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ANCHORED EXPANSION, PERCOLATION AND SPEED

By DAYUE CHEN! AND YUVAL PEREZ
WITH AN APPENDIX BY GABOR PETE®

Peking University and University of California, Berkeley

Benjamini, Lyons and Schramnkéindom Walks and Discrete Potential
Theory (1999) 56—84] considered properties of an infinite graphtand the
simple random walk on it, that are preserved by random perturbations. In
this paper we solve several problems raised by those authors. The anchored
expansion constant is a variant of the Cheeger constant; its positivity implies
positive lower speed for the simple random walk, as shown by Virag
[Geom. Funct. Anal. 10 (2000) 1588-1605]. We prove that & has a
positive anchored expansion constant, then so does every infinite cluster of
independent percolation with parametersufficiently close to 1; a better
estimate for the parametegswhere this holds is in the Appendix. We also
show that positivity of the anchored expansion constant is preserved under a
random stretch if and only if the stretching law has an exponential tail. We
then study a simple random walk in the infinite percolation cluster in Cayley
graphs of certain amenable groups known as “lamplighter groups.” We prove
that zero speed for a random walk on a lamplighter group implies zero
speed for random walk on an infinite cluster any supercritical percolation
parametep. For p large enough, we also establish the converse.

1. Introduction. Grimmett, Kesten and Zhang (1993) showed that a simple
random walk on the infinite cluster of supercritical Bernoulli percolatioddris
transient ford > 3; in other words, in Euclidean lattices, transience is preserved
when the whole Hdice is rephced by an infinite percolatiocluster. Benjamini,
Lyons and Schramm (1999), abbreviated as BLS (1999) hereafter, initiated a
systematic study of the properties of a transitive grdptihat are preserved
under random perturbations such as passing fterto an infinite percolation
cluster. They conjectured that positivity of the speed for a simple random walk
is preserved, and proved this for nonamenable Cayley graphs. Our results (see
Theorems 1.5 and 1.6) lend further support to this conjecture.

We first consider the stability of a related geometric quantity. Denotg ()
and E(G), respectively, the sets of vertices and edges of an infinite gkagfor
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S C V(G), denote by S| the cardinality ofS and byd S = dg S the set of edges that
have one end ir§ and the other ir5¢. We say thatS is connected if the induced
subgraph o1$ is connected. Fix € V(G). Theanchored expansion constant of G,

15 (G) = nli_)mooinf {% :0€ S CV(G), Sisconnectedy < |S]| < oo}
was defined in BLS (1999). The quantity(G) does not depend on the choice of
the basepoint. It is related to the isoperimetric constant

1(G) :=inf {%:S C V(G), Sis connected, ¥ |S| < oo},
but as we shall seay(-) is more robust. BLS (1999) asked if the positivity
of 1 (G) is preserved whe undergoes a random perturbation.

In p-Bernoulli bond percolation in G, each edge ofG is independently
declaredopen with probability p andclosed with probability 1— p. Thus a bond
percolationw is a random subset df (G). We usually identify the percolation
with the subgraph ofG consisting of all open edges and their end-vertices.
A connected component of this subgraph is callecbpen cluster, or simply a
cluster. The probability that there is an infinite cluster is monotonepinLet
pe = pe(G) = inf{p: there is an infinite cluster a}s.When p € (p., 1), with
positive probability the open clustéf that contain® is infinite; it is easy to see
that:z(H) =0 a.s.

Theorem 2 of Benjamini and Schramm (1996) states phét) < 1/ (G) +
1), but their proof yields the stronger inequalppy(G) <1/ 5(G) +1).

THEOREM1.1. Consider p-Bernoulli percolationonagraph G with:;.(G) >
0.If p < 1issufficiently close to 1, then almost surely on the event that the open
cluster H containing o isinfinite, we have 13, (H) > 0.

Our proof of Theorem 1.1, given in the next section, shows the conclusion
holds for all p > 1 — h/(1+ W)Y’ whereh = 15(G). A refinement of the
argument, due to Gabor Pete (see the Appendix) shows the conclusion holds for
all p > 1/(5(G) + 1). The Appendix also contains the analog of Theorem 1.1 for
site percolation.

Next, let G be an infinite graph of bounded degree and pick a probability
distributionv on the positive integers. Replace each edgeF (G) by a path that
consists ofL., new edges, where the random varialjles}.c £ () are independent
with law v. Let G¥ denote the random graph obtained in this way. We G&lla
random stretch of G. If the support ofv is unbounded, therg (G") =0 a.s. Say
thaty has arexponential tail if v[£, co) < e~¢¢ for somes > 0 and all sufficiently
large?.

THEOREM 1.2. Suppose that G is an infinite graph of bounded degree and
15 (G) > 0.1f v has an exponential tail, then:7 (G") > O as.
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On the other hand, if has a tail that decays slower than exponentially, then
taking the binary tree &, we have ;. (G) > O yet:,(G”) = 0 a.s. See Remark 2.2
in the next section.

By a Galton—Watson tree we mean a family tree of a Galton—Watson process.

COROLLARY 1.3. For asupercritical Galton—Watson tree T, given nonextinc-
tion, we have:;(T) > O a.s.

Theorem 1.2 and Corollary 1.3 answer Questions 6.3 and 6.4 of BLS (1999),
while Theorem 1.1 partially answers Question 6.5 of the same paper.

The importance of anchored expansion is exhibited by the following theorem,
conjectured in BLS [(1999), Conjecture 6.2]. For a vertexlenote byx| = |x|g
the distance (the least number of edges on a path) fréorthe basepoind in G.

THEOREM 1.4 [Virag (2000)]. Let G be a bounded degree graph with
15(G) > 0. Then the simple random walk {X,} in G, started at o, satisfies
liminf, . |X,|/n > 0 a.s. and there exists C > 0 such that P[X, = o] <
exp(—Cn'/3) for all n > 1.

Earlier, Thomassen (1992) showed that a condition weaker ithe) > 0
suffices for transience of the random wdlk,}. As noted in Virdg (2000),
Theorem 1.4, in conjunction with Corollary 1.3, implies that the speed of simple
random walk on supercritical Galton—Watson trees is positive, a result first proved
in Lyons, Pemantle and Peres (1995). Other applications of anchored expansion
are in Haggstrom, Schonmann and Steif (2000).

In Section 3 we address another problem in BLS (1999) concerningpted
lim, ');—' of a random walk{X,,}. Consider agairp-Bernoulli bond percolation
in G with parameterp > p.(G). Theorem 1.3 of BLS (1999) states that if the
Cayley graphG is nonamenable [i.eig(G) > 0], then a simple random walk in
an infinite cluster of Bernoulli percolation dh has positive speed. On the other
hand, if a graplfz has subexponential growth, that is, if img@pe V(G): |x| <
n}|¥" = 1, then a simple random walk d& (and on any subgraph) has zero speed
[Varopoulos (1985)]. It is therefore natural to study, as suggested in BLS (1999),
a simple random walk in the infinite cluster of an amenable Cayley graph with
exponential growth.

The lamplighter groupss,; are amenable groups with exponential growth,
introduced by Kaimanovich and Vershik (1983). The corresponding Cayley
graphsG, (for the standard generators) can be described as follows. A vertex
of G4 can be identified agn, ) € Z¢ x {finite subsets of¢}. Heuristically,Z¢ is
the set of lampsy is the set of lamps which are on, andis the position of the
lamplighter, or “marker.” In each step, either the lamplighter switches the current
lamp (from on to off, or from off to on) or moves to one of the neighboring sites
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in Z4. Each vertex inG, has degree®+ 1; one edge corresponds to flipping the
state of the lamp at location, and the other 2 edges correspond to moving the
marker. For example, # = 1, the neighbors ofmn, n) are(m + 1, n), (m — 1, n)
and(m, nA{m}), wherenA{m} isn\ {m} if m e n, and isn U {m} if m ¢ . For a
more detailed description see Lyons, Pemantle and Peres (1996). Kaimanovich and
Vershik (1983) showed that simple random walkip has speed zero faf= 1, 2
and has positive speed far> 3.

We now study simple random walkX,} in the unique infinite cluster of
p-Bernoulli bond percolation inG,. If x is a vertex in the open cluster
containingo, let |x|, be the graph distance in this cluster frano o.

THEOREM 1.5. Let d € {1, 2}. Then the simple random walk in the infinite

cluster of G, has zero speed, that is, lim,, Xzle = 0 a.s. on the event that o isin

n
the infinite cluster.

THEOREM 1.6. Supposethat d > 3. If p > p.(Z%), then the simple random
walk in the infinite cluster of Bernoulli bond percolationin G, has positive speed.

These results support Conjectures 1.4 and 1.5 of BLS (1999); they are extended
in Theorems 3.1 and 3.2.

2. Anchored expansion. The idea of the following lemma is from Kesten
(1982).

LEMMA 2.1. Let A, ={SCV(GB):0oeS, S isconnected, |0S| =n}. If
15(G) > h > 0,then for all sufficiently largen,
|AL| < [W(M)]",
where
W(h)=A+h)H " h.
PrROOF Considerp-Bernoulli bond percolation irc. Let H be the open
cluster containing. ThenV (H) is the set of vertices which can be reached filom

via open bonds. For any/ € 4, a spanning tree ofi has|S| — 1 edges. Also, note
that|aS| > 1|S| if n =19S] is large enough. Therefore

P(VH) =) = pSI7t @ — p)1¥SI > pr/mh=1@ — pyn,
whence

1> P(V(H) € A) = Y P(V(H)=S) = A, p"/ "1 - p)".
Se,
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Thus, ifn is sufficiently large,

1 n/h—1 1 n
=) ()
holds for anyp € (0, 1). Letting p = 1/(1+ k) concludes the proof.[]

PROOF OFTHEOREM 1.1. LetH be the open cluster containiag Denote
A,(H)={SCcV(H):0 €S, Sisconnected il and|dg S| =n}.

Suppose that € A, (H). ThensS is also a connected subset ¥{G); we shall
use a subscript to indicate the graph considered.SFerA,, each edge g S

is independently open with probability. By the large deviation principle [see
Dembo and Zeitouni (1998), Theorem 2.1.14],

19mS] _ )
0S| —

where the rate functiod, (o) = o log% >+ 1-0a) Iog — 2 satisfies/, (o) > 0 for
a < p. Recall W (h) deflned in Lemma 2.1. Whep >1-—1/W¥(h), we have

1,(0) = —log(1 — p) > logW¥(h), so there existsyg > 0 such that/,(xg) >
log W (k). For sufficiently large:,

< e—nlp(oc)’

2.1) (s € A (HD,

<E|S A, (H) : % <u ) < |An|e—n1p(a0) < \_I](h)ne—nl‘p(ao)’

which is summable im. By the Borel-Cantelli lemma,

L oS i
[im inf {% r0e€ S C VM), Sisconnectedy < |8GS|} > g a.s.,

G
whence
. oS
lim mf{ﬂ| roe S CV(H),
S is connectedy < |S| < oo} > aot (G) as.
PROOF OF THEOREM 1.2. LetLq,Lo,..., L, be ii.d. random variables

with distributionv. Sincev has an exponential tail, there is an increasing convex
rate function/(-) such that/(c) > 0 for ¢ > EL; and P(}_7_;L; > cn) <
exp(—nl (c)) for all n [see Dembo and Zeitouni (1998), Theorem 2.2.3, page 27].
Choosec large enough such thdt(c) > log WV (k). For anyS € 4, let Edge(S)
be the set of edges with at least one end.iflNote that|0S| < |Edge(S)| < D|S]|,
whereD is the maximal degree i&. Thus forS € A,

D[S|

P(ZeeEdge(S) L, > C) < P(Zi:l L; < C)
D|S| D|S|

<exp(—D|S|I(c)) < exp(—|3S|1(c)).
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Therefore for all,

L
P(EIS € sy Leceges) Le c) < |Agle~ 1O
D|S]
which is summable. By the Borel-Cantelli lemma, with probability 1, for any
sequence of sets,, } such thats,, € 4, for eachn, we have

ZeeEdge(S,,) Le -

limsup <c a.s.
n—00 D|S,|
Therefore
L 0S5
lim inf {* 0eScV(G),
n—00 ZeeEdge(S) L,

. h
S is connectedy < IaSI} > — a.s.
Dc

SinceG" is obtained fromG by adding new vertices/ (G) can be embedded
into V(G") as a subset. In particular, we can choose the same basepnir@"
and inG. ForS connected itz sych thab € S C V(G), the~re is a uniquanaximal
connecteds C V(G”) such thatS N V(G) = S; it satisfiesS| < 3, ceqge(s) Le- IN
computing: z (G") it suffices to consider only such maximsts, so we conclude
that:(G") > h/dc > 0. 0

REMARK 2.2. Suppose that the distributiom of L does not have an
exponential tail. Then for any > 0 and anys > 0, we haveP (}_7_1 L; > cn) >
P(L1 > cn) = e " for infinitely manyn’s, where{L;} are i.i.d. with lawv. LetG
be a binary tree with the roat as the basepoint. Pick a collection &f airwise
disjoint paths from levet to level 2::

P (along at least one of thesé ﬁathsz L; > cn)
i=1
>1—(1—e % >1—exp(—e 2" — 1.
With probability very close to 1 (depending eip there is a path from levelto 2
along which}_?_; L; > cn. Take such a path and extend it to the rooket S be
the set of vertices in the extended path from the rotat level 2:. Then
EN _2n+1 2

~ -,

> eckdge(s) Le —  cn c

Sincec can be arbitrarily large,; (G") = 0 a.s. This shows that the exponential
tail condition is necessary to ensure the positivity jo{G").

PROOF OF COROLLARY 1.3. A Galton—Watson process is uniquely deter-
mined by the offspring distributiofipo, p1, p2,...}. Let T be a Galton—Watson
tree and its root.
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Case(i) po= p1=0. Forany finiteS c V(T), |S| < |aS|(% + 2—12 +-) <
10S]. S017(T) > 1£(T) > 1.

Case (i) po=0, p1 > 0. In this case the Galton—Watson tr&ecan be
viewed as random stretc” of another Galton—Watson treg, where G is
generated according o, = p/(1— p1), k=2,3,..., pp=py =0 andv is the
geometric distribution with parametgr. By Theorem 1.2;7(T) =:5(G") >0
a.s.

Case (i) po> 0. Letf(s) =Y prsk and letg < 1 be the extinction
probability, so thayy = f(¢). An infinite Galton—Watson tree can be constructed
as follows; see Lyons (1992). Begin with the root which is declared topes.

Add to the root a random number of edges according to probability distribution
P(Y =k) = pr(1—¢*)/(1— q). Declare each verteapen with probability 1— ¢
andclosed with probability ¢, independently of each other. If all the newly added
vertices are closed, discard the entire assignment and reassign open/closed all over
again. For each open vertex, repeat the same procedure. For each closed vertex,
attach to it independently a Galton—Watson tree conditioned to be finite.

The subtre€l; consisting of open vertices and edges connecting them is a
Galton—Watson tree without leaves, aipdT1) > 0 according to case (ii). For each
open vertext of G, label its offspring from 1 td@’,, whereY, is a random variable
with P (Y, = k) = pr (1 —¢%) /(1 — ¢). Along the sequence df, vertices, each is
open with probability - ¢ and closed with probability (independently of each
other if we ignore the constraint that there is at least one open vertex). The number
of closed vertices before the first open vertex is stochastically bounded above by
a random variable with a geometric distribution. The same statement holds for the
number of closed vertices after the last open vertex, and for the number of closed
vertices between thith open vertex and th@ + 1)st open vertex.

Let L1 be the total number of vertices of finite Galton—\Watson trees attached
to the closed vertices before the second open vertex (if it ever exists). Similarly,
let L, be the total number of vertices of finite Galton—Watson trees attached to
the closed vertices between the second open vertex and the third open vertex (if it
ever exists). And so on, until the last open vertex among the offspring ©he
variablesLy, Ls, ... are i.i.d.; L1 is independent of othek;’s but has a different
distribution. Thus we may identify the Galton—Watson tfieas a random stretch
of T1 in computing: ;. (T). Although there are two different distributions in the
random stretch, the same argument works since both have exponential tails.

All L;’s are stochastically dominated @;V:lfwz U;, whereWy, Wa, Uz, U, . ..

are random variables, independent of each otl®W; = k) = ¢*(1 — ¢),
k=0,1,2,..., andU; is the size of a Galton—Watson tree conditioned on extinc-

tion. Letv be the probability distribution 0”272 ;. By the next lemma we
conclude that has an exponential tail. Applying Theorem 1.2 completes the proof.

O
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LEMMA 2.3 [Harris (1963), Theorem 13.1].For a supercritical Galton—
Watson process, the size of a Galton—\Watson tree conditioned on extinction has
a distribution with an exponential tail.

3. Speed of random walk. We start with a generalization of the lamplighter
groups defined in the Introduction.

Let G be the Cayley graph of a finitely generated infinite gr@uwith a fixed,
symmetric (i.e., closed under inversion) set of generators. We identify vertices of
G with elements of the grou@. Two pointsx andy of G are neighbors iy~ is
a generator.

Let F be the Cayley graph of a finite grotfpgenerated by a fixed symmetric
set of generators.

By 3", F we denote the set of elementsiSf such that at most finitely many
of the coordinates are not the identity elemerft.ohn elementof_, . F is called
a configuration and is denoted by = {n(x):x € V(G)}, wheren(x) € V(F) is
the x-coordinate ofpy. We will sometimes writex € G as an abbreviation for
x e V(G).

Define a new grapWv =G x Y, .¢F as a semidirect product d& with
the direct sum of copies df indexed byG. Vertices of W are identified as
{(m,n):m e V(G),n € ¢ F}. Two vertices(m, n) and(m1, &), are neighbors
if either:

() m =m1, n(x) =&(x) for all x #m, andn(m) is a neighbor ok (m) in IF,
or
(i) n=¢, andm,m are neighbors it.

In particular, if F = {0, 1} is the group of two elements arf@ is Z¢, then
G x Y, I is exactlyG, described before Theorem 1.5. Also note that the above
definition applies to the case of an arbitrary grgphnd a finite groug, as well.

From now onG will be an infinite amenable Cayley graph. Then the graph
G x Y. F is amenable and grows exponentially. By Burton and Keane (1989),
there is only one infinite cluster when percolation occurs.

We say thatG is recurrent if the simple random walk inG is recurrent;
this is equivalent toG being a finite extension ol or Z? [see, e.g., Woess
(2000), Theorem 3.24, page 36]. The following theorem is a generalization of
Theorem 1.5.

THEOREM 3.1. Supposethat G isa recurrent Cayley graph and that F isthe
Cayley graph of a finite group. Then the simple randomwalk in the infinite cluster
of supercritical Bernoulli bond percolationin W =G x )", . F has zero speed
as.

On the other hand, itz is a transient Cayley graph of polynomial or exponential
growth, then forp sufficiently close to 1, the infinite cluster gtBernoulli bond



2986 D. CHEN AND Y. PERES

percolation inG is transient. FofG = Z¢,d > 3 and anyp > p.(G), this is due

to Grimmett, Kesten and Zhang (1993); for other Cayley graphs of polynomial
growth it is due to Benjamini and Schramm (1998); see also Theorem 9 in Angel,
Benjamini, Berger and Peres (2004); for Cayley graphs of exponential growth it is
Theorem 1.8 of BLS (1999). The following theorem generalizes our Theorem 1.6.

THEOREM3.2. Let0 < p < 1.Supposethat theinfinite cluster of p-Bernoulli
bond percolation in the Cayley graph G istransient and that IF isthe Cayley graph
of afinite group. Then the simple randomwalk in the infinite cluster of p-Bernoulli
bond percolationin W =G x ), ¢ F has positive speed a.s.

Fix a vertexo of W =G x }_, ¢ F as the basepoint, for example, the vertex
corresponding to the unit element of the group. |.ef be the distance between
the vertexx and the basepointin W. Certainly,||x|| < |x|,. In the other direction,
Lemma 4.6 of BLS (1999) states that if jmiX,,||/n =0, then lim, | X,|,/n = 0.
For this reason we shall consider]| instead of x|,,.

It will be useful to considedelayed simplerandomwalk Z = Z® onw, defined
as follows. LetZ(0) be some fixed vertex oV = G x Y, g F. Forn > 0, given
(Z(0),...,Z(n)) andw, let Z'(n + 1) be a uniform random choice from(n)
and its neighbors iW. SetZ(n + 1) := Z'(n + 1) if the edge[Z(n), Z'(n + 1)]
belongs taw; otherwise, letZ(n + 1) := Z(n). By Lemma 4.2 of BLS (1999), the
speed lim_. ~ || Z(n)||/n exists and is constant a.s.

LEMMA 3.3.

n—oo pn n— 00 n n—oo p

where ¢ > 0 is a deterministic constant.

PROOF A sample path ofZ is obtained from a sample path &f by
repeatingX, a random number of times, with a geometric distribution. The
parameter of the geometric distribution is[ity(D + 1), D/(D + 1)], whereD
is the degree of a vertex &V. Therefore (3.1) holds.

Z will always denote the delayed random walk in a clugtéein W. Denote
by P, the law of Z for fixed w, and letE, be the corresponding expectation
operator. Denote bi the average over realizations of Write Z(n) = (m,,, n,,)
and call the first componemt, the marker. By Lemma 3.3 and the discussion
preceding it, it is enough to determine if im || Z(n)||/n is positive or not.

Our first goal is to prove Theorem 3.1. A key fact is that the motion of the
marker is recurrent in the following sense.
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LEMMA 3.4. Supposethat G is a recurrent Cayley graph and that F is the
Cayley graph of a finite group. Let Z be as above and write Z(n) = (mj, n,,).
Then

(3.2) EP,(m, =mgfor somen >1)=1.

PROOFE Introduce the stopping times
v =min{n > 0; |m,|c = N},
rj =min{n > 1; m, = o}.
Then (3.2) can be rewritten as

lim EP,(ty <1, |mo=0)=0.
N—o00

Let Gy = {x € G:|x|g < N}. There may be several disjoint clusters in a
realization ofp-Bernoulli bond percolation in the finite grafhy x >, ¢, F, and
each cluster may have several vertices with the marker @onsider a clustetl
with at least one vertex whose marker isatf there arek vertices inH with the
marker ab, “glue” thesek vertices together as one vertex denotedhy et H' be
the modified graph of the clust&r. Coupling the delayed simple random walks in
V() and inV (H'), we find that

1 ~ .
(3.3) p > P,(ty < T)1Z(0) =x) = P,(En < T2/ (0) = ©),
xeVMH),m(x)=o0
where
Ty =min{n > 0; [m,|lc =N} and %, =min{n > 1; m, = o}

are the stopping times for the delayed simple random &alik V (H').

The delayed simple random walK in V (H') is a reversible Markov chain with
respect to the measurewheren (©®) = k, andx (x) = 1 for all otherx € V(H),
x # ©. Let D denote the degree of a verteXW=G x > ¢ F, and let¥ be the
class of functions with the following properties:

0, if x=0orm(x) =o,

1, if [m(x)|g=N.

Applying the Dirichlet principle [see Liggett (1985), page 99], we have that
27(®)P,(Tn < 7,7 1Z(0) = ©)

=it ¥ Y r@po)(f@) - f©)°

34) f:vH)U{B}—[O0,1], fx)= {

TE€F V) w.vle EQ)
(3.5) | ) )
= JJQ; > D—H(f(u) - f(v)

[u,v]e E(H")
_ 2 2
—f'Q; > D—H(f(”) — f()".

[u,v]e E(H)
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In particular, let{Y, } be the simple random walk i and
oy =min{n > 0; |Yy|c = N},
00+ =min{n > 1, Y, =0},

p(m) = P(oy <o) |Yo=m).

Then f(x) = p(m(x)) isin . Plugging it into (3.5), in light of (3.3), we conclude
that

1
Y Poloy <tfIZO=x)s 5 X (o(mw)) — p(m(v)))>.
xeV (H) [u,v]e E(H)
m(x)=o

Note thatP,(ty < 7,1Z(0) = x) =0 if m(x) = 0 and there is ng in the cluster
such thafm(y)|g = N. Summing over all disjoint clusters, we get

Z P,(ty <1,71Z(0) = x)

x:m(x)=o0

=) > P,(ty <7, 1Z(0) =x)

H xeVH),m(x)=0

Yo (o) —p)?.

[u,v]I€E(GN)

|F| |Gl
<
~ D+1

Averaging over realizations of percolation @y x > g, F, we see that
EP,(tn < T,|Z(0) = (0, 1)) is independent of;. There argF|I®¥! vertices in
GN X X yev(cy) F with the marker ab. Therefore,

IF|ICYEP, (ty < 7,1Z(0) = (0, 1))

F|IGnI
|D|+1 S (pw) = p)2

[u,v]€eE(Gp)

A

After cancellation,
EP,(tv <7,51Z(0) = (0. 1))

1 2
=571 > (pw) = p(©)
T L vleEGr)
L P( tlYo=0)—0  asN
=—P(oy <o =0) > — 00,
D1 N9 H0=0

since the simple random walk @& is recurrent. [

PROOF OFTHEOREM 3.1. LetZ be the delayed simple random walk in the
infinite cluster. By Lemma 3.3, it suffices to show thatJifZ (n)||/n =0 a.s.
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Let R, = {mo,m1,...,m,} C V(G) be the range of the marker up to time
Then

n—1

k=0
n—~{

<{+ Z ]]-{mk;émk+1,mk;£mk+2,.-v,mk?émk+2}
k=0

(3.6)

for any fixed integei. As explained in Lyons and Schramm (1999), in the large
probability space where both the percolation and the ifalikre defined, the law
of the infinite clusterw as seen from the walkef(n) is stationary. Therefore

{]l{mk#'71k+1,mk#mk+2 ,,,,, mems)s k=0,1,2,3, ...}
is a stationary sequence in the large space. By (3.6) and the Birkhoff ergodic

theorem,

—L
. | Rl C1n
EE, I'mnSUp n <EE, I',rln ; Z ]l{mk?émk+lsmk7émk+2 ,,,,, mpF#mg4e}
k=0

=EP,(mo#my1,mo#mp,...,mog#my).

By Lemma 3.4, the right-hand side tends to @as oo. Consequently, for a.@
andZ,

.| R
im 120
n n

=0.

Note thatR,, is connected iV (G), and all sites inR,, can be visited within at
most 2R,,| steps using depth-first search along a spanning tré&g, imrhus inW,

IZ)|| < Imal + 2 Ral + Y 12 ()|F < (1424 [F)) Rl

XER,

We conclude thaEE, limsup,_, o [|Z(n)||/n =0. O
Our next goal is to prove Theorem 3.2.

LEMMA 3.5. Supposethat theinfinite cluster of p-Bernoulli bond percolation
on the Cayley graph G is transient. Let Z be the delayed random walk in the
infinite cluster of p-Bernoulli bond percolation on W =G x Y .. F and write
Z(n) = (my, n,). Then

EP,(m, Zmgforaln>1)>0.
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PrROOF We shall prove that

3.7 lim EP,(ty < rjlmo =0) >0,
N—o0

wherety andz, are stopping times defined in the proof of Lemma 3.4.

Recall the finite graph&sy and Gy x > g, IF defined in the proof of
Lemma 3.4. Verticesm, n) of Gy x 3, g, F are classified intgF|/®! classes
according to the second componentFor a fixed configuratiom, denote by
Gn(n) the subgraph induced by the class of vertidés, n); m € V(Gy)}.
Clearly, there is a graph isomorphism betwe@r () and Gy for any n €
> recy IF. Letthe cluster withirzy (7) containing(o, n) be

Co(n) ={(m,n); (m,n) < (o, n) within Gy (1)}.

Run a simple random walﬂ(Y}’, m}j=o0in C,(n) starting from(o, n). Recalloy =
min{j > 0; |¥]'|g = N} ando,f =min{j > 1; Y = 0}. ThenP (o < o,/ |Yg = 0)

is decreasing iV . The hypothesis of the lemma (transience of the infinite cluster)
means that

(3.8) Nlinoo EP,(on < ajlYé’ =0) > 0.

There may be several disjoint clusters in a realizatiorpeBernoulli bond
percolation inGy x ", g, F and each cluster may have several vertices with
the marker ab. Take a cluster, saf, and run the delayed simple random walk
in V(H). It follows from (3.3) and (3.5) that

Z P,(ty <7,71Z(0) =x)
xeV(MH),m(x)=o0
3.9 Z 1 )
= Inf. () = f(v))",
S N dc+dr+1

where# is the class of functions satisfying (3.4), afiglanddr are the degrees of
a vertex ofG andF, respectively. Notice that (3.9) is still valid even if there is no
vertexy € H such thatm(y)|g = N. Summing over all disjoint clusters, we get

Y Pu(tn < 7,71Z(0) = (0, 1))
n

(3.10) =Y Y. Pu(tn<7[I1Z(0)=(0,1)
H (o,meV(H)
it Y (fw) - fw)?
" feF dg +dr +1 “ v

where the summation is over all open boidsv] of Gy x 3¢, F. Every term
in (3.10) is nonnegative. Discarding those terms involving an open pdgé
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whereu andv are in different classes (i.e., the markersiadndv are the same),
we get the following inequality:

RHS of (3.10)> inf 3 3
fe

N [u,v]leE(Gn(n)), open

. dg+1
Cdg+dr+1

1

2
m(f(u) - f(v)

(3.11)
> Pylon <o 1Yy =o0).
n

Combining (3.11) with (3.10), we conclude that for a.e. realizatioof the
Bernoulli bond percolation,

dg +1

Taking expectation over the Bernoulli bond percolaigmwe find thatE P, (ty <
7,71Z(0) = (0, n)) is independent of. It follows from (3.12) that

de+1
EPw(TN < ‘L’le(O) = (o, T})) > mEPw(UN < O’:_|YOT7 =0).

Taking the limit asV — oo, inequality (3.7) then follows from (3.8).00

PROOF OFTHEOREM 3.2. The delayed simple random watk= Z“ on the
infinite clusterw is a reversible Markov chain with respect to the uniform measure
onw. In conjunction with the stationarity df in the big space, this gives

(8.13) EPu,(mi #my,0<i <n—1)=EP,(m; #mo,1<i <n).

Define
£(k) ={
Then

E (k) = Py(ni # nr—1andm; Zmy for0O<i <k —2andfori >k + 1)

can be written as a product of three terms:

1, if nx #nx—1,m; Zmyfor0<i <k—2andfori >k+1,
0, otherwise.

P,(m; #my foralli > k+ 1ng #m—1andm; #my for0< j <k —2)
X Py(ne # nk—almj #myp_1for0<j <k —2)
X Pw(mj;émk_lforj=0,1,2,...,k—2).

In the big probability space, the distribution Gf, w) is invariant under the shift
by Lemma 4.1 of BLS (1999). Taking the expectation over realizations dien

EP,(m; #my foralli >k + 1ni #nr—randm; #m for0< j <k —2)
=EP,(m; #mgforalli > 1).
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The last equality holds because when a light at locatignis switched for the
first time at stegk, and then the marker moves away from that site, a regeneration
occurs: whilem; # my, the walkerZ(-) is traveling in virgin territory that was not
explored prior to time.

Moreover,

. pdr
EP _ ; _1for0<j<k-2)> —-r——;
w Mk # Nk—1lmj # my_1 <Jj= )_dq;,+d]F+l

and using reversibility (3.13),
EP,(m; #my_1for0<i<k—2)>EP,(m; #mpforalli >1).

Therefore

d
EE,C(K) = — PEE__(EP,(m; #mofor all i > 1))%
G

+dp+1
Finally, becaus¢Z(n)|| > >} _4 ¢ (k),

EE, lim IZmll _ im EE, IZm)|

n
> i —1 En ( )> li —1 En ( )
mEE k m EE k) > 0.
n w : 1{ = w8

Since lim, || Z(n)||/n exists and is a constant a.s., it must be positive, and we are
done. O
APPENDIX

The goal of this Appendix is to prove the following sharpening of Theorem 1.1.

THEOREM A.1. Consider p-Bernoulli bond percolation on a graph G with
15(G) > 0.1f p>1/(1+15(G)), then almost surely on the event that the open
cluster H containing o isinfinite, it satisfies:, (H) > 0.

PrROOF We will use the notation and some of the ideas of the proof of
Theorem 1.1. First note that i-Bernoulli bond percolation, for any Q@ o < p,
we can estimate the conditional probability

duS .
(A1) P(% <alSe A,,(H)) = P(Binom(n, p) <an) < e "r@),
G

where the rate functiof, (-) is continuous, and

—log(1—p)=1,(0) > I,(x) >0 forO<a < p.
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Therefore,
|3HS| )
IS e, (H): ——
|0m S|
< Z P|lSeA,(H), — <a
SE:AW[ |a S|
(A.2) < Y e @P(S € s, ()
SeA,
= " O=1@) 3™ (1 pY'P(S € A, (H))

SeA,

=" PO~ @O p (v (H)| < o0, |06V (H)| = n),

where the last step used the identity— p)" P(S € A,(H)) = P(H = S) for
SeA,.

To estimateP (|V(H)| < oo, |0gV (H)| = n), we use the method of Theorem 2
of Benjamini and Schramm (1996); see also Theorem 6.18 in Lyons and Peres
(2004). Let us briefly recall that argument. Choase :7.(G) such thatp > 14%};
Then there exists;, < oo such thatdgS|/|S| > h for all § € A, with n > nj,. Fix
an ordering of the edges(G) = (e1, e2, ...) such thab is an endpoint oé;, and
take two i.i.d. sequencé$;} and{Y;} of Bernoulli(p) variables. Build recursively
the percolation clusteH of o, together with its boundargg V (H), using the
sequencdY;}, as follows. At step zero, we start witlip consisting just ofo.

In stepj > 1, consider the first unexamined edgg in the ordering above that
has one endpoint i (H;_1), and one endpoint in its complement. (If there is no
such edge, the process stops and we fiaveH;_1.) LetH; beH;_1 with e,;
added ifY; =1, andH; = H;_1 if Y; = 0. If the process contlnues mdeflnltely,
then the increasing union of all th#&; is the infinite clustefd. Having finished
with growing the finite or infinite clusté]ﬂ build the remainder of the percolation
configuration using the sequenidg}.

If the process terminates aftdf steps with a finite clustéfl = Hy that hasv
vertices and: closed boundary edges, théh>n +v — 1 andZ?’:l Y,=v-—1.
Forn > nj, we must haves > vh, whencev — 1 < N/(1+ h). It follows that

{IVIE)] < o0, [ocVE)|=n}C | Bw.
N=n

N N
Z._ 1+h
j=1

where
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By the large deviation principle? (By) < e~ Nor, wheres,, = I,,(Hih) > 0, since
p> Flh Thus for some constaft, < oo,
o0

(A.3) P(IVIED)| < oo, [V =n) < Y e Nor <Cpe .
N=n

Takinga > 0 in (A.2) so small thaf ,(0) — /,(«) < §,, we deduce that (A.2)
is summable im. An application of the Borel-Cantelli lemma, just as at the end
of the proof of Theorem 1.1, gives that

1p(H) > a15(G) >0

almost surely on the event thitis infinite. O

For site percolation orfz, the vertex version of anchored expansion is the
relevant notion. Leb" S denote the set of vertices §f having a neighbor irf,
and suppose that
VS|

S|
Then the corresponding form of (A.2) needs no modification, while the analog

of (A.3) can be proved using an ordering of the vertidé&s). Hence, the
following result holds:

1y (G) :=nli_)mooinf{ 0e SCV(G), Sisconnectedy < |S]| < oo} > 0.

THEOREM A.2. Consider p-Bernoulli site percolation on a graph G with
17(G) > 0.1f p>1/Gy(G) + 1), then almost surely on the event that the open
cluster H containing o isinfinite, it satisfies:y, (H) > 0.

These results are sharp for tiie+ 1)-regular tree&;,, for which p.(T) = 1/b
for both bond and site percolations, while(T) =7, (Tp) =b — 1.
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