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ABSOLUTE CONTINUITY OF SYMMETRIC MARKOV PROCESSES
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University of Washington, University of California, San Diego, Tohoku
University, Fudan University and University of Manchester

We study Girsanov’s theorem in the context of symmetric Markov
processes, extending earlier work of Fukushima–Takeda and Fitzsimmons on
Girsanov transformations of “gradient type.” We investigate the most general
Girsanov transformation leading to another symmetric Markov process. This
investigation requires an extension of the forward–backward martingale
method of Lyons–Zheng, to cover the case of processes with jumps.

1. Introduction and preliminaries. Our aim in this work is to study change-
of-measure phenomena (“Girsanov” theorems) for general symmetric Markov
processes. Our results extend both the earlier work of Fukushima and Takeda [9]
and that of Fitzsimmons [5] (who was concerned only with symmetric diffusions).
Our work also contains Theorem 2.7 of [12] as a special case.

Before setting down the precise context in which we shall be working, let us
briefly describe our results. LetX = (Xt ) be a symmetric (i.e., reversible) Markov
process, with symmetry measurem, state spaceE and distributionPx when started
in statex ∈ E. Given a strictly positive elementρ of the Dirichlet space ofX,
let Mρ be the martingale part in the Fukushima decomposition ofρ(Xt) − ρ(X0),
define a local martingaleM by the formulaMt := ∫ t

0[ρ(Xs−)]−1 dM
ρ
s and letZρ

be the “stochastic exponential” ofM ; that is,Zρ is the unique solution ofZρ
t =

1 + ∫ t
0 Z

ρ
s− dMs . ThenZρ is a positive supermartingale, and so determines a new

family (P̂x)x∈E of probability measures governing a second symmetric Markov
procesŝX onE, with symmetry measureµ(dx) := ρ(x)2 m(dx).

Suppose, for example, thatE = Rd and that the (nonpositive definite)
infinitesimal generatorL of X has the form

Lf (x) = Lcf (x) +
∫

Rd
[f (y) − f (x)]N(x, dy) − k(x)f (x), x ∈ Rd,(1.1)
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whereLc is a second-order differential operator withLc1= 0,N is a kernel onRd

andk ≥ 0. Suppose also thatD(L), the domain ofL, is closed under the formation
of products, and thatρ ∈ D(L) is strictly positive. Then the generator̂L of the
transformed procesŝX is given by

L̂f (x) = ρ(x)−1[L(ρf )(x) − f (x)Lρ(x)]
(1.2)

= Lcf (x) + Bρf (x) +
∫

Rd
[f (y) − f (x)]N̂ (x, dy),

whereBρf := ρ−1[Lc(ρf ) − fLcρ − ρLcf ] is a first-order differential operator
and N̂(x, dy) = [ρ(y)/ρ(x)]N(x, dy). It is an important but very challenging
problem to characterize the domainD(L̂) of L̂. An equivalent, but more tractable,
way to proceed is to characterize the bilinearDirichlet form associated witĥL.
Let E(f, g) := −∫

Lf · g dm and Ê(f, g) := −∫
L̂f · g dµ denote the Dirichlet

forms corresponding toX andX̂. When expressed in terms of these bilinear forms,
(1.1) and (1.2) become

E(f, g) = E c(f, g) +
∫

Rd

∫
Rd

[f (y) − f (x)] · [g(y) − g(x)]J (dx, dy)

(1.3)
+

∫
Rd

f (x)g(x)k(x)m(dx)

and

Ê(f, g) = E c
ρ(f, g) +

∫
Rd

∫
Rd

[f (y) − f (x)] · [g(y) − g(x)]Ĵ (dx, dy),(1.4)

where E c(f, g) := −∫
Lcf · g dm, E c

ρ(f, g) := −∫ [Lc + Bρ]f · g dµ,

J (dx, dy) := 1
2m(dx)N(x, dy) andĴ (dx, dy) := 1

2µ(dx)N̂(x, dy) = ρ(x)ρ(y)×
J (dx, dy). In the general context in which we shall be working, Dirichlet forms
are more convenient objects than their associated infinitesimal generators, and for-
mulas like (1.4) will be the main focus of our study.

The following is concrete instance in which (1.1) holds.

EXAMPLE 1.1. Let E = Rd , m(dx) = dx (Lebesgue measure), and letX

be the Lévy process onRd that is the sum of Brownian motion onRd and an
independent rotationally symmetricα-stable process onRd , for some 0< α < 2
andd ≥ 3. ClearlyX is anm-symmetric Hunt process. Its Dirichlet form(E ,F )

is given by

F = {f ∈ L2(Rd, dx) :∇f ∈ L2(Rd, dx)}
and

E(f, g) = 1

2

∫
Rd

∇f (x) · ∇g(x) dx

(1.5)
+

∫
Rd

∫
Rd

[f (y) − f (x)] · [g(y) − g(x)] c(d,α)

|x − y|d+α
dx dy,
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wherec(d,α) > 0 is a constant depending only ond andα. In this case we have,
in (1.1),

Lc = 1
2�, N(x, dy) = c(d,α)

|x − y|d+α
dy, k(x) ≡ 0.(1.6)

In the case at hand, (1.4) becomes

Ê(f, g) = 1

2

∫
Rd

∇f (x) · ∇g(x)ρ(x)2 dx

(1.7)
+

∫
Rd

∫
Rd

[f (y) − f (x)] · [g(y) − g(x)]c(d,α)ρ(x)ρ(y)

|x − y|d+α
dx dy.

The type of change of measure considered above was studied in [9], forρ

the α-potential of a bounded strictly positive function onE. In Section 2, we
extend and complete the work of Fukushima and Takeda by obtaining a complete
description of the Dirichlet form associated witĥX for an arbitrary strictly
positive ρ in the Dirichlet space ofX. Our method is a modification of that
found in the work of Chen and Zhang [3]. Of critical importance is Lemma 2.2
which extends the Lyons–Zheng forward–backward martingale decomposition to
the context of symmetric Markov processes with jumps.

WhenX is a diffusion, the change of measure determined byZρ is (modulo lo-
calization) the most general Girsanov transformation leading to another symmetric
diffusion. This assertion is the principal result of [5]. The situation is more complex
whenX has jumps. In Sections 3 and 4, we investigate the most general change of
measure leading to a second symmetric Markov processX̂, and we take the first
steps in describing the associated Dirichlet form. A formula like (1.4) holds even
in this more general situation, although a zero-order term might be present, and
the densityρ(x)ρ(y) linking the measureŝJ andJ must be replaced by a more
general symmetric function of(x, y). Our results here are somewhat less compre-
hensive than those of Section 2 or of [5], the main unresolved difficulty being the
description of a core for the Dirichlet space ofX̂. Nevertheless, we find an explicit
expression for the Dirichlet form of̂X that is valid for a large class of functions in
the Dirichlet space. It may be helpful for the reader to keep in mind the concrete
Example 1.1 when considering the general results of this paper.

In the remainder of this section, we establish our setting and notation. LetE

be a topological space that is homeomorphic to a co-analytic subset of a compact
metric space (a “metric co-Souslin space”), with Borelσ -algebraB(E). Let m

be aσ -finite measure onB(E) with supp[m] = E. We denote byB(E × E) the
productσ -algebra onE × E. Let X = (�,M,Mt , θt ,Xt ,Px) be a Borel right
Markov process with state spaceE, lifetime ζ , transition semigroup(Pt)t>0 and
resolvent(Uq)q>0. In more detail, the right-continuous process[0,+∞[� t �→ Xt

is defined on the sample space(�,M), with its minimal (augmented) admissible
filtration {Mt}t≥0, and under the lawPx is a strong Markov process with initial
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conditionX0 = x. The shift operatorsθt , t ≥ 0, satisfyXs ◦ θt = Xs+t identically
for s, t ≥ 0. Adjoined to the state spaceE is an isolated point� /∈ E; the processX
retires to� at its “lifetime” ζ := inf{t :Xt = �}. Throughout this paper we assume
that X is m-symmetric. More precisely,(Pt) may be extended into a symmetric
operator semigroup onL2(m); that is,

(f,Ptg) = (Ptf, g), f, g ∈ L2(m),

where (u, v) := ∫
E u(x)v(x)m(dx) is the natural inner product inL2(m) :=

L2(E;m). By the theory of Dirichlet forms, there exists a symmetricDirichlet
form (E ,F ) associated withX:

F =
{
u ∈ L2(m) : sup

t>0

1

t
(u − Ptu,u) < ∞

}
,

E(u, v) = lim
t↓0

1

t
(u − Ptu, v), u, v ∈ F .

For anyq > 0, set

Eq(u, v) := E(u, v) + q(u, v), u, v ∈ F .

ThenF becomes a Hilbert space with inner productEq for any q > 0. We call
the corresponding norm theEq -norm. In view of the work in [6] and [19], the
Dirichlet form (E ,F ) is quasi-regular. Thus, by Theorem 3.7 of [2], the process
is quasi-homeomorphic to the Hunt process associated with a regular Dirichlet
form on a locally compact separable metric space, so all of the results of [8]
(established there for regular Dirichlet forms) apply toX and its Dirichlet form.
For the reader uninterested in applications to infinite-dimensional settings, it is safe
to assume from now on thatX is the Hunt process on a locally compact metric state
space (such as a Euclidean domain) associated with a regular Dirichlet form. See
Chapter VI of [19] for more on the “transfer method,” by which the quasi-regular
case is reduced to the regular case.

Let A = (At) be any increasing additive functional (AF), by which we mean
that besides additivity and right-continuity we also assume that 0≤ At < ∞ for
t < ζ . We can (and do) take its perfected version. We usef ∗ A to denote the
functional

(f ∗ A)t :=
∫ t

0
f (Xs) dAs,

if f is a Borel function onE, and

(F ∗ A)t :=
∫ t

0
F(Xs−,Xs) dAs,

if F is a Borel function onE×E. Thebivariate Revuz measure νA of A (computed
with respect toX andm) is defined forF ∈ pB(E × E) by

νA(F ) :=↑ lim
t↓0

1

t
Em(F ∗ A)t .
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The usual Revuz measureµA of A is nothing but the second marginal measure
of νA, namely,µA(dx) = νA(1⊗dx). The mappingA �→ µA establishes a one-to-
one correspondence between the class of positive continuous additive functionals
(PCAFs) ofX and the class of smooth measures of(E ,F ), and is usually known
as the Revuz correspondence.

A well-known consequence of symmetry is that, for q.e.x ∈ E,

Px

({ω ∈ � :Xt−(ω) exists inE for all t < ζ }) = 1.

Without any real loss of generality, we assume the exceptional set [of thosex ∈ E

for which (1.5) fails] to be empty. Adjoin the cemetery� to E as an isolated point
to form E�; the Borelσ -field on E� is denotedB(E�). The jump behavior of
X is described by a pair(N,H), the Lévy system of X, in which N is a kernel
from (E,B(E)) to (E�,B(E�)) satisfyingN(x, {x}) = 0 for any x ∈ E, and
H is a PCAF ofX with bounded one-potential, such that for any measurable
function F ∈ pB(E × E), the dual predictable projection (or compensator) of
the homogeneous random measure

η(ω,dt) := ∑
s>0

F
(
Xs−(ω),Xs(ω)

)
1{Xs−(ω) �=Xs(ω)}εs(dt)

is NF ∗ H , whereNF(x) := ∫
E�

N(x, dy)F (x, y). (Here εs is the unit point
mass ats.) The special case (1.1) occurs whenHt ≡ t . Set J (dx, dy) :=
1
21E(y)µH (dx)N(x, dy), the jump measure forX. Note thatJ is invariant with
respect to the mapping(x, y) → (y, x).

We will use ζp and ζi to denote, respectively, the predictable and totally
inaccessible parts of the lifetimeζ . Let κ(dx) := N(x, {�})µH(dx) be the Revuz
measure of the compensatorAκ of the AF1�ζi ,∞�; κ is the killing measure forX.

Eachu ∈ F admits aquasi-continuous m-version ũ for which the process
t �→ ũ(Xt ) is right-continuous on[0,∞[ with left limits [equal to ũ(Xt−) for
t �= ζp] on ]0,∞[, Px -a.s. for q.e.x ∈ E. For suchu ∈ F , we have Fukushima’s
decomposition ([8], Theorem 5.2.2)

ũ(Xt ) − ũ(X0) = Mu
t + Nu

t ,

whereMu is a martingale additive functional (MAF) of finite energy andNu is
a continuous additive functional (CAF) of zero energy. Moreover,Mu may be
further decomposed into the sum of a continuous part and a purely discontinuous
part

Mu = Mu,c + Mu,d .

Let E c(u,u) := 1
2µ〈Mu,c〉(E). ThenE admits a Beurling–Deny decomposition as

in ([8], Theorem 5.3.1):

E(u,u) = E c(u,u) +
∫
E×E

(
u(y) − u(x)

)2
J (dx, dy) + κ(u2), u ∈ F ,
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where the “diffusion” pieceE c is strongly local in the sense thatE(u, v) = 0
wheneveru, v ∈ F andu is constantm-a.e. on a neighborhood of the support of
the measure|v| ·m. Here and in the sequel, we always takeu ∈ F to be represented
by its quasi-continuous version, and we usually drop the “tilde” from our notation.

Notation and conventions. The notation “:=” should be read “is defined to
be.” For a classF of functions, we usebF [resp.pF (or F +)] to denote the set
of bounded (resp. nonnegative) functions inF . We use both “nonnegative” and
“positive” to mean≥ 0, and “strictly positive” to mean> 0. For a measureµ and a
functionf , µ(f ) := ∫

f dµ. We sometimes writeLp or Lp(m) for Lp(E,m), and
(·, ·) for the inner product inL2(m). For f,g ∈ B(E), f ⊗ g(x, y) := f (x)g(y)

and f̄ (x, y) := f (y) − f (x) for x, y ∈ E. For a right-continuous processHt of
finite variation on bounded intervals, we useHp to denote its dual predictable
projection andH ˜ to denoteH − Hp, all computed with respect to(X,Px,

x ∈ E). The jumpMt − Mt− will be abbreviated as�Mt . The firsthitting time
of a setG is denotedTG := inf{t > 0 :Xt ∈ G}. A hitting time is an example of a
terminal time, which is a stopping timeT such thatt + T � θt = T on {t < T }.

2. Girsanov transform by multiplicative functional related to M logρ . In
this section, we study Girsanov transforms of a type investigated earlier by
Fukushima and Takeda [9]; our results extend and complete the work found there.
Our method is a modification of that found in Chen and Zhang [3].

Throughout this section,ρ is a nonnegative element ofF . We can (and do) as-
sume thatρ is quasi-continuous, and we assume thatρ > 0 q.e. onE. [Otherwise,
we would deal with the part processX killed upon leaving{x :ρ(x) > 0}.] We will
use the convention that any function defined onE is extended to be zero at the
cemetery point�; in particular,ρ(�) = 0. By Fukushima’s decomposition,

ρ(Xt) − ρ(X0) = M
ρ
t + N

ρ
t , Px-a.s. for q.e.x ∈ E,

whereMρ is a square-integrable martingale AF andNρ is a CAF of zero energy.
Note thats �→ ρ(Xs∧ζi−) is strictly positive and left-continuous on]0, ζp[. Define
a local martingaleM on the random time interval�0, ζp� by

Mt =
∫ t∧ζi

0

1

ρ(Xs−)
dMρ

s 0 ≤ t < ζp.(2.1)

Note that fort < ζp ,

�Mt = 1

ρ(Xt∧ζi−)

(
M

ρ
t∧ζi

− M
ρ
t∧ζi−

)
= 1

ρ(Xt∧ζi−)

(
ρ

(
Xt∧ζi

) − ρ
(
Xt∧ζi−

))
= ρ(Xt∧ζi

)

ρ(Xt∧ζi−) − 1.
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The solutionZρ
t of the SDE

Z
ρ
t = 1+

∫ t

0
Z

ρ
s− dMs, 0 ≤ t < ζp,(2.2)

is a positive local martingale on the random time interval�0, ζp�, hence a positive
supermartingale. Consequently, the formula

dP̂x = Z
ρ
t dPx onMt ∩ {t < ζp} for x ∈ E,

uniquely determines a family of probability measures on(�,M∞). It is known
that under these new measures,X is a right Markov process onE; see [24],
Section 62. We will use(X̂,M,Mt , P̂x, x ∈ E) to denote the transformed process.
HereX̂t (ω) = Xt(ω) but we usêXt for emphasis when working witĥPx . Let P̂t

be the semigroup of̂X, that is,

P̂tf (x) = Êx[f (X̂t )] = Ex[Zρ
t f (Xt )] = Ex[Zρ

t f (Xt ); t < ζ ].
(These transition operators need not preserve Borel measurability; this minor
inconvenience can be dealt with as in Corollary 3.23 of [6].)

Before stating the next result, let us recall the definition of time-reversal
operatorrt on the path space. Given a pathω ∈ {t < ζ }, define

rt (ω)(s) :=
{

ω
(
(t − s)−)

, for 0 ≤ s < t,
ω(0), for s ≥ t.

Here forr > 0, ω(r−) := lims↑r ω(s). It is known (see Lemma 4.1.2 of [8]) that
the mappingrt preserves the measurePm onMt ∩ {t < ζ }.

DEFINITION 2.1. (i) A CAFAt is calledeven if At ◦ rt = At for all t < ζ .

(ii) An m-measurable functionu : E → R is locally in F (u ∈ •
F loc) provided

there is a nest{Gn} of finely open sets and a sequence{un} ⊂ F such thatu = un,
m-a.e. onGn for eachn.

We recall from [4]; Theorem 2.1, that a CAF with paths locally of bounded
variation (or merely of zero quadratic variation) is necessarily even.

Clearly eachu ∈ •
F loc has a quasi-continuous version, and for suchu the

continuous local martingale AFMu,c is well defined by

M
u,c
t := M

un,c
t for t ≤ TE�\Gn,n = 1,2, . . . .(2.3)

The following can be regarded as an extension to functions in
•

F loc of both
Fukushima’s decomposition and the Lyons–Zheng forward–backward martingale
decomposition.
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LEMMA 2.2. For u ∈ •
F loc and t > 0, Pm-a.s. on {t < ζ },

u(Xt) − u(X0) = 1
2(M

u,c
t − M

u,c
t � rt )

+ lim
ε↓0

∑
0<s≤t

(
u(Xs) − u(Xs−)

)
1{|u(Xs)−u(Xs−)|>ε}.

The limit above exists in the sense of convergence in probability under Px , for
m-a.e. x ∈ E.

PROOF. Note that whenu ∈ F , the martingale partMu
t in Fukushima’s

decomposition can be decomposed as

Mu
t = M

u,c
t + M

u,j
t + M

u,k
t ,

whereM
u,c
t is the continuous part of martingaleMu, and

M
u,j
t = lim

ε↓0

{ ∑
0<s≤t

(
u(Xs) − u(Xs−)

)
1{|u(Xs)−u(Xs−)|>ε}1{s<ζ }

−
∫ t

0

(∫
{y∈E : |u(y)−u(Xs)|>ε}

(
u(y) − u(Xs)

)
N(Xs, dy)

)
dHs

}
,

(2.4)
M

u,k
t =

∫ t

0
u(Xs)N(Xs,�)dHs − u(Xζ−)1{t≥ζi}

=
∫ t

0
u(Xs) dAκ

s − u(Xζ−)1{t≥ζi },

are the jump and killing partsMu, respectively. See [8], Theorem A.3.9. The limit
in the expression forMu,j is in the sense of convergence in the norm of the space of
square-integrable martingales and convergence in probability underPx for m-a.e.
x ∈ E (see [8]). SoPm-a.s. on{t < ζ } it follows that

u(Xt) − u(X0) = 1
2(Mu

t − Mu
t � rt )

= 1
2(M

u,c
t − M

u,c
t � rt )

+ lim
ε↓0

∑
0<s≤t

(
u(Xs) − u(Xs−)

)
1{|u(Xs)−u(Xs−)|>ε}.

For u ∈ •
F loc, let {Gn} be a nest of finely open sets and let{un} be a sequence of

functions inF such thatu = un q.e. onGn. For eachun ∈ F , Pm-a.s. on{t < ζ }
we have

un(Xt ) − un(X0) = 1
2(M

un,c
t − M

un,c
t � rt )

+ lim
ε↓0

∑
0<s≤t

(
un(Xs) − un(Xs−)

)
1{|un(Xs)−un(Xs−)|>ε}.

As [0, t] � s �→ Xs is right-continuous with left limits inE on {t < ζ }, the lemma
now follows from the above display, using (2.3) to pass to the limit asn → ∞. �
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REMARK 2.3. By [8], Theorem A.3.9, we can also replace the indicator
1{|u(Xs)−u(Xs−)|>ε} by 1{|eu(Xs )−eu(Xs−)|>ε}, and the set{y ∈ E : |u(y)− u(Xs)| > ε}
by {y ∈ E : |eu(y)−eu(Xs)| > ε}. Thus Lemma 2.2 can also take the following form:

Foru ∈ •
F loc,

u(Xt) − u(X0) = 1
2(M

u,c
t − M

u,c
t � rt )

+ lim
ε↓0

∑
0<s≤t

(
u(Xs) − u(Xs−)

)
1{|eu(Xs)−eu(Xs−)|>ε},

Pm-a.s. on{t < ζ }.
The convergence in the above expression is in the sense of convergence in
probability under eachPx for m-a.e.x ∈ E.

LEMMA 2.4. P̂t is symmetric on L2(E,ρ2m).

PROOF. Let f,g ∈ bB+(E). By time reversal, we have

(P̂tf, g)ρ2m = Em[Zρ
t f (Xt )g(X0)ρ

2(X0)]
= Em[Zρ

t ◦ rt g(Xt )ρ
2(Xt )f (X0)].

To show

(P̂tf, g)ρ2m = (f, P̂tg)ρ2m = Em[Zρ
t g(Xt )ρ

2(X0)f (X0)],
it suffices to prove the following identity:

Z
ρ
t ◦ rt = Z

ρ
t

ρ2(X0)

ρ2(Xt )
, Pm-a.s. on{t < ζ }.(2.5)

To this end, note that by the Doléans–Dade formula ([13], Theorem 9.39), on
{t < ζ },

Z
ρ
t = exp

(
Mt − 1

2
〈Mc〉t

) ∏
0<s≤t

(1+ �Ms)e
−�Ms

(2.6)
= exp

(
Mt − 1

2
〈Mc〉t

) ∏
0<s≤t

ρ(Xs)

ρ(Xs−)
exp

(
1− ρ(Xs)

ρ(Xs−)

)
.

It follows from (2.1) and (2.4) that on{t < ζ },

Mt = Mc
t + lim

ε↓0

{ ∑
0<s≤t

(
ρ(Xs)

ρ(Xs−)
− 1

)
1{|ρ(Xs)−ρ(Xs−)|>ε}

−
∫ t

0

(∫
{y∈E� : |ρ(y)−ρ(Xs)|>ε}

(
ρ(y)

ρ(Xs)
− 1

)
N(Xs, dy)

)
dHs

}
,
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where

Mc
t =

∫ t

0

1

ρ(Xs−)
dMρ,c

s .

Sinceρ > 0 q.e. onE, we see that logρ ∈ •
F loc (see [18], Corollary 6.2), and

therefore, by Lemma 2.2 and Remark 2.3, we havePm-a.s. on{t < ζ },
logρ(Xt) − logρ(X0)

= 1
2(Mc

t − Mc
t ◦ rt )(2.7)

+ lim
ε↓0

∑
0<s≤t

(
logρ(Xs) − logρ(Xs−)

)
1{|ρ(Xs)−ρ(Xs−)|>ε}.

Since both〈Mc〉t and
∫ t
0

∫
{y∈E�:|ρ(y)−ρ(Xs)|>ε}(ρ(y)ρ(Xs)

−1 − 1)N(Xs, dy) dHs

are even CAFs ofX, identity (2.5) follows from (2.6) and (2.7).�

The following result appears for symmetric diffusions as Lemma 4.4 in [5]; the
proof given there is valid for general symmetric Borel right processes.

THEOREM 2.5. If A = (At) is a PCAF of X with Revuz measure µ, then the
Revuz measure of A as a PCAF of X̂ is ρ2µ.

In what follows, if f ∈ B(E), then we writef ∈ L2(ρ ⊗ ρ · J ) to mean that
f̄ (x, y) := f (y) − f (x) is square-integrable with respect toρ ⊗ ρ · J .

THEOREM 2.6. Let (Ê , F̂ ) be the symmetric Dirichlet form on L2(E, ρ2m)

associated with X̂. Then
(a) {

f ∈ F :
∫

ρ(x)2µc〈f 〉(dx) < ∞
}

∩ L2(ρ ⊗ ρ · J ) ∩ L2(ρ2m) ⊂ F̂

and for f in F ∩ L2(ρ ⊗ ρ · J ) ∩ L2(ρ2m) with
∫

ρ(x)2µc〈f 〉(dx) < ∞,

Ê(f, f ) = 1
2

∫
E

ρ(x)2µc〈f 〉(dx)

(2.8)
+

∫
E×E

(
f (x) − f (y)

)2
ρ(x)ρ(y)J (dx, dy);

(b) 1∈ F̂ and Ê(1, 1) = 0, so the transformed process X̂ has infinite lifetime
and is conservative in the ergodic theory sense (“recurrent” in the sense of [8],
page 48).
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PROOF. Our proof is a modification of the proof of Theorem 3.6 in [3]. For
the reader’s convenience, we spell out the details. LetF

(1)
n = {x :ρ(x) ≥ 1/n}.

Then{F (1)
n :n ≥ 1} is anE -nest. By the probabilistic characterization ofE -nest,

{F (1)
n }n≥1 is anÊ -nest (forX̂) as well. So there is an̂E -nest{Fn;n ≥ 1} of compact

sets and a sequence ofgn ∈ F̂ such thatFn ⊂ F
(1)
n andgn = 1 on Fn for each

n ≥ 1. Again by the probabilistic characterization ofE -nest,{Fn}n≥1 is also an
E -nest (forX). If we letρFn be theE1-orthogonal projection ofρ ontoFFn := {u ∈
F :u = 0 q.e. onF c

n }, thenρFn converges toρ in (F ,E1). Letρn = (0∨ ρFn)∧ ρ.
Thenρn converges toρ in (F ,E1) as well (cf. Theorem 1.4.2(v) in [8]). Taking a
subsequence if necessary, we may assume thatρn converges toρ, E -q.e. onE. For
n ≥ 1, definehn = ρn/ρ. Sinceρ ≥ 1/n E -q.e. onFn andρn = 0 E -q.e. onF c

n ,
we havehn ∈ F , by the contraction property of(E ,F ). Note that 0≤ hn ≤ 1 and
hn → 1 q.e. onE asn → ∞. By a calculation found in the proof of Lemma 6.3.3
of [8], it can be shown that

1
2

∫
E

ρ(x)2µc〈hn〉(dx) +
∫
E×E

(
hn(x) − hn(y)

)2
ρ(x)ρ(y)J (dx, dy) → 0(2.9)

asn → ∞.
Let u be a bounded function inF with

1
2

∫
E

ρ(x)2µc〈u〉(dx)

+
∫
E×E

(
u(x) − u(y)

)2
ρ(x)ρ(y)J (dx, dy) +

∫
u(x)2ρ(x)2m(dx) < ∞.

Fix n ≥ 1 and definef := uhn. Clearlyf is a bounded function inF satisfying
the above inequality withf in place ofu. The processf (Xt) admits the following
Lyons–Zheng forward–backward martingale decomposition:

f (Xt) − f (X0) = 1
2(M

f
t − M

f
t ◦ rt ), Pm-a.s. on{t < ζ },(2.10)

whereMf
t is the martingale part in Fukushima’s decomposition off (Xt)−f (X0).

Recall thatdP̂x = Z
ρ
t dPx onMt ∩ {t < ζp}. Hence

Kt := M
f
t −

∫ t

0

1

Z
ρ
s−

d〈Mf ,Zρ〉s = M
f
t − 〈Mf , M〉t , t < ζp,

is a local martingale AF under̂P = (P̂x :x ∈ E) and

[K]t (P̂) = [Mf ]t (P), P̂m-a.s. fort < ζp.(2.11)

Here[K](P̂) is the square bracket process for the martingaleK under the familŷP,
and[Mf ](P) is the square bracket for martingaleMf under the familyP. We will
use〈K〉(P̂) and〈Mf 〉(P) to denote the dual predictable projections of[K](P̂) and
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[Mf ](P) under the respective familieŝP andP. It follows from (2.11) that for
t < ζp,

〈K〉t (P̂) = 〈Mf 〉t (P) +
∫ t

0

1

Z
ρ
s−

d〈[Mf ],Zρ〉s(P) = 〈Mf 〉t (P) + 〈[Mf ],M〉t (P);
see, for example, Chapter 12 of [13]. By the quasi-left continuity of the processes
X andX̂, all of the “sharp bracket” processes involved are continuous, so we have,
for t ≥ 0,

〈K〉t (P̂) = 〈Mf 〉t (P) + 〈[Mf ],M〉t (P)

= 〈Mf 〉t (P) +
( ∑

0<s≤t

(
f (Xs) − f (Xs−)

)2
(

ρ(Xs)

ρ(Xs−)
− 1

))p

(P)(2.12)

= 〈Mf 〉t (P) +
∫ t

0

∫
E�

(
f (Xs) − f (y)

)2
(

ρ(y)

ρ(Xs)
− 1

)
N(Xs, dy) dHs,

with the convention that 0/0 = 1. Thus, by Theorem 2.5, the Revuz measure for
the PCAF〈K〉t (P̂) of X̂ is

ρ(x)2µ〈f 〉(dx)

+ 2ρ(x)2
∫
y∈E

(
f (x) − f (y)

)2
(

ρ(y)

ρ(x)
− 1

)
J (dx, dy) − f (x)2ρ(x)2(2.13)

= ρ(x)2µc〈f 〉(dx) + 2
∫
y∈E

(
f (x) − f (y)

)2
ρ(x)ρ(y)J (dx, dy).

Now the CAF〈Mf ,M〉 is even, so by (2.10),

f (Xt) − f (X0) = 1
2(Kt − Kt ◦ rt ), Pm-a.s. on{t < ζ }.(2.14)

Let ν = ρ2m and

P̂ν(·) =
∫
E

P̂x(·)ν(dx).

Applying Theorem 2.5 and noting that the time reversal operatorrt also leaves the
measurêPν invariant onMt ∩ {t < ζ }, we have by (2.13) and (2.14)

lim
t→0

1

t
Êν

[(
f (X̂t ) − f (X̂0)

)2; t < ζ
]

≤ lim
t→0

(
1

2t
Êν[(Kt )

2; t < ζ ] + 1

2t
Êν[(Kt ◦ rt )

2; t < ζ ]
)

= lim
t→0

1

t
Êν[〈K〉t (P̂); t < ζ ]

≤
∫
E

ρ(x)2µc〈f 〉(dx) + 2
∫
E×E

(
f (x) − f (y)

)2
ρ(x)ρ(y)J (dx, dy)

< ∞.
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Recall thatf = 0 m-a.e. onF c
n and gn ∈ F̂ with gn = 1 m-a.e. onFn. Thus

f = fgn and

lim
t→0

1

t

∫
E

(
f (x) − P̂tf (x)

)
f (x)ν(dx)

= lim
t→0

1

t

(
1

2
Êν

[(
f (X̂t ) − f (X̂0)

)2; t < ζ
] +

∫
E

f (x)2(1− P̂t1)(x)ν(dx)

)
≤ lim sup

t→0

1

2t
Êν

[(
f (X̂t ) − f (X̂0)

)2; t < ζ
]

+ lim sup
t→0

1

t

∫
E
(fgn)(x)2(1− P̂t1)(x)ν(dx)

≤ lim sup
t→0

1

2t
Êν

[(
f (X̂t ) − f (X̂0)

)2; t < ζ
]

+ ‖f ‖2∞ lim sup
t→0

1

t

∫
E

gn(x)2(1− P̂t1)(x)ν(dx)

< ∞.

Thereforef ∈ F̂ , sof admits a Fukushima decomposition:

f (X̂t ) − f (X̂0) = M̂
f
t + N̂

f
t , P̂ν-a.s.,

whereM̂
f
t is a P̂x-square-integrable martingale AF and̂N

f
t is a CAF of zero

energy; in particular,̂Nf
t is a process of zero quadratic variation. On the other

hand,f (Xt) has a Fukushima decomposition under the familyP = (Px :x ∈ E):

f (Xt) − f (X0) = M
f
t + N

f
t .

By Girsanov’s theorem the processKt = M
f
t − 〈Mf ,M〉t is a local martingale

under̂Px on �0, ζp�, so by uniqueness we have

M̂
f
t = Kt for t < ζp.(2.15)

To expresŝE(f, f ), we first calculate the killing measurêκ for the transformed
process{X̂, P̂x, x ∈ E}. Now κ̂ is the Revuz measure of the PCAF(1{t≥ζi})p(P̂),

the dual predictable projection of the increasing AFt → 1{t≥ζi} underP̂. By the
same reasoning as for (2.12), for q.e.x ∈ E,(

1{t≥ζi }
)p

(P̂) = (
1{t≥ζi}

)p
(P) + 〈

1{t≥ζi },M
〉
(P)

= (
1{t≥ζi}

)p
(P) − (

1{t≥ζi}
)p

(P)

= 0.
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Thusκ̂ = 0. Now by (2.13) and (2.15),

Ê(f, f ) = lim
t→0

1

2t
Êν

[(
f (X̂t ) − f (X̂0)

)2]
= lim

t→0

1

2t
Êν[(M̂f

t )2] = lim
t→0

1

2t
Êν[〈K〉t ](2.16)

= 1

2

∫
E

ρ(x)2µc〈f 〉(dx) +
∫
E×E

(
f (x) − f (y)

)2
ρ(x)ρ(y)J (dx, dy).

Applying the above argument tohn (in place off ), we see thathn ∈ F̂ and,
by (2.9), thatÊ(hn,hn) → 0 asn → ∞. Sincehn → 1 q.e. onE, this implies
that 1∈ F̂e ∩ L2(E,ρ2m) = F̂ and Ê(1, 1) = 0 (see Theorem 1.5.2 of [8]).
Consequently,̂X is recurrent by Theorem 1.6.3 of [8]. This proves Theorem 2.6(b).

So far we have proved thatf = uhn ∈ F̂ and that (2.16) holds forf . Note that

Ê(uhn,uhn) ≤ 2‖u‖2∞ Ê(hn,hn) +
∫
E

ρ(x)2µc〈u〉(dx)

+ 2
∫
E×E

(
u(x) − u(y)

)2
ρ(x)ρ(y)J (dx, dy),

which is uniformly bounded. As|uhn| ≤ |u|, uhn → u, we see thatu can be
approximated in(F̂ , Ê1) by the Cesàro means of a subsequence of{uhn}n≥1.
Henceu is in F̂ . Repeating the computation forf shows that (2.16) holds foru as
well. This proves Theorem 2.6(a).�

REMARK 2.7. Suppose thatρ is in
•

F loc with ρ > 0 q.e. onE and that
t �→ ∑

0<s≤t |ρ(Xs) − ρ(Xs−)| is locally Px -integrable for q.e.x ∈ E. This is the
case ifρ is bounded, for example. If we define

M
ρ
t = M

ρ,c
t +

( ∑
0<s≤t

(
ρ(Xs) − ρ(Xs−)

))˜
,

where the superscript̃ indicates compensated sum, and use (2.1) and (2.2) to
defineZρ , then Theorem 2.6(a) remains valid (with the same proof ). We will not
use this fact in the sequel.

We now identify the domain of the Dirichlet space forX̂.

THEOREM 2.8. Under the condition of Theorem 2.6, the domain F̂ of
the Dirichlet form (Ê , F̂ ) for the Girsanov transformed process X̂ is the
Ê1-completion of{

f ∈ F :
∫

ρ(x)2µc〈f 〉(dx) < ∞
}

∩ L2(ρ ⊗ ρ · J ) ∩ L2(ρ2m),

where Ê1 = Ê + (·, ·)L2(E,ρ2m).
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We first prepare a lemma.

LEMMA 2.9. Define N̂(x, dy) := ρ(y)
ρ(x)

N(x, dy). Then (NX̂,H) is a Lévy

system for X̂. Consequently, if Ĵ denotes the jump measure of X̂, then Ĵ =
ρ ⊗ ρ · J .

PROOF. Let K = (Kt ) be a predictable process on� and let f be a
nonnegative Borel function onE × E vanishing on diagonal. By [24], (62.13)
we find

P̂x

[∑
s≤t

Ksf (X̂s−, X̂s)

]
= Px

[∑
s≤t

Ksf (Xs−,Xs)Z
ρ
s ; t < ζ

]

= Px

[∑
s≤t

KsZ
ρ
s−f (Xs−,Xs)

ρ(Xs)

ρ(Xs−)
; t < ζ

]

= Px

[∫ t

0
KsZ

ρ
s ρ(Xs)

−1N(ρf )(Xs) dHs; t < ζ

]
= P̂x

[∫ t

0
KsN̂f (X̂s) dHs

]
.

The conclusion follows. �

PROOF OF THEOREM 2.8. DefineMρ,o = Mρ + (ρ(Xζ−)1{·≥ζi })˜ and
Mo

t = ∫ t
0[ρ(Xs−)]−1 dM

ρ,o
s . Clearly Mρ,o is a Px-square-integrable MAF ofX

andMo is a locallyPx -square-integrable MAF ofX. Define

M̂t := −Mo
t + 〈Mc〉t (P) + ∑

0<s≤t

(ρ(X̂s) − ρ(X̂s−))2

ρ(X̂s)ρ(X̂s−)
1{s<ζ }.(2.17)

ThenM̂ is a local MAF ofX̂. To see this, observe that, by Girsanov’s theorem,

Mo
t − 〈Mo,M〉t (P) = Mo

t − 〈Mc〉t (P) −
( ∑

0<s≤·

(
ρ(Xs)

ρ(Xs−)
− 1

)2

1{s<ζ }
)p

t

(P)

is a local martingale AF of̂X. An application of Lemma 2.9 [to compute the
compensator of the sum on the right-hand side of (2.17)] now completes the proof
of the claim.

Let Ẑt be the solution todẐt = Ẑt− dM̂t . Denote byAκ the PCAF ofX
associated with the killing measureκ . Recall thatAκ = (1{·≥ζi})p(P). Using the
Doléans–Dade formula, one sees that

dPx

dP̂x

∣∣∣∣
Mt

= 1

Z
ρ
t

= Ẑt e
−Aκ

t .(2.18)
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(cf. the last section in the proof of Theorem 3.7 in [3]).
Let Fk = {x ∈ E :ρ(x) ≥ 1/k}, which is anE -nest hence an̂E -nest as well.

Define ρk = ρ − (ρ ∧ 1
k
) and hk = ρk/ρ. Clearly 0≤ hk ≤ 1, ρk ∈ FFk

, and
ρk → ρ in (F ,E1). Arguing as in the proof of Theorem 2.6, it can be shown
thathk ∈ L2(ρ ⊗ ρ · J ), andhk ∈ F̂ with Ê(hk, hk) → 0 ask → ∞. Now for any
u ∈ bF̂ , we claimf := uhk lies in bFFk

and∫
ρ(x)2µc〈f 〉(dx) +

∫ (
f (x) − f (y)

)2
ρ(x)ρ(y)J (dx, dy) < ∞.

First note that∫ (
f (x) − f (y)

)2
J (dx, dy)

≤
∫
Fk×Fk

f̄ (x, y)2J (dx, dy) + ‖u‖2∞
∫
(Fk×Fk)

c
h̄k(x, y)2J (dx, dy)

≤ k2
∫
Fk×Fk

f̄ (x, y)2ρ(x)ρ(y)J (dx, dy)

+ ‖u‖2∞
∫
(Fk×Fk)

c
h̄k(x, y)2 J (dx, dy)

< ∞.

As f ∈ bF̂ , by Fukushima’s decomposition,

f (X̂t ) − f (X̂0) = M̂
f
t + N̂

f
t .

Define a family of measuresQ = (Qx :x ∈ E) through dQx

dP̂x
|Mt = Ẑt , whereẐ is

the Doléans–Dade exponential of̂M , andM̂ is as in (2.17). In this proof only we
shall useX∗ to denote the coordinate process when referring toQ. Recall that̂X is
a right Markov process with symmetry measureν(dx) := ρ(x)2m(dx). It can be
shown as in the proof of Lemma 2.4 that(X∗,Q) is a right Markov process with
symmetry measureρ(x)−2ν(dx) = m(dx). From Girsanov’s theorem,

K := M̂f − 〈M̂f , M̂〉(P̂)

is aQ-local martingale. Note that since[K]t (Q) = [M̂f ]t (P̂),

〈K〉t (Q) = 〈M̂f 〉t (P̂) + 〈[M̂f ], M̂〉t (P̂).(2.19)

But

〈[M̂f ], M̂〉t (P̂) =
( ∑

0<s≤t

(
f (X̂s) − f (X̂s−)

)2ρ(X̂s−) − ρ(X̂s)

ρ(X̂s)

)p

(P̂),

so its Revuz measure with respect to(X̂, P̂) is, by Lemma 2.9,∫
y∈E

(
f (x) − f (y)

)2
ρ(x)

(
ρ(x) − ρ(y)

)
J (dx, dy).
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Hence by applying Theorem 2.5 witĥX andX∗ in the roles ofX andX̂, and with
ρ−1 in place ofρ, the Revuz measure of〈[M̂f ], M̂〉(P̂) viewed as a PCAF ofX∗
is

1

ρ(x)

∫
y∈E

(
f (x) − f (y)

)2(
ρ(x) − ρ(y)

)
J (dx, dy).

Likewise, by (2.19), the Revuz measureµ∗〈K〉 of 〈K〉(Q) viewed as PCAF ofX∗
is seen to be

µ∗〈K〉(dx) = 1

ρ(x)2 µ̂c〈f 〉(dx) +
∫
y∈E

(
f (x) − f (y)

)2
J (dx, dy).(2.20)

As ρ ≥ 1/k onFk andf = 0 onF c
k , hence

∫
ρ(x)−2 µ̂c〈f 〉(dx) < ∞, and therefore

µ∗〈K〉(E) < ∞. But f (X∗
t ) − f (X∗

0) = (Kt − Kt ◦ rt )/2, and we deduce, by
reasoning similar to that used just below (2.14), thatf is in the Dirichlet space
of X∗. In view of (2.18), we havef = uhk ∈ bFFk

. As bothu andhk are inbF̂ ,
Lemma 2.9 yields∫ (

f (x) − f (y)
)2

ρ(x)ρ(y)J (dx, dy) < ∞.

By a calculation similar to that used in the proof of Lemma 2.9, the jump measure
of X∗ is J . Likewise, by the argument appearing between (2.15) and (2.16), one
sees that the killing measure ofX∗ is the zero measure. If we useµ∗〈f 〉 andµ

∗,c
〈f 〉

to denote the energy measure off and its strong local part, in the context ofX∗,
thenµ∗〈f 〉 = µ∗〈K〉. On the other hand,

µ∗〈f 〉(dx) = µ̂
∗,c
〈f 〉(dx) +

∫
y∈E

(
f (x) − f (y)

)2
J (dx, dy).

Hence from (2.20) we see that

µ
∗,c
〈f 〉(dx) = 1

ρ(x)2 µ̂c〈f 〉(dx).

As the Feynman–Kac transformation by the multiplicative functional exp(−Aκ
t )

does not change the strongly local part of the energy measure, we have

µc〈f 〉(dx) = 1

ρ(x)2
µ̂c〈f 〉(dx),

and so ∫
ρ(x)2µc〈f 〉(dx) +

∫ (
f (x) − f (y)

)2
ρ(x)ρ(y)J (dx, dy) < ∞.

Since|uhk| ≤ |u|, uhk → u and

Ê(uhk,uhk) ≤ 2‖u‖2∞Ê(hk, hk) + 2Ê(u,u),
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which is uniformly bounded, we see thatu can be approximated in(F̂ , Ê1) by the
Cesàro mean of a subsequence of{uhk}k≥1. Henceu is in theÊ1-closure of{

f ∈ F :
∫

ρ(x)2µc〈f 〉(dx) < ∞
}

∩ L2(ρ ⊗ ρ · J ) ∩ L2(ρ2m).

This proves the theorem.�

3. Supermartingale multiplicative functional. In this section we prove
a representation theorem for a general class of supermartingale multiplicative
functionals (MFs) ofX. This result is a sharpening of results of Kunita ([16],
Theorem 3.1) and Sharpe ([23], Theorem 7.1); see also [17], Section 6 and [15],
Section 4. For a stopping timeT , we will useI (T ) to denote the stochastic interval
�0, T �∪ �Ti�, whereTi is the totally inaccessible part ofT . By a slight abuse of
notation, we shall often write “t ∈ I (T )” to mean “(t,ω) ∈ I (T ),” whereω is the
(suppressed, as usual) sample path.

THEOREM 3.1. Let Z be a supermartingale MF of X such that Z0 ≡ 1. Then
there is a local martingale AF M , a PCAF A, and a Borel function ϕ :E × E� →
[−1,+∞[ such that

�Mt := Mt − Mt− = ϕ(Xt−,Xt ) ∀ t ∈ I (ζ ), Pm-a.s.,(3.1)

Zt = eMt−(1/2)〈Mc〉t−At

(3.2) × ∏
0<s≤t

[1+ ϕ(Xs−,Xs)]e−ϕ(Xs−,Xs) ∀ t ∈ I (ζ ), Pm-a.s.

The AF M and the PCAF A are determined by Z up to Pm-evanescence. In
particular, ϕ is uniquely determined by Z modulo null sets of the measure
J ∗(B) := J (B ∩(E×E))+κ(π1(B ∩(E×{�})), where π1(x, y) := x. Moreover,∫ t

0
N

(
1{|ϕ|≤1}ϕ2 + 1{ϕ>1}ϕ

)
(Xs) dHs +

∫ t

0
ϕ(Xs,�)dAκ

s < +∞(3.3)

for all t ∈ I (ζ ), Pm-a.s. Finally,

S := inf{t > 0 :Zt = 0} = inf{t > 0 :ϕ(Xt−,Xt ) = −1}(3.4)

Pm-a.s. on {S < ζp}.

For a semimartingaleN , let Exp(N) denote the unique solutionY of

Yt = 1+
∫ t

0
Ys− dNs.

Exp(N) is called the stochastic exponential (in the sense of Doléans–Dade) ofN .
Formula (3.2) amounts to the statement thatZ = Exp(M − A) at least onI (ζ ).
Before turning to the proof of Theorem 3.1 we prepare the way with a lemma.
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LEMMA 3.2. Let B = (Bt )t≥0 be an AF of X. Then there is a Borel function
b :E × E� → R with b(x, x) = 0 for all x ∈ E such that

�Bt := Bt − Bt− = b(Xt−,Xt ) ∀ t ∈]0, ζp[, Pm-a.s.(3.5)

If b′ is another such function, then J ∗(b′ �= b) = 0.

PROOF. It follows from [11], (16.5) that there is a Borel functionb0 :E ×
E → R such that�Bt = b0(Xt−,Xt ) for all t ∈]0, ζ [, Pm-a.s. Fixε > 0 and define
T := inf{t > 0 : |�Bt | ≥ ε}. ThenT is athin terminal time; that is,Px[T = 0] = 0
for all x ∈ E. Consequently,Tp , the predictable part ofT , is a thin predictable
terminal time; by [11], (16.21),Pm(Tp < ζ) = 0. Owing to [24], Section 73, it
follows that {t ∈ [0, ζ [ : |�Bt | > 0} ⊂ {t > 0 :Xt− �= Xt }. Thus, modifyingb0

if necessary, we can arrange thatb0(x, x) = 0 for all x ∈ E. Next, notice that
�Bζi

is measurable over the germσ -field F m[ζi−,ζi ]. BecauseX ≡ � on �ζi,∞�,

this germσ -field is generated (moduloPm-null sets) by the random variables of
the form g(X)ζi− as g varies over the bounded one-excessive functions ofX;
see [24], (24.32)(ii). But in the present context, natural AFs are continuous (by
Corollary 3.17 in [6]), from which it follows thatg(X)ζi− = g(Xζi−), Pm-a.s.
Therefore there is a Borel functionb� :E → R such that�Bζi

= b�(Xζi−),
Pm-a.s. on{ζi < ∞}; see [11], (16.4). Definingb(x, y) = b0(x, y)1E×E(x, y) +
b�(x)1{�}(y), we obtain the representation (3.5). The proof of the uniqueness
assertion is left as an exercise to the reader.�

PROOF OFTHEOREM 3.1. We begin with a discussion of the terminal timeS

defined in (3.4); for related work see [10, 15, 26]. ClearlyS is a thin terminal
time. Define the sequence{S(n) :n ≥ 1} of iterates ofS by settingS(1) := S

and S(n+1) := S(n) + S � θS(n) for n = 1,2, . . . . [As a matter of convention, if
S(n)(ω) = +∞, thenS(k)(ω) = +∞ for all k > n.] Next define

Ct := ∑
n

1{S(n)≤t}, t ≥ 0

and

S(∞) :=↑ lim
n

S(n).

Let [�] denote the sample pathω such thatXt(ω) = � for all t ≥ 0. With the
conventionZt([�]) ≡ 1, we haveS([�]) = +∞. Thus, if S(n)(ω) = ζ(ω), then
S(k)(ω) = +∞ for all k > n. Consequently,{S(n) :n ≥ 1} announcesS(∞) on
{S(∞) < +∞}. That is,S(∞) is a thin predictable terminal time, henceS(∞) ≥ ζp,
Pm-a.s. by [11], (16.21). Since{Ct = ∞, t < ζ } = {S(∞) ≤ t < ζ }, it follows that
C is finite onI (ζ ), Pm-a.s. Let us now apply Lemma 3.2 toC, taking into account
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the fact that�C takes values in{0,1} in the present situation. We find that there is
a Borel set� ⊂ E × E�, disjoint from the “diagonal”{(x, x) :x ∈ E}, such that

Ct = ∑
0<s≤t

1�(Xs−,Xs)

providedt ∈ I (ζ ), Pm-a.s. In particular,

S = inf{t > 0 :(Xt−,Xt ) ∈ �}(3.6)

Pm-a.s. on{S < ζp}. In fact, a little thought shows that the infimum in (3.6) is
attained:(XS−,XS) ∈ �, Pm-a.s. on{S < ζp}.

From [14], Théorème 1 and the quasi-left-continuity of the filtration(Mt ), we
know thatZ−1− is locally bounded onI (S) in the sense that there is an increasing
sequence(Sn) of stopping times withI (S) = ⋃∞

n=1�0, Sn� such thatZ−1− ≤ n on
�0, Sn� for all n, Pm-a.s. LetZ = N − V be the Doob–Meyer decomposition
of Z into local martingale and predictable increasing componentsN and V ,
respectively. DefineM◦

t := ∫ t
0 Z−1

s− dNs and A◦
t := ∫ t

0 Z−1
s− dVs . Both of these

integrals are well defined onI (S) because of the local boundedness ofZ−1− just
noted. It is not hard to check thatM◦ is an AF of(X,S) (the processX killed at
time S, defined to equalX beforeS and� at and afterS) and a local martingale
on I (S), and thatA◦ is a predictable increasing AF of(X,S). Of course,A◦ is
continuous except perhaps for a jump atSp on {Sp = ζp < ∞}. (By the discussion
in the preceding section,S{S<ζp} is totally inaccessible.)

We now extendM◦ andA◦ to AFs ofX. Let us begin withA◦. By an extension
procedure detailed in Theorem (4.8) of [11], there is a diffuse homogeneous
random measureα of X such thatA◦

t = α([0, t]) for all t < S, Pm-a.s. We will
show thatα([0, t]) < +∞ for all t < ζ , Pm-a.s., and then use the recipeAt :=
α([0, t ∧ ζ ]), t ≥ 0, as the desired extension ofA◦. DefineR := inf{t :α([0, t]) =
+∞}. Clearly R is a terminal time, andR ≥ S, so thatR is thin and hence
exact, in the sense thatt + R � θt decreases toR as t decreases to 0. Now
defineRn := inf{t :α([0, t]) ≥ n}, and notice thatRn ≤ R. The strong Markov
property (applied at the stopping timeR) shows that the event{Rn = R < ζ }
differs from the event{Rn = R < ζ, S � θR > 0} by a Pm-null set. Suppose that
ω is a point of{Rn = R < ζ, S � θR > 0}. Thenα(ω, [0, t]) < n for 0 ≤ t < R(ω)

butα(ω, [0, t]) = +∞ for t > R(ω). In particular, ift > R(ω), then

+∞ = α(ω, [0, t]) = α
(
ω, [0,R(ω)]) + α

(
θRω, (0, t − R(ω)]).

The furthest right term above is finite whent is sufficiently close toR(ω) since
S(θRω) > 0. Thereforeα(ω, [0,R(ω)]) = +∞. On the other hand,α(ω, [0,

R(ω))) = α(ω, [0,Rn(ω))) ≤ n. But α(ω, {R(ω)}) = 0 becauseα is diffuse. It
follows that Pm(Rn = R < ζ) = 0, so thatR′ := R{R<ζ } is a thin predictable
terminal time. ThusR′ ≥ ζ , which forcesR ≥ ζ as well. This shows thatt �→
α([0, t]) defines a PCAF ofX.
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Turning to M◦, notice that�M◦
t = �Zt/Zt− = Zt/Zt− − 1 ≥ −1. Define

Bt := ∑
0<s≤t �M◦

t 1{�M◦
t >1}, let Bp

t denote the dual predictable projection ofB,

and now defineM◦,2
t := Bt −B

p
t andM

◦,1
t := M◦

t −M
o,2
t . BothM◦,1 andM◦,2 are

local martingales onI (S) and AFs of(X,S). By the argument of the last section,
the CAF [of (X,S)] Bp extends to a CAF�B of X. Moreover, by (3.5) there is
a Borel functionϕ :E × E� → [−1,+∞[ such that�M◦ = ϕ(X−,X) on I (S).
Then

M
∗,2
t := ∑

0<s≤t

ϕ(Xs−,Xs)1{ϕ>1}(Xs−,Xs) − �Bt

defines an extension ofM◦,2 to a local martingale AF ofX. Next, given a locally
square-integrable martingale AFN , consider the covariation process�◦(N) :=
〈M◦,1,N〉, viewed as a CAF of(X,S). As before, this CAF admits a unique
extension�(N) to a CAF of X. In addition, we have the Kunita–Watanabe
estimate

〈M◦,1,N〉2
t ≤ 〈M◦,1〉t · 〈N〉t ∀ t ∈ [0, S[,

and it is easy to check that[�(N)t ]2 ≤ Dt · 〈N〉t , whereD is the extension of the
CAF 〈M◦,1〉. A result of Kunita (Proposition 2.4 in [15]) now tells us that there
is a local martingale AFM∗,1 such that�(N) ≡ 〈M∗,1,N〉 for all N . Of course,
M∗,1 ≡ M◦,1 on I (S). The local martingale AFM := M∗,1 + M∗,2 is the desired
extension ofM◦. Notice that�M ≡ ϕ(X−,X) on I (ζ ). �

4. Absolute continuity and Dirichlet forms. Let Y = (�,M,Mt , Yt ,Qx,

x ∈ E) be another symmetric Markov process with symmetry measureν, which
is realized on the same (canonical) path space� as(X,Px, x ∈ E). HereYt(ω) =
Xt(ω) but we useY for emphasis when referring toY . As with the processX, we
assume thatY is a Borel right process.

We note that Lemmas 2.5, 3.4 and 3.9 in [5] are valid in the setting of symmetric
Borel right processes. The first result of this section is the analogue of [5],
Theorem 3.2.

THEOREM 4.1. Assume Qν �loc Pm, in that Qν |Mt∩{t<ζ } is absolutely
continuous with respect to Pm|Mt∩{t<ζ } for each t > 0. Then ν � m and there is
a (Y, ν)-inessential Borel set N ⊂ E which is X-finely closed, and a version ρ2 of
the Radon–Nikodym derivative dν/dm such that 0 < ρ(x) < ∞ for all x ∈ E \ N

and:

(a) t → ρ(Xt) is right-continuous on [0, TN [ with left limits on ]0, TN ∧ ζ [,
Px-a.s. for all x ∈ E \ N ; in particular, ρ|E\N is (X,TN)-finely continuous;

(b) logρ ∈ •
F loc(X,TN) and there exists a local martingale AF Mt satisfying

logρ(Xt) − logρ(X0) = (Mt − Mt ◦ rt )/2, Pm-a.s. on {t < TN ∧ ζ }.(4.1)
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PROOF. The existence ofN follows from the proofs of Lemmas 3.4 and 3.9
in [5]. By Kunita ([16], Theorem 5.1), there is a supermartingale multiplicative
functionalZt of X satisfying

dQν

dPm

∣∣∣∣
Mt∩{t<ζ }

= Zt .(4.2)

We setZt = 0 for t ≥ ζ . SinceX is symmetric under the measurePm, we have

ρ2(X0)Zt = ρ2(Xt )Zt ◦ rt , Pm-a.s. on{t < ζ }.
This implies that

2 logρ(Xt) − 2 logρ(X0)
(4.3) = logZt − logZt ◦ rt , Pm-a.s. on{t < TN ∧ ζ }.
But, by Theorem 3.1,

logZt − logZ0 = Mt − 1
2〈Mc〉t − At + Ht, 0 ≤ t < ζ,

where

Ht := ∑
0<s≤t

(
log

(
1+ ϕ(Xs−,Xs)

) − ϕ(Xs−,Xs)
)
,

which is absolutely convergent in view of (3.3). ClearlyH is quasi-left-continuous
sinceX is so; thus its dual predictable projectionHp is a CAF. Define

M∗
t := 1

2(Mt + Ht − H
p
t ), A∗

t := 1
2

(
H

p
t − 1

2〈Mc〉t − At

)
.

ThenM∗
t is a local martingale AF, andA∗

t is a CAF of finite variation with

logZt − logZ0 = 2M∗
t + 2A∗

t .

Note thatZ0 = ρ2(X0) andA∗
t is even. So on{t < TN ∧ ζ },

logZt − logZt � rt + 2 logρ(Xt) − 2 logρ(X0) = 2M∗
t − 2M∗

t � rt .

Hence by (4.3)

logρ(Xt) − logρ(X0) = (M∗
t − M∗

t ◦ rt )/2.

Theorem 4.2 now implies that logρ ∈ •
F loc(X, TN). Thereforeρ has a quasi-

continuous version with respect to subprocess(X, TN). �

THEOREM 4.2. Let f be a quasi-continuous Borel function on E, and
suppose that there is a local martingale AF M such that

f (Xt) − f (X0) = (Mt − Mt ◦ rt )/2, Pm-a.s. for each t ∈ [0, ζ [.
Then f ∈ •

F loc.
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PROOF. We first assume that the jumps ofM are bounded, and then we show
how to reduce to this special case.

If there is a constantC such that|�Mt(ω)| ≤ C, then it is easy to check that
[M] is locally integrable, so〈M〉 exists and is a PCAF ofX. Things being so, the
argument in [5], Lemma 3.15, can be used to reach the desired conclusion.

In general, defineT := inf{t > 0 :|�Mt | > 1}. ThenT is a thin terminal time,
and the subprocess(X,T ) is m-symmetric with state spaceE. Theorem 4.1
in [27] provides a precise description of the Dirichlet form of(X,T ), telling us,
in particular, that the Dirichlet spaceF (X,T ) of (X,T ) is a subspace ofF .
Evidently, X and (X,T ) have the same fine topologies (moduloX-exceptional
sets). Clearly, ifN is X-exceptional, then it is(X,T )-exceptional. Conversely, if
N is (X,T )-exceptional, then it isX-exceptional. To see this let{Tn} denote the
sequence of iterates ofT . By assumption,X does not encounterN during any of
the open intervals]Tn,Tn+1[. ThusX visits N at most countably often,Pm-a.s.
That is,N is m-semipolar, hence exceptional sinceX is symmetric. Using quasi-
left-continuity, one now checks that any increasing sequence{Gn} of finely open
sets is anX-nest if and only if it is an(X,T )-nest.

Now for f under the assumptions of the theorem, by modifyingM at timeT

we can produce a local martingale AF of(X,T ), call it M∗, with jumps bounded
by 1, such that

f (Xt) − f (X0) = (M∗
t − M∗

t ◦ rt )/2, Pm-a.s. for eacht ∈ [0, T [.
By the first section,f ∈ •

F (X,T )loc. The preceding section tells us that
•

F (X,T )loc ⊂ •
F loc sinceF (X,T ) ⊂ F . This completes the proof.�

For t > 0, we say that two sample pathsω andω′ arepre-t-equivalent provided
ω(s) = ω′(s) for all s ∈ [0, t[. Observe that ifA = (At) is a finite CAF ofX and if
ω andω′ are pre-t-equivalent, then

As(ω) = As(ω
′) for all 0 ≤ s ≤ t.

It is easy to check thatrtθsω is pre-t-equivalent tort+sω and thatθt rt+sω is pre-
s-equivalent torsω. This will be used repeatedly in the proof of next theorem.
Define

Ât = At � rt on {t < ζ }.
Following [26], we have the following result.

THEOREM 4.3. Â = (Ât : 0 ≤ t < ζ ) is a CAF of X.

PROOF. First we need to show that̂At is an AF. On{t + s < ζ },
Ât+s = At+s � rt+s = (At + As � θt ) � rt+s = At � rt+s + As � θt � rt+s

= At � rt � θs + As � rs = Âs + Ât � θs .
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Note that on{t < ζ }, for 0< u < t ,

Ât − Ât−u = Âu � θt−u = Au � ru � θt−u = Au � rt .

Hence

lim
u↓0

(Ât−u − Ât ) = − lim
u↓0

Au � rt = 0.

This shows that̂A is left-continuous.
Let us now prove the right-continuity. Note that on{t + u < ζ },

Ât+u − Ât = Âu � θt = Au � ru � θt = Au � rt+u,

so it suffices to show that limu↓0 Au � rt+u = 0. For any s > u > 0, since
θs−u � rt+sω is pre-(t + u)-equivalent tort+uω, we have

(As − As−u) � rt+s = Au � θs−u � rt+s = Au � rt+u.

Thus

lim
u↓0

Au � rt+u = lim
u↓0

(As − As−u) � rt+s = (As − As−) � rt+s = 0.

This proves the theorem.�

For simplicity, from now on we will assume thatQx �loc Px for all x and that
Z > 0 on�0, ζ �. It is easy to reduce to this case by killingX at a terminal time and
removing aY -exceptional setN from E.

Defining� := logρ, we have� ∈ •
F loc by Theorem 4.1. Recall that the density

processZ in (4.2) is a nonnegative supermartingale MF ofX, which is strictly
positive on�0, ζ �. Hence by Theorem 3.1,Z = Exp(M − A), whereM is a
local martingale MF andA is a PCAF ofX. Let Mc andMd be the continuous
and purely discontinuous components ofM , and letϕ be the Borel function:
E × E� → [−1,+∞[ with ϕ(x, x) = 0 for all x ∈ E such that

�Md
t = �Mt = ϕ(Xt−,Xt ), Pm-a.s.

In particular, Md is the compensated local martingale corresponding to∑
0<s≤· ϕ(Xs−,Xs). We now deduce from the identity (4.1) that

�(Xt ) − �(X0) = 1

2
(Mc

t − Mc
t ◦ rt ) + 1

2

∑
0<s≤t

log
(

1+ ϕ(Xs−,Xs)

1+ ϕ(Xs,Xs−)

)
(4.4)

Pm-a.s. on{t < ζ } for everyt > 0. The infinite series in (4.4) is to be understood
in the following sense:∑

0<s≤t

log
(

1+ ϕ(Xs−,Xs)

1+ ϕ(Xs,Xs−)

)

= ∑
0<s≤t

(
log

(
1+ ϕ(Xs−,Xs)

) − ϕ(Xs−,Xs)
)

(4.5)

− ∑
0<s≤t

(
log

(
1+ ϕ(Xs,Xs−)

) − ϕ(Xs,Xs−)
)
,
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both sums on the right being absolutely convergent,Pm-a.s. on{t < ζ }. By
Theorem 4.3, (4.4) in fact holds for allt ∈ [0, ζ [, Pm-a.s.

As � ∈ •
F loc by Theorem 4.1, it follows from Lemma 2.2 that

�(Xt ) − �(X0) = 1
2(M

�,c
t − M

�,c
t ◦ rt )

(4.6)
+ lim

ε↓0

∑
0<s≤t

(
�(Xs) − �(Xs−)

)
1{|�(Xs)−�(Xs−)|>ε}

for all t ∈ [0, ζ [, Pm-a.s. Identities (4.4)–(4.6) yieldPm-a.s.

Mc
t − Mc

t ◦ rt = M
�,c
t − M

�,c
t ◦ rt for all t ∈ [0, ζ [.

Using the fact that an even martingale CAF must vanish [5], (3.25), we deduce
from the above that

Mc = M�,c = ρ−1(X−) • Mρ,c,

whereρ−1(X−) • Mρ,c is an Itô integral, and the last equality follows from [8],
Theorem 5.6.2. It follows from Lemma 3.2 and (4.5) that

�(x) − �(y) = 1

2
log

(
1+ ϕ(x, y)

1+ ϕ(y, x)

)
J ∗-a.e. onE × E,

and so

ρ(y)2

ρ(x)2
= 1+ ϕ(x, y)

1+ ϕ(y, x)
.

Thus, the functionγ defined by

γ (x, y) := ρ(x)2[1+ ϕ(x, y)](4.7)

is symmetric,J ∗-a.e.
Recall that by Theorem 3.1 the densityZt in (4.2) can be written as

Z = Exp(M − A) = Exp(M)Exp(−A),

whereM is a local martingale MF andA is a PCAF ofX. As �Zt = Zt− · �Mt ,
we haveZt = Zt−(1 + �Mt) = Zt−(1 + ϕ(Xt−,Xt )). By an argument used in
the proof of Lemma 2.9, one sees that(NY ,H) is a Lévy system ofY , where
NY (x, dy) := (1+ ϕ(x, y))N(x, dy). Hence the jump measure ofY is

JY (dx, dy) = ρ(x)2(1+ ϕ(x, y)
)
J (dx, dy) = γ (x, y)J (dx, dy)(4.8)

(cf. [5], Lemma 4.4).
To find the killing measureκY of Y , note thatQ = (Qx :x ∈ E) and P =

(Px :x ∈ E) are related by first making a Girsanov transformation using Exp(M)
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and then a Feynman–Kac transformation using Exp(−A). HenceκY is the Revuz
measure for the PCAF(

1{·≥ζi}
)p

(Q) = (
1{·≥ζi}

)p
(P) + 〈

1{·≥ζi},M
〉
(P) + A

= (
1{·≥ζi}

)p
(P) + (

�Mζi
1{·≥ζi}

)p
(P) + A

= (
1{·≥ζi}

)p
(P) + (

ϕ(Xζi−,�)1{·≥ζi}
)p

(P) + A.

So

κY (dx) = ρ(x)2(1+ ϕ(x,�)
)
κ(dx) + ρ(x)2µA(dx).(4.9)

The above discussion proves half of the theorem to follow. Let(EY ,F Y ) be the
Dirichlet form for process(Y,Q). From its probabilistic characterization,{Fk}k≥1
is anEY -nest if and only if it is anE -nest. So we can chooseEY -nest{Fk}k≥1 of
compact sets (see, e.g., VI.3 of [19]) such that 1/k ≤ ρ ≤ k q.e. onFk.

THEOREM 4.4. Let (EY ,F Y ) and {Fk}k≥1 be as above. Then

∞⋃
k=1

FFk
∩ L2(γ · J ) ∩ L2(κY ) ⊂ F Y(4.10)

and for f in the set on the left-hand side of (4.10),

EY (f,f ) = 1
2

∫
ρ(x)2µc〈f 〉(dx)

(4.11)
+

∫ (
f (x) − f (y)

)2
JY (dx, dy) +

∫
f (x)2κY (dx),

with JY and κY given by (4.8)and (4.9).

PROOF. To calculate the continuous part of the energy measure, we pro-
ceed as in Section 2, using the method of forward–backward martingale de-
compositions together with martingale theory. DefineQ̃ = (Q̃x : x ∈ E) by
dQ̃x/dPx|Mt∩{t<ζp} = Exp(Mt). Then (X, Q̃) is ν-symmetric. Forf ∈ bFFk

∩
L2(κY ) ∩ L2(γ · J ), by the Lyons–Zheng forward–backward martingale decom-
position,

f (Xt ) − f (X0) = 1
2(M

f
t − M

f
t ◦ rt ), Pm-a.s. on{t < ζ },

whereMf
t is the martingale part in Fukushima’s decomposition off (Xt)−f (X0).

Hence

Kt := M
f
t − 〈Mf ,M〉t , t < ζp,

is a local martingale AF under̃Q and

[K]t (Q̃) = [Mf ]t (P), P̂x-a.s. fort < ζp.
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Hence fort < ζp,

〈K〉t (Q̃) = 〈Mf 〉t (P) + 〈Mf ,M〉t (P)

= 〈Mf 〉t (P) +
∫ t

0

∫
E�

(
f (Xs) − f (y)

)2
ϕ(Xs, y)N(Xs, dy) dHs.

So the Revuz measure of〈K〉 with respect to(X, Q̃) is

ρ(x)2µ〈f 〉(dx) + 2ρ(x)2
∫
y∈E

(
f (x) − f (y)

)2
ϕ(x, y)J (dx, dy)

+ ρ(x)2ϕ(x,�)f (x)2κ(dx)

= ρ(x)2µc〈f 〉(dx) + 2
∫
y∈E

(
f (x) − f (y)

)2
JY (dx, dy)

+ ρ(x)2(1+ ϕ(x,�)
)
f (x)2κ(dx).

Let (Ê , F̂ ) [resp.(EY ,F Y )] be the Dirichlet form for the process(X, Q̃) [resp.
(Y,Q)]. As (Y,Q) is obtained from(X, Q̃) through Feynman–Kac transform by
Exp(−A), F Y = F̂ ∩ L2(φ2µA) and F Y (f,f ) = Ê(f, f ) + ∫

f (x)2φ(x)2 ×
µA(dx). Becausef = 0 q.e. onF c

k for somek ≥ 1, an argument similar to that
used in the proof of Theorem 2.6 [between (2.14) and (2.15)] shows thatf ∈ F̂ .
Applying Feynman–Kac, one hasf ∈ F Y with

EY (f,f ) = 1
2

∫
ρ(x)2µc〈f 〉(dx) +

∫ (
f (x) − f (y)

)2
JY (dx, dy)

+
∫

f (x)2κY (dx),

whereJY andκY are given by (4.8) and (4.9).�

In the remainder of this section, we will focus on the special case in which the
supermartingaleZt in (4.2) is of pure jump type. That is, in the expression (3.2)
for Z, we assume thatMc = 0, A = 0, ϕ is symmetric onE × E with ϕ > −1
on E × E andϕ(x,�) = 0, soZ is strictly positive on�0, ζp� and t �→ Zt is
continuous atζi . As a consequence of Theorem 3.1, the integrability condition
(3.3) holds.

COROLLARY 4.5. In the setting of Theorem 4.4, suppose there are real
constants c1 and c2 such that −1 < c1 ≤ ϕ(x, y) ≤ c2 for all x, y ∈ E. Then
F Y = F and (4.11)holds for all f ∈ F .

PROOF. By Theorem 4.4,F ⊂ F Y and (4.11) holds for allf ∈ F . Moreover,
as in the discussion at (2.18), we havedPx |Mt /dP̂x|Mt = Ẑt , where Ẑ is the
exponential local martingale MF ofY determined by the purely discontinuous local
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martingaleM̂ with M̂t − M̂t− = ϕ̂(Yt−, Yt ), andϕ̂ := −ϕ/(1+ϕ). In short,X can
be recovered fromY by a pure-jump Girsanov transformation of the same type
that led fromX to Y . A second application of Theorem 4.4, in which the roles of
X andY are reversed, shows thatF Y ⊂ F . �

We now suppose that∫ t

0
N(|ϕ|)(Xs) dHs < ∞ ∀ t ∈ [0, ζ [, Pm-a.s.(4.12)

Thus

Mt = ∑
s≤t

ϕ(Xs−,Xs) − (Nϕ ∗ H)t,

the infinite series converging absolutely for eacht ∈ [0, ζ [, Pm-a.s. Consequently,
the local martingale AFM has paths of locally finite variation. In particular,Z can
be expressed as

Zt = ∏
s≤t

(
1+ ϕ(Xs−,Xs)

)
exp

(−(Nϕ ∗ H)t
) ∀ t ∈ [0, ζ [,(4.13)

the infinite product being absolutely convergent.
Conversely, ifφ :E × E →]−1,∞[ is symmetric,φ(x,�) := 0 and (4.12)

holds, thenZt in (4.13) defines a positive local martingale MF. Under the family of
measuresQ = (Qx :x ∈ E) defined bydQx/dPx

∣∣
Ft

= Zt , the processY := (X,Q)

is an m-symmetric Markov process whose law is locally absolutely continuous
with respect to that ofX. So we can just start with such aφ and construct the
symmetric processY in this way. We will now identify the Dirichlet space ofY .

Let ϕ+ := ϕ ∨ 0 andϕ− := (−ϕ) ∨ 0. Then 0≤ ϕ− < 1, ϕ = ϕ+ − ϕ− and
1+ ϕ = (1+ ϕ+)(1− ϕ−) onE × E. Define, fort ∈ [0, ζ [,

Z+
t := ∏

s≤t

(
1+ ϕ+(Xs−,Xs)

)
exp

(∫ t

0
Nϕ−(Xs) dHs

)
,

(4.14)
Z−

t := ∏
s≤t

(
1− ϕ−(Xs−,Xs)

)
exp

(
−

∫ t

0
Nϕ+(Xs) dHs

)
.

Clearly Z+ is increasing andZ− is decreasing. BothZ+ andZ− are MFs that
are finite and strictly positive on�0, ζ � andZ = Z+ · Z−. Let W = (Wt ,PW

x ) be
the subprocess of(X,Z−) (“X killed via the MFZ−”). It is easy to see thatW
coincides with the subprocess of(Y,1/Z+).

The AF 1
2

∑
s≤t ϕ(Xs−,Xs) is of bounded variation on compact subintervals

of [0, ζ [. We write ν := ϕ · J for its bivariate Revuz measure, and defineµ :=
2ν(1⊗ ·). As before,

L2(ν) :=
{
u ∈ L2(m) : u has a quasi-continuous versionũ

(4.15)
such that

∫
E×E

u(x, y)2 ν(dx, dy) < ∞
}
.
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Of course, each element ofF has a quasi-continuous version. Hence we can define

F ν := F ∩ L2(ν) =
{
u ∈ F :

∫
E×E

u(x, y)2 ν(dx, dy) < ∞
}
,

(4.16)
Eν(u,u) := E(u,u) +

∫
E×E

u(x, y)2ν(dx, dy), u ∈ F ν.

By Fatou’s lemma,(Eν,F ν) is a symmetric closable quadratic form onL2(m) if
ϕ ≥ c0 > −1.

THEOREM 4.6. (i) Let ϕ :E × E →]−1,∞[ be a symmetric Borel function
such that (4.12)holds. If ϕ(x, y) ≥ 0 for all x, y ∈ E, then

F ∩ L2(µ) ⊂ F Y ⊂ F ν,

where F ∩ L2(µ) is dense in F Y with respect to the EY
1 -norm, and for u ∈ F Y ,

EY (u,u) = E(u,u) +
∫
E×E

(
u(y) − u(x)

)2
ν(dx, dy).(4.17)

(ii) If, in addition, ϕ is J -integrable, then F Y = F ν .

PROOF. (i) Using the notation in (4.14), we now have (in view of the non-
negativity ofϕ)

Z+
t = ∏

s≤t

(
1+ ϕ(Xs−,Xs)

)
, Z−

t = exp
(
−

∫ t

0
Nϕ(Xs) dHs

)
,

and µ is the Revuz measure ofNϕ ∗ H . Hence the Dirichlet form(EW,F W)

associated withW andm is given by

F W = F ∩ L2(µ),
(4.18)

EW(u,u) = E(u,u) + µ(u2), u ∈ F W.

But W is also the subprocess(Y,1/Z+) of Y , so by (4.8) the bivariate Revuz
measure of 1/Z+ computed with respect toY andm is ϕ(1+ ϕ)−1 · JY , which is
nothing butν. It follows from [27], Theorem II.3.10, that

F W = F Y ∩ L2(ν),
(4.19)

EW(u,u) = EY (u,u) + ν(u ⊗ u), u ∈ F W.

Combining (4.18) and (4.19), and noting thatµ is smooth with respect to both
X andY , we find thatF ∩ L2(µ) is contained inF Y and is dense with respect to
theEY

1 -norm, and foru ∈ F ∩ L2(µ), (4.17) holds.
Assume thatu ∈ F Y . We may choose a sequence{un} ⊂ F ∩ L2(µ) such that

un → u in EY
1 -norm. Then{un} is anEY

1 -Cauchy sequence and by the result above
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it is also anE1-Cauchy sequence. Thereforeu ∈ F andun → u in E1-norm and
quasi-everywhere (at least along a suitable subsequence). Invoking Fatou’s lemma,
we have

E(u,u) + ν(ū2) ≤ lim
n

(
E(un,un) + ν(ū2

n)
) = EY (u,u) < ∞.

It follows that F Y ⊂ F ν . As
⋃∞

k=1 FFk
∩ L2(µ) is E + (·, , ·)L2(µ)-dense in

F ∩ L2(µ), by Theorem 4.4, (4.17) holds foru ∈ F Y . (Here the nest{Fk} is as in
the statement of Theorem 4.4.)

(ii) We now assume thatϕ is J -integrable. For anyu ∈ F ν , set un :=
(u ∧ n) ∧ (−n). Then theJ -integrability of ϕ guaranteesun ∈ F ∩ L2(µ) and
un → u in E1-norm and q.e. Since|ūn| ≤ |ū|, we may appeal the dominated
convergence theorem and getun → u in Eν

1 -norm. This implies that{un} ⊂ F Y is
anEY

1 -Cauchy sequence. Thereforeu ∈ F Y . �

In the more general case where (4.12) holds butϕ is not necessarily positive,
we have a weaker result by a similar approach. Letν+ := ϕ+ · J , ν− := ϕ− · J ,
and letµ+ = ν+(1 ⊗ ·), µ− = ν−(1 ⊗ ·) be the second marginal measures ofν+
andν−, respectively. By [27], Theorem I.4.6, the bivariate Revuz measure ofZ−,
computed with respect toX andm, is

νZ−(dx, dy) = ϕ−(x, y)J (dx, dy) + Nϕ+(x)µH (dx)δ{x}(dy)

= ν−(dx, dy) + µ+(dx)δ{x}(dy)

and the bivariate Revuz measure of 1/Z+ computed with respect to(Y,m) is

νY
1/Z+(dx, dy) = ϕ+

1+ ϕ+ JY (dx, dy) + Nϕ−(x)µH (dx)δ{x}(dy)

= ϕ+(1− ϕ−)J (dx, dy) + µ−(dx)δ{x}(dy)

= ν+(dx, dy) + µ−(dx)δ{x}(dy).

It is now clear that

νZ−(1⊗ ·) = νY
1/Z+(1⊗ ·) = |µ|.

Hence we have by [27], Theorem II.3.10,

F W = F ∩ L2(|µ|),
(4.20)

EW(u,u) = E(u,u) + νZ−(u ⊗ u), u ∈ F W,

and also

F W = F Y ∩ L2(|µ|),
(4.21)

EW(u,u) = EY (u,u) + νY
1/Z+(u ⊗ u), u ∈ F W.

Combining (4.20) and (4.21), we have the following theorem.
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THEOREM 4.7. Let ϕ :E × E →]−1,∞[ be a symmetric Borel function
such that (4.12) holds. Then F ∩ L2(|µ|) is densely contained in F Y and, for
u ∈ F ∩ L2(|µ|), we have

EY (u,u) = E(u,u) + 1
2

∫ t

0

(
u(y) − u(x)

)2
ν(dx, dy).(4.22)

Moreover, if ϕ+ = 0, then F ⊂ F Y ∩ L2(ϕ− · J ) and (4.22)holds for all u ∈ F .

PROOF. It only remains to show the last assertion. In this case, asϕ+ = 0,

1

Zt

= ∏
s≤t

(
1+ ϕ−(Ys−, Ys)

1− ϕ−(Ys−, Ys)

)
exp

(
−

∫ t

0
NY ϕ−

1− ϕ− (Ys) dHs

)
.(4.23)

But ϕ−/(1− ϕ−) = ϕ−/(1+ ϕ) ≥ 0, so the last assertion follows from Theo-
rem 4.5 with the roles ofX andY interchanged. �
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