2:

COROLLARY 2.4. If X := {X(t)}t≥0 is a symmetric Lévy process in Rd with
Lévy exponent �, then for any Borel set G⊂R+, and all β ∈ (0, d),

Cβ(X(G))= 0 a.s. ⇐⇒ Cfd−β
(G)= 0,(2.6)

where

fγ (x) :=
∫

Rd
e−|x|�(ξ)‖ξ‖−γ dξ ∀x ∈R, γ ∈ (0, d).(2.7)

REMARK 2.5. We believe that Corollary 2.4 is true quite generally, but have
not been successful in proving this. To see the significance of this conjecture,
let us assume further thatfγ has the property that as|x| tends to zero,fγ (x) =
O(fγ (2x)). Then, thanks to Corollary 2.4 and a general Frostman theorem [Taylor
(1961), Theorem 1], we deduce that for any Borel setG ⊂ R+ with finite
f−1

d−β -Hausdorff measure,Cβ(X(G)) = 0 almost surely. In general, we do not
know of such conditions in the nonsymmetric case.

Now let us consider the Hausdorff dimension of the imageX(G) of any Borel
setG underX. By the theorem of Frostman [Khoshnevisan (2002), Theorem 2.2.1,
Appendix C, and Mattila (1995), Theorem 8.9], given any Borel setF ⊂Rd ,

dimF := sup{β ∈ (0, d) :Cβ(F ) > 0}.(2.8)

Thus, Theorem 2.2 allows us to also compute dimX(G). Namely, we have the
following:

COROLLARY 2.6. Suppose X := {X(t)}t≥0 is a Lévy process in Rd , and
denote its Lévy exponent by �. Then for any Borel set G⊂R+,

dimX(G)

(2.9)
= sup

{
β ∈ (0, d) : inf

µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞
}

a.s.
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In the symmetric case, this is equivalent to the following:

dimX(G)= sup
{
β ∈ (0, d) :Cfd−β

(G) > 0
}

a.s.,(2.10)

where fγ is defined in (2.7).

Corollary 2.6 computes dimX(G) in terms of the Lévy exponent� of the
processX. In particular, it verifies the conjecture of Blumenthal and Getoor
[(1961), page 512]. However, our formulas are not so easy to use for a given�,
because they involve an infinite number of computations [one for each measure
µ ∈ P (G)]. Next, we mention some simple-to-use bounds that are easily derived
from Corollary 2.6.

COROLLARY 2.7. If X := {X(t)}t≥0 is a symmetric Lévy process in Rd , then
for any Borel set G ⊂ R+, we almost surely have I (G) ≤ dimX(G) ≤ J (G),
where

I (G) := sup
{
β ∈ (0, d) : lim sup

r↓0

logfd−β(r)

log(1/r)
< dimG

}
and

(2.11)

J (G) := inf
{
β ∈ (0, d) : lim inf

r↓0

logfd−β(r)

log(1/r)
> dimG

}
.

In the above, inf ∅ := d and sup∅ := 0, and fγ is as in (2.7).

We also mention the following zero–one law. Among other things, it tells us
that the a.s.-condition of Theorem 2.2 is sharp.

PROPOSITION2.8 (Zero–one law). For any β ∈ (0, d), and for all Borel sets
G⊂R+,

P{Cβ(X(G)) > 0} = 0 or 1.(2.12)

This proposition is a handy consequence of our proof of Theorem 2.2, and
its proof is explicitly spelled out in Remark 5.5 below. In the case thatX is a
subordinator, the reader can find this in Hawkes [(1998), page 9]. We note that
Hawkes’ proof works for any pure-jump Lévy process.

3. The preimage of a Borel set. Let X := {X(t)}t≥0 be a strictlyα-stable
Lévy process inRd , and letpt(x) be the density function ofX(t). Taylor (1967)
proved that


 := {x ∈Rd :pt(x) > 0 for somet > 0}(3.1)

is an open convex cone inRd with the origin as its vertex. To further study the
structure of
, Taylor (1967) classified strictly stable Lévy processes into two
types: X is of type A if p1(0) > 0; otherwise it is oftype B. He proved that
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when X is of type A, thenpt(x) > 0 for all t > 0 andx ∈ Rd . On the other
hand, in the case thatX is a type B process, Taylor (1967) conjectured that

 = {x ∈ Rd :pt(x) > 0 for all t > 0}; this was later proved by Port and Vitale
(1988). By combining the said results, we can conclude that all strictly stable Lévy
processes withα ≥ 1 are of type A.

Now one can extend Hawkes’ results (1.9) and (1.10) to all strictly stable Lévy
processX of indexα in Rd . It follows from Theorem 1 of Kanda (1976) [see also
Bertoin (1996), page 61, and Sato (1999), Theorem 42.30] and the arguments of
Hawkes (1971) that ifα ≥ d, then for every Borel setR ⊂Rd ,

dimX−1(R)= α+ dimR − d

α
a.s.(3.2)

On the other hand, ifα < d, then for every Borel setR ⊂ 
,

‖dimX−1(R)‖L∞(P) = α + dimR− d

α
,(3.3)

where negative dimension for a set implies that the set is empty.
Hawkes (1998) has made further progress by proving that wheneverX is a

symmetricα-stable process inR, then for allβ ∈ (0,1) that satisfyα + β > 1,
and for every BorelR ⊂R,

C(α+β−1)/α

(
X−1(R)

)= 0 a.s. ⇐⇒ Cβ(R)= 0.(3.4)

It is an immediate consequence of the Frostman theorem [Khoshnevisan (2002),
Theorem 2.2.1, Appendix C] that (3.4) generalizes (3.3). Equation (3.2) also
follows from (3.4), Frostman’s theorem and recurrence.

In order to go far beyond symmetric stable processes, we can make use of the
potential theory of multiparameter Lévy processes. We indicate this connection by
proving the following nontrivial generalization of (3.4). For simplicity, we only
consider the Lévy processes with
 =Rd .

THEOREM 3.1. Let X := {X(t)}t≥0 denote a Lévy process in Rd with Lévy
exponent �. If X has transition densities {pt }t>0 such that for almost all (t, y) ∈
R+ × Rd , pt(y) is strictly positive, then for every Borel set R ⊂ Rd , and all
γ ∈ (0,1),

Cγ

(
X−1(R)

)= 0 a.s.

(3.5)
⇐⇒

∫
Rd
|µ̂(ξ)|2Re

(
1

1+�1−γ (ξ)

)
dξ =+∞ ∀µ ∈P (R).

Theorem 3.1 and Frostman’s theorem (2.8) together prove the following:
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COROLLARY 3.2. Let X := {X(t)}t≥0 denote a Lévy process in Rd with Lévy
exponent �. If X has strictly positive transition densities, then for every Borel set
R ⊂Rd ,

‖dimX−1(R)‖L∞(P)

(3.6)
= sup

{
γ ∈ (0,1) : inf

µ∈P (R)

∫
Rd
|µ̂(ξ)|2Re

(
1

1+�1−γ (ξ)

)
dξ <+∞

}
.

Before commencing with our proof of Theorem 3.1, we develop a simple
technical result.

SupposeX := {X(t)}t≥0 is a Lévy process inRd , and suppose that it has
transition densities with respect to the Lebesgue measureλd . In other words,
we are assuming that there exist (measurable) functions{pt }t≥0 such that, for all
measurablef : Rd →R+ and allt ≥ 0, E[f (X(t))] = ∫

Rd f (y)pt (y) dy.

Next, we consider a(1 − γ )-stable subordinatorσ := {σ(t)}t≥0 that is
independent of the processX. [Of course,γ is necessarily in(0,1).] Let vt denote
the density function ofσ(t). It is well known that, for everyt > 0, vt (s) > 0 for
all s > 0.

LEMMA 3.3. If X := {X(t)}t≥0 is a Lévy process in Rd with Lévy exponent
� and transition densities {pt }t>0, then the subordinated process X ◦ σ is
a Lévy process with Lévy exponent �1−γ and transition densities (t, y) �→∫∞
0 ps(y)vt (s) ds. Moreover, if ps(y) > 0 for almost all (s, y) ∈ R+ × Rd , then

for every t > 0, the density of X(σ(t)) is positive almost everywhere.

PROOF. Much of this is well known [Sato (1999), Theorem 30.1], and we
content ourselves by deriving the transition densities ofX ◦σ . For any measurable
f : Rd → R+, and for all t ≥ 0, E[f (X(σ(t)))] = ∫

Rd f (y)E[pσ(t)(y)]dy. This
verifies the formula for the transition densities ofX ◦ σ . The final statement of the
lemma follows from the well-known fact thatvt (s) > 0 for all s > 0. �

PROOF OF THEOREM 3.1. As in Lemma 3.3, we letσ denote a(1− γ )-
stable subordinator that starts at the origin, and is independent ofX. Then, it is
well known [Hawkes (1971), Lemma 2] that, for any Borel setB ⊂R+,

P{B ∩ σ(R+) �=∅}> 0 ⇐⇒ Cγ (B) > 0.(3.7)

By conditioning onX, we obtain the following:

P{X−1(R)∩ σ(R+) �=∅}> 0 ⇐⇒ P
{
Cγ

(
X−1(R)

)
> 0

}
> 0.(3.8)

Moreover, it is clear that

P{X−1(R)∩ σ(R+) �=∅}> 0 ⇐⇒ P{R ∩X ◦ σ(R+) �=∅}> 0.(3.9)
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Thus, by Lemma 4.1 below,

P{X−1(R)∩ σ(R+) �=∅}> 0 ⇐⇒ E[λd(X ◦ σ(R+)�R)]> 0.(3.10)

BecauseX ◦ σ is a Lévy process inRd with exponent�1−γ (ξ) (Lemma 3.3),
the remainder of the proof follows from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 1.5] that we restate below as Theorem 4.6; see also Bertoin [(1996),
page 60]. �

4. Background on additive Lévy processes. In this section we rephrase, as
well as refine, some of the potential theory of additive Lévy processes that was
established in Khoshnevisan and Xiao (2002, 2003) and Khoshnevisan, Xiao and
Zhong (2003a). Our emphasis is on how these results are used in order to compute
the Hausdorff dimension of various random sets of interest.

A p-parameter,Rd -valued, additive Lévy process �X = { �X(�t )}�t∈Rp
+ is a

multiparameter stochastic process that is defined by

�X(�t ) :=
p∑

j=1

Xj(tj ) ∀ �t = (t1, . . . , tp) ∈Rp
+.(4.1)

Here, X1, . . . ,Xp denote independent Lévy processes inRd . Following the
notation in Khoshnevisan and Xiao (2002, 2003), we may denote the random
field �X by

�X :=X1⊕ · · · ⊕Xp.(4.2)

These additive random fields naturally arise in the analysis of multiparameter
processes such as Lévy’s sheets and in the studies of intersections of Lévy
processes [Khoshnevisan and Xiao (2002)]. [At first sight, the term “additive
Lévy” may be redundant. Indeed, historically, the term “additive process” refers
to a process with independent increments. Thus, in this sense every Lévy process
is additive. However, we feel strongly that our usage of the term “additive process”
is more mathematically sound, as can be seen by considering the additive groupG

created by direct-summing cadlag functionsf1, . . . , fp : R+ → Rd to obtain a
function f : Rp

+ → Rd defined byf (�t ) := (f1 ⊕ · · · ⊕ fp)(�t ) = f1(t1) + · · · +
fp(tp). Therefore, ifX1, . . . ,Xp+1 are independent Lévy processes, thent1 �→
X1(t1) ⊕ X2(•) ⊕ · · · ⊕ X1+p(•) is a Lévy process on the infinite-dimensional
additive groupG.]

For each�t ∈Rp
+, the characteristic function of�X(�t ) is given by

E
[
eiξ · �X(�t )]= e

−∑p
j=1 tj�j (ξ) := e−�t · ��(ξ) ∀ ξ ∈Rd,(4.3)

where ��(ξ) := �1(ξ) ⊗ · · · ⊗ �p(ξ), in tensor notation. We will call��(ξ) the
characteristic exponent of the additive Lévy process�X.
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Additive Lévy processes have a theory that extends much of the existing theory
of Lévy processes. For instance, corresponding to any additive Lévy process�X,
there is apotential measure �U that we define as follows: For all measurable sets
F ⊂Rd ,

�U(F) := E
[∫

Rp
+

e
−∑p

j=1 sj 1F

( �X(�s )
)
d�s

]
.(4.4)

If �U is absolutely continuous with respect to the Lebesgue measureλd , its density
is called the 1-potential density of �X. There is also a notion of transition densities.
However, for technical reasons, we sometimes assume more; see Khoshnevisan
and Xiao (2002, 2003). Namely, we say that the process�X is absolutely continuous
if for each�t ∈ Rp

+\∂Rp
+, e−�t · �� ∈L1(Rd). In this case, for all�t ∈ Rp

+\∂Rp
+, �X(�t)

has a bounded and continuous density functionp(�t; •), which is described by the
following formula:

p(�t;x) := (2π)−d
∫

Rd
e−iξ ·x−�t · ��(ξ) dξ ∀x ∈Rd .(4.5)

We remark that when�X is absolutely continuous,�U is absolutely continuous

and the 1-potential density is
∫

Rp
+ p(�s; •)e−

∑p
j=1 sj d�s. See Hawkes [(1979),

Lemma 2.1] for a necessary and sufficient condition for the existence of a
1-potential density.

When �X is absolutely continuous, the following function is well defined, and
is called thegauge function for �X:

(�s ) := p(|s1|, . . . , |sp|;0) ∀ �s ∈Rp.(4.6)

It is clear that(�0) = +∞ and, whenX1, . . . ,Xp are symmetric,�s �→ (�s ) is
nonincreasing in each|si |. It is also not too hard to see thatC(·) is a natural
capacity in the sense of Choquet [Dellacherie and Meyer (1978)].

In order to apply our previous results [Khoshnevisan and Xiao (2002, 2003) and
Khoshnevisan, Xiao and Zhong (2003a)], we first extend a one-parameter theorem
of Kahane (1972, 1983) to additive Lévy processes inRd . In the following, we
write A�B := {x− y :x ∈A,y ∈ B}. (Note that when eitherA or B is the empty
set∅, thenA�B =∅.)

LEMMA 4.1. Let �X be a p-parameter additive Lévy process in Rd . We
assume that, for every t ∈ (0,∞)p, the distribution of �X(�t ) is mutually absolutely
continuous with respect to λd . Then for all Borel sets G⊂ (0,∞)p and F ⊂ Rd ,
the following are equivalent:

1. with positive probability, G∩ �X−1(F ) �=∅;
2. with positive probability, F ∩ �X(G) �=∅;
3. with positive probability, λd(F � �X(G)) > 0.
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PROOF. It is clear that 1⇔ 2. To prove 2⇔ 3, we note that part 2 is equivalent
to the following:

∃ δ > 0 such that P
{
F ∩ �X(

G∩ (δ,∞)p
) �=∅

}
> 0.(4.7)

Hence, without loss of generality, we can assume thatG⊂ (δ,∞)p for someδ > 0.
By our assumption, we may choose�a ∈ (0,∞)p such that:

(i) �a ≺ �t for all �t ∈G.
(ii) The distribution of �X(�a) is equivalent toλd .

Next, define the additive Lévy process�X�a := { �X�a(�t )}�t∈Rp
+ by

�X�a(�t ) := �X(�t + �a)− �X(�a) ∀ �t ∈Rp
+.(4.8)

Then, we point out that

F ∩ �X(G)=∅ ⇐⇒ �X(�a) /∈ F � �X�a(G− �a).(4.9)

Since �X(�a) is independent of the random Borel setF � �X�a(G − �a) and the
distribution of �X(�a) is equivalent toλd , we have

�X(�a) /∈ F � �X�a(G− �a) a.s.
(4.10)

⇐⇒ λd

(
F � �X�a(G− �a)

)= 0 a.s.

Note that �X�a(G− �a) = �X(G)� { �X(�a)}, so that the translation invariance of the
Lebesgue measure, (4.9) and (4.10) imply that

F ∩ �X(G)=∅ a.s. ⇐⇒ λd

(
F � �X(G)

)= 0 a.s.(4.11)

This proves 2⇔ 3, whence the lemma.�

The following theorem connects the positiveness of the Lebesgue measure of
the rangeX(G) and the hitting probability of the level setX−1(a) to a class of
natural capacities. It is a consequence of the results in Khoshnevisan and Xiao
[(2002), Theorem 5.1, and (2003)] and Lemma 4.1.

THEOREM 4.2. Suppose X1, . . . ,Xp are p independent symmetric Lévy
processes on Rd , and let �X denote X1⊕ · · · ⊕Xp, which we assume is absolutely
continuous with an a.e.-positive density function at every time �t ∈ Rp

+. Let  be
the gauge function of �X. Then for every Borel set G⊂ (0,∞)p, the following are
equivalent:

1. C(G) > 0.
2. With positive probability, λd( �X(G)) > 0.
3. Any a ∈Rd can be in the random set �X(G) with positive probability.
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REMARK 4.3. Theorem 4.2 asserts that, for every Borel setG⊂ (0,∞)p,

C(G) > 0 ⇐⇒ �X−1({0})∩G �=∅ with positive probability.(4.12)

In fact, (4.12) holds even without the assumption that the density function of
�X(�t ) is positive almost everywhere; see Corollary 2.13 of Khoshnevisan and
Xiao (2002). In Section 6 we apply this minor variation of Theorem 4.2 to derive
Theorem 6.5.

We recall thatX1⊕· · ·⊕Xp is additive α-stable if X1, . . . ,Xp are independent
isotropicα-stable processes. The following is a consequence of Lemma 4.1 and
Khoshnevisan, Xiao and Zhong [(2003a), Theorem 7.2], which improves the
earlier results of Hirsch (1995), Hirsch and Song (1995a, b) and Khoshnevisan
(2002).

THEOREM 4.4. Suppose �X :=X1⊕ · · · ⊕Xp is an additive α-stable process
in Rd . Then, dim �X(Rp

+)= αp ∧ d, a.s. Moreover, for all Borel sets F ⊂ Rd , the
following are equivalent:

1. Cd−αp(F ) > 0.
2. With positive probability, λd(F ⊕ �X(Rp

+)) > 0.
3. F is not polar for �X; that is, with positive probability, F ∩ �X(Rp

+\{�0}) �=∅.

REMARK 4.5. Note that the second part of Theorem 4.4 is of interest only
in the case thatαp ≤ d. Whenαp > d, X hits every point inRd almost surely.
Therefore,�X(Rp

+)= Rd , a.s. In this case, there is a rich theory of local times and
level sets [Khoshnevisan, Xiao and Zhong (2003b)].

PROOF OF THEOREM 4.4. The first statement regarding the dimension
of �X(Rp

+) follows from Khoshnevisan, Xiao and Zhong [(2003a), Theorem 1.6],
whereas 1⇔ 2 for all compact setsF is precisely Theorem 7.2 of
Khoshnevisan, Xiao and Zhong (2003a). In the following we first prove 2⇔ 3
and then use it to remove the compactness restriction in 1⇔ 2.

For every �t ∈ Rp
+\{�0}, the distribution of �X(�t ) has a strictly positive and

continuous density. We writeRp
+\{�0} = (0,∞)p ∪ (∂Rp

+\{�0}). Lemma 4.1 implies
that, for every Borel setF ⊂Rd ,

P
{
λd

{
F ⊕ �X(

(0,∞)p
)}

> 0
}
> 0

(4.13)
⇐⇒ P

{
F ∩ �X(

(0,∞)p
) �=∅

}
> 0.

For the boundary∂Rp
+\{�0}, we apply Lemma 4.1 to additive stable processes that

have fewer thanp parameters to obtain

P
{
λd{F ⊕ �X(∂Rp

+)}> 0
}
> 0 ⇐⇒ P

{
F ∩ �X(∂Rp

+\{�0}) �=∅
}
> 0.(4.14)
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Therefore, we have proven 2⇔ 3 for all Borel setsF ⊂ Rd . From the above, we
derive that, for every compact setF ⊂Rd , 1⇔ 3. ButCd−αp(·) andC(·) are both
Choquet capacities, where

C(F )= P
{
F ∩ �X(Rp

+\{�0}) �=∅
}
.(4.15)

Thus, the compactness restriction onF can be removed by Choquet’s capacibility
theorem [Dellacherie and Meyer (1978)], whence the validity of 1⇔ 2 in general.
�

We conclude this section by recalling the main results of Khoshnevisan, Xiao
and Zhong (2003a). The first is from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 1.5], which can be applied to compute the Hausdorff dimension of the
range of an arbitrary Lévy process; for earlier progress on this problem, see Pruitt
(1969).

THEOREM 4.6 [Khoshnevisan, Xiao and Zhong (2003a), Theorem 1.5].
Consider a p-parameter additive Lévy process �X := { �X(�t )}�t∈Rp

+ in Rd with Lévy

exponent �. Suppose that there exists a constant c > 0 such that, for all ξ ∈Rd ,

Re
p∏

j=1

{1+�j(ξ)}−1 ≥ c

p∏
j=1

Re{1+�j(ξ)}−1.(4.16)

Then, given a Borel set F ⊂Rd , E[λd( �X(Rp
+)⊕F)]> 0 if and only if there exists

µ ∈P (F ) such that∫
Rd
|µ̂(ξ)|2

p∏
j=1

Re{1+�j(ξ)}−1 dξ <+∞.(4.17)

As a corollary to this, Khoshnevisan, Xiao and Zhong [(2003a), Theorem 1.6]
obtained the following refinement of the results of Pruitt (1969):

COROLLARY 4.7. If X is a Lévy process in Rd with Lévy exponent �, then
a.s.,

dimX(R+)

(4.18) = sup
{
γ ∈ (0, d) :

∫
{ξ∈Rd : ‖ξ‖≥1}

Re
(

1

1+�(ξ)

)
dξ

‖ξ‖d−γ
<+∞

}
.

The next requisite result is from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 2.1 and Lemma 2.4], which characterizes E[λd( �X(G))]> 0 completely
in terms of its Lévy exponent� andG. Notice that it is more general than 1⇔ 2
in Theorem 4.2.
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THEOREM 4.8. Suppose �X := { �X(�t )}�t∈Rp
+ is a p-parameter additive Lévy

process in Rd with Lévy exponent �. Then, given a Borel set G ⊂ Rp
+,

E[λd( �X(G))]> 0 if and only if there exists µ ∈P (G) such that∫
Rd

E⊗p
j=1χ

�j
ξ

(µ)dξ <+∞,

where

E⊗p
j=1χ

�j
ξ

(µ)=
∫

Rp
+

∫
Rp
+

e
−∑p

j=1 |sj−tj |�j (sgn(sj−tj )ξ)
µ(d�s )µ(d�t ).(4.19)

5. Proof of Theorem 2.2. Next, for any fixedα ∈ (0,2], we introducep

independent isotropicα-stable Lévy processesX1, . . . ,Xp in Rd , each of which
is normalized as follows:

E
[
eiξ ·Xl(u)]= e−u‖ξ‖α ∀ ξ ∈Rd, u≥ 0, l = 1, . . . , p.(5.1)

We assume thatX1, . . . ,Xp are independent of the Lévy processX and then
consider theadditive Lévy process {A(t)}

t∈R1+p
+

; this is the(1 + p)-parameter

random field that is prescribed by the following:

A(t) :=X(t0)+X1(t1)+ · · · +Xp(tp) ∀ t ∈R1+p
+ .(5.2)

For this random field and anyµ ∈ P (R+), we consider the random measure Oµ

on Rd defined by

Oµ(f ) :=
∫

R1+p
+

f (A(t))µ(dt),(5.3)

whereµ is defined by (1.12). This is well defined for all nonnegative measurable
f : Rd →R+, for instance.

LEMMA 5.1. For all probability measures µ on R+, and ξ ∈Rd ,

2−p(1+ ‖ξ‖)−αpEχξ (µ)≤ E[|Ôµ(ξ)|2]
(5.4)

≤ 2pα(1+ ‖ξ‖)−αpEχξ (µ).

PROOF. By Khoshnevisan, Xiao and Zhong [(2003a), Lemma 2.4], for all
ξ ∈Rd ,

E[|Ôµ(ξ)|2]
(5.5) =

∫ ∫
R1+p
+ ×R1+p

+

e
−∑p

j=1 |sj−tj |‖ξ‖α

e−|s0−t0|�(sgn(s0−t0)ξ)µ(dt)µ(ds).
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On the other hand, it is easy to see that∫ ∫
Rp
+×Rp

+

e
−∑p

j=1 |sj−tj |‖ξ‖α−∑p
j=1(sj+tj )

d�t d�s = (1+ ‖ξ‖α)−p.(5.6)

Therefore,

E[|Ôµ(ξ)|2] = (1+ ‖ξ‖α)−pEχξ (µ).(5.7)

To finish the proof, we note merely that
1
2(1+ ‖ξ‖α)≤ (1+ ‖ξ‖)α ≤ 2α(1+ ‖ξ‖α).(5.8)

(For the upper bound, consider the cases‖ξ‖ ≤ 1 and‖ξ‖> 1 separately.) �

We obtain the following upon integrating the preceding lemma[dξ ]:
LEMMA 5.2. For all µ ∈P (R+),

2−p(2π)dQαp
µ (Rd)≤ E

[‖Ôµ‖2
L2(Rd )

]≤ 2pα(2π)dQαp
µ (Rd),(5.9)

where for any β > 0,

Qβ
µ(dξ)

dξ
:= (2π)−d

Eχξ (µ)

(1+ ‖ξ‖)β .(5.10)

REMARK 5.3. Sinceχξ is bounded by 1 (Lemma 2.1), for any probability
measureµ on R+, Eχξ (µ)≤ 1. Thus, for allβ ∈ (0, d),

Qβ
µ(Rd) <∞ ⇐⇒

∫
Rd

Eχξ (µ)‖ξ‖−β dξ <+∞.(5.11)

Next, we develop a variant of Lemma 5.2. In order to describe it, it is convenient
to put all subsequent Lévy processes on the canonical probability space defined by
all cadlag paths fromR+ into Rd ; see Khoshnevisan, Xiao and Zhong [(2003a),
pages 1107 and 1108] for the details of this more-or-less standard construction.
Then, we can define the measure Px , for eachx ∈ Rd , as the measure that starts
the processA at A(0) = x. Formally speaking, we have Px := P◦ (A(0)+ x)−1.
Sinceλd denotes the Lebesgue measure on the Borel subsets ofRd , we can then
define

Pλd
(W) :=

∫
Rd

Px(W)dx and Eλd
[Y ] :=

∫
Y dPλd

,(5.12)

for all measurable subsetsW of the path space and all positive random
variablesY . An important fact about additive Lévy processes is that they satisfy
the Markov property with respect to theσ -finite measure Pλd

. See Khoshnevisan
and Xiao [(2002), Proposition 5.8] or Khoshnevisan, Xiao and Zhong [(2003a),
Proposition 3.2] for details.

We are ready to present the Pλd
-analogue of Lemma 5.2.
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LEMMA 5.4. For all f : Rd → R+ in L1(Rd) ∩ L2(Rd), and for all
µ ∈P (R+),

2−p‖f̂ ‖2
L2(Qαp

µ )
≤ Eλd

[|Oµ(f )|2] ≤ 2pα‖f̂ ‖2
L2(Qαp

µ )
,(5.13)

where the measure Qβ
µ is defined in (5.10).

PROOF. In the notation of the present note, if we further assume that
f̂ ∈ L1(Rd), then Lemma 3.5 of Khoshnevisan, Xiao and Zhong (2003a) and
symmetry together show that

Eλd
[|Oµ(f )|2] = (2π)−d

∫
Rd
|f̂ (ξ)|2E[|Ôµ(ξ)|2]dξ.(5.14)

The lemma—under the extra assumption thatf̂ ∈ L1(Rd)—follows from this,
used in conjunction with (5.7) and (5.8). To drop the integrability condition onf̂ ,
note a mollification argument reveals that all that is needed isf̂ ∈L2(Rd); but by
the Plancherel theorem, this is equivalent tof ∈L2(Rd). �

We are ready to dispense with the first part of the proof of Theorem 2.2.

PROOF OFTHEOREM2.2 (First half ). Chooseα ∈ (0,2] and an integerp ≥ 1
such that

αp = d − β.(5.15)

Then we introduce an independentp-parameter additiveα-stable process�X :=
{ �X(t)}t∈Rp

+ by

�X(t) :=X1(t1)+ · · · +Xp(tp) ∀ t ∈Rp
+.(5.16)

This also defines a(1+ p)-parameter additive Lévy processA := {A(t)}
t∈R1+p

+
defined by (5.2).

Now suppose there exists aµ ∈P (G) such that
∫

Rd Eχξ (µ)‖ξ‖β−d dξ <+∞.
Then, Lemma 5.2 and Plancherel’s theorem, used in conjunction, tell us that there
exists a (measurable) process{�µ(x)}x∈Rd such that:

1. E[‖�µ‖2
L2(Rd )

] = (2π)−dE[‖Ôµ‖2
L2(Rd )

] ≤ 2pαQαp
µ (Rd) < +∞; see also Re-

mark 5.3.
2. With probability one, for all bounded measurable functionsf : Rd → R,

Oµ(f )= ∫
Rd f (x)�µ(x) dx.

Apply part 2 withf (x) := 1A(G×Rp
+)(x), and apply the Cauchy–Schwarz inequal-

ity to deduce that almost surely,

1=Oµ

(
1A(G×Rp

+)

)= ∫
Rd

√
1A(G×Rp

+)(x) �µ(x) dx

(5.17)
≤

√
λd

(
A(G×Rp

+)
)‖�µ‖L2(Rd ).



858 D. KHOSHNEVISAN AND Y. XIAO

By the Cauchy–Schwarz inequality and part 1,

E
[
λd

(
A(G×Rp

+)
)]≥ 1

E[‖�µ‖2
L2(Rd )

] ≥
1

2pαQαp
µ (Rd)

.(5.18)

Sinceµ ∈P (G) can be chosen arbitrarily as long as Qαp
µ (Rd) <+∞, and because

of Remark 5.3 and (5.15), we have demonstrated that

inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞ �⇒ E
[
λd

(
A(G×Rp

+)
)]

> 0.(5.19)

According to Theorem 4.4, and thanks to (5.15), for any Borel setF ⊂Rd ,

E
[
λd

(
F ⊕ �X(Rp

+)
)]

> 0 ⇐⇒ Cβ(F ) > 0.(5.20)

SinceX is independent of�X, we can apply this, conditionally, withF := X(G),
and then integrate[dP], to deduce that

E
[
λd

(
A(G×Rp

+)
)]

> 0 ⇐⇒ E[Cβ(X(G))]> 0.(5.21)

This and (5.19) together imply that

inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞ �⇒ E[Cβ(X(G))]> 0.(5.22)

This proves fully half of Theorem 2.2.�

PROOF OF THEOREM 2.2 (Second half ). We now prove the more difficult
second half of Theorem 2.2; that is,

E[Cβ(X(G))]> 0 �⇒ inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞.(5.23)

In so doing, we can assume without loss of generality that the setG is compact.
Indeed, consider both sides, in (5.23), of “⇒” as set functions inG. Both of
the said functions are Choquet capacities. Hence, Choquet’s theorem reduces our
analysis to the study of compact setsG.

Henceforth,{ϕε}ε>0 denotes the Gaussian approximation to the identity,

ϕε(x) := (2πε2)−d/2 exp
(
−‖x‖

2

2ε2

)
∀x ∈Rd, ε > 0.(5.24)

As we did earlier, we chooseα ∈ (0,2] and an integerp ≥ 1 such thatαp = d−β.
We bring inp independentα-stable Lévy processesX1, . . . ,Xp, and construct the
corresponding additive Lévy processA :=X⊕ �X defined by (5.2).

Let us start with setting some preliminary groundwork. To begin with, we define
a (1+ p)-parameter filtrationF := {F(t)}

t∈R1+p
+

by definingF(t) to be the sigma-

algebra defined by{A(r)}r≺t. Without loss of generality, we can assume that each
F(t) has been completed with respect to all measures Px (x ∈Rd ). We remark that
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F is, indeed, a filtration in the partial order≺. By this we mean that whenever
s≺ t, thenF(s)⊆ F(t); a fact that can be readily checked.

Next we define, for anyµ ∈ P (G), the (1 + p)-parameter process
{Mµϕε(t)}t∈R1+p

+
as follows:

Mµϕε(t) := Eλd
[Oµ(ϕε)|F(t)] ∀ t ∈R1+p

+ ,(5.25)

where Oµ(ϕε) is defined by (5.3). It should be recognized thatMµϕε is a(1+p)-
parameter martingale in the partial order≺ and in the infinite-measure space
(�,F,Pλd

). By a martingale here, we mean that whenevers ≺ t, then Pλd
-almost

surely,

Eλd
[Mµϕε(t)|F(s)] =Mµϕε(s).(5.26)

By specializing Lemma 4.1 of Khoshnevisan, Xiao and Zhong (2003a) to the
present setting, we obtain the following:

Eλd
[Mµϕε(t)] = 1 ∀ t ∈R1+p

+ ,

sup
t∈R1+p

+
Eλd

[(
Mµϕε(t)

)2] ≤ (2π)−d
∫

Rd
|ϕ̂ε(ξ)|2E[|Ôµ(ξ)|2]dξ(5.27)

≤ 2pα‖ϕ̂ε‖2
L2(Qαp

µ )
;

see Lemma 5.1 for the last line.
Next, we work toward a bound in the reverse direction. For this, we note that

for anys ∈R1+p
+ ,

Mµϕε(s)≥ Eλd

[∫
t�s

ϕε(A(t))µ(dt)
∣∣∣F(s)

]
=

∫
t�s

Pt−sϕε(A(s))µ(dt),(5.28)

where

Ptg(x) := E
[
g
(
x +A(t)

)] ∀ t ∈R1+p
+ , x ∈Rd,(5.29)

and the last equality in (5.28) follows from the Markov property of the additive
Lévy processA under Pλd

. See Khoshnevisan and Xiao [(2002), Proposition 5.8]
or Khoshnevisan, Xiao and Zhong [(2003a), Proposition 3.2].

Now suppose thatG ⊂ (0,∞) is compact, and E[Cβ(X(G))] > 0. By (5.21),
this is equivalent to assuming

E
[
λd

(
A(G×Rp

+)
)]

> 0.(5.30)

By (5.28), Pλd
-almost surely,

Mµϕε(s) ≥
∫

t�s
Pt−sϕε(A(s))µ(dt) · 1{‖A(s)‖≤δ}

(5.31)
=

∫
t�s

E
[
ϕε

(
A(s)+A′(t− s)

)|A(s)
]
µ(dt) · 1{‖A(s)‖≤δ},
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where {A′(t)}
t∈R1+p

+
is an independent copy of{A(t)}

t∈R1+p
+

. In particular,

Pλd
-almost surely,

Mµϕε(s)≥
∫

t�s
inf

z∈Rd : ‖z‖≤δ
E

[
ϕε

(
z+A′(t− s)

)]
µ(dt) · 1{‖A(s)‖≤δ}.(5.32)

On the other hand, one can directly check that∫
t�s

inf
z∈Rd : ‖z‖≤δ

E
[
ϕε

(
z+A′(t− s)

)]
µ(dt)

(5.33)
=

∫ ∞
s0

∫ ∞
s1

· · ·
∫ ∞
sp

inf
z∈Rd : ‖z‖≤δ

Pt−sϕε(z)e
−∑p

j=1 tj µ(dt0) d�t .

According to Lemma 3.1 of Khoshnevisan, Xiao and Zhong (2003a),

Pt−sϕε(0)

(5.34)
= (2π)−d

∫
Rd

e
−(t0−s0)�(ξ)−∑p

j=1(tj−sj )‖ξ‖α−(1/2)ε2‖ξ‖2
dξ.

Because the left-hand side is strictly positive, so is the right-hand side. In addition,∫ ∞
s0

∫ ∞
s1

· · ·
∫ ∞
sp

Pt−sϕε(0) e
−∑p

j=1 tj µ(dt0) d�t

= (2π)−d
∫ ∞
s0

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−s0)�(ξ)

(5.35)

×
p∏

j=1

∫ ∞
sj

e−(v−sj )‖ξ‖α−v dv dξ µ(dt0)

= (2π)−de
−∑p

j=1 sj

∫ ∞
s0

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−s0)�(ξ) dξ

(1+ ‖ξ‖α)p
µ(dt0).

We plug this into (5.32) and deduce the following from Fatou’s lemma: Pλd
-almost

surely, for alls ∈Q
1+p
+ ,

Mµϕε(s)≥ 1{‖A(s)‖≤δ}(2π)−d(
1+ o(1)

)
e
−∑p

j=1 sj

(5.36)
×

∫ ∞
s0

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−s0)�(ξ) dξ

(1+ ‖ξ‖α)p
µ(dt0),

whereo(1) is a term that goes to 0, uniformly in�s andµ (but notε), asδ → 0.
(This follows merely from the Lipschitz continuity ofϕε.)

For anyδ > 0, defineGδ to be the closedδ-enlargement ofG, and note that
Gδ is compact inR+. Choose some point� /∈ R+, and let T δ,l denote any
measurable(Q+ ∩Gδ)∪�-valued function on� such thatT δ,l �=� if and only if
there exists some�t ∈ [0, l]p such that‖A(T δ,l, �t )‖ ≤ δ. This can always be done
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since theXj ’s have cadlag paths, and sinceB(0, δ) := {x ∈ Rd :‖x‖ ≤ δ} has an
open interior. It may help to think, informally, thatT δ,l is any measurably selected
point inGδ such that, for some�t ∈ [0, l]p, ‖A(T δ,l, �t )‖ ≤ δ, as long as such a point
exists. If such a point does not exist, then the value ofT δ,l is set to�. [Warning:
This is very close to, butnot the same as, the construction of Khoshnevisan, Xiao
and Zhong (2003a).] Thus, (5.36) implies that Pλd

-almost surely,

sup
s∈R1+p

+
Mµϕε(s)≥ 1{T δ,l �=�}

(2π)−d(1+ o(1))

epl

(5.37)

×
∫ ∞
T δ,l

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−T δ,l)�(ξ)

(1+ ‖ξ‖α)p
dξ µ(dt0).

Finally, we chooseµ ∈ P(Gδ) judiciously. Fixl > 0, and define

µδ,k(•) := Pλd
{T δ,l ∈ •, T δ,l �=�,‖A(0)‖ ≤ k}
Pλd

{T δ,l �=�,‖A(0)‖ ≤ k} .(5.38)

Then, thanks to (5.30), for all sufficiently largek, µδ,k∈P (Gδ); see Khoshnevisan,
Xiao and Zhong [(2003a), (4.3)] and its subsequent display. Furthermore,
Pλd

-almost surely,

sup
s∈R1+p

+
Mµδ,kϕε(s)≥ 1{T δ,l �=�,‖A(0)‖≤k}

(2π)−d(1+ o(1))

epl

(5.39)

×
∫ ∞
T δ,l

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−T δ,l)�(ξ)

(1+ ‖ξ‖α)p
dξ µδ,k(dt0).

We can square both sides of this inequality, and then take expectations to deduce
that

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

×Eλd

[(∫ ∞
T δ,l

∫
Rd
· · · dξ µδ,k(dt0)

)2∣∣∣T δ,l �=�,‖A(0)‖ ≤ k

]
(5.40)

= Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

×
∫ ∞

0

(∫ ∞
y

∫
Rd

e−(1/2)ε2‖ξ‖2−(x−y)�(ξ)

(1+ ‖ξ‖α)p
dξ µδ,k(dx)

)2

µδ,k(dy).

From the Cauchy–Schwarz inequality, after making an appeal to the fact that in
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the integrandx ≥ y, we can deduce the following:

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

(5.41)

×
(∫ ∞

0

∫ ∞
y

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

× [(1+ ‖ξ‖α)p]−1 dξ µδ,k(dx)µδ,k(dy)

)2

.

This time, o(1) is a term that goes to 0, uniformly over allk ≥ 1, asδ → 0.
We intend to show that, in the preceding display, we can replace, at little cost,∫∞
y by

∫∞
0 . In order to do this, we need some preliminary setup. Most significantly,

we need a new partial order on the enlarged parameter spaceR1+p
+ .

For anys, t ∈R1+p
+ , we write

s� t ⇐⇒ s0 ≥ t0 but for all j = 1, . . . , p, sj ≤ tj .(5.42)

This is an entirely different partial order from≺, and gives rise to a new(1+ p)-
parameter filtrationR := {R(t)}

t∈R1+p
+

, whereR(t) is defined to be the sigma-

algebra generated by{A(r)}r� t. Without loss of generality, we can assume that
eachR(t) is complete with respect to every Px (x ∈ Rd ). As we did forF, we
remark thatR is a filtration in the new partial order� and, under theσ -finite
measure Pλd

, X satisfies the Markov property with respect toR. (The Fraktur
lettersF andR are chosen to remind the reader of “forward” and “reverse,” since
they refer to the time-order of the processX.)

Consider the(1+ p)-parameter processNµk,δϕε := {Nµk,δϕε(t)}t∈R1+p
+

that is

defined by the following:

Nµk,δϕε(t) := Eλd
[Oµk,δ (ϕε)|R(t)].(5.43)

Clearly, this is a martingale in the partial order�.
By using a similar argument as that which led to (5.41), we arrive at the

following (here, it is essential to work with the infinite measure Pλd
instead of P):

Eλd

[(
sup

s∈R1+p
+

Nµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

(5.44)

×
(∫ ∞

0

∫ y

0

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

× [(1+ ‖ξ‖α)p]−1 dξ µδ,k(dx)µδ,k(dy)

)2

.
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[En route, this shows that the terms inside(· · ·)2 are nonnegative real too.] Thus,
we add (5.41) and (5.44), and use 2(a2+b2)≥ (a+b)2—valid for all reala, b—to
obtain the following:

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

+Eλd

[(
sup

s∈R1+p
+

Nµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} ×

(
1

2(2π)2d
+ o(1)

)
e−2pl

(5.45)

×
(∫ ∞

0

∫ ∞
0

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

× [(1+ ‖ξ‖α)p]−1 dξ µδ,k(dx)µδ,k(dy)

)2

.

Now the integrand is absolutely integrable[dξ × dµk,δ × dµk,δ]. Thus, by the
Fubini–Tonelli theorem, we can interchange the order of the integrals, and obtain
the following:

∫ ∞
0

∫ ∞
0

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

(1+ ‖ξ‖α)p
dξ µδ,k(dx)µδ,k(dy)

=
∫

Rd

e−(1/2)ε2‖ξ‖2

(1+ ‖ξ‖α)p
Eχξ (µ

δ,k) dξ(5.46)

≥ 2−αp(2π)d
∫

Rd
e−(1/2)ε2‖ξ‖2

Qαp

µk,δ (dξ)≥ 2−αp(2π)d‖ϕ̂ε‖2
L2(Qαp

µk,δ )
.

In the above, the first inequality follows from (5.8) and (5.10), and the second
inequality follows from 0< ϕ̂ε(ξ)≤ 1.

In other words, after recalling (5.10), we arrive at the following:

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

+Eλd

[(
sup

s∈R1+p
+

Nµδ,kϕε(s)
)2]

(5.47)

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × 1+ o(1)

e2pl21+2αp
‖ϕ̂ε‖4

L2(Qαp

µδ,k )
.

We recall thato(1) is a term that tends to zero, asδ → 0, uniformly in all of the
variables exceptε.

It turns out that, under the infinite measure Pλd
, both filtrationsF andR are

commuting in the sense of Khoshnevisan [(2002), page 233]; see Khoshnevisan,
Xiao and Zhong [(2003a), proof of Lemma 4.2, page 1111] for a discussion of
a much more general property. Thus, by the Cairoli inequality [Khoshnevisan
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(2002), Theorem 2.3.2, Chapter 7],

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

≤ 4p+1 sup
s∈R1+p

+
Eλd

[M2
µδ,k (s)]

= 4p+1 sup
s∈R1+p

+
Eλd

[(
Oµδ,k (ϕε)

)2](5.48)

≤ 4p+12pα‖ϕ̂ε‖2
L2(Qαp

µδ,k )

[cf. (5.25) and (5.27); the fact that Pλd
is not a probability measure does not cause

any difficulties here]. Moreover, the preceding remains valid if we replaceMµk,δ

by Nµk,δ everywhere. Thus, solving the preceding two displays leads us to the
following:

Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} ≤ e2pl23(1+αp)+2p(

1+ o(1)
)‖ϕ̂ε‖2

L2(Qαp

µδ,k )
.(5.49)

Now we let k →∞ and appeal to Fatou’s lemma to see that there must exist
µδ ∈P (Gδ) such that

Pλd
{T δ,l �=�} ≤ e2pl 23(1+αp)+2p(

1+ o(1)
)‖ϕ̂ε‖−2

L2(
Qαp

µδ

).(5.50)

In order to deduce the above, note that all of the probability measures{µk,δ}k≥1
live on the same compact setGδ . Therefore, we can extract a subsequence that
converges weakly toµδ ∈ P (Gδ). To finish, note that|ϕ̂ε(ξ)|2 = exp(−ε2‖ξ‖2)

is a bounded continuous function ofξ and it is inL1(Rd). Hence, by the Fubini–
Tonelli theorem, we have

‖ϕ̂ε‖2
L2(Qαp

µδ,k )

(5.51)

=
∫ ∫ [∫

Rd
e−ε2‖ξ‖2 e−|s−t |�(sgn(s−t)ξ)

(1+ ‖ξ‖)αp
dξ

]
µδ,k(ds)µδ,k(dt),

and the kernel in the brackets is a bounded continuous function of(s, t). So we
obtain the asserted bound in (5.50).

Next, we letδ ↓ 0 in (5.50), and appeal to Fatou’s lemma and compactness once
more in order to obtain the following: There existsµ ∈P (G) such that

Pλd
{0∈A(G× [0, l]p)} ≤ cp,l,α‖ϕ̂ε‖−2

L2(Qαp
µ )

,(5.52)

where cp,l,α := e2pl 23(1+αp)+2p. We can now letε ↓ 0, and appeal to the
monotone convergence theorem, to see that

E
[
λd

(
A(G× [0, l]p)

)]≤ Pλd
{0∈A(G× [0, l]p)}

(5.53)
≤ cp,l,α lim

ε→0
‖ϕ̂ε‖−2

L2(Qαp
µ )

= cp,l,α

Qαp
µ (Rd)

.
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In accordance with Remark 5.3, for this choice ofµ ∈ P (G), we have the
following:

E
[
λd

(
A(G× [0, l]p)

)]
> 0 ⇐⇒

∫
Rd

Eχξ (µ)‖ξ‖−αp dξ <+∞.(5.54)

At this stage, we can apply Theorem 4.4 [see also (5.20)], conditionally, with
F :=X(G) to deduce that (5.30) holds if and only ifCd−αp(F ) > 0 with positive
probability. Hence, we have proven (5.23), and this completes our proof.�

REMARK 5.5. Our proof of Theorem 2.2 is a self-contained argument for
deriving the following:

E[Cβ(X(G))]> 0 ⇐⇒ inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞.(5.55)

We can then use Proposition 2.8 to conclude that the preceding is also equivalent
to the condition thatX(G) almost surely has positiveβ-dimensional Bessel–Riesz
capacity.

In this remark, we describe a proof that (5.55) implies Proposition 2.8. To do
so, we need only to prove that

inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞ �⇒ Cβ(X(G)) > 0 a.s.(5.56)

That is, we assume that there existsµ ∈P (G) such that
∫

Rd Eχξ (µ)‖ξ‖β−d dξ <

+∞, and prove that, with probability one,Cβ(X(G)) > 0.
For such a probability measureµ ∈ P (G), we define the occupation mea-

sure �µ of X by �µ(A) := ∫
1A(X(s))µ(ds), for all Borel setsA ⊂ Rd .

Informally, this isexactly the same as Oµ(1A), wherep = 0; see (5.3). Note that
�µ ∈ P (X(G)) a.s. and thanks to Plancherel’s theorem in the form of (7.22) be-
low, there exists a constantc′d,β such thatEβ(�µ)= c′d,β

∫
Rd |�̂µ(ξ)|2‖ξ‖β−d dξ.

On the other hand, by (5.7) (withp := 0), E[|�̂µ(ξ)|2] = Eχξ (µ). Thus,

E[Eβ(�µ)] = c′d,β

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ,(5.57)

which is finite. Thus,Eβ(�µ) is finite almost surely, whence (5.56).

6. Kahane’s problem for self-intersections. We now return to Kahane’s
problems, mentioned in the Introduction, regarding whenX(F) ∩X(G) �=∅ for
disjoint setsF andG in R+. The following is the most general answer that we
have been able to find.

THEOREM 6.1. If X is a Lévy process in Rd with Lévy exponent �, then given
any two disjoint Borel sets F,G ⊂ R+, E[λd(X(F )� X(G))] > 0 if and only if
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there exists µ ∈P (F ×G) such that∫
Rd

Eχξ⊗χ−ξ (µ)dξ

(6.1)
:=

∫
Rd

∫ ∫
χξ (s1− t1)χ−ξ (s2− t2)µ(ds)µ(dt) dξ <+∞.

If, in addition, the distribution of X(t) is equivalent to λd for all t > 0, then the
above condition (6.1) is also equivalent to P{X(F)∩X(G) �=∅}> 0.

In the symmetric case,χξ is real and positive. So by the Fubini–Tonelli theorem,
we have the following:

COROLLARY 6.2 (Kahane’s problem). Let X be a symmetric Lévy process
in Rd with Lévy exponent �. If the distribution of X(t) is equivalent to λd for all
t > 0, then P{X(F)∩X(G) �=∅}> 0 if and only if Cf (F ×G) > 0, where for all
x ∈R2,

f (x) :=
∫

Rd
χξ ⊗ χξ (x) dξ :=

∫
Rd

e−(|x1|+|x2|)�(ξ) dξ.(6.2)

EXAMPLE 6.3. If X is a symmetricα-stable Lévy process inRd , then
�(ξ)≥ 0 and c‖ξ‖α ≤ �(ξ) ≤ C‖ξ‖α for some constants 0< c ≤ C, and
we readily obtain the following consequence which solves the problem, due to
Kahane, mentioned in the Introduction:

P{X(F)∩X(G) �=∅}> 0 ⇐⇒ Cd/α(F ×G) > 0.(6.3)

This was previously known only whenα = 2; that is, whenX is a Brownian motion
[Khoshnevisan (1999), Theorem 8.2].

Now we begin proving our way toward Theorem 6.1. The first step is a
simplification that is well known, as well as interesting on its own. Namely, in
order to prove Theorem 6.1, it suffices to prove the following:

THEOREM 6.4. Suppose X1 and X2 are independent Lévy process in Rd with
Lévy exponents �1 and �2. Then, given any two Borel sets F1 and F2, both in R+,
E[λd(X1(F1)�X2(F2))]> 0 if and only if there exists µ ∈P (F1×F2) such that∫

Rd
E

χ
�1
ξ ⊗χ

�2−ξ

(µ)dξ <+∞.(6.4)

If, in addition, the distribution of X1�X2(�t ) is equivalent to λd for all �t ∈ (0,∞)2,
then the above condition is also equivalent to the condition that P{X1(F1) ∩
X2(F2) �=∅}> 0.
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PROOF. Consider the two-parameter additive Lévy process�X := X1 � X2.
The Lévy exponent of the process�X is the function��(ξ) := (�1(ξ),�2(−ξ)); of
course,�2(−ξ) is the complex conjugate of�2(ξ). The necessary and sufficient
condition for the positivity of E[λd(X1(F1)�X2(F2))] follows from Theorem 4.8.
To finish, we can apply Lemma 4.1 with the choices,F := {0} andG := F1× F2.

�

We are finally ready to prove Theorem 6.1.

PROOF OF THEOREM 6.1. It suffices to prove this theorem forF and G

compact subsets ofR+.
We can simplify the problem further by assuming, without loss of generality,

that there exist 0< a < b < c < d such thatF ⊂ [a, b] andG ⊂ [c, d]. Choose
any nonrandom numberτ ∈ (b, c), and note that the translation invariance ofλd

implies thatλd(X(F )�X(G)) > 0 if and only if λd(X1(F )�X2(G� τ)) > 0,
whereX1(t) :=X(t) (0≤ t ≤ τ) andX2(t) :=X(t + τ)−X(τ) (t ≥ 0). Clearly,
X1 and X2 are independent Lévy processes both when exponent� is verified
automatically. Thus, by Theorem 6.4,

E
[
λd

(
X(F)�X(G)

)]
> 0

(6.5) ⇐⇒ inf
µ∈P (F×G�τ)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞.

By the explicit form of the latter energies [cf. (6.1)], the above condition is
equivalent to the existence ofν ∈P (F ×G) such that

∫
Rd Eχξ⊗χ−ξ (ν) dξ is finite.

This proves the first half of the theorem.
Now suppose, in addition, that the distribution ofX(t) is equivalent toλd for

all t > 0. Consider the two-parameter additive Lévy process�X :=X1�X2, where
X1 and X2 are the same processes we used earlier in this proof, and note that
the distribution of�X(�t ) is equivalent toλd for all �t := (t1, t2) ∈ (0,∞)2. Hence,
Lemma 4.1 implies that

P{X1(F )∩X2(G� τ) �=∅}> 0

(6.6) ⇐⇒ inf
µ∈P (F×G)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞.

Equivalently,

P{X1(F )∩X2(G� τ) �=∅|X(τ )}> 0 with positive probability

(6.7) ⇐⇒ inf
µ∈P (F×G)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞,

whereX(τ ) denotes the sigma-algebra generated by{X(u); u ∈ [0, τ ]}. Now,
X2 is independent ofX(τ ) andX1. So we can apply Lemma 4.1 [withp := 1,



868 D. KHOSHNEVISAN AND Y. XIAO

F replaced withZ ⊕ X1(F ), and �X replaced withX2] to deduce that for any
a.s.-finiteX(τ )-measurable random variableZ,

P{Z⊕X1(F )∩X2(G� τ) �=∅|X(τ )}> 0 with positive probability

(6.8) ⇐⇒ inf
µ∈P (F×G)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞.

ChooseZ := −X(τ) and unscramble the above to conclude the proof.�

Kahane (1983) has also studied the existence of self-intersections of a
symmetric stable Lévy processX = {X(t)} when t is restricted to the disjoint
compact subsetsE1, E2, . . . ,Ek of R+ (k ≥ 2). The proof of Theorem 6.1 can be
modified to give a necessary and sufficient condition for P{X(E1)∩· · ·∩X(Ek) �=
∅} > 0. For simplicity, we content ourselves by deriving the following result
from Theorem 4.2 under the extra assumption thatX is symmetric and absolutely
continuous. We point out that whenk = 2, the conditions of Theorem 6.5 and
Corollary 6.2 are not always comparable.

THEOREM 6.5. Let X be a symmetric Lévy process in Rd with Lévy
exponent �. Suppose that, for every fixed t > 0, e−t�(·) ∈ L1(Rd). Then, for all
disjoint compact sets E1, . . . ,Ek ⊂ R+, P{X(E1) ∩ · · · ∩X(Ek) �=∅}> 0 if and
only if Cf (E1×E2× · · · ×Ek) > 0. Here,

f (x) := (2π)−d(k−1)
∫

Rd(k−1)
exp

(
−

k∑
j=1

|xj |�(ξj−1− ξj )

)
dξ

(6.9)
∀x ∈Rk.

We have written ξ ∈ Rd(k−1) as ξ := ξ1⊗ · · · ⊗ ξk−1, where ξj ∈ Rd . In addition,
ξ0 := ξk := 0.

PROOF. By the proof of Theorem 6.1, it suffices to considerk independent
symmetric Lévy processesX1, . . . ,Xk in Rd with exponent�. We define a
multiparameter process�X := { �X(t)}t∈Rk+ , with values inR(k−1)d , by

�X(t)= (
X2(t2)−X1(t1), . . . ,Xk(tk)−Xk−1(tk−1)

)
.(6.10)

Then �X can be expressed as an additive Lévy process inR(k−1)d with Lévy
exponent(�1, . . . ,�k), where for everyj = 1, . . . , k, �j is defined by

�j(ξ)=�(ξj−1− ξj ) ∀ ξ = (ξ1, . . . , ξk−1) ∈R(k−1)d .(6.11)

It is easy to verify that, under our assumptions,�X is a symmetric and absolutely
continuous additive Lévy process whose gauge function is given by (6.9). Because
P{⋂k

j=1 Xj(Ej ) �= ∅}> 0 if and only if P{ �X−1(0) ∩ (E1 × · · · × Ek) �= ∅} > 0,

Theorem 6.5 follows from Theorem 4.2 and Remark 4.3. Related information can
be found in Khoshnevisan and Xiao [(2002), pages 93 and 94].�
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7. Examples of capacity and dimension computations.

7.1. Isotropic processes: image. Throughout this section we consider an
isotropic Lévy processX := {X(t)}t≥0 with an exponent� that is regularly
varying at infinity with indexα ∈ (0,2]. Thus, we may write

�(ξ)= ‖ξ‖ακ(‖ξ‖) ∀ ξ ∈Rd\{0}.(7.1)

Here,κ : (0,∞) → R+ is a function that is slowly varying at infinity. We now
derive the following application of Theorem 2.2 for a broad class of such
processes.

THEOREM 7.1. Suppose κ : (0,∞) → R+ is continuous and slowly varying
at infinity. Then, for any nonrandom Borel set G⊂R+, and all β ∈ (0, d),

Cβ(X(G))= 0 a.s. ⇐⇒ Cgκ (G)= 0,(7.2)

where

gκ(x) := |x|−β/α [κ#(|x|−1/α)]β.(7.3)

Here, κ# is the de Bruijin conjugateof κ .

REMARK 7.2. It is known thatκ# is a slowly varying function [Bingham,
Goldie and Teugels (1987), Theorem 1.5.13]. In many cases, the functionκ# can be
estimated and/or computed with great accuracy; see Bingham, Goldie and Teugels
[(1987), Section 5.2 and Appendix 5].

REMARK 7.3. If, in Theorem 7.1, we further assume that the functionκ(et )

is regularly varying at infinity, then we can choosegκ as follows:

gκ(x) := |x|−β/α

[
κ

(
1

|x|
)]−β

.(7.4)

The proof of this will be given in Remark 7.6 below.

BecauseCf is determined by the behavior off at the origin, Theorem 7.1
follows from Corollary 2.4 at once if we could prove that

0< lim inf|x|→0

fd−β(x)

gκ(x)
≤ lim sup

|x|→0

fd−β(x)

gκ(x)
<+∞.(7.5)

Recall (2.7), integrate by parts, and change variables to see that

|x|β/αfd−β(x)= vd

∫ ∞
0

e−rακ(r|x|−1/α)rβ−1 dr,(7.6)

wherevd := λd−1(S
d−1). Our next lemma will be used to describe the asymptotic

behavior offd−β(x) for x near zero. We adopt the following notation: Given two
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nonnegative functionsh andg, andx0 ∈ [0,∞], we writeh(x) � g(x) (x → x0)
to mean that there exists a neighborhoodN of x0 such that uniformly forx ∈ N ,
the ratio ofh(x) to g(x) is bounded away from zero and infinity. (Ifx0 = +∞,
neighborhood holds in the sense of the one-point compactification ofR+. If no
range ofx is specified, then the inequality holds for allx.)

LEMMA 7.4. Under the conditions of Theorem 7.1, for any β > 0,∫ ∞
0

e−rακ(nr)rβ−1 dr � εβ
n (n→∞),(7.7)

where εn is any solution to εα
nκ(nεn)= 1.

PROOF. Let us begin by proving the existence of{εn}n≥1. It follows from
(7.1) that, for every fixed integern ≥ 1, limx→0 xακ(nx) = 0 [since�(0) = 0]
and limx→∞ xακ(nx) =∞ (sinceκ is slowly varying at infinity). The assumed
continuity ofκ in (0,∞) does the rest.

Next we note that, for any integern≥ 1,

(nεn)
ακ(nεn)= nα.(7.8)

This implies that limn→∞ nεn =+∞.
Now we estimate the integral in (7.7). It is easier to make a change of variables

(s := r/εn) and deduce the following:∫ ∞
0

e−rακ(nr)rβ−1 dr = εβ
n

∫ ∞
0

e−εα
n κ(nεns)sα

sβ−1 ds := εβ
nTn.(7.9)

Our goal is to show thatTn � 1 (n→∞). Note that ifκ(x) � 1 (x →∞), then
εn � 1 and soTn � 1 (n→∞).

In the general case, it is not a surprise that this is done by analyzing the integral
over different regions; this is what we do next. We will need to make use of the
representation theorem and the uniform convergence theorem for slowly varying
functions; see Bingham, Goldie and Teugels (1987).

Thanks to (7.8), we have∫ ∞
1

e−εα
n κ(nεns)sα

sβ−1 ds

=
∫ ∞

1
exp

(
−εα

nκ(nεn)s
α κ(nεns)

κ(nεn)

)
sβ−1 ds

(7.10)

=
∫ ∞

1
exp

(
−sα κ(nεns)

κ(nεn)

)
sβ−1 ds

≤
∫ ∞

1
exp(−sα−δ)sβ−1 ds <∞,
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where 0< δ < α is a constant, and we have used the representation theorem forκ

in order to derive that

κ(nεns)

κ(nεn)
≥ s−δ for all n large enough.(7.11)

On the other hand, sinceκ is nonnegative, we have∫ 1

0
e−εα

n κ(nεns)sα

sβ−1 ds ≤
∫ 1

0
sβ−1 ds = 1

β
.(7.12)

Finally, it follows from (7.8) and the uniform convergence theorem forκ that∫ 2

1
e−εα

n κ(nεns)sα

sβ−1 ds =
∫ 2

1
exp

(
−sα κ(nεns)

κ(nεn)

)
sβ−1 ds

(7.13)

→
∫ 2

1
exp(−sα)sβ−1 ds asn→∞.

Combining (7.10), (7.12) and (7.13), we see thatTn � 1 (n →∞), as asserted.
�

LEMMA 7.5. Under the conditions of Theorem 7.1, (7.5)holds.

PROOF. Let f (x) := xακ(x) (x > 0). Becausef is regularly varying at
infinity, it has an asymptotic inverse functionf← which is monotone increasing
and regularly varying with index 1/α; see Bingham, Goldie and Teugels [(1987),
page 28]. Furthermore, it follows from Proposition 1.5.15 of Bingham, Goldie and
Teugels (1987) thatf← can be expressed as

f←(y)∼ y1/ακ#(y1/α) asy →∞,(7.14)

whereκ# is thede Bruijin conjugate of κ .
Now we apply Lemma 7.4 withn := |x|−1/α , and recall (7.6), to deduce that

|x|β/αfd−β(x) � ε
β
n (|x| → 0). For all n ≥ 1, sinceεα

nκ(nεn) = 1, we have
f (nεn) = nα . Recall thatnεn →∞ as n →∞, so our remarks onf← prove
that εn ∼ n−1f←(nα) ∼ κ#(n) (n → ∞). Whence we have|x|β/αfd−β(x) �
[κ#(|x|−1/α)]β (|x| → 0). This completes the proof of Lemma 7.5.�

REMARK 7.6. In order to prove Remark 7.3, we will use the following
connection betweenκ and its de Brujin conjugateκ#:

κ#(x)∼ [
κ
(
xκ#(x)

)]−1
(x →∞);(7.15)

see Bingham, Goldie and Teugels [(1987), Theorem 1.5.13]. Now we assume,
in addition, thatκ(et ) = tγ �(t) for t > 0, whereγ is a constant and�(·) is
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slowly varying at infinity. Then we can writeκ(x)= (lnx)γ �(lnx) for all x > 1.
Consequently,

κ
(
xκ#(x)

)= κ(x)

[
1+ lnκ#(x)

lnx

]γ �(lnx + lnκ#(x))

�(lnx)
.(7.16)

Sinceκ# is slowly varying at infinity, we have lnκ#(x)= o(lnx) asx →∞. This,
and the representation theorem for�(·), together imply that�(lnx + lnκ#(x)) ∼
�(lnx) asx →∞. Hence, it follows from (7.15) that

κ#(x)� 1

κ(x)
(x →∞).(7.17)

Using again the assumption thatκ(et ) is regularly varying at infinity, we deduce
that Theorem 7.1 holds for the functiongκ defined by (7.4).

7.2. Dimension bounds: image. For our next example, we consider the case
whereX is an isotropic Lévy process inRd and satisfies the following for two
fixed constantsδ, η ∈ (0,2]:

‖ξ‖δ+o(1) ≤�(ξ)≤ ‖ξ‖η+o(1) (‖ξ‖→∞).(7.18)

A change of variables reveals that, for anyβ ∈ (0, d),

β

η
≤ lim inf

r↓1

logfd−β(r)

log(1/r)
≤ lim sup

r↓0

logfd−β(r)

log(1/r)
≤ β

δ
.(7.19)

Solve for the criticalβ to see thatI (G)≥ δ dimG andJ (G)≤ η dimG. Thus, in
this case,

δ dimG≤ dimX(G)≤ η dimG a.s.(7.20)

Note that the above includes the isotropicα-stable processes, as well as Lévy
processes with exponents that are regularly varying at infinity. Examples of the
later processes can be found in Marcus (2001). More generally, a large class of
Lévy processes satisfying (7.18) can be constructed by using the subordination
method. LetY := {Y(t)}t≥0 be an isotropicα-stable Lévy process inRd and
let τ := {τ(t)}t≥0 be a subordinator with lower and upper indicesσ and β,
respectively. Then the subordinated processX := {X(t)}t≥0 defined byX(t) :=
Y(τ(t)) is a Lévy process satisfying (7.18), withδ = σα andη = βα. For other
results along these lines see Blumenthal and Getoor (1961) and Millar (1971).

7.3. Isotropic processes: preimage. SupposeX is isotropic, satisfies the
absolute continuity condition of Corollary 3.2, and the regular variation condition
(7.18) holds. Then, for anyγ ∈ (0,1),

‖ξ‖η(γ−1)+o(1) ≤Re
(

1

1+�1−γ (ξ)

)
≤ ‖ξ‖δ(γ−1)+o(1) (‖ξ‖→∞).(7.21)
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Now recall that, for anyβ ∈ (0, d), the inverse Fourier transform ofRd  x �→
‖x‖−β is a constant multiple ofξ �→ ‖ξ‖β−d . Thus, by Plancherel’s theorem, for
anyν ∈P (Rd),

Eβ(ν)= cd,β

∫
Rd
|̂ν(ξ)|2‖ξ‖β−d dξ ;(7.22)

see Mattila [(1995), Lemma 12.12] and Kahane [(1985a), page 134]. Thus, thanks
to the Frostman theorem (2.8), we have the following calculation in the present
setting:

η+ dimR− d

η
≤ ‖dimX−1(R)‖L∞(P) ≤ δ+ dimR− d

δ
.(7.23)

Whenδ = η := α, (3.2) and (3.3) are ready consequences of this.
In fact, one can do more at little extra cost. Instead of isotropy, let us assume

that � satisfies thesector condition: As ‖ξ‖ → ∞, Im�(ξ) = O(Re�(ξ)).
A few tedious, but routine, lines of calculations (see below) show that given any
γ ∈ (0,1), �1−γ also satisfies the sector condition, and so there exists a constant
c > 0 such that, for allξ ∈Rd ,

c

|1+�(ξ)|1−γ
≤Re

(
1

1+�1−γ (ξ)

)
≤ 1

|1+�(ξ)|1−γ
.(7.24)

If, in addition, there existδ, η ∈ [0,2] such that‖ξ‖δ+o(1) ≤ Re�(ξ) ≤
‖ξ‖η+o(1) (‖ξ‖ → ∞), then (7.23) holds. Another simple consequence of this
example is that (3.4) continues to hold for all strictlyα-stable processes. We leave
the details to the interested reader, and conclude this subsection by verifying the
claim that whenever� satisfies the sector condition, then so does�a for anya ∈R
with |a|< 1.

Write �(z) := |�(z)|eiθ(z), where θ(z) ∈ [−π,π]. By the sector condition
on�, there existsc > 0 such that, for all‖ξ‖ large enough,|Im�(ξ)| ≤ cRe�(ξ).
But

|sin(θ(ξ))| = |Im�(ξ)|
|�(ξ)| ≤ c√

1+ c2
:= sin(η) < 1,(7.25)

whereη := sin−1(c/
√

1+ c2 ). This means that for any fixeda ∈ R with |a|< 1,
cos(aθ(ξ))≥ cos(aη) > 0 as soon as‖ξ‖ is large enough. Therefore, there exists
ε := cos(aη) > 0 such that for anya ∈R with |a|< 1, and all‖ξ‖ large,

Re�a(ξ)= |�(ξ)|a cos(aθ(ξ))≥ ε|�(ξ)|a = ε|�a(ξ)| ≥ ∣∣Im(
�a(ξ)

)∣∣.(7.26)

This proves that the sector condition holds for�a .
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7.4. Processes with stable components. A (Lévy) process X with stable
components is ad-dimensional process with independent componentsX1, . . . ,Xp

such thatXj is an αj -stable Lévy process inRdj , where d = ∑p
j=1 dj . By

relabelling the components, we can and will assume throughout that 2≥ α1 ≥
α2≥ · · · ≥ αp > 0.

Pruitt and Taylor (1969) have studied the range ofX, and proved that, with
probability one,

dimX(R+)=
{

α1, if α1≤ d1,

1+ α2(1− α1
−1), if α1 > d1 = 1.

(7.27)

Becker-Kern, Meerschaert and Scheffler (2003) have recently extended (7.27) to a
class of operator-stable Lévy processes inRd , which allow dependence among the
componentsX1, . . . ,Xp. Their argument involves making a number of technical
probability estimates, and makes heavy use of the results of Pruitt (1969). As a
result, they impose some restrictions on the transition densities ofX.

In the following, we give a different analytic proof of the result (7.27). Since
we do not need probability estimates, our argument works for more general Lévy
processes than those of Pruitt and Taylor (1969). In particular, we expect that
our method will work for the cases that have remained unsolved by Becker-Kern,
Meerschaert and Scheffler (2003).

PROPOSITION7.7. Let X be a Lévy process in Rd , with d ≥ 2, whose Lévy
exponent � satisfies the following:

Re
(

1

1+�(ξ)

)
� 1∑p

j=1 |ξj |αj
as ‖ξ‖ →∞.(7.28)

Then almost surely,

dimX(R+)=
{

α1, if α1≤ d1,

1+ α2(1− α−1
1 ), if α1 > d1.

(7.29)

REMARK 7.8. Condition (7.28) is satisfied by a large class of Lévy processes,
including the Lévy processes with stable components considered by Pruitt and
Taylor (1969), as well as more general operator-stable Lévy processes. Moreover,
one can replace the power functions|ξj |αj by regularly varying functions and the
conclusion still holds. In particular, (7.29) still holds ifX is a Lévy process inRd

whose components involve independent asymmetric Cauchy processes.

PROOF OFPROPOSITION7.7. For anyγ > 0, it follows from (7.28) that the
integral in (4.18) is comparable to

Iγ :=
∫
{ξ∈Rd : ‖ξ‖≥1}

1

1+∑p
j=1 |ξj |αj

dξ

‖ξ‖d−γ
.(7.30)
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Notice thatIγ =∞ for all γ ≥ α1. Hence, we always have dimX(R+)≤ α1 almost
surely (Corollary 4.7).

Now we derive the corresponding lower bound in the case thatα1 ≤ d1. It is
sufficient to work with the two-dimensional Lévy processX = (X1,X2). Hence,
without loss of generality, we will assume thatd = 2.

Clearly, if d1 = d = 2, then it follows from (7.30) thatIγ < ∞ for all
0< γ < α1. Thus, Corollary 4.7 implies dimX(R+) ≥ α1 almost surely, as
desired. So we only need to consider the case whend1 = 1 andα1≤ 1. Write

Iγ �
[∫ 1

0

∫ ∞
1

+
∫ ∞

1

∫ 1

0

]
1

1+ ξ
α1
1 + ξ

α2
2

· dξ1 dξ2

ξ
2−γ
1 + ξ

2−γ
2

(7.31) +
∫ ∞

1
dξ1

∫ ∞
1

1

1+ ξ
α1
1 + ξ

α2
2

· dξ2

ξ
2−γ
1 + ξ

2−γ
2

:= I (1)
γ + I (2)

γ .

For any 0< γ < α1 ≤ 1, I (1)
γ is finite, and

I (2)
γ ≤

∫ ∞
1

dξ1

1+ ξ
α1
1

·
∫ ∞

1

dξ2

ξ
2−γ
1 + ξ

2−γ
2

(7.32)

≤
∫ ∞

1

1

1+ ξ
α1
1

· dξ1

ξ
1−γ
1

·
∫ ∞

0

dξ2

1+ ξ
2−γ
2

<∞.

Consequently,Iγ < ∞ for all γ < α1. It follows from Corollary 4.7 that, when
α1 ≤ d1, dimX(R+)≥ α1 almost surely. This proves the first part of (7.29).

Next we prove the second part of (7.29). Sinceα1 > d1 = 1, we haveα2 ≤
1+α2(1−α−1

1
)≤ α1. For anyγ > 1+α2(1−α−1

1
), in order to prove thatIγ =∞,

we will make use of the following inequality: Ifd > 1+ γ andα > 0, then for all
constantsa, b ≥ 2 that satisfyb1/αa−1 ≥K−1

1 ,∫ ∞
1

1

b+ xα
· dx

(a2+ x2)(d−γ )/2

= a−(d−1−γ )
∫ ∞
a−1

1

b+ aαxα
· dx

(1+ x2)(d−γ )/2
(7.33)

≥ a−(d−1−γ )
∫ K1b

1/αa−1

a−1

1

b+ aαxα
· dx

(1+ x2)(d−γ )/2

≥K2b
−1 a−(d−1−γ ),

whereK1 andK2 are positive and finite constants.
We rewrite the integral in (7.30) in alld coordinates and relabelα1, . . . , αp for

each coordinate in an obvious way (now denoted asα1, . . . , αd ) to derive

Iγ ≥
∫ ∞

1
dξ1 · · ·

∫ ∞
1

1

1+ ξ
α1
1 + · · · + ξ

α
d

d

· dξd

‖ξ‖d−γ
.(7.34)
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If d > 2, then we iteratively integrate the integral in (7.34)[dξd × dξd−1 ×
· · · × dξ3], and use (7.33)d − 2 times. (Note that, for the obvious choices of
a andb, the conditionb1/αa−1 ≥K−1

1 holds for some constantK1 > 0 because of
the assumptionα1 ≥ α2 ≥ · · · ≥ αd .) As a result, we deduce that there is a constant
K3 > 0 such that

Iγ ≥K3

∫ ∞
1

dξ1

∫ ∞
1

1

ξ
α1
1 + ξ

α2
2

· dξ2

ξ
2−γ
1 + ξ

2−γ
2

:=K3 I (3)
γ .(7.35)

Clearly, this inequality also holds ford = 2. A change of variables then yields

I (3)
γ =

∫ ∞
1

dξ1

ξ
1+α2−γ

1

∫ ∞
ξ−1
1

1

ξ
α1−α2
1 + xα2

· dx

1+ x2−γ

≥ 1

2

∫ ∞
1

dξ1

ξ
1+α2−γ

1

∫ ∞
1

1

ξ
α1−α2
1 + xα2

· dx

x2−γ

(7.36)

≥ 1

2

∫ ∞
1

dξ1

ξ
1+α2−γ

1

· ξ−(α1−α2)(1+(1−γ )/α2)

1

∫ ∞
1

1

1+ yα2
· dy

y2−γ

≥K4

∫ ∞
1

dξ1

ξ
α1+(1−γ )α1/α2
1

.

Recall thatγ > 1+ α2(1− α−1
1

). Equivalently, we haveα1 + (1− γ )α1/α2 ≤ 1.
Combining (7.34)–(7.36) together yieldsIγ =∞; this proves that dimX(R+) ≤
1+ α2(1+ α−1

1
), a.s. (Corollary 4.7).

Finally, we prove the lower bound for dimX(R+) in the case thatα1 > d1 = 1.
Again, it suffices to assume thatd = 2; otherwise, consider the projection ofX

into R2. For any 1< γ < 1+ α2(1− α−1
1

), we have 2− γ + α2 > 1; hence, (7.31)
implies that there exist positive and finite constantsK5 andK6 such that

Iγ ≤K5+K6 I (3)
γ .(7.37)

As we did for (7.36), we can prove that

I (3)
γ =

∫ ∞
1

dξ1

ξ
1+α2−γ

1

[∫ 1

ξ−1
1

+
∫ ∞

1

]
1

ξ
α1−α2
1 + xα2

· dx

1+ x2−γ

≤
∫ ∞

1

dξ1

ξ
1+α1−γ

1

+
∫ ∞

1

dξ1

ξ
1+α2−γ

1

∫ ∞
1

1

ξ
α1−α2
1 + xα2

· dx

1+ x2−γ
(7.38)

≤
∫ ∞

1

dξ1

ξ
1+α1−γ

1

+
∫ ∞

1

dξ1

ξ
α1+(1−γ )α1/α2
1

∫ ∞
0

1

1+ xα2
· dx

x2−γ
.

Observe that all three integrals in (7.38) are finite because 1< γ < 1+ α2(1−
α−1

1
) < α1 and 2− γ + α2 > 1. It follows from (7.37) thatIγ < ∞ for all γ <
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1+α2(1−α−1
1

). Hence, Corollary 4.7 implies that dimX(R+)≥ 1+α2(1−α−1
1

),
a.s. This finishes the proof of Proposition 7.7.�
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