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STOCHASTIC PROCESSES IN RANDOM GRAPHS
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We study the asymptotics of large, moderate and normal deviations
for the connected components of the sparse random graghehyethod
of stochastic processes. We obtain the logarithmic asymptotics of large
deviations of the joint distribution of the number of connected components,
of the sizes of the giant components and of the numbers of the excess edges of
the giant components. For the supercritical case, we obtain the asymptotics
of normal deviations and the logarithmic asymptotics of large and moderate
deviations of the joint distribution of the number of components, of the
size of the largest component and of the number of the excess edges of
the largest component. For the critical case, we obtain the logarithmic
asymptotics of moderate deviations of the joint distribution of the sizes
of connected components and of the numbers of the excess edges. Some
related asymptotics are also established. The proofs of the large and moderate
deviation asymptotics employ methods of idempotent probability theory. As
a byproduct of the results, we provide some additional insight into the nature
of phase transitions in sparse random graphs.

1. Introduction. The random graphg(n, p) is defined as a nondirected
graph onn vertices where every two vertices are independently connected by
an edge with probabilityp. The graph is said to be sparsepit=c/n for ¢ > 0
and n large. Properties of sparse random graphs have been studied at length
and major developments have been summarized in the recent monographs by
Bollobas (2001), Janson, tuczak and Rustii (2000) and Kolchin (1999). The
focus of this paper is on the asymptotics s> co of the sizes of the giant
connected components, that is, components of ardesize, ofg (n, ¢, /n), where
cn — ¢ > 0. Itis known that forc > 1, with probability tending to 1 as — oo,
there exists a unique giant componentgaf, c¢/n), which is asymptotically8n
in size, wheres € (0, 1) is the positive root to the equation-18 = exp(—fBc),
the rest of the components being of sizes not greater than of order fey
¢ < 1, with probability tending to 1, there are no connected components of sizes
greater than of order log while for ¢ = 1 the size of the largest component
is of ordern?/3. Our primary objective is to evaluate the probabilities that there
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exist several giant connected components. As to be expected, these probabilities
are exponentially small im, so we study the decay rates and state our results

in the form of the large deviation principle (LDP). In addition, influenced by
the papers of Stepanov (1970b) and Aldous (1997), we concern ourselves with the
large deviation asymptotics of the number of the connected components and of the
numbers of the excess edges of the connected components. Thus, the main result
is an LDP for the joint distribution of the normalized number of the connected
components ofi(n, ¢, /n), of the normalized sizes of the connected components
and of the normalized numbers of the excess edges. Projecting yields LDPs for the
sizes and for the number of the connected components. Stepanov (1970b) and later
Bollobas, Grimmett and Janson (1996), analyzing a more general setting, have
obtained the logarithmic asymptotics of the moment generating function of the
number of the connected component%6t, ¢/n). If ¢ < 2, the latter asymptotics

also yield the LDP for the number of components, as Bollobas, Grimmett and
Janson (1996) demonstrate, but not for arbiteasy0. This anomaly is caused by a
phase transition occurring at= 2 discovered by Stepanov (1970b), which results,

as we show, in the action functional becoming nonconvex gasses through the
value of 2. Moreover, the phase transition turns out to consist in a giant component
breaking up.

Another group of results presented in the paper has to do with the properties
of the largest connected component. We establish normal deviation, moderate
deviation and large deviation asymptotics for the joint distribution of the size of
the largest connected component, of the number of its excess edges and of the
number of the connected components. In related work, O’Connell (1998) proves
an LDP for the size of the largest connected compone@tofc/n) and Stepanov
(1970a, 1972) obtains central limit theorems for the size of the largest component
and the number of components; different proofs of the central limit theorem for the
size of the largest component are given in Pittel (1990) and Barraez, Boucheron
and Fernandez de la Vega (2000), the latter authors also provide estimates of the
rate of convergence. Our third group of results concerns the critical random graph
whenc = 1. We complement the result of Aldous (1997) on the convergence in
distribution of the suitably normalized sizes and numbers of the excess edges of
the connected components with moderate deviation asymptotics for these random
variables.

Our analysis employs a surprising (to us) connection to queueing theory. The
results outlined above are derived as consequences of the asymptotic properties
of a “master” stochastic process, which captures the partitioning of the random
graph into connected components and builds on an earlier construction of a
similar sort, see Janson, tuczak and Rski (2000). This stochastic process is
intimately related to the waiting-time process (or the queue-length process) in a
certain time- and state-dependent queueing system and the connected components
correspond to the busy cycles of the system. We capitalize on this connection
by invoking our intuition for the behavior of queues as well as some standard
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gueueing theory tools such as properties of the Skorohod reflection mapping. Thus,
at first we apply the methods of the asymptotic theory of stochastic processes,
namely, the methods of weak and large deviation convergence, in order to establish
asymptotics of the master process and then translate them into the properties of
the connected components of the random graph. In the context of the random
graph theory, the present paper can thus be considered as developing the approach
pioneered by Aldous (1997) of deriving asymptotic properties of random graphs as
consequences of asymptotics of associated stochastic processes. On the technical
side, we extensively use the observation also made by Aldous (1997) that the
connected components can be identified with the excursions of a certain stochastic
process. Yet, the specific construction in this paper is different from the one of
Aldous (1997). Itis actually much the same as the one of Barraez, Boucheron and
Fernandez de la Vega (2000), as we learned after the paper had been submitted,
except for an important distinction, which we discuss below.

There are also other interesting technical aspects of the proofs, which concern
all three types of asymptotics: large deviations, moderate deviations and normal
deviations. The proof of the LDP for the master process relies on the results
of the large deviation theory of semimartingales [Puhalskii (2001)], which seem
to be called for since the action functional is “non-Markovian” and “non-time
homogeneous.” The cumulant that characterizes the action functional is not
nondegenerate, which is known to present certain difficulties for establishing the
LDP. In the standard approach the problem reveals itself when the large deviation
lower bound is proved and is usually tackled via a perturbation argument: an
extra term is added to the process under study so that the perturbed process
has a nondegenerate cumulant and then a limit is taken in the lower bound for
the perturbed process as the perturbation term tends to zero, see Liptser (1996),
de Acosta (2000) and Liptser, Spokoiny and Veretennikov (2002). Our approach
to proving the LDP replaces establishing the upper and lower bounds with the
requirement that the limiting maxingale problem has a unique solution. The
degeneracy of the cumulant presents a problem here too. We cope with it via a
perturbation argument as well the important difference being that the perturbation
is applied to the limit idempotent process that specifies the maxingale problem
rather than to the pre-limiting stochastic processes. This change of the object has
important methodological advantages. First, the proof of the LDP is simplified as
compared with the case where the perturbation is introduced at the pre-limiting
stage. Second, once the perturbation argument has been carried out for a given
cumulant, one can use it to prove LDPs for a range of stochastic processes that
produce the same cumulant in the limit. We expand on these ideas in Puhalskii
(2004). The actual implementation of the perturbation approach for the setting
in the paper relies on the techniques of idempotent probability theory, Puhalskii
(2001), and also draws on time-change arguments in Ethier and Kurtz [(1986),
Chapter 6], thus, applying probabilistic ideas to an idempotent probability setting.
Idempotent probability theory techniques are also instrumental in the proofs of
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the moderate-deviation asymptotics. These proofs are modeled on the preceding
proofs of the normal-deviation asymptotics and to a large degree replicate them by
replacing limit stochastic processes with their idempotent counterparts.

An interesting feature of the proof of the normal deviation asymptotics for the
largest component is that it provides an instance of convergence in distribution of
stochastic processes “with unmatched jumps in the limit process” [Whitt (2002)],
that is, though the jumps of the pre-limiting processes vanish, the limit process is
discontinuous, moreover, it is not right-continuous with left-hand limits. We thus
do not have convergence in distribution in the Skorohod topology and have to
use some ad-hoc techniques to obtain the needed conclusions. As it is explained
in Whitt (2002), convergence with unmatched jumps often occurs in the study
of diffusion approximation of time dependent queues, so it is not surprising (but
is amusing) to see it here. Incidentally, we are faced with a similar situation in
the proof of the moderate-deviation asymptotics when no LDP for the Skorohod
topology is available and the corresponding limit theorem can be viewed as an
example of large deviation convergence in distribution of stochastic processes with
unmatched jumps in the limit idempotent process.

We now outline the structure of the paper. In Section 2 we define the underlying
stochastic processes, derive queue-like equations for them, state the results on the
properties of the connected components, and comment on them. Section 3 contains
technical preliminaries. Section 4 is concerned with proving the LDP for the
basic processes. In Section 5 the LDPs for the connected components are proved.
Section 6 contains proofs of the normal and moderate deviation asymptotics for
the largest component. Section 7 considers critical random graphs. The Appendix
provides an overview of the notions and facts of idempotent probability theory
invoked in the proofs.

2. The model equations and main results. We model the formation of the
sparse random graph anvertices with edge probability,, = ¢, /n via stochastic
processey” = (V/',i=0,1,...,n)andE" = (E", i =0,1,...,n). At time 0
the processes are at 0. At time 1 an arbitrary vertex of the graph is picked and is
connected by edges to the other vertices independently with probahjlitWe
say that this vertex has been figanerated and thensaturated. The vertices, to
which it has been connected, are calgederated. The value ofV]' is defined as
the number of vertices in the resulting connected component, that is, the number
of the generated vertices at timeH; = 0. Attime 2 we pick one of the generated,
nonsaturated vertices, if any, and saturate it by connecting it independently with
probability p, to the vertices that either have not been generated yet or have
been generated but not saturated. If there are no generated, nonsaturated vertices,
we pick an arbitrary nongenerated vertex, declare it generated and saturate it by
attempting to connect it to the nongenerated vertices, thus, generating those of
these vertices connection to which is established. We dendtg tie total number
of vertices generated at times 1 and 2 and we denofg;abse number of edges
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connecting the vertex that was saturated at time 2 with the other vertices generated
at time 1, if any. We proceed in this fashion by saturating one vertex per unit
of time until timen. Thus, at timei a generated, nonsaturated vertex is picked
and is connected by edges with probability to the nonsaturated vertices, both
generated and not yet generated; if there are no generated, nonsaturated vertices
available, then an arbitrary nongenerated vertex is chosen, is declared generated
and is then saturated. The incremént — V" ; is defined as the number of
vertices generated atthe increment’’ — E7 ; is defined as the number of edges
drawn ati between the vertex being saturated and the vertices generated by
Thus, V" — V', equals either the number of new vertices joined to a connected
component at time if V", >i — 1 or it is the number of vertices that start a
new component atif V> ; =i — 1. Accordingly, the increment; — E?' , either
equals the number of excess edges in a connected component appeared at time
thatis, the edges in excess of those that are necessary to maintain connectedness, or
E! —E? , = 0. Since during this process every two vertices independently attempt
connection with probabilityp, exactly once, the resulting configuration of edges
at timen has the same distribution as the one in the random ggaphp,). In
fact, the sizes of the connected component$,@f, p,) can be recovered from
the procesd’” as time-spans between successive moments Wfiaa equal toi.
The numbers of the excess edges in the connected components are equal to the
increments of the proceds” over such time periods. In addition, the number of
times whenV/" is equal toi € {1, 2,...,n} equals the number of the connected
components of.(n, p,). We now turn this description into equations.

Since at time there areV/" generated vertices, the evolutionf is given by
the following recursion:

n=Vit,
V= (Vi"—1+ Z g;})la/i”_l >i—1)

]
2.1) -

iz
where theg/:, i €N, j € N, n € N, are mutually independent Bernoulli random

variables withP(si’} =1) = p, and1(I') is the indicator function of an eveiit
that equals 1 o and O outside of". Let Q7 denote the number of nonsaturated,
generated vertices at tinieSinceQ” = V" — i, (2.1) implies that

n—Q" 1 —(i-1)

0f = (Q;’_1+ 2 & 1)1<Q7—1 =0
j=1
(2.2) o ’
+ Y ELUQL =0, i=12...n 05=0.

j=1
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The evolution of the process” is governed by the recursion

n
i—lil

(2.3) El =E! 1+ Y ¢ i=L12...,n E§=0,
j=1

where theg“l.’;, i eN, jeN,neN, are mutually independent Bernoulli random
variables withP(;l.’}. =1) = p,, which are independent of thze;} and sums are

assumed to be equal to 0 if the upper summation index is less than the lower one.
We use for the analysis of (2.2) the following insight. Let us introduce a related
proces” = (Q",i=0,1,...,n) by

n—Q'"_1—i

(2.4) Q’?=<Q 1+ Z s,,—1>, i=12..,n 05=0,

where a™ = maxa,0). We note thatQ"! is the waiting time of theith
request, where =0, 1,...,n — 1, in the queueing system that starts empty, has

-0 —(i+1 . , . . . .
Z';:lQ’ D i1, as theith request’s service time and 1 as the interarrival

times. (Alternatively,Q"’ can be considered as the queue length at firfioe the
discrete-time queueing system that serves one request per unit time, the number

of arrivals in[i, i + 1] being equal toZ —HD 1 j.) It is seen thap"} =
(0" —1)*, so the asymptotic propertles of the procg¥s= (Q",i=0,1,...,n)
multiplied by a vanishing constant are the same as those of the procéss
( /7, i=0,1,...,n). In addition, connected components of the random graph
correspond to busy cycles of this queueing system, that is, the excursigns.of
Thus, a possible way to study the random graph is through the pra¢és$his
approach is, in effect, pursued by Barraez, Boucheron and Fernandez de la Vega
(2000) who study what in our notation is the proceg4’ +1,i =0,1,...,n). It
is, however, inconvenient for our purposes beca@$e= 0 not only whenQ”” =0
but also whenQ!! = 1, so the queueing system may have more busy cycles than
there are connected components. For this reason, we choose to worl¥With
directly. Yet, the queueing theory connection serves us as a guide. Let us recall
that the solution of (2.4) is given b@™ = R(S"), where the procesS” = (5",
i =0,1....n) with 5§ =0 defined by3" = Y_, 317 Q'ia- “er. i, and
R is the Skorohod reflection operataR(x); = X; — infsc[o,,1 Xs A 0 for x = (x;,
t € Ry), wherea denotes the minimum. We find it productive to exprégsas a
reflection too. The idea is to sacrifice the Markovian character of recursion (2.2)
for the nice properties of the reflection mapping.

A manipulation of (2.2) yields the following equality:

(2.5) ol =S8"+¢&!' + oY, i=0,1...,n
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where
L B
(2.6) S?=Z( > %—1)
k=1 j=1
2.7) el =10} >0 =) &, 4110} 1=0),
k=1
(2.8) o' =>"1Q}=0).
k=1

For the sequel it is useful to note th&f; equals the number of the connected
components of.(n, p,).
Denoting as|x]| the integer part ofc € R4, we introduce continuous-time
processesg” = (Q?, t€[0,1]), §" = (S;’, 1 €[0,1)), " = (<I> t €[0, 1)), and
= (E", t € [0,1]) by the respective equalitie®” = Tty /10 St = Sty /10,
6¢ Oy /10 andE} = E},, /n. By (2.8)® = 5 1,(Q! = 0)d®}, so, by (2.5)
the pair(Q”", ®") solves the Skorohod problemIfor " + £”, consequently,

(2.9) Q" =R(S" +3&"),
(2.10) " =7 (5" +&"),
whereT (x); = —infee0,Xs A O for x = (X, t € Ry) ande” = (g}, t € [0, 1]) is
defined by
8}’!
(2.11) g =t

n
Equation (2.3) yields the representation

LnlJ Ql 1~

(2.12) Z Z ¢, 1el0,1].

11]1

Equations (2.6), (2.9), (2.10) and (2.12) play a central part in establishing the
main results of the paper. In some more detail, the processgsove to be
inconsequential and may be disregarded (see Lemma 3.1), so (2.6), (2.12) and (2.9)
enable us to obtain functional limit theorems for the procegM”), which on
making another use of (2.9) and (2.10) yield the asymptotics of the connected
components (we note that the latter step does not reduce to a mere application of
the continuous mapping principle). Before embarking on this programme, we state
and discuss the results.

We will say that a sequend®,, n € N, of probability measures on the Borel
o -algebra of a metric space (or a sequence of random elemekits n € N, with
values inT and distributionsP,,) obeys the large deviation principle (LDP) for
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scalek,, wherek, — oo asn — oo, with action functionall : Y — [0, oo] if the
sets{v € T:1(v) <a} are compact for alk € R,

. 1 .
limsup—logP,(F) < — inf I(v) for all closed set& C T
n—oo Kp veFl
and
o1 .
liminf —logP,(G) > — inf I(v) for all open set&; C Y.
n—>oo k, veG

Letforu €[0, 1], p € R+ andc > 0,

B pu_ pu
(2.13) K,(u)=ulog 1o 2

2
(2.14) LeG) = (L= u)log(l — u) + (¢ — logeyu — =,

2
where we adopt the conventiong®= 1 and 0 co = 0. We also denote v b =
maxa, b), w(x) = xlogx — x + 1, x € R;, and assume that(oco) - 0= oo.

Let S denote the subset dRﬁ of sequenceau = (u1,u2,...) such that
Y 2iu; < oco. Given a convex functiony :R;y — Ry such thaty(0) = 0,
x(x)>0 for x >0, and x(x)/x — 0 asx — 0, we endowS with an Orlicz
space topology that is generated by a Luxembourg mefyi@, u’) = inf{b €
Ry 3720 x(Jui —ujl/b) < 1}, whereu = (ug, up, ...) andu’ = (u’, uj, ...) [cf.,

e.g., Krasnosel'skii and Rutickii (1961) and Bennett and Sharpley (1988)]. Let
also S; denote the subspace 8fof nonincreasing sequences= (u1, u»,...)

with 3%, u; < 1. It is endowed with induced topology which is equivalent to
the product topology.

Let (U7, U3, ...) be the sequence of the sizes of the connected components
of the random grapl§.(n, ¢,/n) arranged in descending order appended with
zeros to make it infinite(RY, R5,...) be the sequence of the corresponding
numbers of the excess edges appended with zerosy’abé the number of the
connected components ¢f(n, c,/n). We defineU" = (U{/n,Uj/n,...) and
R" = (R}/n, R%/n,...), and considea"/n, U", R") as a random element of
[0, 1] x S1 x S, which is assumed to be equipped with product topology.

_ THEOREM 2.1. Letc, — ¢ > 0asn — oo. Then the sequence («"/n, U",
R™), n e N, obeysthe LDP in [0, 1] x S; x S for scale n with action functional
Ig’*U*R definedfor a € [0, 1], U= (u1,u2,...) eS1andr = (r1,7r2,...) €S by

1%YR@, u,r)

= Z sup (Kp(ui) +rilog g) + Lc<(l— 2a) v Zui>

i=1P€R+ i=1

2
of © 2(1—a—(1—2a)\/2?21”i)>
- 2(1 (1—2a) Vl_zzlul) ”( c(1—(1—2a) v 2 u;)?
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if > u; <1—aand I*YR(a,u,r)= oo otherwise.
As a consequence, we obtain some marginal LDPs.

COROLLARY 2.1. Letc, — ¢ > 0asn — oo. Then the sequences (U", R"),
neN,and («"/n,U"), n € N, obey the LDPsfor scale n in the respective spaces
S1 x S and [0, 1] x Sy with respective action functionals 7Y-® and 1%V, defined
for u=(u1,u2,...)€S1,r =(r1,r2,...) eSanda € [0, 1] by

17 %, r)—Z sup (K (ui) +rilog = ) ((1——) Z”z)
i=1PER+
and

Iéx’U(av u) = ZKc(ui) + L. ((1 —2a) v ZW)

i=1 i=1

00 2 0o .
+g<1—(1—2a)v§u,-) n(Z(l—a—(l—Za)vZ EL ))

cl—A—-2a)VvY X u)?
if > u; <1—aandI*Y(a,u) = oo otherwise.

COROLLARY 2.2. Let ¢, — ¢ > 0 asn — oo. Then the sequences o /n,
neN,and U"/n, n € N, obey the LDPs in the respective spaces [0, 1] and S1
for scale n with the respective action functionals

[@= _inf (Kc(r) FL@+ T)Z”(Z(l_ = T))>

re[(1-2a)*,1—a] 2 c(l—1)2

and
Y =3 Keu)+ LC<<1 — —) Zu,)
i=1

The next corollary clarifies the structure of the most probable configurations of
the giant components. Let, givén> 0, m e N, andu; € (0,1],i =1,2,...,m
with 37 ju; <1, A§(ua, ..., u,) denote the event that there existconnected
components o (n, c¢,/n), whose respective sizes are betwegn; — §) and
n(u; +68) fori =1,2,...,m. For e > 0, we define evenﬂgs(m,.. ,Um) as
follows. Let r/ = cu2/(1 — exp(—cu;)) — cu2/2 —u If Y qu; > 1—1/c,
then Ag’g(ul, ..., up) equals the intersection off(u1,...,u,), the event that
the numbers of the excess edges ofﬁheomponents are within the respective
intervals(n(r;j —¢), n(r/ + ¢)), and the event that any other connected component
is of size Iess thams If >"u; <1—1/c, then A LU, ..., uy) equals
the intersection ofA% (u1, ..., u,), the event that there exists another connected
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component whose size is in the intervalu™ — ¢), n(u™ + ¢)), whereu™/(1 —
exp(—cu*)) =1->"" , u;, the event that the numbers of the excess edges of these
m + 1 components are within the respective inten@le — ), n(r’ + ¢)) for
i=12....,mand(n(* — &), n(r* + &), wherer* = cu*?/(1 — exp(—cu*)) —
cu*2/2 — u*, and the event that any other connected component is of size less
thanne.

COROLLARY 2.3. Letc¢, — ¢ >0asn — oo. Then

lim lim sup— Iog P(AS (u1, ..., um))

3—0 n—soo

= lim liminf = IogP( S(u1, ... um))

§—0 n—00

= lim limsup= Iog P(A}  (u1, ... um))
=0 n—soo n
e—0

= lim_liminf = IogP( AR (U1, ... )

§—0 n—>o©
=0

—_(imom(éui))

i=1
and

(![)nollnrglor!)f P( g,s(ulﬁ cees Mm)|Ag(u1’ cee Mm)) =1

Let 8" denote the size of the largest connected componerg(ofc,/n)
andy” denote the number of its excess edges. We state results on the asymptotics

of (" /n, " /n,y" /n).

COROLLARY 2.4. Letc, — ¢ > 0asn — oo. Then the following hold:
1. The sequence (o /n, B"/n, y" /n), n € N, obeysthe LDPin [0, 1]? x R for
scale n with action functional defined by

— o — _ +
177 (@,0,0) = Lo((L = 20)*) + (1~ (1—2a)+)271<2(1 a—(1-20) )),

c(1—(1—2a)+)2

I“’gy(a u,r)= sup <K (u) +rlog— )—Kc(u)
peRy

* e Al Ko+ 5= 7 )

L)+ 51— T)Z”<%>>
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ifue(0,1—a]and I®P7 (4, u, r) = co otherwise,

2. The sequence (B"/n, y"/n), n € N, obeys the LDP in [0, 1] x R4 for
scale n with action functional If”’ defined by If”’(o, 0)=L.((1—-1/0)"),
Iﬁ’y(O ry=o0ifr >0,

I’Sy(u r)= sup (K (u) +rlog— >+(L}<l—%>J—1>Kc(u)+Kc(ﬁ/\u)

p€R+ u

eraf| B2 firana)

ifue,(1-1/c)"), where i € [0, 1] satisfies the equality i /(1 — exp(—cii)) =
1-1(1—-1/c)/ulu, and by If’y(u, r) = SuppeR+(Kp(u) +rlog(p/c)) + L.(u)
ifu>(1—1/c)t.

3. The sequence 8" /n, n € N, obeys the LDP in [0, 1] for scale n with action
functional 77 defined asfollows: 12 (0) = L.((1 — 1/¢)"),

1Fu) = B(l— %)JKc(u) + K (G Au)+ chg (1 — %)Ju +an u>

ifue(0,(L—1/c)") and I () = Ko (u) + Le(u) ifu > (1— 1/c)+.

The next theorem considers normal deviationgdgf, 87, ™). We recall that
B € (0, 1) is defined as the positive solution of the equationr B = exp(—fBc¢)
if ¢ > 1. Forc <1, we define = 0. Let alsoa =1 — 8 — ¢(1— B)?/2 and

=(c— DB —cp?/2.

THEOREM 2.2. Let /n(c, —c¢) — 6 € R asn — oo, where ¢ > 0. Then the
following hold.

1. The sequence /n(a”/n — a), n € N, converges in distribution in R as
n — oo to a Gaussian random variable @ with E& = —0(1 — 82)/2 and Var@ =
B(L—B)+c(L—p)?/2.

2. If, in addition, ¢ > 1, then the sequence (f(oz”/n —a), /n(B"/n — B),
Vn(y"/n—y)), n €N, convergesin distribution in R3 asn — oo to a Gaussian
random variable (&, 8, 7) with EB = 68(1 — B)/(1 — c¢(1 — B)), Ey = 9,32/2
Varf = B(1-B)/(1—c(1-B)? Vary = (1 B)+cB(36/2—1), Cov@a. B) =
—B(L—B)/(L—c(1—Pp)), Cov@,y) = —B(1— B)(c — 1) and Cov(B,7) =
BL—pB)c—1/(1—-c(1—-p)).

We now state a moderate deviation asymptotics resultddt 8", y™). We
assume as given a real-valued sequebgen € N, such thatb, — oo and
b,//n — 0 asn — oo. Let yT denote the transpose ofc R3.

THEOREM2.3. Let (/n/b,)(ch —c) — 6 € R asn — oo, where ¢ > 0. Then
the following hold.
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1. The sequence (\/n/b,)(a" /n — «), n € N, obeysthe LDP in R for s;caJeb2
W|th action functional (x — 1¢)%/(202), x € R, where i, = —6(1 — 2)/2 and
oZ=B(L—B)+c(l—p)?/2.

2. 1f, in addition, ¢ > 1, then the sequence ((/n/b,) (" /n — @), (/n/by) x
(B"/n — B), (Wn/b)(y"/n —y)), n €N, obeysthe LDP in R3 for scale b2 with
action functional (y — )" = ~1(y — n)/2, y € R3, where i = (1o, g, )" and

0y Oaf Oay

T = (aa,s % ony ) aregiven by ug = 68(1— )/(L—c(L— B)), uy = 66%/2,
Oay OBy Oy

op 2=B(1-B)/1L—c(1-p)? gy 2=B1—B)+cB(BB/2—1),00p =—B(1—

/3)/(1 —c(1—B)), oay =—B(1— /3)(6 — 1 and ogy, =B - B)(c —1)/(1 -

c(1-p)).

The list of results is concluded with the critical-graph case. We recall that
excursions of a nonnegative function= (x,, t € R;) are defined as intervals
[si, t;], wheres; < t;, such thatx;, = X, =0 andx, > 0 for p € (s,1), t; — s;
is called the excursion’s length; continuous functions have at most countably
many excursions. Let, givefi € R, processX = (X;, r € R;) be defined as the
Skorohod reflection of the proceg®,; + 67 —t2/2, t € R..), whereW = (W,, t €
R, ) is a Wiener process. In the next theordbh= (U1, U>, .. .) is the sequence
of the excursion lengths of arranged in descending order aRe= (R1, R>, ...)
is the sequence of the increments of the prod@és; ,,. ¢ € Ry) over these
excursions, wheréV,, t € R, ) is a Poisson process. L&denote the subspace of
]Rl}l of nonincreasing sequences= (u1, uz, ...) equipped with induced topology.
The sequenck, is defined as in Theorem 2.3.

THEOREM 2.4. 1.Let n¥3(c, — 1) > § € R as n — oo. Then the se-
quences U" = (U} /n?/3, U”/n2/3 ) and R" = (R} /n?/3, R2/n2/3 ) jointly
converge in distribution in S x RN to the respective sequences U = (Uq, U, .. .)
and R = (R1, Ro, ...). If, moreover, \/n(c, —1) — 6 e Rasn — oo (s0 6 = 0),
then the (U", R") are awmptotlcally independent of /n(a”/n — 1/2) so that
(f(a”/n — 1/2),U", R") jointly converge in distribution in R x S x RN to

@, U, R), where (U, R) correspond to § = 0, @ is independent of (U, R) and
is Gaussian with E& = —6/2 and Vara = 1/2.

(2. Let (n 3/b%3(c, — 1) — 6 € R as n — oo. Then the sequences
U" = (U7 /(nby)?3, U3 [ (nby)?/3, ...) and R" = (R} /(nbn)?3, RS/ (nby)?3, .. )
jointly obey the LDP in S x RN for scale b,zl with action functional

3 o
63 12r;
(u r)———Zu + = (Z”l_0> VO+€+24ZM <u3>

i=1 i

if >, u; < oo and r; = 0 when u; =0, and IéU’R(u, r) = oo otherwise, where
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U= (ug,uz,...) and r = (ri,ro,...). If, moreover, (\/n/by)(cy, — 1) — 0 as
n — oo (s0 6 = 0), then the ((/n/bn) (" /n — 1/2), U™, R™) obey the LDP in
R x S x RY with action functional

y O\2 .
i@ ury = <a+§) +1 ).

COROLLARY 2.5. Let (nY/3/62*)(c, — 1) — 0 € R as n — oo. Then the
following hold: 5

1. The sequence U", n eN, obeys the LDP in S for scale b,zl with action
functional

. 53
Iéj(u)= Z + = (Zu,—@) vo+ &
if Y%, u; < 0o and ié](u) = 0o otherwise.

2. The sequence B"/(nb,)?/3,n € N, obeys the LDP in R, for scale b with
action functional f; given by ig(O) =6%v0/6,

o=t @i
+2<L§Ju+<z<é—EJM>>M—9“)3+9—5

g ud (u—9)3
fyw= 24+ 6

ifue(0,0+) and

ifu>6t.

We now comment on the results and relate them to earlier ones. Equation (2.4)
in a slightly different form appears in Barraez, Boucheron and Fernandez de la

Vega (2000). The sequenc&4 and R" have been suggested by the form of the
results of Aldous (1997). Corollary 2.3 implies, in particular, that provided there
existm components asymptoticallyx; in size, whered_" ;u; <1 —1/c, then
with probability close to 1, there exists another giant component. This can be
explained by noting that the number of vertices outside ofrtheomponents is
asymptotically equal ta(1 — > ; u;), so the “effective” expected degree of an
outside node ig(1 — > 7 ;u;) > 1, which means there is enough potential for
another giant component.

Part 3 of Corollary 2.4 is due to O’Connell (1998), who provides an alternative,
elegant form of the action functional fer> 1 andu > 0O: Icﬂ(u) =kK.(u) +
L.(ku) foru € [x, xx—1], k € N, wherexg = 1 and thexy, k € N, are the solutions
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of the equations; /(1 — exp(—cx)) = 1 — kxi. [Note that the expression for the
action functional in Theorem 3.1 of O’Connell (1998) has a misprint.] O’Connell
(1998) also noted that the action functioﬂﬁl is not convex. The advantage of
the form of If used in Corollary 2.4 is that it is suggestive of the structure of
the most probable configuration with the largest component asymptotically
size: ifu > 1 — 1/c, then the component of siza: is the only giant component,
while if u <1 — 1/c, then there ar¢(1 — 1/c)/u] components, whose sizes are
asymptoticallyzu, and one component asymptoticalli A ) in size. [A similar
remark has been made by O’'Connell (1998).] This conjecture is confirmed by
the proof of Corollary 2.4. In addition, the number of components in an optimal
configuration is asymptotically equal #¢1 — u — c(1— u)2/2) if u > 1—1/c and
n(l—t—c(1—1)2/2)if u <1—1/c, wheret = [(1— 1/c)/uju+ i Au.

Corollary 2.5 leads to similar conclusions. The action functidrggau) can be

written for & > 0 andu € (0, 20] as if(u) = —ku3/24+ (ku — 6)3/6 + 63/8,

where k € N is such thatu € [6/(k + 1/2),6/(k — 1/2)]. It is not convex
for & > O either. Figure 1 shows the action functional #r= 2. [Note that
the form of the curve is the same for a@l> 0 sinceifé(xu) = x3f£(u) for

x > 0.] Interestingly, the graph ofg is reminiscent of the one off given

in O’Connell’s paper (1998), which we reproduce in Figure 2 for comparison’s
sake. Ford > 0, the most probable configuration with the largest component
asymptotically(nb,)?/3u in size consists of only one such component it ¢

and has|6/u] components asymptoticallynb,)?3u in size along with one
component asymptoticallynb,)2/3((2(6 — |6 /u]u)) A u) in size ifu < 6. Since

the action functionaff (u) equals zero at the only point= 20+, the 8" /(nb,)?/3

converge in probability to@" asn — oo, which is consistent with the asymptotics
B/(c —1) — 2 asc | 1. There is also an analogue for the critical graph of
Corollary 2.3 on the most probable “conditional” configurations. In particular,
given there exists a component asymptoticédy, )%/ 3u in size, with probability
tending to 1, it has asymptoticallynb,)?/3u3/12 excess edges, andif< 6,

also with probability tending to 1, there exists another component asymptotically
(nby)?/32(6 — u) in size.

The first assertion of part 1 of Theorem 2.4 is due to Aldous (1997), who
establishes the convergence of the sizes of the connected components for the
strongeréz topology. Our proof uses similar ideas. Part 2 of Theorem 2.4 can
also be expressed as a statement on a certain type of convergence of excursions.
Let idempotent proces& = (X;, t € R;) be defined as the reflection of the
idempotent proceséW; + 6t — 12/2, t € R,), whereW = (W;, t € R,) is an
idempotent Wiener process, and(at, ¢ € R,) be an idempotent Poisson process
independent of¥ [for the notions of idempotent probability the reader is referred
either to Puhalskii (2001) or the Appendix]. L@t Us, ...) be the sequence of
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FIG. 1. Moderate deviations of the size of the largest component of the critical graph (6 = 2).

the excursion lengths of arranged in descending order afRl, Ro. ...) be the
sequence of the increments@ ; 3 .t € Ry) over these excursions. Then the

sequencesU} /(nb,)?/3, U3 /(nby)?/3, ...) and (R} /(nb,)?/3, RE/(nby)?/3, . ..)
jointly large deviation converge in distribution$hx RE at rateb,% to the respective

sequencesUs, Ua, ...) and (R1, Ro,...) asn — oo. (The definition of large
deviation convergence is recalled in Section 3.) Thus, the actual assertion combines
statements on large deviation convergence and on the idempotent distribution of
the limit. The LDP for(U", R") of Corollary 2.1 admits a similar reformulation.

Part 1 of Theorem 2.2 for the case whefe= ¢ and, accordinglyg =0 is
due to Stepanov (1970a, 1972). Part 2 of Theorem 2.2 complements the results
of Stepanov (1970a, 1972) [see also Pittel (1990) and Barraez, Boucheron and
Fernandez de la Vega (2000)] by allowing fér# 0, incorporatingy” and
indicating the covariance af and 8. As to be expected, the latter two random
variables are negatively correlated. Parts 1 and 2 of Theorem 2.3, equivalently,
state that the/n/b,) (" /n — a) and ((/n/b,) (" /n — «), (/n/by)(B"/n —
B), (\/n/by)(y"/n—1v)) large deviation converge at rdi%aSn — oo to Gaussian
idempotent variables with respective parametéug, o) and (u, ¥). This
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FIG. 2. Large deviations of the size of the largest component of G.(n, 3/n) [O’ Connell (1998)].

formulation not only emphasizes analogy with Theorem 2.2, but is instrumental
in the proof below.

We now consider implications of the LDP fo” /n of Corollary 2.2, which
provide some revealing insights. The derivative with respectdbthe function in
the infimum on the right-hand side of the expression/foequals

a CT a CT
2(1-— _ “tog(2(1— —“)) 4
( 1—r) et —1 °g<< 1—T))+Oge”—

Sincet > 1 — 2a, the derivative is nonnegative if and onlydf> (1 — 7)(1 —
ct/(2(e* — 1))). The function on the right-hand side of the latter inequality, as a
function oft € [0, 1], is concave, is decreasingdf< 2 and is first increasing and
then decreasing if > 2. Leta* € [1/2, 1] denote the maximum of this function
on [0, 1]. Fora € [0, a*], the equation

1 ct
(2.15) a=(1—r)(1— > et _1)

has one root if eitheu < 1/2 or a = a* and has two roots otherwise. Let
*(a) € [0, 1], wherea € [0, a*], denote the greatest root of (2.15). Then the
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infimum on the right-hand side of the expression f8ris attained at = t*(a)

if a €[0,1/2], att =0 if a € [a*, 1] and either att = t*(a) ort =0if a €
(1/2,a*). Accordingly, the optimal configuration has either one giant component
asymptoticallyzt*(a) in size or no giant components. We can, therefore, write

[l (a) = Kc(t"(a)) + Lc(t7(a))

(2.16) c(1—1t*(a))? (2(1—a — t*(a)))
+ 2 e = (a))?
if a €[0,1/2],
o (< 2(1—a)
le (a)_<2n< c ))
(2.17) A (Kcu*(a))  Le(r*(a)

cl—1*@)? [2(1—a—1t*))
T ”( cA— @) >>

if a e (1/2,a*), and
(2.18) (@) = £n<2(1 — “))
2 c

if a € [a*, 1]. If ¢ < 2, the action functional is, in fact, given by (2.16) and (2.18)
sincea® = 1/2. It is seen to be convex and differentiablednlIf ¢ > 2, then

a* > 1/2, the difference between the first and the second functions in the minimum
on the right-hand side of (2.17) is positive far= 1/2, is decreasing i for

a > 1/2, and there exists a uniguec (1/2, a*) where these two functions are
equal. Thus, for > 2,

K. (t*(a)) + L(t*(a))
cl=1*@)? [2(1—a—1*(a))
I¢(a) = 2 ”( c(1—1*(a))? )

fn(z(l_a)), if a  [4. 1].

if a €0, al,

2 c

For ¢ > 2, the function/Z(a) is strictly convex to the right ofi and is strictly
concave in a neighborhood to its left. As a matter of fact, there existé0, 1/2)
such that/%(a) is strictly convex fora < a (anda > a), and is strictly concave
for a < a < a. The value ofa is given by (2.15) forr = 7, where? solves the
equation exp—ct) — 1+ ct = ct2. In addition,a | 0 anda 1 1 asc — oo (in
fact,a < 2/c for ¢ > 2), so the concavity region grows asloes. Figure 3 shows
the action functionals for various values ©ofind Figure 4 shows the regions of
convexity and concavity forZ.
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FiG. 3. LDP for the number of connected components.

Another distinguishing feature of poirit is that at it, the left derivative of
I% (a) is greater than the right ong (a) being differentiable i elsewhere. It is,
moreover, a point of phase transition: o @, the most probable configuration
has one giant component asymptoticailty*(a) in size, while fora > a, it is
optimal to have no giant components. Hence, dor 2, we have the following
structure of the random graph with a given number of components of arder
for small values ofz, with probability close to 1, there is one giant component
asymptoticallynt*(a) in size and many (actually asymptoticall) small
components of sizes not greater than of order) (it can be conjectured their
sizes are of order lag or less); as: increases, more small components split off
from the giant component and the size of the giant component decreases gradually;
however, at: = a the giant component breaks up in that its size drastically reduces
from being of ordemt*(a) to being of ordero(n), and fora > a, only small
components remain which disintegrate furthewdacreases. It < 2, then as
increases, the giant component, which is asymptotieadli(a) in size, gradually
decreases in size and disappears at 1/2, so no drastic changes occur. We
thus shed new light on the observation by Stepanov (1970b) [see also Bollobés,
Grimmett and Janson (1996)] of= 2 being a critical point.
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FiG. 4. Convexity—concavity regionsfor 7.

There is another connection between our results and those of Stepanov (1970b),
as well as of Bollobas, Grimmett and Janson (1996), to which we alluded in the
Introduction. The above observation has been made by Stepanov (1970b) on the
basis of the asymptotics

(2.19) lim E|og Ee*" = S.()), 1 eR,
n—-oon
where
S.(A) = sup ()\(1 —7)+ % 1-1)%*—(1-1)logl—1)

re[(1—e*/c)t,1]
(2.20)

— % (1—17% —tlogt + rlog(1l— e_”)),

and a subsequent analysis of the functiyt.). We are able to reproduce (2.19)
by using the LDP fow” /n and Varadhan’s lemma; see, for example, Dembo and
Zeitouni (1998). Moreover, sincg is strictly convex forc < 2, it is possible to
derive the LDP fow™ /n of Corollary 2.2 from limit (2.19) via Gartner’s theorem,
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see Gartner (1977) or Freidlin and Wentzell (1998), so Ihat) is given by the
Legendre—Fenchel transform 8§f(1). This has been done actually by Bollobas,
Grimmett and Janson (1996), who obtain asymptotics (2.19) independently of
Stepanov (1970b) and, in effect, provide a solution to the optimization problem
(2.20), though they do not find the form fff in Corollary 2.2. However, for > 2,
Gartner’s theorem is not applicable because of “the onset of concavity” described
above. The Legendre—Fenchel transfornsaf.), being the convex hull of.(«),

no longer coincides with.(«), which causes Bollobas, Grimmett and Janson’s
(1996) stopping short of obtaining the above LDP.

3. Technical preliminaries. In this section we collect pieces of terminology
and notation used throughout the paper, recall some results on weak convergence
and large deviation asymptotics pertinent to the developments below, and provide
a number of auxiliary lemmas.

We denote byD¢([a, b], RY), whered € N, the space of right-continuous with
left-hand limitsR?-valued functions on an intervéd, »] equipped with uniform
metric and Boreb -algebra. Spac®(R ., R?) is defined as the spacelkf -valued
right-continuous with left-hand limits functions @, equipped with the Skoro-
hod topology and Borek-algebra. Space§([0, 1], R¢) and C(R., R?) are the
subspaces of the respective spabBeg[0, 1], R¢) and D(R,, R?) consisting of
continuous functions with induced topologies. Elements of these spaces are mostly
denoted by boldface lower-case Roman letters, for exampte(x,, r € [a, b]);

X;— denotes the left-hand limit at X, denotes the Radon—Nykodim derivative
at + with respect to Lebesgue measure of an absolutely continuolMge de-
note by p1 the projection(x,, r € Ry) — (X;, t € [0,1]) from DR, R?) to
D¢ ([0, 1], RY) and note that it is continuous ate C(R., RY). MapsR and T
from D(R4, R) to D(R4, R) are defined byR(x); = X; — infseo0,1X%s A 0 and

T (X); = —infsepo,.1Xs A 0. If Xo > 0, then the functiong = R(x) and¢ = T (X)
can be equivalently defined as a solution to a Skorohod problem iy taat+ ¢,

y: > 0, ¢ is nondecreasing witfig = 0 andg, = fé 1y; =0)d¢s, t € Ry. Unless
specified otherwise, “almost everywhere (a.e.)” refers to Lebesgue measure and
product topological spaces are equipped with product topologies; besidess inf
understood aso andB(R) denotes the Boret-algebra oriR.

We assume that all the random objects we consider are defined on a complete
probability spacg2, £, P), the expectation of a random varialileis denoted
asEé&. For a sequence @ <-valued random variables,, n € N, and a sequence

1/ kn
of real numberg,, — oo, we writeg, P."0and say that thg, tend to zero super-
exponentially in probability at rat, if lim ,,_, o P(|&,| > €)1/% = 0 for arbitrary

¢ > 0. We also let’> denote convergence in probabilitf% denote convergence
in distribution in the associated metric space, aﬂdjenote large deviation (LD)

convergence in distribution at ratg. To recall the deflnltlon of the latter [see, e.g.,
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Puhalskii (2001)], we say that[®, 1]-valued functionIlI, defined on the power
set of a metric spacé’, is a deviability onY if II(I") = sup,cr exp(—1 (v)),

I’ C Y, wherel is an action functional off, that is, a0, co]-valued function on

T such that the setey € T: 1 (v) < a} are compact fou € R,. We say that a
sequenc®,, n € N, of probability measures on the Borelalgebra ofr LD con-
verges at rate, to a deviability IT on Y if im ,— oo (fy f (V)% dP, (v))Ykn =
sup,y f(v)I({v}) for every continuous bounde®, -valued functionf on Y.
Equivalently, the sequend®,, n € N, LD converges at raté, to IT if it obeys
the LDP with action functional for scalek,. We recall that if the sequend®,

is exponentially tight of ordet,, that is, for everye > 0, there exists a compact
K C Y such that limsup , ., P, (T \ K)* < ¢, then itis LD relatively sequen-
tially compact, that is, for every subsequerige there exists a subsubsequence
P, that LD converges at ratke,» to some deviability; every such deviability is
called an LD accumulation point of tHg,. We also say that a sequence of random
variablesX,,, n € N, with values inT LD converges in distribution at rafg to a
Luzin idempotent variabl& with values inY if the sequence of laws of thE,

LD converges at ratg, to the idempotent distribution of.

Let H" = (H/',t € Ry), n € N, be a sequence oR“-valued stochastic
processes having right-continuous, with left-hand limits, paths. The seqéEhce
is said to beC-tight if the sequence of the distributions of th¢ onD(R., RY) is
tight for weak convergence of probability measuresgi® ., R¢), with its every
accumulation point being the law of a continuous process. The following limits
provide necessary and sufficient conditions((fetightness:

I|m lim supP(|H0| > B) =

—)OOn

lim IimsupP( sup |H' — H'| > s) =0, TeRy,e>0.

=0 n—o0 5,t€[0,T]: |s—t| <6
The sequencé!” is said to beC-exponentially tight of ordek, if the sequence
of the distributions of thed” is exponentially tight of ordek,, as a sequence of
probability measures di(R,., R?) and its every LD accumulation poilit is such
thatIT(x) = O for everyx € D(R,, RY) \ C(R, R?). The sequence of laws of the
H" is C-exponentially tight of ordek,, if and only if

I|m lim supP(|H”| > B)Vkn =0,

—>OOn

1/k,
lim IimsupP( sup |H' — H}'| >s> / =0, TeRy, e>0.

=0 n—o0 5,t€[0,T]: |s—t| <68

We denote by, and¢/;, wherei €N, j € N, n € N, i.i.d. Bernoulli random
variables on(2, ¥, P) with P(g” = 1) = ¢,/n and define¥*, r € Ry, as the
o-algebras generated by t@‘ and g” fori=212...,ln¢tAD], jeN,
completed with sets oP-measure zero and mtroduce filtratioR8 = (F,",
te R+)
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LEMMA 3.1. Letc, —> c¢>0asn — oo. Let b, — oo and b,//n — 0 as
n — oo. The following convergences hold asn — oo:

_p, P/ n,_, PY% n, P
sup |g}| — 0, sup £|e§’| — 0, sup +/n|gl| -0
te[0,1] t€[0,1] Pn tel0,1]
and
1€} 273, 00| P €7 0 23, n | pLIEZ
sup —2An 1;;”’ =0, sup b oAn 4;J3A" '
IGR+ n IGR+ nl/gbn

PROOF We prove the convergences on the first line. By (2.7) and (2.11),

1 1<
(3.1) sup | <—+=) &, ri1
1e[0.1] t n n];- k.n—k+1
The right-most convergence follows sing€;’, ., = c,/n. Next, by (3.1) and
the exponential Markov inequality fér> 0 andA > 0,

1/n "

P( sup [&] > 8) < MMEMT1eTHM s pH0 asn — oo.
t€[0,1]

The left-most convergence in the statement of the theorem follows girise

arbitrary. Finally,

1/b2
n n n 2
P( sup £|é{’| > 8) < V/Pn(Eefia)"lne=0Vn/bn 0 asn — o0,
te[0,1] Pn
proving the convergence in the middle.
The convergences on the second line are proved similarly.

In the next three lemmas we assume that0.

LEMMA 3.2. 1.Thefunction K, (u), u € [0, 1], p € R4, equals O when either
u=0o0r p=0,isdrictly decreasing, strictly concave and strictly subadditive in
each of the variables u and p when the other variable is positive. The function
Lo(u),ue[0,1], equalsOat u =0andisstrictly increasing in u.

2.1fu e[(1—1/c)T, 1], then the function K.(x) + L.(u + x) as a function
of x isdtrictly increasing for x € [0, 1 —u]. If c>1and u € [0,1 — 1/¢), then
K.(x) + Lo(u + x) is strictly increasing for x € [0, ], is strictly decreasing for
x € [u,u*],andisstrictlyincreasing for x € [u*, 1—u],whereu € [0,1—1/c —u]
is the solution of the equation

1o TX=1-u
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andu* e (1—1/c —u, 8 — u] isthe solution of the equation
X

T o —1—u

The values of the function at x = u™* and x = 0 coincide: K.(u*) + L.(u +u™*) =
Lc(u).

ProoOF Part 1 follows from the definitions. Part 2 follows by the equality

9 K L
a( c(x) + c(”+x))

z(c(l—u—x)—log(c(l—u—x)))—( - —log - )

1—e¢* 1—e—c*

and the fact that the function— log x is decreasing far € (0, 1) and is increasing
forx>1. O

Let0<s <t <1 andA,, denote the set of absolutely continuous real-valued
functionsx = (x,,, p € [s,t]) withx, > -1 a.e.and = p — X, > 0 on[s, ¢]. We
denote forx € Ay,

t X, + 1
Isft(x):/ 7T<C(]_prﬁ>c(l—p—xp)dp.
) - - p

Let also for O< 5 < 7, absolutely continuous real-valugd= (x,, p €[5, 7]), and
6 R,

. i .
Igf(x)=%/§ (% + p — 0)2dp.

LEMMA 3.3. 1.Givenw € (0, (t —s)?/2), theinfimumof ISSJ(x) over x € Ag 4,
such that X, = x, = 0 and /[ X, dp = w, is attained at

t—s

oy L=e P pelsal,

Xp(s,t) =s —p+

where p € R, satisfiesthe equality 9K, (t — s)/9p = —w, that is,

p(t—s) wp 1.
1—e_15(t_5) _1+l‘—s +§,O(Z—S)

The value of the infimum equals K;(t —s) + (0 — c)w + Lc(t) — Lc(s) =
SuppeR+(Kp(t =)+ (p—c)w) + L(t) — Lc(s).

If w =0, thentheinfimumisattained at X,,(s,#) =0, p € [s, ], and isequal to
L) — Le(s).
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2. Given w € R, the infimum of I}S ;(X) over absolutely continuous real-valued

functions x = (X, p €[5, f]), such that x, = x, = 0 and f;xp dp = w, isattained
at

¢ o v C(p=5H(7F - .
Xﬂs,t):Gw%, PE[SJ],
and equals
62 v+(f—é)3—(i—é)3
=W .
(f—3)3 6

PROOF Let C denote the closed convex subset of the Banach space of real-
valued Lebesgue measurable functions= (k,, p € [s,t]) with norm |A|| =
fi1hpldp, specified by the condition&, > 0 a.e., [[h,dp =t — s, and
[ffPhydgdp =w + (t — 5)?/2. We define g0, co]-valued functionalF on C

by
_ [ hp P b
F(h)—/s n(c(l—s—fsphqdq))c(l s /s‘ hqdq)dp.

On noting that fom € C,

F(h):/: (h,,logh?p+c<l—s—/sphqdq))dp

+@A-0logl—1)— (1—s)log(l—ys)

f’ (t —s)?
= hploghpdp—l-(t—s)(c(l—s)—|Ogc)—c<w+ 5 )

+ (@ —-0log(l—1) — (1—s)log(l—ys),

we see thaf' is strictly convex orC. Therefore, the infimum of on C is attained
at a stationary point if the latter exists. The method of Lagrange multipliers shows
thath, = (5(t —s)/(L— e P=9)))e=?(P=9) js such a point. The assertion of part 1
of the lemma follows.

For part 2 we apply the classical method of solving the isoperimetric problem,
see, for example, Alekseev, Tikhomirov and Fomin (198T).

LEMMA 3.4. 1l.leta €0, 1] and T € [0, 1]. Then the infimum of

foln(ctl__‘ﬁ;))c(l —1)dt

over absolutely continuous nondecreasing functions ¢ = (¢, ¢ € [0, 1]), such that
¢0=0, ¢p1 =a, ¢ < 1a.e., and the Lebesgue measure of the set where ¢; =0 is
at least t, equals

LC((l—za)VT)-i-%(1—(1—20)\/1)2n<2(1_a_(1_20)VT)>

c(l—(1—2a)Vv )2
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2. Let ¥ € Ry and 6 € R. Then the infimum of [5°(—¢, — 6 + 1)?dt/2
over absolutely continuous nondecreasing functions ¢ = (¢;, t € Ry), such that
$o = 0 and the Lebesgue measure of the set where ¢, = 0 is at least 7, equals
(F—6)3v0+06%)/6.

PrROOF We prove part 1. The optimizing integral can be written for a suitable
functiong as

/l( 1—1)—log( 1—t)dt+/l ' dt—i—/l'lo 1—1)dt
; c(l—1)—log(c(1—1)) Og(¢z) 0¢t gl —1)dr.

Let ¢* denote the increasing rearrangementdofdefined by ¢’ = supx €

Ry :pug(h) < t}, where ug(r) is the Lebesgue measure of thoses [0, 1]

for which ¢; < A. Since the function logl — ¢) is decreasing, by a Hardy—
Littlewood inequality, see Bennett and Sharpley (1988) or DeVore and Lorentz
(1993), f§ ¢ log(L — 1) dr > [§ ¢ log(L — 1) dt. Also f3 g(¢)dr = [ g(@})dr.
Therefore, the functiog can be assumed nondecreasinggse: 0 for ¢ € [0, 7]

and by the definition of..,

1 r1-¢ B
(3.2) /c;n(c(l_t))c(l—t)dt_Lc(t)+I(¢,1:),
where
ot 1—¢y
(3.3) I(¢,r)_/; ﬂ(c(l_t)>c(1—t)dt.

We now minimizel (¢, ) on the setz(r) of absolutely continuous functions
with ¢, =0, $1 = a, ¢; € [0, 1] a.e., andp, nondecreasing. Convexity considera-
tions provide us with the lower bound

c1-12% /21—1t—0a)
2 ”( c(1—1)2 )

(3.4) (¢, 1) >
which is attained at
Z 20—1—a)
=1--"" -
If © > 1— 2a, this function belongs t& (r) and delivers the infimum té(¢, t)
on E(t), implying the required. 3
However, ift <1 — 2a (hence, 2 < 1), then¢; is negative forr € (t,2 —
(1-1)2%/(1 -1 —a) — t). We prove that for those, the infimum of 7 (¢, 7)
over ¢ € E(r) is attained atp defined byd, = 0 whens € [r,1 — 24] and
¢, =1—(1—1)/(2a) whent € [1— 2a, 1]. Let us considep = (¢;, ¢ € [, 1]) for
¢ € E(r) as an element of the Banach space of Lebesgue measurable functions
h = (h, t € [, 1]) with norm esssup,, y; |4 |. Let functional F on the subset

1—1), t elr,1].
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of functionsh with 0 < h; < 1 a.e., be defined by (k) = ffln((l —h)/(c(l—
1))c(1—1)dt. Itis convex and has a Gateau derivativé afiven by (F'($), h) =
— Mog((1 - ¢,)/(c(1 — 1)k, dt. Therefore, forp € (1),

~

PO 1-2q . 1 . A
(F'(¢), 0 — )= /t log(c(1—1))¢; dt 4 log(2ac) / (¢r — ¢,) dt

1-2a

zmmha/

implying [see, e.g., Ekeland and Temam (1976)] that, 7)< I(¢p,7) for ¢ €
2(1), as claimed. The definition af and (3.3) yield (¢, ) = L.(1 — 2a) —
Lo(t)+2a%cm(1/(2ac)), which in view of (3.2) implies the assertion of the lemma
for the case <1 — 2a.

The proof of part 2 is similar, the infimum being attainedpawith q;, =0 for
rel0,rvélandg, =t —6fort>tvH. O

@m+bmb@f ~$,)dt =0,

LEMMA 3.5. Subsets K of RY of sequences u = (u1,u2,...), such that
SURuek 2i2qui < oo andlim;_, o SUR,cx ui = 0, are compact subsets of S.

ProOOF It suffices to check sequential compactness. Wetn € N, be a
sequence of elements &. The sequence”, n € N, being compact for the
product topology, leti = (i1, i2, ...) denote an accumulation point. Passing if
necessary to a subsequence, we may assumathati; asn — oo for i € N.
We have thati € K. Let B = su,cx > ioqui. Givene > 0, let§ > 0 be such
that x (x) < ex/(2B) for x € [0, §] [we use thaty (x)/x — 0 asx — 0], letk be
such thaty; < ée for i > k andu € K, and letng be such thatu} — ii;| < 8¢ for
i=1,2,..., kandn > ng. We then have that for > ng,

[ ul — ] 13, .
z?( - )sZBz;w il <1,
proving bye being arbitrary that/, (u*, i) — 0 asn — oco. [

4. Largedeviation asymptoticsfor the basic processes. The main results of
this section are LDPs for the stochastic proceséeand E". We also give without
proofs LDPs for thed” and 0", which are not used further. All these processes
are well-defined random elementso§ ([0, 1], R). For the notions and facts of
idempotent probability theory used extensively in the below argument, the reader
is referred to the Appendix [or Puhalskii (2001)].

THEOREM4.1. Letc, — ¢ > 0asn — oo. Then the processes S” obey the
LDP for scale n in D¢ ([0, 1], R) with action functional 75 given by

1 X +1
S _ 4 —f —
I°(X) _/0 n(c(l— .- (X),))C(l t— R(X))dt
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for absolutely continuous x = (X, ¢t € [0, 1]), with xo = 0, X, > —1 a.e., and
R(X); <1—1forrel0,1], and I5(x) = oo for other x.

PROOF Let A" = (A}, t € [0, 1]) be defined by
1 Lnt] n—Qyp_1—(k-1)

(4.2) A;’ —— Z Z E]:l]
=]

=1
We note that by (2.6) and the definition §f,

4.2) a0,
n

so an LDP for theS” would follow from an LDP for theA”. Lete= (¢, t € R,).
We prove that the” as elements db¢ ([0, 1], R) obey the LDP for scale with
action functional

A ! Xi
I17(X) _fo n(c(l— Py e)l)>c(1 t— R(X—e),)dt
if x is absolutely continuousfp =0, X, > 0 a.e., andR(x — e); <1 — ¢ for
t € [0, 1], andI“(x) = co otherwise.

Let us extend the time-domain of the procesaégo R, by letting A} = A’
for r > 1. We show that the extendet! satisfy the hypotheses of Theorem 5.1.5
in Puhalskii (2001). By (4.11" is a totally discontinuouB”-adapted semimartin-
gale with predictable measure of jumgg'([0,],T), t e R, I' € B(R)) given

by

(AL -1 B .
V(A= Y F(1-0, - r\0).  Tes®.
k=0 n
where

[ns]
1 n / /
;E SljeF , seR;, I e B(R).
j=1

(4.3) F'(s,T)) = P(
Since the jumps ofA” are bounded from above by H" satisfies the Cramér
condition, so its stochastic (or Doléans—Dade) exponential is well defined and has
the form

[n(tAD)]

&'\ = k];[l <1+/R(6“—1)v”<{§},dx>>
(44) ln(tAD]-1

— k
_ 1—[ /eAan(l_QZ/n——,dx>,
k=0 R n
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wherei € R. By (2.9) and (4.2),
(4.5) Q" =R(A" — &' +&"),

where€e' = (|nt|/n, t € Ry). Hence, recalling that th¢" are Bernoulli and
equal 1 with probability,, /n, we have by (4.3) and (4.4),

1 log &' (nr) = nlog (1—|— (e — 1)C—n>
n n

(A |/
x/ (1—,72(A"—e"+é")s—@>ds.
0 n

Let us note that by the fact that; +k < n and (2.9),

(4.6)

(4.7) 1-mA"—d —&, — o0 forseqo.11.
n
Thus, denoting fox € D(R4, R),
tnl
(4.8) G, 00 X) = c(e — 1)/ (1— R(X— ) —5)ds.
0

we conclude by (4.6) and (4.7), the convergengce> ¢, Lipshitz continuity of the
reflection mapping oid¢ ([0, 1], R;) and Lemma 3.1 that for arbitraf§ > 0,

pl/n

1
sup |—logé&;'(nx) — G;(A, A")| — O asn — oo.

tefo,T]1n

Since G,()1,Xx) satisfies the uniform continuity and majoration conditions of
Theorem 5.1.5 of Puhalskii (2001), by the theorem the sequence of laws 4f the
on D(R,, R) is C-exponentially tight (of order), and its every large deviation
accumulation point solves the maxingale probl@nG) with G = (G; (A, X), t €
Ry, 2 € R,x € D(R4,R)). Let deviability M4 on D(R,,R) be a solution
of (0, G). We note thatlI*(D(R,,R) \ C(R,,RR)) = 0 by the C-exponential
tightness of the laws of thd”. Let deviability " be the restriction ofT# on
C(R4, R). The claimed LDP will follow if forx € C(Ry, R),

exp(—14(p1x), i X =Xia1,7 €Ry,

(4.9) = .
00, otherwise.

The idea of the proof of (4.9) is to translate the problem into a problem
on uniqueness of idempotent processes. Tet C(Ry,R) x C(R4,R) and
component idempotent processés= (A;(X,X), t e R, (x,X) € T) and N =
(N:(x,X), t e Ry, (X,X) € T) be defined by the respective equalitiegx, X') =

X andN; (X, X) = X}. We will prove that there exists deviabiliff on Y such that

A andN satisfy

(4.10) A; = NB,(4), teR; MM-a.e,
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where

(4.11) Bt(x):c/ot (1-R(x—e), —s)" ds,

A has idempotent distribitionli® and N is idempotent Poisson, that is,
SUB e, .m T, X) = I (%) and sup.cz, ) (X, X) = IV (X)), whereTT"
is the Poisson deviability. After that we will draw on Ethier and Kurtz [(1986),
Theorem 1.1, Chapter 6] to conclude that (4.10) has a unique strong solution. That
will imply that (4.10) has a unique weak solution in the sense that the idempotent
distribution of A is specified uniquely and is given by (4.9). The reasoning used to
establish (4.10) is also along the lines of the approaches developed in Ethier and
Kurtz (1986).

By (4.7), Lemma 3.1 andI# being an LD accumulation point of the laws of
the A", we have that

(4.12) 1-R(x—e,—s>0, se[0,1]0%ae,
SO
(4.13) G, X) =G, (%), teR, M"-ae,

where fori € R,
G/ x)=(* —1)B(x), teRy, xeCRL,R).

Givene > 0, we define fox, X' € C(R, R),

(4.14) GE(n; (%, X)) = Gy (A; X) + (¢* — Dyet
and introduce an idempotent process= (4;(x, X), t € Ry, (x,X') € T) by
(4.15) A (X)) =% +X,.

As the deviability IT* is a solution of the maxingale problex®, G), II* is
concentrated o€ (R,., R), T4 and " coincide onC(R4, R), and Lemma A.2
and (4.13) hold, it follows that the idempotent procgsgp(ix; — G;(i: X)),

t € Ry, x € C(R4, R)) is a C-uniformly maximable exponential maxingale on
(CR4,R), ﬁA), whereC = (G, t € Ry) is the canonicat-flow. Next, the fact
that (exp(Ax; — (¢* — 1), t e R;,x € C(R4, R)) is aC-exponential maxingale
on (C(R4, R), MY) implies that(exp(Ax, — (¢* — 1)et), t € R4, x € C(Ry, R))

is aC-exponential maxingale ofC(R, R), ITY-¢), whereITIV-¢((x;, t e R})) =
Y ((X /e, t € Ry)). By Lemma A.3, (4.14) and (4.15) under product deviability
" x IV, the idempotent proces@Xp(A A, (X, X') — GE(h; (X, X)), t € Ry,
(x,x") € ) is an exponential maxingale relative to thdlow A = (A;, t € Ry),
whereA; = G, ® ;. Let

(4.16) af(x,X') =inf{s € Ry : By(X) +&s > 1}.
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The idempotent variables, t € R, are bounded idempotem-stopping
times andeTtg(XyX/)(A; (X, X)) = (¢ — 1)t, so by Lemma A.1 the idempotent
process(exp(ANE (X, X') — (e* — D)t), t € Ry, (X, X) € T), where N (x,X') =
Aqrxx) (X, X)), is an exponential maxingale ar, 0" x mV#) relative to the
t-flow A® = (A,¢, t € Ry). Hence,N® = (N/(x,X), t e Ry, (X,X)) € 1) is

an A®-Poisson idempotent process, so it is a Poisson idempotent process on
(T, o x V-#). In view of (4.15), (4.16) and the definition af,, we can write

that onT

We now show that (4.10) is obtained as a limit of (4.17). The gdir N¢)
specifies a mapping of into itself. LetII® denote the image di® x V¢ under

this mapping, that is[T® (X, X') = SURy yye1: A(y.y)=x. N*(y.y) =X’ l'IA(y)l'IN’S(y’);
briefly, IT® is the joint idempotent distribution afd, N¢) on (7, ot x nv-e)y,
Since the idempotent distributions afand N* are deviabilities and do not depend
one, the netll?, ¢ — 0, of deviabilities onY is tight. It is thus relatively compact
for weak convergence of idempotent probabilities. Detlenote an accumulation
point of theIT¢. By the continuous mapping theorem the marginal idempotent

distributions ofII are equal i andmm? SUBrecr,ry (X, X) = ﬁA(x) and
SURecr, k) (X, X) = Y (x'). Next, by the definition of1¢, (4.17) and (4.11)
for T > 0 andy > 0,

H€<(x, X): sup X —Xp | = 77>
1€[0.T]

~A N.
— (@i xm E)(tes[gg]|At—N§,(A>|zn)

<@ x H“)( sup x| > g)

1€[0,T]
(4.18)
F7A N,e e njE n
v (@ x Ve sup INE — N?| >

5,1€[0,(c+e)T]: |s—t|<eT 2
N Ui N n
=7 sup [x[=5)V sup 7| X = %] = 5
te[0,eT] s,t€[0,(c+e)T]: [s—t|<eT 2

=HN@ﬂzg>

where the latter two equalities use the definitionIbt ¢, the facts thatve is

idempotent Poisson und&” x "¢ and that idempotent Poisson processes have
stationary increments. Giveln> 0, we have by an exponential Markov inequality



STOCHASTIC PROCESSES IN RANDOM GRAPHS 367

and the fact thatexp(Lx;, — (eX — 1)t), t € Ry) is an exponential maxingale
underm?,

HN<XET > g) < Sy (exp(LXx.7)) exp(_%) _ exp<(€L —1)eT — %)

where Sy denotes idempotent expectation with respeciltd. Letting e — 0
and L — oo, we conclude that li;, oIV (X7 > n/2) = 0, so by (4.18)
im0 I ((X, X') : SUR¢[0. 7] X _X/B,(x)l > n) = 0. Since thdl® weakly converge
along a subnet tdl and sup.o )X — Xp « | is @ continuous function of
(x,X') € T so that the sef(x,x") € Y :supo 71X — X,B,(x)l > n} is open, we
conclude thalTl((x, X) : SUR¢[o, 77 1% — Xb,(x>| > 1) = 0. Consequently,

H((x, X):sup X, —Xp | > O)
t€[0,T]

= supIl ((x, X)) sup X, —Xp | > 77) =0,
>0 te[0,T]
which is equivalent to (4.10) by and N being the first and second component
processes off', respectively.

Equation (4.10) is of the form considered in Ethier and Kurtz [(1986),
Theorem 1.1, Chapter 6]. The hypotheses of the theorem are seen to be met,
which implies that (4.10) has a unique (strong) solution fogiven by A, =
No, vy, Whereo;(X') = inf{s € [0,1]: 3 (c(1 — R(X — &), — p)")~Ldp > 1},
X' € C(R4,R). Therefore,IT(x,x) =0 if (X;, t € Ry) # (x;t(x,), t € Ry), SO
the fact that sup.cg, ) II(x, X) = IV (X) yields T (x, X') = IV (X) if (x;, t €
Ry) = (x’m(x,), t € R;). Consequently, fox e C(R,4, R),

0= sup TM(xX)
X' eC(R4,R)

= sup o) = sup oV x).
X' eC(R4+,R): %, :X;I X' eC(R4+,R): X, :xjg[ )

(4.19)
()

We have thus proved thall” is uniquely specified by the right-most side
of (4.19). In particular, ifx, # x,,1 for somer € R,, the set over which the
latter supremum is evaluated is empty, HG X) =0. Let X, = X;a1, t € R4
Recalling thatll¥ (x') = exp(—IV (X)), where IN(X) = [§° (X)) dt if X' is
absolutely continuousgy = 0, andx; > 0 a.e., and'N (xX') = oo otherwise, we
derive by a change of variables and (4.11) that the right-most side of (4.19)
equals exp—I4(p1x)) provided 1— R(x — €); —s > 0, s € [0, 1]. If x does not
meet the latter condition, theﬁA(x) = 0 according to (4.12). Equality (4.9) has
been proved, so the LDP for the (extended) procegdebas been proved. By
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the contraction principle the (nonextendedt) obey the LDP inD¢ ([0, 1], R)
with_IA. (Note that theA™ are random elements @i ([0, 1], R).) The LDP for
the " follows by (4.2) and the contraction principlelJ

COROLLARY 4.1. Letc, — ¢ > 0asn — co. Then the processes (5", E")
obey the LDP for scale n in D¢ ([0, 1], R?) with action functional 75-£ given by

ISEx,y) =15(x) + 1E(y),

where If(y) = f&n(y,/(cﬁ(x),))cﬁ(x)t dt if y = (y;, t € [0, 1]) is nondecreas-
ing and absolutely continuous with yo = 0 and I (y) = oo otherwise.

PrROOF Given a sequencé, n € N, of elements oD ([0, 1], R), let

lnt] LnRXM)i—1y/n]—1

—m 1
E;"=;Z > ¢h, tel0,1].
i=1 j=1

A standard argument [e.g., Theorem 2.3 in Puhalskii (1994)] shows tkiat-# x

asn — oo, then the sequenceé”, n € N, obeys the LDP irD¢ ([0, 1], R) for
scalen with action functionallf (y), y € D¢ ([0, 1], R). The claim now follows

by an argument as in Puhalskii [(1995), Theorem 2.2]; see also Chaganty (1997),
(2.9), (2.12) and Lemma 3.1

REMARK 4.1. An application of the contraction principle yields LDPs for the
Q" andd”":

1. The processe®” obey the LDP for scale in D¢ ([0, 1], R) with action
functional 7€ given by

1 X, +1
0 (v — A S _f_
1 (x)_f0 n(c(l—t—xt))c(l t —X)1(X; > 0)dt

a-yor ;1
+/O n<c(1_t)>c(1—t)1(xt:0)dt

for absolutely continuous = (x;, ¢t € [0, 1]), with xo =0, X, > —1 a.e. and
X; €[0,1—1¢] ¢ €0, 1], andI2(x) = oo for otherx.

2. The processe®” obey the LDP for scale in D¢ ([0, 1], R) with action
functional I® given by

1 1— ¢
d t
1%°(9) :/0 n(c(l_t))c(l—t)dt + Y Kl
if ¢ = (¢, t € [0,1]) is absolutely continuous and nondecreasipg~= 0 and
¢; < 1 a.e., where thé; are the lengths of the maximal intervals whefrds
constant and summation is performed over all such intervals,/&ri@) = oo
otherwise.
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5. Large deviations for connected components. In this section we prove
Theorem 2.1 and Corollaries 2.1-2.4. We need the following lemma. £¢0, 1],
m €N, u1,...,u, be such thai; € (0, 1] andz Lqui <1,r,...,ry belong
to Ry, ands > 0. We denote byBj (a; {u;, r;}/_;) the event that there exist
connected components §tn, ¢, /n) ofS|zesmthe interval&:(u; — 8), n(u; +38))
fori =1,2,...,m, the numbers of the excess edges of these components belong
to the respective interval (r; — 8), n(r; + 8)), the other connected components
are of sizes less that¥, and the total number of components of the random graph
belongs to the intervali(a — §), n(a + §)). Let aIsoEg’ (a) denote the event that
all the connected components are of sizes less #daand the total number of
components belongs to the interala — §8), n(a + §8)).

LEMMA 5.1. Letc, - c>0asn— oo.If 31" ju; <1—a,then

lim Ilmsup logP(Bf (a; {u;, ri}11))

8—0 n—>oo

= lim liminf = IogP(B(; (a; {ui, ri}iLy))

§—0 n—>00

[Z sup <K (u;) +rilog= )+LC<(1—2a)\/§:ui>

i=1PERy i=1

2
c m NP 2(l—a— (L= 2a) VT )
+§<1—(1—2a)\/i§ul> n( (A= (A= 20) v STy )2 )}

If>" qu; >1—a,then

lim Ilmsup logP(B§ (a; {u;, ri}/1)) = —o0.

8—0 n—oo

Also

I|m lim sup— Iog P(B%(a))

n—oo

= |Im0|lm inf = Iog P(BY(a))

— @20+ S amn (220 )]
— |:LC((1 2a) )+2(1 (1—-2a) )7[( c(1— (1—2a)t)2 :

PROOF  We carry out the proof for the setBj(a; {u;, ri}iL;). A simi-
lar (and actually simpler) reasoning applies to #i&a). We denote through-
out B(s (a; {u;, r;i}7,) as By. Upper bounds are addressed first. lbet (O,

m Ui, a =(0),0(),...,0(n)) denote a permutation of the set

.....
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such that|7 (x)1 — a| < § and there exist points 8 1, <13 <1, <--- <15, <
1=1p, q With |13, — 13y —us@p| <8 fori=1,2,....mforwhichR(x), =
:R(x),éi =0,7T (X)féi— -7 (X)té,-,l =0, andR(x) is not strictly positive on any
subinterval offz;;, t5; . 4] of lengthé for i =0,1,...,m. Let Bs , denote the set
of functions(x, y) € D¢ ([0, 1], R?) such thatx € Bj ., Y is nondecreasing with
yo=0, andly, —y, —reml <8 fori=12 ...,m, where ther/ are as-
sociated withx, and let B; be the union of theBs , over all permutationsr .
By the construction ofQ” and E", if there exists a connected component of
sizel of the random graph witlk excess edges, then there exist integars
and k> ranging in{0,1,...,n} such thatk, — k1 =1, Qﬁl = QZZ =0,0/>1
fori=ki+1,...,kp—1, andE} — E,’jl = k. Also, ®" does not increase on
[k1, ko — 1] and® equals the number of the connected componengsmfc, /n).
Therefore, recalling (2.9) and (2.10), we have tBdtC {(S" + &", E") C Bs}.
Noting that Bs and its closure iD¢ ([0, 1], R?) have the same intersection with
C([0, 1], RZ), we have by Corollary 4.1 and Lemma 3.1 that

_ 1 _ 1 _
limsup=logP(Bj§) < limsup=logP((S" +&", E") C Bs)

n—oo N n—oo N

<- inf (1500 + I (¥)).

(x,y)e BsNC([0,1],R2)
Let B, denote the set of functions € C([0, 1], R) with xo = O such that
T(X)1=a and there exist points &g <t1 <2 < -+ <ty <tops1 =1
with tp; — t2i—1 = usqy for i =1,2,...,m for which R(X);,, , = R(X),, =0,
T Xy = T Xy 4, and R(X) equals zero on the intervally;, t2;+1] for
i =0,1,...,m. Let B, denote the set of function, y) € C([0, 1], R?) such that
X € B/, y is nondecreasing withg = 0 andy,,, — Yi,, ; =7rs@) fori=212,...,m
and ther; associated withx. Since(s-qBs N C([0, 1], R?) = Us B,, we have
by (5.1),

(5.1)

1
limsuplimsup=logP(B}) < —inf inf_ (I°(x) + IE (y)).
§—0 n—oo N % (x,y)eBs
As the functionz is convex andrz (1) = 0, it follows by the form oflf(y)
in Corollary 4.1 that the infimum offf(y) over y such that(x,y) € By,
\(vherex € B/ is fixed as well as the points, is attained aty defineq by

Y =roRMX):/ [iZ | R(X)sds for 1 € [13-1, 121], wherei =1,...,m, andy, =

cR(X), elsewhere, and is equal Y9 7 (ry )/ (¢ fzzi';leﬂ(x)s ds))cf,’zl?ilﬁ(x)s ds.
We can thus write
. . 1
lim suplimsup— logP(B})
n

§—»0 n—>x©

m . 1o
—inf inf (1% (L> / ds ).
=-1% xlenB;,< (X)+Zn c [ R(X)sds ‘ rZi_lﬂ(X)s ’

i=1 i1

(5.2)
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We now evaluate the infimum oveB’ . For x € B, with I5(x) < oo, let ¢ =

(¢s, t € [0,1]) = T(x). The conditionx, > —1 a.e. implies thath, < 1 a.e.
The function¢ does not increase on the intervls 1,121, i =1,2,...,m, SO
a=¢r=Y"0 2" G dt <1— YT, u;, implying that7S (x) = oo for x € B, if

> qu; > 1—a. This proves the second limit in the statement of the lemma. In
the rest of the argument we assume thgt ; u; <1 — a. We have, on using that

X, >—1a.e.,

m . to;
inf [ 75(x) + n(#) / R(X),d
XEB(’T< ( ) ; Cc f2i R(X)s ds ¢ toi—1 ( ) g

12i—1

(5.3) m N
= inf inf IS(X)—i—Zn( d )cw,- ,
w; €[0,u?/2), \XEBG (W1, ... W) i1 \Cw;
i=1,2,....m
where B! (w1, ..., wy) = {X € B : ,’zf’;l.ﬂ(x)sds = We(iy, i = 1,...,m}. We
next prove that
inf 15(x)

XEB(; (W1,.ees Wi)

(5.4) =2 sup (K@) +(p —cywi) + Lc((l— 2a) v Z”i)

i=1PER i=1

2
cf . 2\ (20-a-1-2a) VYl u)
+§(1 “ 2a)v§u,> n< c(1—(1—2a)Vv YL ui)? )

Since forx € B/, we have thatR(X),, , = 0 and 7 (X),, = T (X), , for
i=12,...,m, it follows that R(X); = X; — X, , for t € [t2;_1, 12;]. Hence,

in view of the form of 7% in Theorem 4.1 and Lemma 3.3, if we change

B! (w1, ..., wy) With I5(x) < oo onintervalgtsi—1, 121 t0 (Xry,_, +X,(t2i-1, 12i),

p € [t2i—1,t2:]), whereX,(t2;_1, t2;) is defined in the statement of Lemma 3.3,
this will not increase the value df* (x). The altered functiox will still belong

to B, (w1, ..., wn) (note thatp is not affected by this modification o). Since

X: + ¢ = 0 on ULyt t2i41], the functiong and the intervalgry; 1, 2]
uniquely determine the modified function We may thus optimize ovep and
the[ro;, 12;11], and assume, in view of Lemmas 3.2 and 3.3, Theorem 4.1 and the
fact that, = 0 a.e. onJ/ 4[t2i—1, t2;], thatx is such that

ISCVEDY ( sup (K, (t2i — t2i—1) + (p — ©)wei)) + Le(t2i) — Lc(tzi—1)>

i=1 SPERY

1 m l_d)t
+/0 1<t elyo[tg,-,t2,~+1])n(c(l_t)>c(1—t)a’t

m 1 1— ;
= sup (Kot + (p — i) + [ (0 e na,

i:1p€R+ C(l_t)
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where for the latter equality we used the definition.gfin (2.14). An application
of Lemma 3.4 yields (5.4).
Now, a minimax argument [cf., e.g., Aubin and Ekeland (1984)] shows that

ri
cWw;
CWw;

inf ( sup (Kp(u,-)+(,o—c)w,-)+n(
w;€[0,u?/2) \ peR
(5.5)

= sup (K (u;) +rilog— >

PERY

Thus, by (5.2)—(5.5), ib_/" yu; <1—a, then

limsuplim sup Iog P(By)

§—>0 n—>0o0

[Z sup (K (u;) +rilog= >+LC((1—2a)vZu,-)

i=1PER i=1

2
c o 20—a—Q—2a)v Y " up)
+§(1—(1—2a)v;u,) 71( A= (A= 2a) v 37y up)? )]

We now establish the lower bound:}f" ; u; <1 —a, then

1
Ilgn_)lgf |Inl’n>lnf —logP(By)

(5.6) > [Z sup (K (u;) +rilog— ) + L, ((1— 2a) v iui)

i=1PERY i=1

2
c " 20—a—A—2a)v Y u;)
+=(1-1-2a)Vv ) u; n( ! > .
2( 2 ’) c(1—(1=2a)v Y qu)?
Let (w;, p;) denote the saddle point of the function on the left-hand side of (5.5)
so that

(5.7) K (i) + (5 — o) +n< )cw, — sup <Kp(ul~)+r,~ |og§).

i peRy

Calculations show thai; andw; are specified by the equalities

pilti i Pilki . T
5.8 S ’ =
( ) 1— e—pitti + Uj; + 2 Pi

with g; = w; =0 if ; = 0. Letso=0,s; = ¥, _qu;j, j =1,...,m. Motivated
by the form of the optimal trajectory in Lemma 3.3, the definitionjofbove
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and the definitions ofy and ¢ in the proof of Lemma 3.4, we define, fgre
(0, min;=1,2,....m u;), an absolutely continuous functiéti by X = 0,

ui—nm
1— e— iV ui—n)
&77

)?;7 =—-1+ (Bi Vv n)e—(ﬁivn)(l—s,-—l)

forre(si_1,s;)andi=1,..., =—nforre (sy,sm Vv (1—2a)), and

on 1 sm VvV (1—2a) —

X, =—142 A= s, v (12072 (1 1)
for t € (s, vV (1 — 2a),1), and we define an absolutely continuous functyﬁn
by V¥ yt =R /([5 RXT)sds) for t € (si—1,5i —n), i =1,. andy, =
cR(X); elsewhere.

Let us fix arbitrary$ € (0, min;=1.2, ., u;). Fore > 0, let B5 , denote the

e-neighborhood ofX”, y") in D¢ ([0, 1], R?). It follows from the definitions ok,
y7 and the operatorr that if ¢ and n are small enough, then for arbitrary
(X,y) € Bg ; with Xg = yo = 0 andy nondecreasing, there exist disjoint segments
(Si—1,8),i=1,2,...,mwith |5; — 5;_1 — u;| < 8 such that the functiofR(x) is
positive on these segments and equals zero at the endpoints, the other intervals
where R(x) is positive are of lengths less than and |y;, — y;5, , — ri| < 6.
Furthermore, it may be assumed thiatx)1 € (a — 8, a + ). We, therefore, have
by (2.9) and (2.10) thai(S” + ", E") C Bg ) C By for all small enough andn.

As the seth,,, is open inD¢ ([0, 1], R?), in view of Lemma 3.1 and Corollary 4.1,

1 1
I|m |nf - Iog P(B§) > I|m |nf Iog P((S" +&",E") C BE n)

(5.9) > — mfv (I°() + L (y))
(X,Y)€Be,p

—(I3 (") + I 7).
By the definitions ofk” andy”, (5.7), (5.8), the form of S in Theorem 4.1, the
form of IF in Corollary 4.1, part 1 of Lemma 3.3 and part 1 of Lemma 3.4, we
have that/ S (X") + I (y") converges ag — O to the sum on the right-hand side
of (5.6), which together with (5.9) concludes the proof of (5.6)1

PROOF OF THEOREM 2.1. We check that the sequence’/n, U", R"),
n € N, is exponentially tight (of orde#) in [0, 1] x S; x S. By Lemma 3.5, the
subsets 0f0, 1] x S x S of elements(a, u, r), wherer = (r1, r2,...), with the
property thaty">2, r; < B for someB > 0 andr; — 0 asi — oo uniformly, are
compact. Therefore, it suffices to check that

1/n
(5.10) I|m IlmsupP(ZR” > B) =0,
B—oo n—oo i—1
1/n
(5.11) lim IlmsupP( sup R” >77> =0, n > 0.
i—00 n—00 j= =i,i+1,..
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The first limit follows by exponential tightness of thEi’ valid in view of
Corollary 4.1 and the fact thaf°, R” = E’. For the second limit, we note that
R equals the increment df' over a time interval of lengtlv", so fors > 0,

o
(5.12) | J(R! >, 17,-”58}c{ sup @—E’:pn}.
i=1 s,t€[0,1]: |s—1]|<§

Sinceu; < 1/i for an element = (u1, uo, ...) of S1, we have that

_ 1/n
IimsuplimsupP( sup R;?>n>

i—>oo n—>00 j=iitl,...

_ . 1/n
<lim supP( sup |E} — E?| > 77) .

n— 00 s5,t€[0,1]: |s—t|<6

Therefore, (5.11) follows on using that ii¥exponential tightness of th&”,

_ _ 1/n
(5.13) im_limsupP sup |E} — E7| > n) =0.

I <

=0 n—oo s5,1€[0,1]: |s—t]|<8

It thus remains to check that

o 1 (o —

lim Imsup—logP(d((—, v, R”), (a,u, f)) 58)
n

e—>0 n—soo N

= lim liminf 1 IogP(a’((a—, u", 17”), (a,u, r)> < e)
n

e—~>0 n—>0 pn
_ o, U,R
__Ic (av uv r)?

whered is a product metric ofi0, 1] x S; x Sand(a, u,r) € [0, 1] x S; x S. Let
U= (u1,u2,...) andr = (ry,rp,...). If all the u; > 0, then givens > 0, for all
small enouglz > 0 and all large enougtr,

(5.14) {d((‘% u", 1?">, (a, u, r)) < s} C By (a; {u;, ri}i—y).

If u1 > 0 andu; = O for all largei, then (5.14) holds fom that is the greatest
index: with u; > 0. If u1 = 0, then we have the inclusion

{d((%n’ [711’ En)’ (a,u, r)) < g} C E(’;(a)

Therefore, Lemma 5.1 and the form l;?f’U’R(a, u, r) imply that, provided; =0
whenu; =0,

. . 1 =
lim suplim sup— log P(d((a—, u”, R”), (a,u, r)) < 8)
e—>0 n—oo N n

5.15
(5-13) < —1%YR@g, u,r.
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If for somei we have that; = 0 andr; > 0, then by (5.12) and (5.13) the left-hand
side of (5.15) equals-oo, so the required inequality holds as well.
For the lower bound,

o1 O
liminfliminf — IogP(d((—, U, R"), (a,u, r)) < 8)
e—~>0 n—>© p n

5.16
(5.16) > —1*V-R,u,n),

we may assume that = 0 whenu; = 0. Let us be giverz > 0 andB > 0. If all
theu; are positive, then for all small enough> 0, n > 0 and large enough, we
have the inclusion

Bj (a; {ui, ri}]Lq) C {d((%n, u", E”), (a,u, I’)) < 8}

o0
U{ZE{’>B}U{ sup E”>n}.
i=1 i=m+1,...
To see the latter we use the inequalfif2, | | x (u;/e) <sup_, .1 (x(u;/e)/
up) 32 u; for (uh, uy,...) € S and the convergencg(x)/x — 0 asx — 0.
Lemmab5.1, (5.10) and (5.11) imply (5.16)4f > 0 and not all they; are positive,
then by a similar argument

B} (a; {u;, ri}™q) C {d((%n, U, §n>, (a,u, I’)) < 8}

(0,0) o0
U{ng}u ) (R >, TF <50,
i=1 i=m+1

wherem is the greatest indexwith «; > 0. If u1 =0, then

Bl(a) C {d((‘i—n u", 1?”), (a, u, r)) 58}

o0 _ o0 _ _
U {ZR;' > B} U R >n, U <6).
i=1 i=1

In either case, (5.16) follows by Lemma 5.1, (5.10), (5.12) and (5.13).

Corollaries 2.1 and 2.2 follow by an application of the contraction principle. In
some more detail, the infima @fV-%(a, u,r) and 1Y (a, u) overa € [0, 1] are
attained att* = 1/(2c) if Y72 u; <1—1/cand ata* =1— Y2 u; —c(1—

Y2 u)?/2 i Y2 u; > 1— 1/c; the infimum of I1%V-R(a,u,r) overr €S is
found by a minimax argument [it is actually attainedrét= (ry,r5,...) with
r¥ = cu?/(1 — exp(—cu;)) — cu?/2 — u;), cf. Aubin and Ekeland (1984)]. The
expression for % (a) is obtained on noting that subadditivity & (x) in « implies
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that)"7°; Kc(u;) > K. (3-72, u;), S0 one should minimiz&®* U(a, u) with respect
to Y72, u;, and thatK.(u) is monotonically decreasing in, so the infimum
can be taken ovep_7°,u; > 1 — 2a. We provide more detail as to the proofs
of Corollaries 2.3 and 2.4.

PROOF OFCOROLLARY 2.3. LetAs(u1,...,uy), ford e (0, mini=1.__ nu;/
2), denote the subset &; of vectorsl = (i1, uip,...) such that there exist
distinct j; € {1,2,...,2/u;]} with |, —u;| <& for i =1,2,...,m. Let a
set A(uy,...,u,) be defined as the set af = (uq,u2,...) € S; such that
wj, =u;,i =12,...,m, for some ji,..., j,. Since A(uy,...,u,) equals
the intersection of the closures of th&s(uq,...,u,,) over § > 0, the sets
As(ui, ..., uy) are open Sy, andAf (u1, ..., uy) = {U" € As(u1, ..., un)}, We
have, by Corollary 2.2 and the definition of the LDP,

I|m I|msup logP(A} (u1, ..., um))

n—oo N

1
= lim liminf — logP(Aj (u1, ..., um))

§—~0 n—>0o0 pn

: U
- UGA(LIt?,f..,um) I (.
We evaluate the latter infimum. Sind¢’ (u) is invariant with respect to per-
mutations of the entries af, we may replacas with its permutation that has
ui,...,u, as the firstn entries. By subadditivity oK. (x) in u, we have that
Y1 Keui) = K (372,11 ui), SO itis optimal to assume thag, 2 = u,, 13 =
= 0. We thus need to find optimal,+1. If >7 u; > 1—1/c, thenIU(u)
z'"“K i) + LY uy). By Lemma 3.2 Ke(upmin) + Lo(XM i uy) >
L3 qu;) for any u,,41 > 0, so it is optimal to taket,+1 = 0, accord-
iNgly, infueaquy, ...um) 17 (W) = X0 g Ke(ui) + Le(Ciqu). Y0 uy <1-1/c,
then Lemma 3.2 implies that far* > 0, such that*/(1 — exp(—cu™)) =1 —
Zl qui, we haveK (u*) + L3/ qu; +u*) = Le(Q o7 qui). Also Y7 qu; +
u* > 1 — 1/c, so the choice ofu* as u,.1 yields the value of the ac-
tion functional er-nleC(u,') + Keu®) + LeQoiqui +u*) =370 Ke(uy) +
Le(XM qui). If upy1 # u* and is such thal " tu; > 1 — 1/c, then ¥ (u) =
Y K o (ui) 4+ Le(X uy), which is greater tha- ™y Ko (ui) 4+ Le (X0 q u;)

by Lemma 3.2. Finally, ifu,, 1 is such thatZ'"Jrl1 u;j < 1— 1/c, then with the

use of Lemma 327V W) = Y K@) + Lo — 1/¢) > Y Ke(ui) +
L, (Z’" uj) > 3" Ke(ui) + L3 4 ui). Thereforeu™ is the optimal value
of um+1. Thus, inficaqy. ... u,) 1Y (u) = Y Ke(up) + Le(Oqu;) and it is at-
tained at a unique point* given byu* = (ug, u2, ..., uy,0,0,...) if >/ ju; >
1—1/c andu* = (ug, u2, ..., upm,u*,0,0,...) if 3" u; <1—1/c. We also
have by the form offY:® in Corollary 2.1 that the infimum ofY-®(u*,r) over
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r equaIsICU(u*) and is attained at the unique ponmit= (ry,...,7,,0,0,...) if
Yiqui=1=1/candr* = (r{,...,ry,r*,0,0,..)if 37" ju; <1—1/c. There-
fore, Iettingci denote a metric 081 x S,

lim Ilmsup logP(A5 (u1, ..., um))

=0 n—oo

1
= lim liminf = IogP(Ag’(ul, ey Um))

§—0 n—>00

= lim lim sup— logP(d((U", R™), (u*,1%)) < 1)

n—0 n—soco N

= I|m I|m|nf —IogP( 1((U", R™), (u*, 1)) <n)

77—)
—(ZKC(M,-HLc(Zui)).
i=1 i=1

In addition, liminf_.olim,_.oc P(d((T", R"), (U*, 1)) < n}|AL(u1, ..., un)) =

1 for n > 0 as in Freidlin and Wentzell [(1998), Theorem 3.4 of Chap-
ter 3]. The proof is completed by noting th&d((U”, R"), (u*,r*)) < n} C
de(ul, ceosttm) C Al(u, ..., uy) for all small enoughy > 0. O

PROOF OFCOROLLARY 2.4. By Theorem 2.1 and the contraction principle,

(5.17) 1287 @ u,ry= inf 1%YVR@q,u,n),
(u,r)eo(u,r)

where O(u,r) = {(u,r) € S1 x S:u1 =u, r1 = r}. The assertion of the corol-
lary for u = O follows. Let us assume now that > 0. The infimum of
SUR,er, (Kp(x) +r log(p/c)) overr € Ry equalsK.(x), therefore, it suffices to
minimize overuy, us, ... the function

> Ke(ui) + Lc<(1— 2a) v Zm)
i=1 i=1

2
c s _ 20—a—(1—2a) v Y X ui)
+§<1—(1—2a)\/2u,> n( A A2V Sy )

i=1

By the fact thatk.(x) < O for x > 0 and is decreasing in (Lemma 3.2), we can
assume that in an optimal configuratidrf, u; > 1 — 2a. Next, sinceK.(x) is
concave inx, K.(0) =0 andu; < u, we have that

(5.18) g[(c(ui) > {@JK u) + K, (Zu, —u{&J)

i=1 u
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Hence, by Theorem 2.1,

If"ﬂ’y(a, u,r)= sup (Kp(u) +rlog g) — K. ()

pERy
. T T
(5.19) * re[(l—zlgfvu,l—al(bJK”(m * KC(T B ubJ)
¢ 5 (20-a- r)))
+ Lc(7) + 2(1 7) ”<7c(1— 2 )

as required. Part 1 has been proved.

We prove part 2. By the contraction principle the sequééen, y" /n),n € N,
obeys the LDP for scale with action functionall’®” (u, r) = infac0,1) 1287 (a,
u,r), which yields the assertion of part 2 for, r) = (0,0). Let u > 0. The
infimum of the right-most term on the right-hand side of (5.19) aver [(1 —
1)/2,1— 1] is attained a{1 — 7)/2 if t <1—1/c and at 1— t — ¢(1 — 1)?/2
if T >1— 1/c with respective values(1 — 7)2/2r(1/(c(1— 1))) and 0. Ift <
1—1/c,then by Lemma 3.2 there exist € (0,1—7) suchthat +7* > 1—-1/c
andL.(t) = K.(t*) + L.(t + t*). Therefore, in analogy with (5.18),

T T
{—JKC(M) + Kc<r — u{—J)
u u
T4+7*
+Lc(r>z{ JKc(u)+Kc<r+r*—u[ J)+Lc<r+r*),

which implies that we may disregard the domair 1—1/c. Hence, (5.19) yields

T+1*

187 (u,r) = sup (K,,(u) +rlog 3) — Kq(u)
PERY ¢
(5.20)
. T T
+ inf — | Kcw)+ K\t —u|—|)+L()).
te[(1-1/c)vu,l] u u

If u>1-—1/c, thenfort >u by Lemma 3.2\ t/u|K.(u) + K.(t — | t/ulu) +
Le(t)>Kc(u)+ Ke(t —u)+ Le(t) > Ke(u) + Le(u), SO

(5.21) If’y(u) = sup <Kp(u) +rlog B) + Lo(u).
peRy ¢

Let us now assume that<1—1/c,soc> 1. If t > | (1—1/c)/u|u + u, then by
the factthat (1 — 1/¢)/ulu +u > 1—1/c and Lemma 3.2,

|xew + k(o] o)+ Lo
(26 2o o)
= (|7 (-2) )+ ) v |1 5) oore).
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so by (5.20),

1P(u) = sup (K (u) +rlog= ) — K.(u)
Ry
(5.22) ’*

n inf q JK w) + K, <r—uFJ)+LC(r)).
rell—1/c, |(1-1/¢) /uutu] u

By subadditivity ofK.(x) in x, fort >1—1/c,
T T
[ e+ ke 2o
u u
1 1 1 1
= [a(- D) re e r (== [F0-0) o)
u C u C
By Lemma 3.2 and the definition @ffor r € [1 — 1/c, |(1 — 1/c)/ulu + u],

KC(‘L' — L%(l— %)Ju) + Lo(t) > Ke(t Au) + LC(L%(l— %)Ju +u A u),

which implies by (5.23) that the minimum in (5.22) is attainedrat [(1 —
1/c¢)/ulu + u A u, completing the proof of part 2.
Part 3 follows by minimizing?” (u, r) overr e Ry. O

(5.23)

6. Normal and moderate deviations for the largest component. In this
section we prove Theorems 2.2 and 2.3. We start by establishing a law-of-large-
numbers result. Let

|_nlj n—Q7 ;—(-1

(6.1) Z Z <J—%) re10,1],
Lntj Ql 1~

(6.2) Z 3 ( ) ref0.1],
i=1 j=1

so that by (2.5), (2.6), (2.11) and (2.12),
— lnt]/n — — —
(6.3) Q';:/O (cn(l—Qg_ L’;”>—1>ds+é;1+M;1+q>f,

nt]/n

_ mim _
6.4) E'= c,,/ 0'ds + I — —/ 10" > 0)ds.
0 n Jo

The processe#/” = (M", t € [0,1]) and L" = (L", t € [0, 1]) are orthogonal
square integrable martingales relative to the filtratigfi”, r € [0, 1]) with
respective predictable quadratic characteristics

(6.5) ("), = 2 <1— %) fOLmJ/" (1 _ 0" - L”:J ) ds,
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(6.6) ("), = %(1 - %) /OWJ/" (ag _ %)ers.

Let functionsg = (g, t € [0,1]), ¢ = (¢;, t € [0,1]) ande = (&, t € [0, 1]) be
defined by

- 1—t—e“, if r € [0, 8],
6.7 —
o0 v {O, otherwise,
(6.8) 3, = SR (=D —p),  relp 1,
0 otherwise,
and
2
(6.9) g =e P _ 14t AB) — @

Equivalently, the paitg, ¢) can be defined as the solution to the Skorohod problem

t _ - t -
6.10) G = [ (cA=d—9)—Vds+d and ¢ = [ 1G=0dd.
We note that

t
qr =/ (c(l—gs—s)—1)ds forr €[0, 8] and
0
(6.11) .
e; =c/ qs ds fort €0, 1].
0

LEMMA 6.1. Letc, — ¢ > 0asn — oco. Then the processes 0", ®" and E"
convergein probability uniformly on [0, 1] to the functions g, ¢ and e, respectively.

PROOF By (6.5), (6.6) and Doob’s inequality, thé” andL" converge to 0 in
probability uniformly over{0, 1] asn — oco. Also, theg” converge in probability
to 0 uniformly on[0, 1] by Lemma 3.1. Now, a standard tightness argument applied
to (6.3) and (6.4) shows that the sequeri@¥, ®", E"), n € N, is C-tight in
Dc ([0, 1], R3), where a limit point(G, ¢, &) is such thag; = f§(c(1 - Gs —s) —
1 ds + ¢, ¢ is nondecreasing with, = [ 1(G; = 0)d¢s and é; = ¢ [§ G, ds.
Hence,(q, ¢3, e)=(q, b, @), concluding the proof. O

REMARK 6.1. The convergenceg” L g and ®”" £ & also follow from
Remark 4.1 since the action functiondl€ and I® are equal to 0 a§ and ¢,
respectively.

We now prove a diffusion limit theorem, which will lead to the proof of
Theorem 2.2. Let us define process®$ = (M}, r € [0,1]), L" = (L}, t €
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[0,1D), X" = (X}, t €[0,1]), Y" = (Y], t €[0,1]) and Z" = (Z], t € [0, 1])
by the respective equalitie®” = /nM", L" = /nL", X" = /n(Q" — §,),

= /n(®" —¢,) andZ! = /n(E" —¢&,). By (6.3), (6.4), (6.7), (6.10) and (6.11),
these processes satisfy the equations

t t
(6.12) X;’:—c,,/(; X;’ds+ﬁ(cn—c)/()Gszds—i—M,”+€‘;’+Yt”,

t t ~
(6.13) Zt":cn/OX?ds+ﬁ(cn—c)/()q_sds+L?+8f,

where
_Ct .
(614) 0;2 — € s |f te [O, ,B]a
1—1, if t €[B,1],
lnt]/n —
N A O (O P
n
(6.15)
+ f/ ( LnsJ) s,
- nt]/n __ lnt]/n
(6.16) 57=ﬁcn/ 0'd s—i 10" > 0)ds.
t
We note that Lemma 3.1 implies thatu‘—> ¢ asn — oo, then for arbitrary) > 0,
(6.17) sup "] 50,
t€[0,1]
also
~ Cp
(6.18) sup |87 < —.
e0y - Nn

Let WO = WP, ¢+ €10,1]) and W@ = (W®, + € [0,1]) be independent
Wiener processes, and procesges- (H;, t € [0,1]) andZ = (Z,, t € [0, 1]) be
specified by the equations

tAB t t
(6.19) H,:—c/ Hsds+0/ aszds+ﬁ/ oy WD,
0 0 0
tAB t t
(6.20) Z,:c/ Hsds+6/ qsds+ﬁf Vs dW®.
0 0 0

We also define processe$ = (M,, t €[0,1]) andL = (L,, t € [0, 1]) by M, =
Ve o dWw® andL, = /¢ [§ /s dWP.

LEMMA 6.2. Let /n(c, —c) > 0 e Rasn — oo, wherec > 0. Then

lim lim supP( sup |X}| > B) =0.

00 n—>00 t€[0,1]
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Also the following holds:

1. Ifﬁ>0 then for § € (0,8 A (1 — B)), the processes M", L", (X}, t €
[0, 86D, (Y], te[B+3,1]) and (Z}, t €10, 1]) jointly convergein distribution
inD¢ ([0, 1],R2) x De([0, B — 8], R) x De([B + 6, 1], R) x D ([0, 1], R) to the
respective processes M, L, (H,, te[0,8—-68],(—H;,te[B+4,1]) and Z. In
addition, lim,—, oo P(SUR [0, g—g) 1Y{'| > 8) = 0.

2. 1f B =0, then the processes Y” converge in distribution in D¢ ([0, 1], R) to
the process —H.

PROOF We start by proving that the processeéaf”, L") converge in
distribution inD¢ ([0, 1], R?) to the processM, L). The processes!” and L"
are orthogonal square integrable martingales relative to the filtratigh ¢
[0, 1]), whose respective predictable quadratic characterigtitg'), andn (L"),
converge in probability ag — oo to ¢ f§ o2 ds andc [§ g, ds, respectively, in view
of (6.5), (6.6), (6.7), (6.14) and Lemma 6.1. The predictable measure of jumps of
(M", L") is given by

" ([0,¢], T x I')
|nt]—1

-3 (1~ Sk Sr\O)F ((&—9 T (0)

I e B(R),
where

Lns)
F'(s, Ty = ( Z (glj . ) € r”) s€[0,1], I € B(R).

Therefore, fore > 0 andn large enough,

1
2 ~n
./0 /RZ [x]“1(|x| > e)v" (ds, dx)

1 1
< —2/ / Ix|*5™ (ds, dx)
g Jo JR?

2 & - n k—1
5—22/|x|4F"(1—@——,dx)
£ k=1 R n n
2 - n 1\ T 4(2 3¢2
53 |x|4F”<(—Qk‘1——) Jar) < 2D,
€" =1 'R n

n n2e2

which converges to 0 as— co. Therefore, extending th@/", L") to processes
with trajectories inD(R .., R?) by setting(M]', L}) = (M7, L}), t > 1, we see by
Jacod and Shiryaev [(1987), Theorem VIII.3.22] that these processes converge
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in distribution to the extension ofM, L) defined as(M;,L;) = (M1, Ly),
t > 1. Since the projectiopy from D(R,, R?) to D¢ ([0, 1], R?) is continuous
at continuous functions frond(R,,R?), we conclude that the (nonextended)
processegM”, L") converge in distribution inD¢ ([0, 1], R?) to the process
(M, L).

By (6.3), (6.10) and Lipshitz continuity of reflection fer [0, 1],

/oanJ/n (cn(l— QZ’ B Lnﬂ—”) B 1> s

. t
+é;’+M;“—/O (c(L—Gs —s5) — 1) ds|,

so the definitions ok} and M}, (6.7), (6.14) and (6.15) yield

10" —G,] <2 sup
te[0,r]

t
IX71 =20, [ IX21ds +2 sup |M]
0 s€[0,1]
(6.21) ,
+2ﬁ|cn—c|/ o2ds+2 sup "],  tel0,1].
0 s€[0,1]

In view of C-tightness of thev”, the convergencg/n(c, — ¢) — 6, (6.17) and
Gronwall’'s inequality, (6.21) yields the asymptotic boundedness in probability of
the sup(o.1; | X7'| asserted in the first display of the statement of the lemma. This

implies by (6.13), the convergenggi(c, — ¢) — 0, (6.18) andC-tightness of the
L" that the sequencg&”, n € N, is C-tight in D([0, 1], R).
We next show that for arbitrar§/e (0, 1 — 8),

(6.22) lim P( sup |X}|> 8) =0.
"0 \re[p+s.1]
On recalling the definition of;", we write (6.12) in the following form:

t t i, _
(6.23)X;’:—cn/0 X;’ds+\/r_z(cn—c)/0 02ds+ M+ — /ng; +/nd".

Since X" = /nQ" for t € [B, 1], ¢ = 0, and®” increases only whe@” =0,
(6.23) implies that(X7}, t € [B,1]) is the reflection of the processXy —
Cn [ XPds +n(ca —c) [polds + (M) — Mp) — /ng + (&} — &), 1 € [B, 1]),
so by X{ being nonnegative ofg, 1], it is not greater than the reflection of
(X3 + nlen — o) [yolds + (M} — M}) — Jng, + & — &%), 1 € [B.1D.
Therefore,

t - -
X< s (Ve = [ oZdp+ a7 = b2) + Vit — )+ @ — &)

t -
(6.24) Y% (X;‘j + /n(cn — C)/,g olds + (M} — Mpg) — /ngy + (& — gg)>

te[B, 1l.
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Hence, forr > 8 + 6 andn € (0, §),

1
Xl < (!ﬁ(cn — c)\/ 02ds+2 sup |[M"|
B sel,1]

625 +2 Sup LI+ X+ VG - a)
se|p,

t
v sup (|viten =)l [ ofdp+1my — M|+ 16~ E1).
selt—n,t] s

Limit (6.22) follows by (6.25), (6.17)C-tightness of the\”, asymptotic bound-
edness in probability of the spg, 5, [ X7, the convergencg/n(c, —c¢) — 6 and
convergence of sUg ., 5.1 v/ (¢—y — ¢1) t0 —00 asn — oo. Now, (6.22) im-
plies by (6.12), (6.17), the convergeng@ (c, — ¢) — 6, asymptotic boundedness
in probability of the sup o 1; | X7'| andC-tightness of the/" that the processes’
restricted tgB + &, 1] areC-tight in D([8 + §, 1], R).

Let us now assume th@t> 0. By (6.23), the definition ok} and the definition
of the reflection mapping fare [0, 1],

Jn®" =— inf <—c,,/ X" dp + /n(c, —c)/ O‘de
s€[0,1] o P o ?
(6.26)

+M§+é§+ﬁqs—ﬁ$s)Ao.

Convergence in distribution of thé/" to a continuous-path process implies
that foré > 0, lim,_olimsup,_, . P(SUp¢(g ,; IM;'| > 8) = 0. Therefore, given

8 € (0, B), we derive from (6.26), taking into consideration the convergences
(e, —c) = 6 and/ninfiep, p—s1G: — oo asn — oo, wheren € (0, g —§), the

fact thaty, = 0 for ¢ € [0, 8], (6.17) and asymptotic boundedness in probability of
the sup(o.1; X7 | and sup.(g 1, |M}'| that

(6.27) lim P( sup |Y/'| > 6) =0.
=30 \te[0,8—5]

Putting together (6.12), (6.17), (6.27), the convergeyaéc, — ¢) — 6, asymp-
totic boundedness in probability of the sup 5, | X;'| andC-tightness of the\",
we conclude that th&” restricted td0, 8 — §] areC-tight in D¢ ([0, 8 — &1, R).

We have thus established that for= 0 ands € (0, 8 A (1 — 8)), the processes
M", L", X" restricted td0, g — 8], Y" restricted tq 8 + 8, 1] andZ" areC-tight
in the associated function spaces, so they are jointly tight as random elements
with values in the product space. Convergence in distributidddr0, 1], R?) x
Dc([0, 8 — 81, R) x Dc([B + 68, 1], R) x Dc([0, 1], R) of the (M", L™, (X}, t €
[0, —-6D, (Y, te[p+8,1),2") to (M,L,(H;, t €[0,8—38]),(—H;, t €
[B + 6,1]), Z) now follows by (6.12), (6.13), (6.17)—(6.20), (6.22), (6.27), the
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convergence,/n(c, — ¢) — 6, convergence in distribution of thew”, L") to
(M, L) and uniqueness of the solutioH, Z) to (6.19) and (6.20).

Let us now assume thagg = 0. Inequality (6.21), in view of asymptotic
boundedness in probability of the sug 1, 1X7|, C-tightness of theM”, limits

(6.17), (6.22) and/n(c, — ¢) — 0, yields the limit

lim lim supP( sup | X} > 8) =0
n—0 n—oo te[0,7]

for § > 0, so by (6.22) lim-,  P(SUp¢[o.1; I1X7'| > 8) = 0. Therefore, by (6.12),

the convergencg/n(c, — ¢) — 6, and convergence in distribution of tl¢" to

M, theY" converge in distribution id¢ ([0, 1], R) to —H. [

REMARK 6.2. A slight modification of the proof allows one to strengthen
the assertion of the lemma f@ > O to the joint convergence in distribution in
D¢ ([0, 1], R?) x De ([0, ﬂ — 81, R)? x Dc([B + 8, 1], R)? x R? x D¢ ([0, 1], R)
of the M", L", (X", t € [0, — 8]), (Y, t €[0,8 — 8]), (X!, t € [B +8,1]),
Y, telp+341D, Xg Yg and Z" to the respective random elemer#s L,
(X, 1 €[0, 83D, (Yr, 1 €[0, 838D, (X;, t €[B+6, 1D, (Yr, t €[B+6,1]),
Xg, Yg andZ, where

H;, fort € [0, B), 0, fort € [0, B),
X, =14 Hg V0, forr =B, and Y; = (—Hp) V0, forr =B,
0, fort e (B, 1], —H;, forr e (B8, 1].

We thus have convergence in distribution with unmatched jumps in the limit
process mentioned in the Introduction.

PROOF OFTHEOREM2.2. Letc > 1, soB > 0. We prove that ag — oo,

({57 =) (5 =) (=)

(it )
LT ca—p )

which implies the assertion of part 2 of the theorem.

Let " be the last time beforef/2 whenQ” =0 andB” be the first time not
beforeg/2 whenQ” = 0. By Lemma 6.1 and (6.7" > O for¢ € [8, B — 8] with
probability tending to 1 as — oo for arbltrary6 € (0,8/2), soP(z" <é) —> 1

(6.28)

andP(8" > g — 8) — 1. Also, noting thatd” = ", for 1 € (¢", A", Lemma 6.1
and (6.8),

limsupP(8" > B + 8) < limsupP(®7, = ®}, 5) <10 =p1s) =0,

n—o0 n—o0
S0 as1 — o0,

(6.29) g £ g
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Similarly, the event that there exists an excursio@6fof duration greater tham,
wheren € (0,1 — B), which ends at some time aft@gr+ 5, is contained in the
event{infc(s.1, (P}, — /) = 0}. Lemma 6.1 and the fact tha is strictly
increasing orjg, 1], in view of (6.8), imply that the probability of the latter event
tends to 0 ag — oo. As the sizes of the connected component§ @f, ¢, /n) are
equal ton multiplied by the excursion lengths @i, we see that, with probability
tending to 1 as — oo, the largest component “starts” at” and “ends” at8”,

SO

n

(6.30) P(— = p" — r") — 1,
n

(6.31) P(’/7 =FE}, - E;z) ~ 1

By (6.12) and the facts tha”, = —/ng» andX’, = —V/nGgn,

™ —
Tn .L,n 5
_ﬁérn = —cn/ X;l ds + /n(c, — c)/ o ds
0 0
+ ML+ &+ Y,
] p o
_\/ﬁq‘gn = —Cnfo X;l ds + ﬁ(cn — c)/(; lops ds

+ M, + 85, + Vn @, — Vnop.

(6.32)

(6.33)

Since t" 0, the right-hand side of (6.32) converges in probability to zero

by (6.17) and Lemma 6.2, sgng» 2o and, consequently, by (6.11) and the
fact thatc > 1,

(6.34) v 50,

Since®, = @, + 1/n [see (2.8)]/n %, % 0andgs, — ¢ = Je@—g, -
s)—Dds = fﬁ" (c(1—gs—s)—1)ds [see (6.10)], we derive from (6.33), on using
(6.29), (6.17) and Lemma 6.2, that

«/ﬁ/ﬂﬁn (c(l—gs—s)—1)ds
(6.35)

Bn Bn
—cn/o X"ds + /n(cy —c)/o crszds—l-Mgn £o

Sincea = ¢1 [see (6.8)] anad" = ", we also have that

n’

o

(6.36) ﬁ(7 _ a> —yy.
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Convergence (6.28) follows by (6.29)—(6.31) and (6.34)—(6.36), the observa-
tion that y = eg [see (6.9)], asymptotic boundedness in probability of the
SUR 0,11 X7, the convergence/n(c, — ¢) — 6, the joint convergence in dis-
tribution (M", Y}, (X", s € [0, B — 8]), 7045 (M, —Hy, (Hy, s € [0, B —81), Z)
in De([0, 1], R) x R x D¢ ([0, B — 8], R) x D¢ ([0, 1], R) valid by Lemma 6.2 and
the continuous mapping theorem.

If ¢ <1, theYy converge in distribution te- H; by part 2 of Lemma 6.2, which
completes the proof of part 1.1

We now prove Theorem 2.3. As mentioned above, the proof is along the
lines of the proof of Theorem 2.2, so we begin with an idempotent analogue
of Lemma 6.2. We recall thak,, n € N, is a real-valued sequence such that
by — o0 and b, //n — 0 asn — oo, and introduce processég” =(M" te
[O 1D, L"—(L" t € [0,1)), X”—( .t €[0,1]), Y”—( ,+€10,1]) and

(Z t € [0,1]) by the respectlve equalltleM” = M”/bn, L} =L} /by,
X” X7 /by, Y" Y'/b, and Z” Z!'/b,. Dividing (6.12) and (6.13) through
byb yields forte[O 1],

t t
(6.37) X' = _Cn./o X"ds + % (cn — c)/(; olds+ M + 8" + 77,

n

-~ t/\
(6.38) Zf:cn/ X?ds—l—?(c
0

n

t o~ A
n—c>/oc7sds+L;l+a;’,

where
an gl(l n S‘l(l
. == 8, = —.
(6.39) &; b, =1,
We note that by (6.15), (6.16), (6.39) and Lemma 3.1,
an, PYOR
(6.40) sup & — 0,

t€[0,1]

providedc,, — ¢ asn — oo, and
~ Cp

(6.41) sup 8] < .

€01 | bay/n
Let WO = WP, ¢+ €10,1]) and W@ = (W@, t € [0,1]) be independent
idempotent Wiener processes on an idempotent probability spadd) adapted
to a completer-flow A, idempotent processe® = (M;, t € [0,1]) and L =
-~ —_— = (1 - =~ (2
(L, t € [0, 1]) be defined by, = \/c [§ o Wi ) ds andL, = /c [3 @Wﬁ )ds,
respectively, an idempotent proceBs= (Hy, r € [0,1]) be the Luzin strong
solution of the equation

. tNB ~ [t 5 (D
(6.42) H, = —c/ H;ds + 9/ ords+ \/E/ oW, ds,
0 0 0
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and an idempotent proce&s= (Z,, 1 € [0, 1]) be given by

(2

tAB
(6.43) z,_c/ Hds+9/ qus—i—f/ Jaw as.

LEMMA 6.3. Let (/n/by)(cn —c¢) — 6 € R as n — oo, where ¢ > 0,
b, — oo and b, //n — 0. Then for arbitrary n > 0,

_ 1/b;
lim P( sup |Q;’—é;|>n> =0,

=00 \t€[0,1]

- 1/b;
lim P( sup |<I>”—¢>t|>77> =0
=00 \rel0,1] !

and

_ 1/b
lim IimsupP( sup |X}| > B> =0.

B—00 n—o0 1€[0,1]

Also the following hold:

1. 1f B> 0, then, for § € (0, B A (1 — B)), the stochastic processes M", L",
(X", 1[0, 8-81),(Y", t €[B+6,1]) and (Z", t € [0, 1]) jointly LD convergein
distribution at rate b2 in D¢ ([0, 1], R?) x D¢ ([0, B — 81, 1, R) xDe([8+3, 1], R) x
]D)c([O 1], R) to the respectlve idempotent processes M, L, (H,tel0, B -4
(—Hy, t €[+, 1]) and Z. Inaddition, lim,_.oc P(SUR(0 551 1Y/'| > 81/ —O

2. 1f B =0, then the stochastic processes Y” LD ) converge in distribution at
rateb2 in D¢ ([0, 1], R) to the idempotent process — —H.

PrROOE We have by (6.1) and (6.2),

1 nt|n—07 1—@{-1) c
W = (s-"-——”), r 0,11,
L by = = oy
lnt] @i1—1
— 1 c
= <;.’? - —”), t €[0,1].
L byyn et Uoop

Therefore, thé"-predictable measure of jumps ", L") has the form
lnt]—-1 R . k
(0T x T = 3 (1= - T\ (0)
k=0 n
(6.44) "
F((Qp-) TNO) Dres®),
n
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where

—n /7 1 ] n Cn " "
(6.45) F"(s,T") = P(bnﬁ 2 (sl_,. — ;) el ) s€[0,1], T € B(R).

Accordlngly, the stochastic exponent(&l”(x) t €[0, 1)), wherex € R, associ-
ated withM" is given by

Lnt ]

log&" (1) = Zlog<1+/(e“ 1) <{:} dx xR))

lnt]—1

-ous(eonl ) E (-2 -2)

k=
Since, forB > 0, by Doob’s inequality,
= VB (e TR V2RE\ L/
P( sup |M]'| > B) <e” ((Ee nM1) Y 4 (Ee™ ML) ”>
t€[0,1]
~ 2 ~ 2
< e B((EE) @2)Y W 1 (EE} (—2b2)) Y/ W)

and (n/b,)?10gE exp(£(2b, / /1) (&l — cn/n)) — 2c asn — oo, we conclude
that

. 1/b2
(6.46) I|m lim supP( sup |M;}'| > B) =0.

B—00 n—oo te[0,1]

Dividing (6.21) through by, and recalling (6.39) yields

~ r_ t
|Xf|§2cn/ |X?|ds+2*/—ﬁ|c,,—c|/ o2ds
o b, 0o

(6.47) - R
+2 sup M| +2 sup &, te[01].
s€[0,t] s€[0,1]
Applying Gronwall's inequality to (6.47), we have by (6.40), (6.46) and the
convergencé./n/b,)(c, — c) — 0 that

= 1/b;
(6.48) I|m IlmsupP( sup |X}| > B) =0,
B—00 n—oo  \1€[0,1]

proving the third display in the statement of the lemma. As a consequence
of (6.48), the definition o} and the convergencgn /b, — oo,

_ 1/b;
(6.49) lim P( sup |QF — ;| > 77) =0,

=00 \te[0,1]
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and then by (6.3), (6.10), (6.40) and (6.46),

o 1/b
nll_)moO P<tes[g’|2] | D) — ] > n) =0

for arbitraryn > 0, proving the other claimed super-exponential convergences in
probability.

We now prove that théM™, L") LD converge in distribution at raté? to
(M, L) in Dc([0, 1], R?). This is accomplished by checking the conditions of
Corollary 4.3.13 in Puhalskii (2001) Extendim@” andL" to processes defined
onRRy by Ietting M” Ml and L" L" for r > 1, we have by (6.5) and (6.6)
that M" andL" are orthogonaF”-square integrable martingales with respective
F"-predictable quadratic characteristics

— (n(tAD)|/n —, |ns]
(M%) = b2<1_7>/o (l_Qs_ n )ds’
~ Cn Cn lnt]/n /_ I\t
=) [ (@ 2)

(", b}%< n) [ (@) e

so by (6.7), (6.14) and (6.49), fer> O,

) Al ) 1/b7
b (M”) / o ds| > 8) =0,
0

lim P(
n—oo

1/b2
lim P( > 6‘) =0,
n—oo

checking condition(Cj) of the corollary. The processed/”, L") satisfy the
Cramér condition by (6.44) and (6.45). We check conditibp):

b2(L"y; — / " ds
S

. 1 ! Ab2|x| 1 1.2 sn o
lim p(b_2/0 /Rze 121 > £)D (ds,dx>>n) =0,

n—oo

(6.50)
A>0,e>0n>0.

We have fom large enough by (6.44) and (6.45),

1 1 5
b—z/ / e n‘x|l(b |x| > €)D" (ds, dx)
2 Jo

—e/n/bn
e=evn/ / f ()»+8)bm/—|x|,3ﬂ(ds dx)
RZ
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e—ev/n/by n—1

ok
2(A+e)by/nlx| _ _ =
<5 Z(/Re e “F"<1 0} n,dx)

k=0
L= I\t
 Jorron e (2,3 ax)

< o—V/bn %ecn (eXP2(h+)—142(A+6))
n
Since the latter expression converges to @& as oo, convergence (6.50) holds.
Conditions (0) and (supB’) of the corollary trivially hold. Thus, the extended
(M", L") LD converge in dlstrlbutlon |rD(]R+,R2) at rateb? to (M, L). Since
the projectionp; from D(R,, R?) to D¢ ([0, 1], R?) is contlnuous at continuous
functions fromD(R+,R2) we conclude by the contraction principle that the
processesM” L”) LD converge in distribution at ralief in Dc ([0, 1], R?) to the
idempotent proces@\, L). As a byproduct ofC-exponential tightness of the,
we deduce by (6.48), (6.38), the convergengé:/b,)(cn — c) — 6 and (6.41)
that the sequenc®”, n € N, is C-exponentially tight irD([0, 1], R).
We next show that for arbitrary> 0,

. 1/b;
(6.51) lim P( sup | XV| > 8) =0.
=00\ te[B+3,1] !

Dividing (6.25) through by, yields fort > g + § andn € (0, §),

)?l”<<ﬁ
=\,

1 _—
—c|f o2ds+2 sup |M"|
;

s€(B,1]
N n - .
+2 sup 1+ R4+ Y Gy~ )
selB] by,
VvV sup <£|cn—c|f 2dp+|M" M"|+| —é?l).
s€(t—n,t]

Convergence (6.51) follows if we recall that thé" are C-exponentially tight
of order bﬁ,_ (V/n/by)(cn — ¢) — 6, (6.40) and (6.48) hold, and use that
SUR¢(p+6.1)(Pr—y — ¢1) < 0. Consequently, by (6.37), (6.40), (6.48), (6.51),
C-exponential tightness of th&" and the convergence/n/b,)(c, — ¢) — 6,

the processeﬁ” restricted tq 8 + &, 1] areC-exponentially tight of ordeb2
Next, let us assume thgt> 0. Representatlon (6.26) implies that for [O 1],

Jn— . 2
s it (e [ % oo
b, SGIRM]( c dp+ c) dp
(6.52)
T g f f

In view of LD convergence in distribution at ra&% of theﬁ” to a continuous-path
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idempotent process lign. olimsup,_, o, P(Sup o, 1M}'] > 8)Y/bi =0 for § > 0.
Therefore, giver$ € (0, 8), we derive from (6.52), taking into consideration the
convergenceé/n/b,)(c, —c) — é_and(ﬁ/bn) infsery, p—519: — 00 asn — oo,
wheren € (0, 8 —8), the fact thatp, = 0 for 7 € [0, 8], (6.40), (6.46), (6.48) and
C-exponential tightness of thg” that fors € (0, 8),

1/b

6.53 lim P{ sup |Y/'| >34 =0.
(659 nee <te[o,ﬁem| /| )
Putting together (6.37), (6.40), (6.48), (6.53), the converg(a(@e/b Y, —¢) —
0 and LD convergence in distribution at ratg of the M" to M, we conclude that
the sequence of Iaws of thé” restricted to[0, 8 — §] is C-exponentially tight of
orderb? in D([0, B — 5], R).
AWeAhavg thus established that for- 0 ands € (0, B A (1 — B)), the processes
M"™, L", X" restricted to[0, 8 — 8], Y" restricted to[B8 + §,1] and Z" are
C-exponentially tight of ordeb2 in the associated function spaces, so they are
jointly exponentially tight of ordelb2 as random elements with values in the
product space. Now, LD convergence in distribution at bﬁtm De ([0, 1] RZ) X
Dc([0, B — 8], R) x De([B + 8,11, R) x D ([0, 1], R) of the (M", L", (X, €
[0, 838D, (Y], t € [B+4, 1]), Z"to (M, L, (Hy, t €[0,p—8]), (—H;, t €[B+
8,1]), Z) follows by (6 37), (6.38), (6.40)—(6.43), (6.51), (6 53) the convergence
(Wn/by)(ch —c) — 9, LD convergence in distribution of the1", L") to (M, L)
and strong uniqueness of the solutidd, L) of (6.42) and (6.43).

Let us now assume thgt= 0. In view of limits (6.40), (6.48), the convergence
(/1/by)(cn — ¢) — 6 and LD convergence in distribution at rai# of the M”
to M, we have by (6.47) the convergence Jigp limsup, _, o, P(Sup o, 1X7| >

§)MPi = 0 for 8 > 0, so by (6.51), lim_cP(SUP[o 1]|)? | > 8 = 0.

Therefore, by (6.37), the converger(qé_/b )(cn —c¢) —> 6, and LD convergence
in distribution at rateb2 of the M" to M the Y" LD converge in distribution at
rateb? in D¢ ([0, 1], R) to—H. O

REMARK 6.3. A slight modification of the proof shows that f¢9r> O
ands € (0,8 A (1— ,3)) the random eIementM" L, (X 1e[0,8 -
(Y” tel0,B=6], (X}, te[B+4,1]), ( ,te[B+34,1)), Xﬁ,Y”andZJomtIy
LD converge in dlstrlbutlon at ratk? in D¢ ([0, 11, R?) x D¢ ([0, B — 81, R)? x
De([B+38, 1], R)? x R? x D ([0, 1], R) to the respective idempotent elemehs
L (Xt,te 0 B =951, (Yt,te[O B -4, (X,,te[ﬂ—t-(S 1D, (Yt, te[,8+8 1),
X,g, Y,g andZ, where idempotent processE& (X,, t €[0,1]) andY = (Y,, te
[0, 1]) are defined by

H,, fort € [0, B), 0, forr € [0, B),
X,={Hpv0, forr=8, and Y, =1 (-Hp)vO0, forr=0p,
0, forr € (B, 1], —H,, for 7 € (B, 11.
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ProoOFE Proof of Theorem 2.3 The proof replicates the proof of Theorem 2.2.
We begin by proving that in analogy with (6.28)if~ 1, then as: — oo,

G el (G -e) 5 (5 )

_ H ~
E) (—Hl, 7‘3, Zﬂ).
b2 1-—c1-8)
As in the proof of Theorem 2.2, we let' be the last time before 8/2 when
0"=0 andp” be the first timer not beforeg/2 when Q" = 0. The argument
of the proof of Theorem 2.2 with the super-exponential limits in probability of

Lemma 6.3 used in place of Lemma 6.1 implies that under the hypotheses as
n— 0o,

(6.54)

1/b2 - Pl n 1/b%
oo s p(Exp-e) oo

yr 1/b?
P( % E" — E" ) — 0.

n
n '371 T

By (6.32) and (6.33) with the use of (6.39),
.L_n . .[n
\b/_érn = Cn/ Xids+ ﬁ(cn —c)f aszds
0

n

(6.55)

(6.56)
+ M2, +s,n + 77,

—?c]lgnz / X”ds—i— —c)/ 2ds

) f Vi -
n n N N
+ Mﬁl‘l —"_ }3}1 + b cDﬁn bn ¢‘Bn‘
The left-most convergence in (6.55) implies by Lemma 6.3, (6.40) and the
convergence./n/b,)(c, — ¢) — 0 that the right-hand side of (6.56) converges

super-exponentially in probability at ra&é to 0, which yields the convergence

(6.57)

1/b2
(6.58) gf" P50
n

Next, (6.55), (6.57) and Lemma 6.3 imply by an argument along the lines of the
one used for deriving (6.35) that

7 ‘gn B
bi/ (c1—gs—s)—1)ds
n
P/n

f X”ds—l——(cn c)/ o2ds +A7" = 0.

(6.59)
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Also by the definition oft” and (6.36),
(6.60) ﬁ(“_ _ a> —7r

b, \n

Convergence (6.54) follows by (6.59), (6.60), theAcorlvergAe(méE/bn)(cn —
c) — 6, the joint LD convergence in distributiooM”, Y7, (X!, s € [0, B —

aD, Z”)—>(M Hl,(HY,se[ B =141, Z)II’HD)C([O 1],R) x R x D¢ ([0, B —

1,R) x DC([O 1], R), the third super-exponential convergence in probability in
the statement of Lemma 6.3, the last three convergences in (6.55), (6.58) and the
contraction principle.

If ¢ <1, then theY LD converge in distribution to—H, by part 2 of
Lemma 6.3.

We complete the proof by showing that the right-hand side of (6.54) is
idempotent Gaussian with parametéeus X)), that is,

i Hp A T 17 )
6.61) Sexpl —A1H1+Ap———F——— 4+ XA3Zg | =exp( A A" XA,
(6.61) Xp( U+ do— g s ﬂ) xp( nts

wherex = (A1, A2, A3)T € R® andS denotes idempotent expectation with respect
to IT. By (6.42), (6.43), (6.7) and (6.14),

2 (D)

ﬁﬁzéﬂe_ﬂc+ﬁe_ﬂcf eSIPW . ds,
0

= (2

7 9'32 c(s—p) —cs/ZA(l)
Zg —i—ff —e )e ds—i-f/ VasW, ds.

On noting that by (6.42) and (6.14)y = Hy + 0 [3(1—s)ds + /¢ [3 VI x
) - _ L
W, ds, W andW® are independent, we can write using Lemma A.4,

Sexp(—k itig— 8 5.2 )
111 21—c(1—ﬂ) 34p
B r0(1— B)? A2 ~ o pe ., OB
_exp(_ 2 +<1—c(1—ﬁ) _“>Qﬁe “3T>
A2 _ _ —Bc //3 cs/ZA(l)
(6.62) XseXp<(71—c(l—ﬂ) A1 Ag)ﬁe A eV W, ds

B e
—|—)L3\/E/ e_CS/ZWEl)ds>
(2
xSexp( Alff V1 —sW ds)Sexp(kgf/ VasW () )



STOCHASTIC PROCESSES IN RANDOM GRAPHS 395

Lemma A.4 also yields

oo (=g o) o))

(6.63 5 N )
C 2 cs/2—Bc —cs/2
= — M- /2=Pe ) /> d)
eXI0<2/O ((1_6(1_5) 1 3)6 + Aze s,

1 = (1) cA2 1
(6.64) Sexp(—kl\/E / VI—sW, ds) =exp<7 / (1—s)ds>,
5 8

B (2 A2 [P
(6.65) Sexp(kgﬁ/ ,/c}SWE )ds> = exp(c—z?’/ qs ds).
0 0

Equality (6.61) follows on substituting (6.63), (6.64) and (6.65) into (6.62) and
recalling (6.7). O

REMARK 6.4. Equality (6.61) admits also a direct proof by solving the
variational problem on the left.

7. The critical random graph. In this section we prove Theorem 2.4,
so the notation of the theorem is adopted. We derfte= " 273 /e,

A 1/3 1/3;4/3

E E’fnz/stj/\n o = Ln2/3tJAn/n S;n = Sf(nb )2/3tJAn/(n / by'™), E,n =
< 473 ;

EL(nhn)2/3tJL\n/b”~and or = L(nb )Z/STJ/\”/(nl/sb 73 for t € R, andvlntrodvuce
processes” = (§",1 e Ry), E" = (E teRy), 0" = (0", teRy), " = (5",
teRy), E"=(E}, teRy) and o = (Qt, t € Ry). Let stochastic processes
S=(S;,teRy) andE = (E,, t € Ry) be defined by the respective equalities
S, =W, + 0t —?/2 and E, = N5, as- Let idempotent processe$ = (S,
t e Ry) and E = (E;, t € Ry) be defined by the respective equaliti§s=
W, + 6t — 12/2 andE; = I\V//ém(g)pdp, whereW = (W,, r e Ry) and N = (N,,
t € Ry) are independent Wiener and Poisson idempotent processes, respectively.

The first assertion of part 1 of the next lemma is in the theme of Aldous [(1997),
equation (31)].

LEMMA 7.1. 1.1f n13(, — 1) —~ 6 € R as n — oo, then the (5", E™)
converge in distribution in D(Ry, R?) as n — oo to (S, E). If (e, —1) —
0 € R as n — oo, then the (f(oc”/n - 1/2), St EM) converge in distribution
in R x D(R4,R?) to (a, S,E), where (S, E) correspond to # = 0 and are
independent of &.

2.1F (nY3/623)(c, — 1) — 6 € R asn — oo, thenthe (5", E™) LD convergein
distribution in D¢ (R, R?) at rate b2 to (S, E). If (/n/b,)(c, —1) - 0 eR as
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n — oo, then the ((\/n/b, )(a”/n — 1/2) s, E”) LD converge in distribution at
rateb2 inR x De(R, R?) to (&, S, E), where (S, E) correspond tod =0, is
idempotent Gaussian with parameters (—6 /2, 1/2) and isindependent of (S, E).

PrROOF We begin with the proof of part 1. By (2.6),

St =M +n*3(c, - 1)“’2;32#

(7.1) Ln®3ejan/n?l? | p2/3g | c, [n*tian/n?3
_C"/o e s—m/O 0" ds,
where
_ 1 (n?3t ] ann—0QF_1—({i-1) .
o2 e X (@55)
i=1 j=1

Let ﬁ”, t € Ry, denote ther-algebras generated by tt&g ;l], i=12...,

1n?3t] A n, j € N, completed with sets oP-measure zero. Them” = (M”,
t € Ry) is a square-integrable martingale relative to the filtratt®n= (",
t € Ry ) with predictable quadratic characteristic

|_n2/3tj An

oy 1 n n .
@3 (=P (1-0) Y -l - G- D).

s
By Lemma 6.1,(M"); > 1 asn — oo. The predictable measure of jumps /&t
is given by

\_nz/?’tj An—1

([0, D)= Y. ﬁ”(l—Q—Z—E,F\{O}), e B(R),
n n

k=0

where

Lns |
F'(s,T)=P ( 1/32:(51] n) ) seR,, T e B[R).

Therefore, fore > 0 andn large enough,

/tf x[21(|x| > £)i" (ds. dx)
0 JR

2/3
q L7 tAn . n k—1 2¢, + 3c2)t
<5 X /|x|“F"(1——Qk‘1——,dx)s—( on + St
R n n

< 2/3.2
) =1 &
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which converges to 0 as— ooF.VConsequentIy, by Liptser and Shiryaev [(1989),
Theorem 7.1.4] the process@$" converge in distribution ifD(R+, R) to the
processW asn — oo. Hence, the processé§' = (S/", r € R,), where

Ln2/3tj AN /-an/stJAn/nz/3 an/ss_]
—— —Cy S
0

o _ ign 1/3 .
St=M;+n""(c, = 1) 33 33

converge in distribution to the proce§s~
Let &" = (&7, t € Ry) be defined by" = an2/3tJAn/”l/3' According to (2.9)
and (2.11),

~

(7.4) 0" = R(S" 4+ &").
Besides, by Lemma 3.1,

(7.5) sup|"| 20 asn— .
seRy

Since the differenc&” — S is nonnegative and nondecreasing jrit follows
by (7.4) that the values of the proce@g are not greater than the corresponding
values of the reflection off” + &. On using that the sup,|S"| are
asymptotically bounded in probability and that (7.5) holds, we conclude that the
SUR¢[0.1] Q? are asymptotically bounded in probability, so the right-most term
of (7.1) tends in probability to O uniformly over bounded intervalsnas- oo,
implying that theS” converge in distribution t&.

Next, according to (2.12),

\_nz/StJ AN Q?_l—l

(7.6) Et= > > . teRy.

i=1  j=1
Given a sequencé, n € N, of elements oD(R,, R), let

n?/3t] An Lnl/a‘mxn)(i—l)/#/ﬂ_l
E'= ) > 5ifs reRy.
i=1 j=1
The E" = (F?;”, t € Ry) are jump processes Witﬁ”—predictable measures of
) - 2/3 1 ~
jumps 5([0, 11, T) = 270 M F (R (), p28. T\ {OD), T € B(R), where
~ 1/3,1_ .
Frny, 1) = P(z}”zl v 1;fj eI'), I’ € B(R). Theorem VI1.3.7 in Jacod and
Shiryaev (1987) implies that ¥* — x asn — oo in D(R4, R), then the sequence

E™, n € N, converges in distribution il(R , R) to a compound Poisson process
with compensatoy R (X)s ds. On noting that, in view of independence $f and
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the;lj, (7.4) and (7.6), th&"™ are distributed according to the regular conditional
distributions of E” given thatS" + §" = x", we conclude by (7.4), (7 5) and
(7.6) that the(S", E") jointly converge in distribution iD(R., R?) to (S, E) as
n — oo. The first assertion of part 1 has been proved.

For the second assertion, let in analogy with (6.1)for O,

[nt] nftn‘i(ifl)/an(ifl)

o 1e> . Cn
7.7 e = H=m 3 3 (gij—%>, t 10,1,

o)+l =1

and 0™ = (Q!"", 1 € [0, 1)) be defined in analogy with (6.3) by the condition
that it is the reﬂection of the procegb(c,(1— OF" —s) — 1)ds + M,"", that is,
Q0!"" >0 and

~ t ~ ~ ~
(7.8) ny =/ (cn(L— O™ —5) — 1) ds + A" 4+ &),
0

where " = (", t € [0,1]) is nondecreasing withb;"" = J§ 1(05""

0)ddy" . (For existence 0", one can first prove that a solution exists between
the jumps ofd™" by using the method of successive approximations and making
use of Lipshitz continuity of the reflection mapping and Gronwall's inequality,
and then account for the jumps by introducing, if necessary, jum@é-ih Strong
uniqueness foD™" follows by Lipshitz continuity of the reflection mapping and
Gronwall's inequality t0o.) By (6.1), (7.7) and the convergence of @ifeto ¢
(Lemma 6.1) for; > 0,

lim lim supP( sup Vn|M"" — M"| > ﬁ) =0,
n—0 n—o0 1€[0,1]

which implies by (6.3), (7.8), Lemma 3.1, Lipshitz continuity of the reflection

mapping and Gronwall’s inequality that

lim lim supP( sup V|07 — Q" > ﬁ) =0,

n—>0 n—oo 1€[0,1]
and, consequently,

(7.9) I|m limsupP(y/n|®]" — ®}| > 77) =0.

n—o0
Since ®™" is independent of thel], i=12...,|nn], jeN, and ;l], i €N,
j €N, and the(S", E") are measurable functions f, i=12...,1n%5%] A

n,jeN, and¢lh i =12,.. ,n%3t] An, j €N, it follows that 37" and
finite-dimensional distributions of thes”, E") are independent for all large,
which yields by (7.9) the asymptotic independence,af(®’] — ¢1) and finite-

dimensional distributions of th€s”, E™). The proof of part 1 is over.
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The proof of part 2 is similar. In analogy with (7.1) and (7.2),

. . 1/3 I.( b )2/3tJ A
n nb, n
StP=M"+ —= -1)—

(7.10) o [l L 2
' "Jo (nby,)2/3
p2/3 Lk Bt An/(nby)?3
y f O" ds,
n1/73 Jo s
where

1 L(nby)2/3t | An n—0F_1—(i—1)

o Cn
(7.11) M =~ > > (53‘ - _>~
n

i=1 j=1

Let ¥ f‘” , t € Ry, denote thes-algebras generated by trgg ;l], i=12,...,
L(nbn)2/3tj An, j € N, completed with sets oP-measure zero. TheM” =
(M{’, t € Ry) is a square-integrable martingale relative to the filtratii=

(53‘,”, t € Ry) with predictable quadratic characteristic

L(nbp)?/3t | An

> 1 n n
(12) (01" = s P (1-0) Y (- Q- (- 1)

n2/3p%3 n n =
and predictable measure of jumps

L(nbp)2/3t | An—1 y 0"k
(7.13) ¥"([0, 7], T) = > F"<1 =k _ 2T\ {0}> I' e B(R),

k=0 n
where

. 1 |ns | c
(7.14) F"(s,T") = (1/3 4/3Z<51] :) W), seR,, I"e B(R).

By (7.12) and the first super-exponential convergence in probability in Lemma 6.3,
. 1/b3
b,f(M )t P51 asn — . Next, in analogy with (6.50), it is established that

1 ! 2 /by
lim P<—2 / / e*bnlxll(bﬁlxl>8)17”(ds,dx)>77> —0,
bz Jo JrR

n—oo

A>0,e>0,n>0,¢r>0.

By Corollary 4.3.13 in Puhalskii (2001), we thus have that Mte LD converge
in D(R,, R) at rateb? to the idempotent proces® asn — oo. Since in analogy
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with (7.4) 0" = R(S" + &"), where

n
€L (nb,)2/3t | An

7.1 g =

= Pl/”'%
and sup.g, 1| — 0 asn — oo by Lemma 3.1, we conclude by an argument

replicating the one used in the first part of the proof thatth&D converge taS.
Finally, a “conditional” argument modeled on those used in the proofs of part 1

and Corollary 4.1 shows tha&s", E") l—‘é (S, E) in D(R,, R?). Convergence in
bn

De (R, R?) follows by continuity of(S, £) and(S", E™) being a random element
of De (R4, R?). The proof of the second assertion of part 2 is similar to the proof
of the second assertion of part 1]

PROOF OFTHEOREM2.4. We begin with part 1, so we assume th&#(c, —

1) — 6. The below reasoning repeatedly invokes the property that for almost every
trajectory ofS, the proces§ () is increasing in arbitrarily small neighborhoods

to the left of the initial point and to the right of the terminal point of an excursion
of R(S); equivalently, the value of at the initial point is strictly less than at any
point to its left and the infimum of the values §fin an arbitrary neighborhood

to the right of the terminal point is strictly less than the valué aft the terminal
point. [The stated property can be proved by using the decomposition of the Wiener
process into excursions, see, e.g., Ikeda and Watanabe (1989).]

We denoteU” = U"/n?/® and R = R"/n?/3. Given intervals[y;, i;] and
[7:,r;], Where O< u; <i; and 0<r; < fori =1,...,m, let B" denote the
event that there eX|sm connected components @f(n c,/n) of sizes in the
intervals[n?3u;,n?3i;] for i =1,2,...,m and the numbers of the excess edges
of these components belong to the respective intefvellSr;, n?/3r;]. Let Br,
for T > 0, denote the set of function,y) € D(R+,Rz) with Xxo=0,y0=0
andy nondecreasing such that there exist nonoverlapping intefwals] with
ti —s; € [u;,u;] andt; < T for which R(X)s; = R(X);; =0, T(X);;— = T (X);
andy;, — Yy € [r;,r;] fori =1,2,...,m. Since the connected components of
G(n,cy/n) correspond to excursions Q‘” and may occur either before tinTeor
after it, we haveB” C {(S”+s E") € BT}U{sug>T(S”+s, S” _y) >0}
for n e (0, T Amin;=12_._,u;). Since the seBy and its closure [i [rD(R+, RZ)]
have the same intersection WithR ., R?), Lemma 7.1 implies that

lim supP(B™)
n—oo

(7.16) )
P((S, E) € Br) +lim supP(sup(S” +E -8, - > 0>.

n—o00 t>T
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We show that

(7.17)

I|m lim supP(sup(S" + & — S; ., — 5’,[,7) > 0> =0.

T—00 n—oo t>T

By (7.1), (7.3), (2.7) and Doob’s inequality for allandT large enough,

(7.18)

P( sup(S + & — S, —&r_,) > 0)

t>T

0
=SoP( s (-, E-EL)
k=0 “NE[T+kn, T+(k+1)n]

> cun(T -+ = D) — 2m*lc, ~ 1))
0,0
<> P<2 sup (|MT+(/< Dyts — MT+(k Dyl
k=0 s€[0,n]
+ BT = 1yts — ET+k—1)n))

+ S[lgp ({MT+kn+s M¥+kn| + |gr%+kn+s - grﬁrkn{)
s€[0,7]

> cyn(T + (k — D)n) — 2nn1/3|cn — 1|)

< Z P( sup (|MT+kn+s M’Tl+kn| + |gnT+kn+s _g’%+kn|)
k=—1 s€[0,n]

\ 2
> LT + k) = e, 1|)

+ Z P( sup |MT+(k+l)n+s M¥+(k+l)n|
k=—1 s€[0,n]

8T e vmts — ET+ks1ml)

> T ko)~ 3’] 1/3|cn—1|)
<2 (4E(<M">T+(k+1)n Y k)

Zn 2
+E sup |<9T+kn+s ET i >
s€[0,n]

x (((eam) /3(T + k) — (21) /303, — 11)%)

401
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0
+2 ) (4E(<Mn>T+(k+2)n — (M") T4 (4 1)y)
k=1

=~ = 2
+E sup 874 gy nymrs — ETer )
s€l0,n]

x (((cam)/3(T + kn) — (20)/3nY3|c, — 1))%) 1

ad 801177 + ((1+Cn)2+cn)n_2/3
=1 (can/3(T + kn) — 277/3nl/3|cn - 1|)2

<4

X 122(16p+1)
<4 i
- kgl (T + kn)?n?

The latter sum converges to 0 s~ oo, so (7.17) follows.
DenotingB = Jy. ¢ Br, we deduce from (7.16) and (7.17) that

limsupP(B") < P((S, E) € B).

n—oo

By the cited property, for almost all € 2, any intervalls, t] such that
R(S)s(@) = R(E)(@) =0 and T(8);(@) =T (5)()

is an excursion ofR (S)(w). ThereforeP((S, E) € B) = Py, i) 7.1y, » Where
P, i1, 17,.r, 1y, denotes the probability that there exisexcursions ofR (S) = X
with lengths in the respective intervdls, ;] and the increments of over these
excursions belong to the respective intenjajsr;]. Hence,

(719) lim SUpP(En) < P{[Eiaﬁi]v[fiali]}?l:]_'

n—oo

Next, let Bo” denote the event that there exigt connected components of
G(n,c,/n) of sizes in the segment&:?/3u;,n?3u;) for i = 1,2,...,m and

the numbers of the excess edges of these components belong to the respective
segmentsn?3r;, n?3r;). Let B denote the set of functions, y) € D(R., R?)

for which there exist disjoint intervals;, #;] with t; —s; € (u;, u;) such thak,, =

X, < 1Inf,ci0,(5;—m+1 Xp @NAX;; > inf ey, 101 X, fOr arbitraryn > 0, x,, > x;, for

p € (si,t;), andy, —yy, € (r;, ;) fori =1,2,...,m. Since continuous functions

~ ~ ~ o
from 103 are interior points off;' and {(S" +&", E™) eloe} CB", by Lemma 7.1,

liminf,_, P(B") > P((S, E) €B). If a sample even € © is such thatX (w)
hasm excursions of lengths in the respective segmentsi;) and the increments
of E(w) over these excursions belong to the respective segnents), then by

the cited property(X (w), E (w)) 613 with probability 1. Therefore, denoting the
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probability of the set of these as Py, ), .,y ,» We deduce that

(7.20) iminf P(B") = Picu,i. iro¥y
The assertion in part 1 of the theorem convergena@/ét k) follows by (7.19),

(7.20) and the observation that the right-hand sides of these inequalities coincide.
The assertion of the theorem for the cage(c, — 1) — 6 follows by a similar
argument with the use of part 1 of Theorem 2.2 and the second assertion of part 1
of Lemma 7.1.

The proof of part 2 is obtained by combining the approaches of the proofs
of part 1 and Theorem 2.1. We first note that the action functidfidi(x, y)
associated with(S, E) is of the form ISE(x,y) = [§°(X — 6 + 1)?dt/2 +
Jo" (Ve /R(X))R(X), dr if x andy are absolutely continuous witky = yo =0
andy nondecreasing, ankf-£ (x, y) = oo otherwise. Then the proof is carried out
along the lines of the proof of Theorem 2.1, where the proof of an analogue of
Lemma 5.1 uses parts 2 of Lemmas 3.3 and 3.4, instead of respective parts 1 of
these lemmas. In addition, the proof of an analogue of (5.1), as in the argument
just given, uses the convergence

§ 1/b%

(7.21) I|m lim supP(sugS” +& =S, =&, > 0) =0, n> 0.
T—o0 n—oo t>T

We omit most of the details and only show the latter. Arguing as in (7.18),

§ § 1/b}
P(sup(s" RS i) > 0)

t>T

vn vn Yn
< Z P< S[gp (|MT—|—kn+s M7 iyl + 1T ien s — ET iy )
k=—1 se 7]

29 n1/3 /b
> ST ko) - 37l 1))
+ Z P( sup (‘MT+(k+1)n+s _MT+(k+1)n’
k=—1 s€[0,n]
(7.22) + {8T+(k+1)r;+s - 8T+(k+l)n|)
1/3 13
Cnl) 277 n !
> ST o = e - )
n
- 1/b2
(}: sup (Eexp((—1)'b2(M}, — M)
1IER+
1/b;
+ < supEexp(b,Z, sup e}, — Sfl)) )
teRy s€[0,n]

1 nl/3
+Z:w% C—awwm 3?%”‘”»'
k=-1 n
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Let (1), t € Ry, A € R, denote the stochastic exponential @' so that by
(7.13) and (7.14),
L(nbn)?/3t ] An—1 n
< . A " Cn Oy k
log €, (A)_nlogEexp<anb;}/3(§ll—;>) k%% <1—7 —;),
Hence, forr € Ry andn large enough,
1 y &" (+2b?)
— logE exp( £ bh2(M",, — M" i it
brzl g p( n( t+n )) — 2b2 gtn(:thrzl)
2/3

n°3y 2b;, Cn +
- encon( 281 5)

so since logE exp(£2b," (& — Cn/n)/n1/3) is asymptotically equivalent to
2¢,by3 /n53 asn — oo, we conclude that

2/3

(7.23) lim sup sup (E exp( & b2 (M, — M)V < o2,
n— 00 teR+
Also by (2.7) and the definition af’ in (7.15),
1/b?
(7.24) limsup sup (Eexp(b2 sup |8/ — 5,”|)) <1
n—oo reRy s€[0,n]

Limit (7.21) follows by (7.22)—(7.24) and the convergerie&3/67/%)(c, — 1) —
6. O

Corollary 2.5 follows by the contraction principle, in particular, part 2 is proved
in analogy with part 2 of Corollary 2.4. [Note that in the expressionffome role

of Ke(u) and L.(u) are played by the functionsu®/24 and((u — 6)3 + 6%)/6,
respectively, and an analogue of Lemma 3.2 holds with-2u) asu*.]

APPENDIX

Summary of idempotent probability. This appendix relates some facts of
idempotent probability theory. More detailed exposition is given in Puhalskii
(2001).

Let T be a set. A functionll from the power set off to [0, 1] is called
an idempotent probability ifI(I") = sup,.r H({v}), I' C T andII(Y) = 1. If,
in addition, T is a metric space and the sdis € Y :II(v) > a} are compact
for all a € (0, 1], thenII is called a deviability. ObviouslyIT is a deviability
if and only if I(v) = —logII({v}) is an action functional. Below, we denote
II(v) = O ({v}) and assume, unless mentioned otherwise,histan idempotent
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probability onY. A property 2 (v), v € T, pertaining to the elements of is
said to holdII-a.e. if (£ (v) does not hold) = 0. A r-algebraA on Y is
defined as a subset of the power setYoffor which there exists a partitioning
of T into disjoint sets such that every element«fis a union of the elements
of the partitioning. We call the elements of the partitioning the atomg @ind
denote agv] the atom containing. The power set ofr is called the discrete
r-algebra. At-algebras is called complete (ofl-complete, or complete with
respect tdl if idempotent probability needs to be specified) if each one-point set
{v} with II(v) = 0 is an atom of4; the completion (or thdl-completion, or the
completion with respect tdl if idempotent probability needs to be specified) of
a r-algebra« is defined as the-algebra obtained by taking as the atoms the
points of idempotent probability O and set-differences of the atoms @ind
sets of idempotent probability 0; the completion ofralgebra is a complete
r-algebra. If Y’ is another set equipped with idempotent probabilify and
r-algebraA’, then the product idempotent probabilliyx IT" on Y x Y’ is defined

by (IT x ') (v, v") = D(v)IT' (V') for (v,v’) € Y x Y’, the productr-algebra

A ® A’ is defined as having the atorhs] x [v'], wherev € Y andv’ € Y.

A function f from a sefY" equipped with idempotent probabilily to a setY” is
called an idempotent variable. ¥f andY’ are equipped with-algebras4 andA’,
respectively, the idempotent variablge is said to be(4/A’)-measurable, or
simply measurable if the-algebras are understood, ff-1([v']) € 4 for any
v’ € Y. We say thatf is A-measurable if it is measurable for the discrete
r-algebra onY’. The r-algebra of Y generated byf is defined by the atoms
{veTY:f(v)y=1"}, v eY' The idempotent variabl¢ is thus A-measurable
if {fveY:f(v)=1v'}ewnforall v e Y. Asin probability theory, we routinely
omit the argument in the notation for an idempotent variable. The idempotent
distribution of an idempotent variablg is defined as the set functioH o
fY ) =1(f ), T C Y;itis also called the image dil underf. If Y is a
metric spacell is a deviability onY', and f is a continuous mapping frofi to a
metric spacér’, thenIl o f~1is a deviability onY”’. In particular, ifY’ ¢ T with
induced metric andI(Y \ Y’) = 0, then the restrictiodI |y of IT to Y’ defined
by |y (v) = I (v) for v € Y’ is a deviability onY’. In general,f is said to be
Luzin if ITo f~1is a deviability onY”.

SubsetsA andA’ of T are said to be independentliff(A N A") = TI(A)II(A');
r-algebrasA and A’ are said to be independent if setsand A" are independent
foranyA € 4 andA’ € A’; Y'-valued idempotent variablgsand f” are said to be
independent ilI(f =/, f/'=v") =0(f =v)I(f =v") forall v/, v" € Y.

An idempotent variablg' and ar-algebras are said to be independent (6tto be
independent of4) if the t-algebra generated by and A are independent. If is
R -valued, the idempotent expectation/ofs defined bySf = sup, .y f (v)II(v)
and it is also denoted &Sy f if the reference idempotent probability needs to
be indicated. The following analogue of the Markov inequality holds:;f >
a) < Sf/a, wherea > 0. If R -valued idempotent variableg and f’ are
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independent, theB(ff’) =Sf Sf’. An R, -valued idempotent variablg is said
to be maximable if lim_ . S(f1(f > b)) = 0. A collection f, of R,-valued
idempotent variables is called uniformly maximable if jim, sup, S(fo 1(fo >
b)) = 0. The conditional idempotent expectation of Bn-valued idempotent
variable 1, given ar-algebras, is defined as

/ Q') .
; fII 0,
S ) = | P Wy D>
f'@), it ([v]) =0,

where f’(v) is anR_-valued function constant on the atoms.6f Conditional
idempotent expectation is thus specififida.e. It has many of the properties
of conditional expectation, in particulas(f|A) is A-measurable, iff is
A-measurable, theB(f|4) = f II-a.e., and iff and A are independent, then
S(f|4) = Sf M-a.e. [Puhalskii (2001), Lemma 1.6.21]. If for &¥-valued
idempotent variablef, the conditional idempotent expectati®exp(L! f)|4)
is IT-a.e. constant off for all » € R¢ and is an essentially smooth functionof
then f and. are independent [Puhalskii (2001), Corollary 1.11.9].

An R¢-valued idempotent variablg on (Y, IT) is said to be Gaussian with
parametersm, X), wherem € R4 andY is a positive semi-definité x d matrix,
if SexpAT f) =expATm + AT xx/2) for all » € R?. Equivalently,TI(f = z) =
exp(—(z — m)T £®(z —m)/2) if z — m belongs to the range & and I (f =
z) = 0 otherwise, wher&® denotes the pseudo-inverse Bf[Puhalskii (2001),
Lemma 1.11.12].

A flow of r-algebras, or a-flow, on T is defined as a collectioA = (A,
t e Ry) of r-algebras onY such thatA, C A, for s < ¢; the latter condition
is equivalent to the atoms of, being unions of the atoms oh;. A r-flow
is called complete if it consists of completealgebras, the completion of a
t-flow is obtained by completing its-algebras; the completion of aflow is
a completer-flow. An idempotent variable : T — R, is called an idempotent
A-stopping time, or a stopping time relativeAoif {v:o(v) =t} € A, fort e R,.
Given ar-flow A and an idempoteni-stopping timeo, we defineA, as the
t-algebra with atomgv], . If T = C(R,, R%), the canonicak-flow is the
t-flow C = (G, r € Ry) with the G; having the atomgaflx, x € C(R4,RY),
wherep, :C(R4, RY) — C(R4, R?) is defined by(p;X)s = Xsas, 5 € Ry

A collection (X;, t € Ry) of R?-valued idempotent variables on is called
an idempotent process. The functiof,(v), t € Ry) for variousv € T are
called trajectories (or paths) d&f. An idempotent procesgX;, ¢t € R;) is said
to be A-adapted if theX; are A;-measurable for € Ry. If (X;,r € Ry) is
A-adapted and real-valued with unbounded above continuous pathsg then
inf{r e Ry : X, > a}, wherea € R, is an idempotenA-stopping time [Puhalskii
(2001), Lemma 2.2.18]. Ifr = C(R,,R%), the canonical idempotent process
is defined byX;(x) = X;. An A-adaptedR, -valued idempotent procese =
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(M, t € Ry) is said to be anA-exponential maxingale, or an exponential
maxingale relative td\, if the M, are maximable an&(M;|A,) = M, I-a.e.,
for s <¢. If, in addition, the collectionV;, ¢ € R, is uniformly maximable, then
M is said to be a uniformly maximable exponential maxingale AAadaptedR -
valued idempotent procesd = (M;, t € R.) is called anA-local exponential
maxingale, or a local exponential maxingale relativA {df there exists a sequence
17, of idempotentA-stopping times such that, 1 oo asn — oo and the stopped
idempotent processed/; .., , t € Ry) are uniformly maximableA-exponential
maxingales.

LEMMA A.1. Let M = (M, t € R;) be an exponential maxingale relative to
art-flowA = (A;, t € Ry)and oy, t € Ry, bea collection of bounded idempotent
A-stopping times such that oy < o; for s < ¢. Then the idempotent process
(M,,, t € Ry) isan exponential maxingale relative to the t-flow (A, , t € Ry).

PrRoOF By Corollary 2.3.10 in Puhalskii (20015(M,, |A4,) = M, I1-a.e.
for s <t. EachM,, is maximable since by the boundednessynfthere exists
T > o, SO M;, = S(Mr|A.,), Which is maximable by maximability oM,
inclusion,, C A7 and Lemma 1.6.21 in Puhalskii (2001)

Given anR-valued functionG = (G;(A;X), r € Ry, x € C(R;,R), A € R),
where G, (1; X) is C,-measurable ix, we say that a deviabilitfT on C(R,, R)
solves the maxingale problerx, G), wherex € R, if Xg = x I-a.e. and
(exp(AX; — G;(»; X)), t € Ry) is a C-local exponential maxingale undéf,
whereX = (X, t € R;) is the canonical idempotent process (R, R). We
have the following lemma.

LEMMA A.2. Let IT solve the maxingale problem (x, G). If the function
(G (M X), t e Ry, x e C(Ry, R)) is bounded in (z,x) for all A € R, then the
process (exp(A X; — G;(A; X)), t € Ry) isa C-uniformly maximable exponential
maxingale under II.

PROOF LetM,()) =exp(AX;— G,(x; X)). By Lemma 2.3.13(3) in Puhalskii
(2001) it is enough to prove that the collectigm, (1), t € Ry) is uniformly
maximable. The definition of a local exponential maxingale and Lemma 1.6.22
in Puhalskii (2001) imply thatSpM;(2x) < 1. Therefore, denoting by an
upper bound foxexp(—2G; (A; X)), t € Ry, x € C(Ry, R)) and (exp(G;(24; X)),
teRy, xe C(R4, R)), we have

SnM; (L)% = Su (M, (20) exp(G,(2x; X)) exp(—2G, (1; X))) < b°.

The uniform maximability now follows by Corollary 1.4.15 in Puhalskii (2001).
O
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LEMMA A.3. Let (M, t e Ry) and (M], t € R} ) be exponential maxingales
on (Y, IT) and (Y’, IT"), respectively, relative to the respective t-flows (A, t €
R4) and (A}, r € Ry). Then (M;M;, t € R;) is an exponential maxingale on
(Y x Y/, I x IT') relative to the t-flow (A; @ A, t € Ry).

ProoF By Puhalskii [(2001), Lemma 1.6.28Fq, /(M M[|A; ® A)) =
St (M;|As) S (M]|A}) TT x IT'-a.e. fors < ¢. Maximability of (M;M], t e Ry)
underII x IT’ is obvious. O

Poisson idempotent probability (or Poisson deviability) is a deviability on
C(R4, R) defined by

o0
exp<—/ n()‘(,)dt), if X is absolutely continuous
0

Ny) —
=) = and nondecreasing, amg =0,

0, otherwise.

A Poisson idempotent process 0N, IT) is defined as an idempotent process with
idempotent distributiodI” . Thus, a Poisson idempotent process has absolutely
continuous nondecreasing trajectoriBlsa.e. The definition implies that the
canonical idempotent process @R, R) is Poisson undefI”. If N is a
Poisson idempotent process 61, IT), then the idempotent procedg” (1) =
(MN (), t € Ry) defined byMN (L) = exp(AN, — (¢! — 1)t) is an exponential
maxingale relative to the-flow (AY, r € R), where theA! are ther-algebras
generated by thevg, s < ¢ [Puhalskii (2001), Theorem 2.4.16]. We say that a
continuous-path idempotent procegéds Poisson relative to a-flow A if Ng=0
and the idempotent proceas” (1) is anA-exponential maxingale for all € R.
If N is idempotent Poisson relative £g then it is idempotent Poisson [Puhalskii
(2001), Corollary 2.4.19].

Wiener idempotent probability (or Wiener deviability) is a deviability on
C(R4+, R) defined by

o0
" (x) = [ exp(—% /0 xt2 dt), if x is absolutely continuous an@g =0,
0, otherwise.

A Wiener idempotent process dft, IT) is defined as an idempotent process
with idempotent distributiodI" . Thus, a Wiener idempotent process libsi.e.
absolutely continuous paths. The definition implies that the canonical idempotent
process orC (R4, R) is Wiener unde" .

Let W = (W;, t € Ry) be a Wiener idempotent process On, IT). Then the
idempotent processexp(AW; — 1%t/2), t € Ry) is an exponential maxingale
relative to the flowAY = (4)Y, t € Ry), where theA)” are ther-algebras
generated byWy, s < ¢ [Puhalskii (2001), Theorem 2.4.2]. We say that a
continuous-path idempotent procégsis Wiener relative to a-flow A if Wo=10



STOCHASTIC PROCESSES IN RANDOM GRAPHS 409

and the idempotent procesexp(AW; — A%¢/2), t € R,) is an A-exponential
maxingale for allx € R. If W is idempotent Wiener relative t8, then it is
idempotent Wiener [Puhalskii (2001), Corollary 2.4.6]. In particuldy,— Wy,
for t+ > s, is independent of4,; by the fact thatS(exp(A(W; — Wy))|A;) =
exp(A2(t — s)/2), which is a smooth function of.

Given a boundedR-valued idempotent process, ¢t € Ry, we define the
idempotent Ito integralo © W), by

t .
(00 W) (v) = l /o os(Ws(v)ds,  if () >0,

Y (v), otherwise,

whereY (v) is anR-valued idempotent variable aril;(v) denotes the Radon—
Nikodym derivative ins of the Wiener idempotent trajectory. The integral is
thus specified uniquelyI-a.e. The idempotent proces& ¢ W),, t € R;) has
IT-a.e. continuous paths. fW;, t € R;) and (o;, t € R;) are adapted to a
completer-flow A, then((o © W),, ¢t € R,) is A-adapted. For clarity, we further
use [§osWds for (o © W),. In the next lemma,! o, W,dp = [50,1(r €

[s, )W, dp.

LEMMA A.4. Letoy, s € Ry bean R-valued bounded Lebesgue-measurable
function and W = (W;, t € R;) be a Wener idempotent process on (Y, IT)
relative to a complete t-flow A. Then the idempotent process M = (M, t € R,),
where M; = exp(x [§ os Wy ds — 12 [§ 02 ds/2), isan A-exponential maxingale. In
particular, f; apr dp isindependent of A, for s <.

PrROOF The idempotent proces¥ is A-adapted byM; being constant on
the atoms ofA, for r € R, see Puhalskii [(2001), Lemma 2.2.17]. If the func-
tion oy, s € R, is piecewise constant, the maxingale property follows by the
properties of conditional idempotent expectations in a standard manner. A limit
argument shows that this property carries over to continugus € R,. The
case of a Lebesgue measurable s € R4, follows via Luzin’s theorem. Max-
imability of the M, follows by Lemma A.2. Finally,! o, W, dp is independent
of 4, for s <t, since by the maxingale proper§(exp( /! opW,, dp)|Ag) =
exp((A2/2) N alf dp), where the latter is a smooth functionxf O

Leto;(x), x e R, t € Ry, andb,(x), x € R, t € R4, be real-valued functions,
which are continuous i and Lebesgue-measurablersinLet W be a Wiener
idempotent process on an idempotent probability sp@cell) relative to a
completer-flow A and let@), for ¢ € R, denote the completion af, with
respect to the Wiener deviability o8(R, R). We say that, giverx € R, an
idempotent proces¥ on (T, IT) is a strong solution to the It6 idempotent equation

t t )
(A.1) X,=x+/ bs(Xs)ds—i-/ o5 (X)W ds, teRy,
0 0
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where integrals are understood as Lebesgue integrals, if equality (A.1) holds
I-a.e. and there exists a functidn C(R, R) — C(R, R), which is(C) /¢€,)-
measurable for everye R, such thatX = J(W) IT-a.e. As a consequenck,
is A-adapted. A strong solution is called Luzin if the functidnis continuous
in restriction to the setéx € C(R4, R) : % (x) > a} for a € (0, 1]. We say that
there exists a unique strong solution (resp. Luzin strong solution) if any strong
solution (resp. Luzin strong solution) can be writtenXas= J(W) II-a.e. for
the same functior/. Let us assume that,(x) and b,(x) are locally Lipshitz-
continuous inx, that is, for everya > 0, there exists af_-valued Lebesgue-
measurable inr function &f, r € R, with fé k?ds < oo for t € R4 such that
by (x) — bi(¥)| < kf1x — y| and |o;(x) — o:(¥)|* < k|x — y|? if |x| <a and
|y| < a, and satisfy the linear-growth condition that there existsRanvalued
Lebesgue-measurable functibns € R, with /{1, ds < oo for t € R such that
1b;(x)| <I;(1+ |x]) ando; (x)2 <I,(1+ |x|?) for x € R. Then (A.1) has a unique
strong solution, which is also a Luzin strong solution [Puhalskii (2001), Theorems
2.6.21, 2.6.22 and 2.6.26].

Let T be a metric space. A ndil¥, ¢ € W, where ¥ is a directed set,
of idempotent probabilities ol is said to converge weakly to idempotent
probability IT on Y if lim ycy Syv f = Sn f for every nonnegative bounded and
continuous functiory’ on T'; equivalently, see Puhalskii [(2001), Theorem 1.9.2],
limsup, .y Y (F) < TI(F) for all closed sets” C Y and liminfy ey MY (G) >
I1(G) for all open setsG C Y. A net of idempotent variables with values in
the same metric space is said to converge in idempotent distribution if their
idempotent distributions weakly converge. One has a continuous mapping theorem
for convergence in idempotent distribution: if a MY, v € ¥, of idempotent
variables with values i converges in idempotent distribution to an idempotent
variable X with values inT and f is a continuous function from to a metric
spaceY’, then the netf(X¥), ¥ e W, converges in idempotent distribution
to f(X). A net ¥, ¢ € ¥, of deviabilities onY is said to be tight if
infxex limsup, cy nY (Y \ K) =0, whereX denotes the collection of compact
subsets off'. A tight net of deviabilities contains a subnet that converges weakly
to a deviability, see Puhalskii [(2001), Theorem 1.9.27]1H is a sequence, then
it contains a weakly convergent subsequence).
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