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We study Girsanov's theorem in the context of symmetric Markov
processes, extending earlier work of Fukushima—Takeda and Fitzsimmons on
Girsanov transformations of “gradient type.” We investigate the most general
Girsanov transformation leading to another symmetric Markov process. This
investigation requires an extension of the forward—backward martingale
method of Lyons—Zheng, to cover the case of processes with jumps.

1. Introduction and preliminaries. Our aim in this work is to study change-
of-measure phenomena (“Girsanov” theorems) for general symmetric Markov
processes. Our results extend both the earlier work of Fukushima and Takeda [9]
and that of Fitzsimmons [5] (who was concerned only with symmetric diffusions).
Our work also contains Theorem 2.7 of [12] as a special case.

Before setting down the precise context in which we shall be working, let us
briefly describe our results. L&t = (X;) be a symmetric (i.e., reversible) Markov
process, with symmetry measue state spac& and distributioriP, when started
in statex € E. Given a strictly positive element of the Dirichlet space o,
let M” be the martingale part in the Fukushima decomposition(af;) — o (Xo),
define a local martingalgf by the formulaM, := [§[p(X,-)1"tdM?! and letz*
be the “stochastic exponential” 8f; that is, Z” is the unique solution of! =
1+ [ ZP_dM;. ThenZz’ is a positive supermartingale, and so determines a new
family Py)rer Of probability measures governing a second symmetric Markov
process? on E, with symmetry measurg (dx) := p(x)2m(dx).

Suppose, for example, thaf = R¢ and that the (nonpositive definite)
infinitesimal generatoE of X has the form

D) LF) =Lf@+ [ [f0) = F@INGdy) —k@)f(), xR,
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whereL°¢ is a second-order differential operator withl = 0, N is a kernel o4
andk > 0. Suppose also th@ (L), the domain of., is closed under the formation
of products, and that € D(L) is strictly positive. Then the generatarof the
transformed process is given by

Lf(x)=p@x) HL(pf)(x) — f(x)Lp(x)]

(1.2) R
= LS @)+ Bpf )+ [ 170 = f@IN (e, d).

whereB, f :=p “Le(pf) — fLSp — pL€ f]is a first-order differential operator
and N(x,dy) = [p(y)/p(x)IN(x,dy). It is an important but very challenging
problem to characterize the domaii(L) of L. An equivalent, but more tractable,
way to proceed is to characterize the bilin&irichlet form associated withL.

Let &(f, ) :=—/Lf -gdm and&(f,g) :== —[ L f - gdu denote the Dirichlet
forms corresponding t& andX. When expressed in terms of these bilinear forms,
(2.1) and (1.2) become

§(f.9) =€ Lo+ [, [ /)= @I [80) — g (dx.dy)

(1.3)
+ [, Fegoktm(dx)
and
@4 Ef=EL o+ [, [ 10 =70 [g0)— g1T(@x. dy).
where &°(f,g) == —[L°f - gdm, &3 (f,g) := —[IL° + Bylf - gdp,

J(dx, dy) := 3m(dx)N(x,dy) andJ (dx, dy) := 3p(dx)N(x,dy) = p(x)p(y) X
J(dx,dy). In the general context in which we shall be working, Dirichlet forms
are more convenient objects than their associated infinitesimal generators, and for-
mulas like (1.4) will be the main focus of our study.

The following is concrete instance in which (1.1) holds.

EXAMPLE 1.1. LetE = R?, m(dx) = dx (Lebesgue measure), and &t
be the Lévy process oR? that is the sum of Brownian motion dR¢ and an
independent rotationally symmetricstable process oR¢, for some O< o < 2
andd > 3. Clearly X is anm-symmetric Hunt process. Its Dirichlet for(§, )
is given by

F ={feL?R% dx):VfeL*R? dx))
and

1
Efg)=> / V() Vex)dx
(1.5)

cld,a)

[ L0 = £ 1800 — s dwy.
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wherec(d, @) > 0 is a constant depending only drand«. In this case we have,
in (1.1),
c(d, o)

In the case at hand, (1.4) becomes

_ 1 )

E9)=3 [, VI () Ve plx)dx
1.7
&9 cd,a)p(x)p(y)

|x—y|d+°‘

[, o) = @0 1g0) = g0 dxdy.

The type of change of measure considered above was studied in [9), for
the a-potential of a bounded strictly positive function dh In Section 2, we
extend and complete the work of Fukushima and Takeda by obtaining a complete
description of the Dirichlet form associated witki for an arbitrary strictly
positive p in the Dirichlet space ofX. Our method is a modification of that
found in the work of Chen and Zhang [3]. Of critical importance is Lemma 2.2
which extends the Lyons—Zheng forward—backward martingale decomposition to
the context of symmetric Markov processes with jumps.

WhenX is a diffusion, the change of measure determined&bys (modulo lo-
calization) the most general Girsanov transformation leading to another symmetric
diffusion. This assertion is the principal result of [5]. The situation is more complex
whenX has jumps. In Sections 3 and 4, we investigate the most general change of
measure leading to a second symmetric Markov prodesend we take the first
steps in describing the associated Dirichlet form. A formula like (1.4) holds even
in this more general situation, although a zero-order term might be present, and
the densityp (x)p(y) linking the measuresd andJ must be replaced by a more
general symmetric function @k, y). Our results here are somewhat less compre-
hensive than those of Section 2 or of [5], the main unresolved difficulty being the
description of a core for the Dirichlet spaceXf Nevertheless, we find an explicit
expression for the Dirichlet form of that is valid for a large class of functions in
the Dirichlet space. It may be helpful for the reader to keep in mind the concrete
Example 1.1 when considering the general results of this paper.

In the remainder of this section, we establish our setting and notationt Let
be a topological space that is homeomorphic to a co-analytic subset of a compact
metric space (a “metric co-Souslin space”), with BarebdlgebraB(E). Let m
be ao-finite measure o3 (E) with supgm] = E. We denote byB(E x E) the
producto-algebra onE x E. Let X = (R, M, M;, 6;, X;,P,) be a Borel right
Markov process with state spaég lifetime ¢, transition semigroug?;);-o and
resolventU?),-o. In more detail, the right-continuous proc¢8s+oo[ > ¢t — X;
is defined on the sample spage, M), with its minimal (augmented) admissible
filtration {:M,};>0, and under the lawP, is a strong Markov process with initial
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condition Xg = x. The shift operators,, r > 0, satisfyX; o 6, = X4, identically
fors,t > 0. Adjoined to the state spaékis an isolated poinh ¢ E; the procesX
retires toA at its “lifetime” ¢ :=inf{¢ : X; = A}. Throughout this paper we assume
that X is m-symmetric. More precisely(P;) may be extended into a symmetric
operator semigroup oh2(m); that is,

(f,Pig)=(Pf.g),  f.geL?m),

where (1, v) := [pu(x)v(x)m(dx) is the natural inner product iL2(m) =
L?(E; m). By the theory of Dirichlet forms, there exists a symmeficichlet
form (&, ¥) associated wittx:

1
F = {u € Lz(m) :Sup;(u — Piu,u) < oo},
t>0

1
Ew,v)=Ilm—-(u — Pu,v), ,vE F.
(u,v) zwt(u YU, V) u,v

For anyg > 0, set
Eg(u,v) :=8&u,v)+qu,v), u,vefF.

Then ¥ becomes a Hilbert space with inner prodégtfor any g > 0. We call
the corresponding norm th&,-norm. In view of the work in [6] and [19], the
Dirichlet form (&, ¥) is quasi-regular. Thus, by Theorem 3.7 of [2], the process
is quasi-homeomorphic to the Hunt process associated with a regular Dirichlet
form on a locally compact separable metric space, so all of the results of [8]
(established there for regular Dirichlet forms) applyXcand its Dirichlet form.
For the reader uninterested in applications to infinite-dimensional settings, it is safe
to assume from now on that is the Hunt process on a locally compact metric state
space (such as a Euclidean domain) associated with a regular Dirichlet form. See
Chapter VI of [19] for more on the “transfer method,” by which the quasi-regular
case is reduced to the regular case.

Let A = (A;) be any increasing additive functional (AF), by which we mean
that besides additivity and right-continuity we also assume thatA) < oo for
t < ¢. We can (and do) take its perfected version. We fiseA to denote the
functional

t
(f % A) 1= /0 F(Xo)dA,,

if f is aBorel function org, and
t
(Fa Ay i= [ FXo X dA,,
0

if F is aBorelfunction orE x E. Thebivariate Revuzmeasurev, of A (computed
with respect taX andm) is defined forF € pB(E x E) by

1
va(F) =1 ItI?(]) ;Em(F * A);.
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The usual Revuz measurey of A is nothing but the second marginal measure
of v, namely,u4(dx) =v4(1®dx). The mappingd — 4 establishes a one-to-
one correspondence between the class of positive continuous additive functionals
(PCAFs) ofX and the class of smooth measures®f¥), and is usually known
as the Revuz correspondence.
A well-known consequence of symmetry is that, for g.e E,

Py({w e Q:X,—(w) existsinE forallr < ¢}) = 1.

Without any real loss of generality, we assume the exceptional set [of thode

for which (1.5) fails] to be empty. Adjoin the cemetetyto E as an isolated point

to form EA; the Borelo-field on EA is denotedB(EA). The jump behavior of

X is described by a paitN, H), the Lévy system of X, in which N is a kernel
from (E, B(E)) to (Ea, B(EA)) satisfyingN (x, {x}) =0 for anyx € E, and

H is a PCAF of X with bounded one-potential, such that for any measurable
function F € pB(E x E), the dual predictable projection (or compensator) of
the homogeneous random measure

n(w,dr) == Z F(Xs—(0), Xs(0))L{X,_(0)£X; (@)} Es (d1)
s>0
is NF  H, where NF(x) := [g, N(x,dy)F(x,y). (Heree, is the unit point
mass ats.) The special case (1.1) occurs whéh = . Set J(dx,dy) =
%]lE(y)uH(dx)N(x, dy), the jump measure fak. Note that/ is invariant with
respect to the mapping, y) — (y, x).

We will use ¢, and ¢; to denote, respectively, the predictable and totally
inaccessible parts of the lifetinte Letx (dx) := N(x, {A}) ug(dx) be the Revuz
measure of the compensatdf of the AF 1, [; « is the killing measure fok.

Eachu € ¥ admits aquasi-continuous m-versionuz for which the process
t — u(X,) is right-continuous orf0, oo[ with left limits [equal tou(X;_) for
t #¢plon 0, oof, Py-a.s. for g.ex € E. For suchu € ¥, we have Fukushima’s
decomposition ([8], Theorem 5.2.2)

u(X;) —u(Xo) =M/ + N/,

where M" is a martingale additive functional (MAF) of finite energy aNd is
a continuous additive functional (CAF) of zero energy. Moreowé¥, may be
further decomposed into the sum of a continuous part and a purely discontinuous
part

M" = M*< +M“’d.

Let &°(u, u) := %M(Mu,C)(E). Thené& admits a Beurling—Deny decomposition as
in ([8], Theorem 5.3.1):

Eu,u)=8%u,u) —{—/E E(u(y) — u(x))zJ(dx,dy) + Kk (u?), ueF,
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where the “diffusion” pieceg is strongly local in the sense tha€(u,v) =0
whenevew, v € ¥ andu is constanin-a.e. on a neighborhood of the support of
the measure|-m. Here and in the sequel, we always take ¥ to be represented

by its quasi-continuous version, and we usually drop the “tilde” from our notation.

Notation and conventions. The notation *=" should be read “is defined to
be.” For a classF of functions, we usé¥ [resp.pF (or £ 1)] to denote the set
of bounded (resp. nonnegative) functionsfin We use both “nonnegative” and
“positive” to meare 0, and “strictly positive” to meas 0. For a measurg and a
function f, u(f) := [ f du. We sometimes writé&” or L? (m) for L?(E, m), and
(-, -) for the inner product in.2(m). For f,g e B(E), f ®g(x,y) = f(x)g(y)
and f(x,y) := f(y) — f(x) for x, y € E. For a right-continuous proceg% of
finite variation on bounded intervals, we uge’ to denote its dual predictable
projection andH ™~ to denoteH — H?”, all computed with respect toX, P,

x € E). The jumpM,; — M,_ will be abbreviated aa\ M,. The firsthitting time
of a setG is denotedl; := inf{r > 0:X; € G}. A hitting time is an example of a
terminal time, which is a stopping tim& suchthat + T o6, =T on{r < T}.

2. Girsanov transform by multiplicative functional related to M'%97. In
this section, we study Girsanov transforms of a type investigated earlier by
Fukushima and Takeda [9]; our results extend and complete the work found there.
Our method is a modification of that found in Chen and Zhang [3].

Throughout this sectiory is a nonnegative element @f. We can (and do) as-
sume thap is quasi-continuous, and we assume {hat 0 g.e. onE. [Otherwise,
we would deal with the part proceXskilled upon leavingx : p(x) > 0}.] We will
use the convention that any function defined®ns extended to be zero at the
cemetery pointA; in particular,o(A) = 0. By Fukushima’s decomposition,

o(X;) — p(Xo) = M/ + Nf, P,-a.s.forq.ex € E,

whereM? is a square-integrable martingale AF aNd is a CAF of zero energy.
Note thats — p(Xsa,—) is Strictly positive and left-continuous d#, ¢, [. Define
a local martingalé\/ on the random time intervd0, ¢, [ by

2 NG 1 o O
1 M :/ amM <t <,
@D T opxeo) T =t=<t

Note that forr < ¢,

AM; = /)(T]/_\G_)(Mtp/\{i - szAg,«—)
1
= m(ﬁ(xmq) — p(Xing-))
P(Xmg)

T p(Xingo) — 1.



ABSOLUTE CONTINUITY 2073

The solutionZ? of the SDE
t

2.2) zf=1+/ Z0 dM,,  0<i <y,
0

is a positive local martingale on the random time intef\éak ,[, hence a positive
supermartingale. Consequently, the formula

dP, =27/ dP,  onM,N{r<¢,)forx ek,

uniquely determines a family of probability measures(fn My). It is known
that under these new measurés,is a right Markov process oit; see [24],
Section 62. We will us€X, M, M,, @x, x € E) to denote the transformed process.
Here X, (w) = X;(») but we useX, for emphasis when working with,. Let P,

be the semigroup of, that is,

Pf(0) =B f(XD1=EulZ fF (XD =EL[Z) f(Xp)s t < 1.

(These transition operators need not preserve Borel measurability; this minor
inconvenience can be dealt with as in Corollary 3.23 of [6].)

Before stating the next result, let us recall the definition of time-reversal
operatotr, on the path space. Given a paile {r < ¢}, define

o —s)—), for O0<s<t,

rt(@)(s) ::{w(O), for s>r.

Here forr > 0, w(r—) :=limgy, w(s). It is known (see Lemma 4.1.2 of [8]) that
the mapping:, preserves the measupg on M; N {r < ¢}.

DEFINITION 2.1. (i) ACAF A, is calledevenif A;or, = A, forallr <¢.

(i) An m-measurable function: E — R islocallyin ¥ (u € }:Ioc) provided
there is a nedtG,} of finely open sets and a sequetiegg} C ¥ such thatt = u,,,
m-a.e. onG,, for eachn.

We recall from [4]; Theorem 2.1, that a CAF with paths locally of bounded
variation (or merely of zero quadratic variation) is necessarily even.

Clearly eachu € 55|oc has a quasi-continuous version, and for suckhe
continuous local martingale AK*-¢ is well defined by

(2.3) M =M fort <Tg,g,.n=12,....

The following can be regarded as an extension to functioni,:m of both
Fukushima’s decompositivand the Lyons—Zheng forward—backward martingale
decomposition.
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LEMMA 2.2. Foru e Fipcandz > 0,P,-a.s.on{r < ¢},
u(X;) — u(Xo) = 5(M;" = M{"“ory)
Hhim >0 ((Xs) = u X)Ly —ux, e
& O<s<t

The limit above exists in the sense of convergence in probability under P, for
m-a.e.x € E.

PrRoOOF Note that whenu € ¥, the martingale part/; in Fukushima’s
decomposition can be decomposed as
M =M+ M+ My
whereM,"¢ is the continuous part of martingalé¢*, and
M =|€'?g{ > (@(Xy) = u(Xs0)) Ljux) —u(x,-) =) Ls<e)

O<s<t

t
—/ (/ (M(y)—u(Xs))N(Xs,dy))st},
0 \J{yeE: lu(m—u(Xy)|>¢)
k

(2.4) ,
M :/O (XN (X5, A)dHy —u(X)=z,)

t
_ /O w(Xy) dA¥ — u(X; Hysc,).

are the jump and killing part&*, respectively. See [8], Theorem A.3.9. The limit
in the expression fab/*-/ is in the sense of convergence in the norm of the space of
square-integrable martingales and convergence in probability thder m-a.e.

x € E (see [8]). SdP,,-a.s. on{r < ¢} it follows that

u(X;) —u(Xo) = (M — M!" ory)
=3(M"" =M or)

+ Isli’% D0 (X)) = u(Xs)) L{u(xs) —u(X,_) >}

O<s<t

Foru e }ﬂoc, let {G,} be a nest of finely open sets and{g},} be a sequence of
functions in# such thatt« = «,, g.e. onG,,. For eachy,, € ¥, P,-a.s. on{r < ¢}
we have
un(X) — un(Xo) = 3(M{" = M{"™ o r,)
+ Im& Z (un(Xs) - un(Xs—))]l{\un(X_;)—un(X_;,)|>e}-
& O<s<t

As [0, f] 3 s — X, Is right-continuous with left limits inE on{t < ¢}, the lemma
now follows from the above display, using (2.3) to pass to the limit as co. [
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REMARK 2.3. By [8], Theorem A.3.9, we can also replace the indicator
L{ju(x,) —u(Xs-)[>e} BY Ljjucxe) _puixs |-y, @nd the sety € Et|u(y) — u(X,)| > ¢}
by {y € E:|e"®) —¢*(Xs)| > ¢}, Thus Lemma 2.2 can also take the following form:
Foru e }:mc,

u(X;) —u(Xo) = 5(M"" — M*“ ory)

+lim D (X)) = u(X5)) Lt _ouXsm 2 gy

O<s<t

P,-a.s.onft < ¢}.

The convergence in the above expression is in the sense of convergence in
probability under eacl?, for m-a.e.x € E.

LEMMA 2.4. P, issymmetricon L2(E, p%m).

PROOF. Let f, g € bBT(E). By time reversal, we have
(Pif, ) o = Eml 2] f(X1)g(X0)p*(X0)]
=EnlZ{ or g(X)p*(X;) f (Xo)l.
To show
(Prf. 8) p2m = (f- Pi8) 2 = Eml 2] g(X1) p?(X0) f (X0)].

it suffices to prove the following identity:
(2.5) Zlor, =270 5 — P,-a.s.on{t < ¢}.
p

To this end, note that by the Doléans—Dade formula ([13], Theorem 9.39), on
{r <<},

zF = exp(Mt — }<M“>t) [T @+ AMe A

(2 6) 2 O<s<t
' 1 . p(Xs) p( p(Xs) )
- M; — (M 1- :
exe{ M, 501 N s o R S

It follows from (2.1) and (2.4) that ofr < ¢},

; p(Xs) )
M, = M; +lim ~1)1 B
! ! +e¢0{0§<t<p(xs_) {lo(Xs)—p(Xs—)|>¢}

1 p(y) ) ) }
_ —1)N(X,,dy) |dH; ¢,
/o </{yeEA:|p(y)—p(xs)>s}<p(Xs) ( Y
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where

t
c 1 p,c

M€ =
oo p(Xm) T

Sincep > 0 g.e. onE, we see that log € }ﬂoc (see [18], Corollary 6.2), and
therefore, by Lemma 2.2 and Remark 2.3, we hByea.s. on{r < ¢},

log p(X;) —log 0 (Xo)
(2.7) =3(M{ — M{ or)
+lim Y (logp(Xs) =109 p(Xs-))1ijp(xg)—p(Xs)[=¢)-

O<s<t

Since both(M€); and 5 fiycrx:1p()—px0j=e) PP (X)) ™t = DN (X;, dy) d Hy
are even CAFs ok, identity (2.5) follows from (2.6) and (2.7).00

The following result appears for symmetric diffusions as Lemma 4.4 in [5]; the
proof given there is valid for general symmetric Borel right processes.

THEOREM2.5. If A= (A4)) isAa PCAF of X with Revuz measure ., then the
Revuz measure of A asa PCAF of X is p2u.

_In what follows, if f € B(E), then we writef € £L2(p ® p - J) to mean that
f(x,y):= f(y) — f(x) is square-integrable with respectd® o - J.

THEOREM 2.6. Let (€, ¥) be the symmetric Dirichlet formon L2(E, p?m)
associated with X. Then

@
{f €F: / p ()2 4y (dx) < oo} NL2p®p-J)NL*(p°m) C F

andfor finFNL2(pQp-J)N L%(p%m) with /p(x)zugﬂ (dx) < 00,

8N =1 [ p0Puiyan)
2.8)
+ /E @ = F0)Pp@p(3)I @ dy):

(b) 1 ¥ and &(1, 1) = 0, so the transformed process X has infinite lifetime
and is conservative in the ergodic theory sense (“recurrent” in the sense of [8],
page 48).
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PrROOF  Our proof is a modification of the proof of Theorem 3.6 in [3]. For
the reader’s convenience, we spell out the details.H,Sé)[ ={x:pkx)>1/n}.
Then{FY :n > 1} is an&-nest. By the probabilistic characterization ®fest,
{FP},1 is ané-nest (forX) as well. So there is aB-nest{ F,,; n > 1} of compact
sets and a sequence gf € £ such thatF, C F,ﬁl) andg, = 1 on F,, for each
n > 1. Again by the probabilistic characterization &fnest,{F,},>1 is also an
&-nest (forX). If we let pf, be theg;-orthogonal projection ob onto ¢, := {u
F:u=0aq.e.onF’}, thenpp, convergeste in (¥, &1). Letp, = (0V pr,) A p.
Thenp, convergeste in (¥, &1) as well (cf. Theorem 1.4.2(v) in [8]). Taking a
subsequence if necessary, we may assumejhainverges t@, £-g.e. onE. For
n > 1, defineh, = p,/p. Sincep > 1/n &-q.e. onF, andp, =0 &-g.e. ONFy,
we haven,, € ¥, by the contraction property g€, ). Note that O< &, <1 and
h, — 1 g.e. onE asn — oo. By a calculation found in the proof of Lemma 6.3.3
of [8], it can be shown that

2.9) 1 /E p()2S,  (dx) + /E 1@ = B )P ()00 (. dy) — O

asn — oQ.
Letu be a bounded function it with

3 [ oy )
+ f (1) — u()?p()p(y)J (dx., dy) + f u(x)p(x)?m(dx) < oo.
ExXE

Fix n > 1 and definef := uh,,. Clearly f is a bounded function i satisfying
the above inequality witlf in place ofu. The proces¥ (X;) admits the following
Lyons—Zheng forward—backward martingale decomposition:

2.10)  f(X) — f(Xo)=3M] =M/ or),  P-as.onir <¢},

whereMtf is the martingale part in Fukushima’s decompositiotf o) — f (Xo).
Recall thaWP, = Z/dP, on M, N {t < ¢,}. Hence

r 1
K, :=Mtf—f0 S dMT. 20 =m] — T My 1<,
3

is a local martingale AF undét = (P, : x € E) and
(2.11) [K1,(®) =[M'1,(P), P,-as.forr <¢,.

Here[K |(P) is the square bracket process for the martingalender the familyP,
and[M/](P) is the square bracket for martingale’ under the familyP. We will
use(K)(@) and(M/)(P) to denote the dual predictable projectionﬂﬁ](f@) and



2078 Z.-Q.CHEN ET AL.

[MT](P) under the respective famili€® and P. It follows from (2.11) that for
< é—p;

(K) ()= (M) d([M'], ZP)s(P) = (M7),(P) + (IM'], M), (P);

see, for example, Chapter 12 of [13]. By the quasi-left continuity of the processes
X andX, all of the “sharp bracket” processes involved are continuous, so we have,
fort >0,

(K),([P) = (M7),(P) + (IM'], M), (P)

X, g
3 (0t - Fox (L - 1)) ®)

O<s<t

(2.12) =M@ + (

t
— (M), (®) + / f (f(Xs)—f(y))2< p((;)) )N(Xs,dymHs,

with the convention that/® = 1. Thus, by Theorem 2.5, the Revuz measure for
the PCAR(K ),(IP) of X is

P ()25 (dx)

@13) 42002 [ (f)—FO) (@_1)1@1 Ldy) — () 2p(x)?

yeE (x)
= p ()21 (dx) + 2 E(f(X) — f)Pp)p()J (dx, dy).
ye
Now the CAF(Mf, M) is even, so by (2.10),

(2.14)  f(X) — f(Xo) = 3(K, — K, ory), P,.-a.s. on{t < ¢}.

Letv = p%m and
B,() = /E P, ()v(dx).

Applying Theorem 2.5 and noting that the time reversal operataiso leaves the
measure?, invariant onM; N {t < ¢}, we have by (2.13) and (2.14)

1. ~ —~
lim “E[(f (X)) — f(X0))*s 1 <¢]
<I|m la K 1IE K 2.
O<2 E,[( l‘) l<§]+z vl( ,or,),t<{])
= lim EEUHK)[(@); <<l
t—0t

< [ pwPuip@n+2 [ (F0) = F0) )T @x.dy)

< Q.
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Recall thatf = 0 m-a.e. onF; and g, € £ with g, = 1 m-a.e. onF,. Thus
f=fgnand

jm = (f(X) P f () f (x)v(dx)

t—0t

1
—"mt< (R0 = Ro)?s 1 <]+ [ rooa- ﬂl)(x)v(dx))

t—0

1. . -
<limsup tE J(FRD = fFR)% 1 <¢]

t—0

+ Iimsup} (fgn) ()21 = BL)(x)v(dx)
t—»0 I JE

1. . -
< limsup_-E, (£ (%) - f(X)% 1 <]

1—0
+1£1Z imsup [ s Ry
< Q.
Thereforef € £, so f admits a Fukushima decomposition:
FX) - fRoy=M/ +N/, B,as,

Wherel\//ftf is a P,-square-integrable martingale AF amAdf is a CAF of zero

energy; in particular,z'v\,f is a process of zero quadratic variation. On the other
hand, f (X;) has a Fukushima decomposition under the farity (P, :x € E):

X)) — f(Xo)=M] + N/,

By Girsanov's theorem the proce&s = Mtf — (M7, M), is a local martingale
underP, on [0, ¢,[, so by uniqueness we have

(2.15) M/ =k, fori<g,.

To expresﬁ(f /), we first calculate the killing measukefor the transformed
process{X IP’X, x € E}. Now¥x is the Revuz measure of the PCAF{,>¢ )P(IP)

the dual predictable projection of the increasing AR 1>, underP. By the
same reasoning as for (2.12), for qves E,

(Li=6)" @) = (L=)” @) + (Lpz). M)(P)
= (Li=g))" () = (Lpzg) " (P)
=0.
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Thusk = 0. Now by (2.13) and (2.15),
~ o1 - ~
E(f. ) =1im ZB[(f(Xn) ~ f(X0)’]

1~ 1~
T f 21 L
(2.16) = lim =B, (372 = lim B, [(K),]

1 .
=5 [ pwPuip@n+ [ (50— ) Po0Ip)I dx.dy).

Applying the above argument th, (in place of f), we see thah, € £ and,

by (2.9), that&(h,, h,) — 0 asn — oco. Sinceh, — 1 g.e. onE, this implies
that 1€ £, N L2(E, p?m) = F and &(1, 1) = 0 (see Theorem 1.5.2 of [8]).
ConsequentlyX is recurrent by Theorem 1.6.3 of [8]. This proves Theorem 2.6(b).

~

So far we have proved that=uh, € ¥ and that (2.16) holds fof. Note that

E(uhns why) < 2ulZ Elhr, ) + [ (0%, ()

+2 ) (ut) - u())p () p () (dx, dy),

which is uniformly bounded. Asuh,| < |u|, uh, — u, we see that can be
approximated in(¥, &1) by the Cesaro means of a subsequencéuéf,},>1.
Henceu is in . Repeating the computation fgrshows that (2.16) holds for as
well. This proves Theorem 2.6(a)]

REMARK 2.7. Suppose thap is in }ﬂoc with p > 0 g.e. onE and that
t Y 0es<t 10(Xs) — p(Xs-)| is locally P, -integrable for g.ex € E. This is the
case ifp is bounded, for example. If we define

M =M+ ( > (o(Xy) - p(xs_>)) :

O<s<t

where the superscript indicates compensated sum, and use (2.1) and (2.2) to
defineZ?, then Theorem 2.6(a) remains valid (with the same proof). We will not
use this fact in the sequel.

We now identify the domain of the Dirichlet space for

THEOREM 2.8. Lindgr the condition of Theorem 2.6, the domaln F of
the Dirichlet form (&, ) for the Girsanov transformed process X is the
&1-completion of

{f eF :/,o(x)z,u?f)(dx) < oo} N £2(p ®p-J)N L2(,02m),

where 1= € + (. ) 12(z p2m)-
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We first prepare a lemma.

LEMMA 2.9. Define N(x,dy) := p(x) ) N(x,dy). Then (NX, H) is a Lévy
system for X. Consequently, if J denotes the jump measure of X, then J =
o®p-J.

PROOF Let K = (K;) be a predictable process a2 and let f be a
nonnegative Borel function ot x E vanishing on diagonal. By [24], (62.13)
we find

@X[meo?s_, fm} =P Y K f(Xo—, X)ZP: 1t < c}

S<t L s<t

—P, ZKz” (X, ,X)'O(( ‘)) <;}
L s<t S_

—P, /0 KSpr(Xs)—lN(pf)(Xs)st;r<<:}

—~ B t —~ —~
=P, /0 KSNf(XS)a’HS]
The conclusion follows. [
PROOF OF THEOREM 2.8. DefineM”° = M* + (p(X;-)1.>5))~ and

M? = [§lp(Xs_)1"tdM?°. Clearly M*° is aP,-square-integrable MAF ok
andM? is a locallyP, -square-integrable MAF oX. Define

(p(Xs) = pXs )2
p(Xp(Xeo) U=k

(217)  My=—M]+ (M) @)+ )

O<s<t

ThenM is a local MAF of X. To see this, observe that, by Girsanov’s theorem,

2 (ppg_)> _1)2 ts=<2) )p(P)

O<s<-

My — (M°, M);(P) = M7 — (Mc>z(P)—<

is a local martingale AF of{. An application of Lemma 2.9 [to compute the
compensator of the sum on the right-hand side of (2.17)] now completes the proof
of the claim.

Let Z; be the solution tadZ, = Z,_ dM,. Denote byA* the PCAF of X
associated with the killing measure Recall thatA* = (1{.>,))” (P). Using the
Doléans—Dade formula, one sees that

dP, B 1
d@&eMr_-Zf

K

(2.18) =Z,e 4.
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(cf. the last section in the proof of Theorem 3.7 in [3]).

Let Fi = {x € E: p(x) > 1/k}, which is an&-nest hence ag-nest as well.
Define pr = p — (p A 2) and by = pi/p. Clearly 0< hy < 1, pr € Fr,, and
or — p in (¥, &1). Arguing as in the proof of Theorem 2.6, it can be shown
that/y € L2(p @ p - J), andhy € F with & (hg, hx) — 0 ask — oo. Now for any
u € b¥F, we claimf := uhy lies inbFr, and

[ P2 @0 -+ [ (£ = P00 @, dy) < oo,
First note that

f (f@) — FO0)2I (dx, dy)

< f Fe 2 (dx, dy) + ul%, / Gy )20 (dx, dy)
Fy x Fy, (Fi X Fi)©

<12 / F9)2p(0)p () J (dx, dy)
Fi < Fy,

FllZ [ R ax.dy)
(Fi X Fi)©
< Q.
As f € b, by Fukushima’s decomposition,
X)) - fRo) =M/ +N/.
Define a family of measure® = (Q, :x € E) through%%m[ = 7,, whereZ is
the Doléans—Dade exponential &f, andM is as in (2.17). In this proof only we
shall useX* to denote the coordinate process when referring.t®ecall thatX is
a right Markov process with symmetry measutéx) := p(x)2m(dx). It can be
shown as in the proof of Lemma 2.4 th&*, Q) is a right Markov process with
symmetry measur)e(x)—zv(dx) =m(dx). From Girsanov’s theorem,
K =M/ — (M’ M)P)
is aQ-local martingale. Note that sin¢& ], (Q) = [A’/Tf]t(@),
(2.19) (K)o (Q) = (M7T),(B) + ((M7], M) (P).
But
p o~

@),

7 I (D <o S )?s— - )?s
<[Mf],M>,<IP>>=< > (f(Xs)—f(Xs_))zp( )~ >)
O<s<t 'O(XS)

SO its Revuz measure with respec'(fé, ﬁﬁ) is, by Lemma 2.9,

[ (0= 10 () — o) (. dy)
ye
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Hence by applying Theorem 2.5 wifh andX* in the roles ofX andX, and with
p~Lin place ofp, the Revuz measure ¢ofM/ ], M) (P) viewed as a PCAF ok *
is
1
p(x)

Likewise, by (2.19), the Revuz measux@K) of (K)(Q) viewed as PCAF oi*
is seen to be

1 2
2.20 Yo (dx) = ——= 1 o (dx +/ x) — J(dx,dy).
( ) M(K)( ) ,O(x)zu(f)( ) yeE(f( ) f()’)) ( y)
Asp>1/konF,andf =0o0nF, hencefp(x)—2 ﬁfﬂ (dx) < o0, and therefore
MZ"K>(E_) < o_o._But fX5 — f(_Xg) =(K; — K; o r,)_/2_, and we deduce, by
reasoning similar to that used just below (2.14), tfias in the Dirichlet space
of X*. In view of (2.18), we havef = uhy € bFF,. As bothu andh; are inb¥,
Lemma 2.9 yields

/y 0= F0) (000 — () (@, d).

[(r@ = r)Popi@.ay) <oo.

By a calculation similar to that used in the proof of Lemma 2.9, the jump measure
of X* is J. Likewise, by the argument appearing between (2.15) and (2.16), one
sees that the killing measure &f* is the zero measure. If we u&:{f) andujj’f)

to denote the energy measure oaind its strong local part, in the context xf,
thenu?‘f> = “?K)' On the other hand,

Wi =R @0+ [ (f@ = F0)Idx.dy).
: e
Hence from (2.20) we see that

p(x)Z ﬁ?f) (dx).

As the Feynman-Kac transformation by the multiplicative functionalexf)
does not change the strongly local part of the energy measure, we have

i) =

C 1 ~C
M(f)(dx) = Wﬂ(f)(dx),
and so
[ Py @+ (700 = F0)Pop0)I . dy) < oo,

Sinceluhy| < |ul|, uhy — u and

& (uhy, uhy) < 2)|u||%, & (hi, hi) + 28 (u, u),
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which is uniformly bounded, we see thatan be approximated if# , €1) by the
Cesaro mean of a subsequencéafy };>1. Henceu is in the&;-closure of

{res: [ peus @o <oof L2 @ p- 1) 0 L2pm).

This proves the theorem ]

3. Supermartingale multiplicative functional. In this section we prove
a representation theorem for a general class of supermartingale multiplicative
functionals (MFs) ofX. This result is a sharpening of results of Kunita ([16],
Theorem 3.1) and Sharpe ([23], Theorem 7.1); see also [17], Section 6 and [15],
Section 4. For a stopping tin¥#e, we will usel (T') to denote the stochastic interval
[0, T[U[T;], whereT; is the totally inaccessible part @f. By a slight abuse of
notation, we shall often writer“e 1(7T')” to mean (¢, w) € I(T),” wherew is the
(suppressed, as usual) sample path.

THEOREM3.1. Let Z be a supermartingale MF of X suchthat Zo = 1. Then
thereisalocal martingale AF M, a PCAF A, and a Borel function¢: E x Ex —
[—1, +oo[ such that
(3.1) AM, =M, —M,_=¢X,_,X;,) Vtel(), P,-as.,

Z, = eMi—(1/2(M) = A,
(3.2)
x [T R+e(, Xple#XX) Viel (), By-as.

O<s<t

The AF M and the PCAF A are determined by Z up to P,-evanescence. In
particular, ¢ is uniquely determined by Z modulo null sets of the measure
J*(B):=J(BN(E x E))+x(m1(BN(E x {A})), wherem1(x, y) := x. Moreover,

t t
(63 [ Noiz9® + Li-n9) (X dHy + [ p(X,. 8)dAT < oo
for all t € 1(¢), P,,-a.s. Finally,
(3.4) S:=inf{t>0:Z, =0} =inf{r > 0:9p(X,_, X;) = -1}
Pp-as.on{S < ¢}
For a semimartingal#/, let Exp(N) denote the unique solutian of
t
Y, = 1+/ Ys_ dNs.
0
Exp(N) is called the stochastic exponential (in the sense of Doléans—Dade) of

Formula (3.2) amounts to the statement that Exp(M — A) at least on/ (¢).
Before turning to the proof of Theorem 3.1 we prepare the way with a lemma.
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LEMMA 3.2. Let B = (B;);>0 bean AF of X. Then thereis a Borel function
b E x Ex — Rwithb(x, x) =0for all x € E such that

(3.5) AB,:=B;—B,_=b(X,_,X;) Viel0, [, Py-as.

If b’ isanother such function, then J* (b’ # b) = 0.

ProoF It follows from [11], (16.5) that there is a Borel functidi: E x
E — RsuchthatAB; = bo(X,_, X;) forallz €10, ¢[, P,,-a.s. Fixe > 0 and define
T :=inf{r > 0:|AB;| > €}. ThenT is athinterminal time; that isP,.[T =0] =0
for all x € E. Consequently7),, the predictable part of, is a thin predictable
terminal time; by [11], (16.21)P,, (T, < ¢) = 0. Owing to [24], Section 73, it
follows that{r € [0, ¢[:|AB;| > 0} C {r > 0:X,_ # X;}. Thus, modifyingbg
if necessary, we can arrange thgtx, x) = 0 for all x € E. Next, notice that
AB, is measurable over the gemrfield F7._ .,. BecauseX = A on [¢;, oof,
this germo -field is generated (modulB,,-null sets) by the random variables of
the form g(X),,— as g varies over the bounded one-excessive functionX pf
see [24], (24.32)(ii). But in the present context, natural AFs are continuous (by
Corollary 3.17 in [6]), from which it follows thag(X); - = g(X;-), Py-a.s.
Therefore there is a Borel functiohy : E — R such thatAB;, = ba(X,-),
P,-a.s. on{¢; < oo}; see [11], (16.4). Defining(x, y) = bo(x, Y)1gxg(x,y) +
ba(x)1iay(y), we obtain the representation (3.5). The proof of the uniqueness
assertion is left as an exercise to the readet.

PROOF OFTHEOREM 3.1. We begin with a discussion of the terminal tie
defined in (3.4); for related work see [10, 15, 26]. Cleaslys a thin terminal
time. Define the sequends™ :n > 1} of iterates ofS by settingS® := §
and S+ .= §™ 1§60, for n =1,2,.... [As a matter of convention, if
S™ () = 400, thenS® (w) = +o0o for all k > n.] Next define

C; ::Z]]'{S(")Ef}’ tZO
n

and
(00) c_ A Ji (n)
§ =1 lim 5.

Let [A] denote the sample path such thatX;(w) = A for all ¢+ > 0. With the
conventionZ; ([A]) = 1, we haveS([A]) = 4+o0. Thus, if S™ (w) = ¢(w), then
S® (w) = +o0 for all k > n. Consequently{S™ :n > 1} announcess> on
{80 < +00}. Thatis,S* is a thin predictable terminal time, hen§&° > ¢,
P,.-a.s. by [11], (16.21). SincfC, = 00,1 < ¢} = {S©) <t < ¢}, it follows that
C isfinite onI(¢), P,,-a.s. Let us now apply Lemma 3.2 €4 taking into account
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the fact thatA C takes values if0, 1} in the present situation. We find that there is
a Borel setA C E x E, disjoint from the “diagonalf(x, x) : x € E}, such that

Cr= ) 1a(X,—, Xy)

O<s<t
providedr € 1(¢), P,,-a.s. In particular,

Pn-a.s. on{S < ¢,}. In fact, a litte thought shows that the infimum in (3.6) is
attained:(Xs_, Xs) € A, P,-a.s. on{S < ¢, }.

From [14], Théoréme 1 and the quasi-left-continuity of the filtratig#f,), we
know thatZ—1 is locally bounded or (S) in the sense that there is an increasing
sequencgs,) of stopping times with/ (S) = U524[0, S,] such thatZz~ < n on
[0, S,] for all n, Py,-a.s. LetZ = N — V be the Doob—Meyer decomposition
of Z into local martingale and predictable increasing compon@ntand V,
respectively. DefineM? := (5 Z;2dN, and A? := [} Z;1dV,. Both of these
integrals are well defined oh(S) because of the local boundednesszaf just
noted. It is not hard to check thM° is an AF of (X, S) (the proces killed at
time S, defined to equak beforeS and A at and afterS) and a local martingale
on I(S), and thatA° is a predictable increasing AF ¢X, S). Of course,A° is
continuous except perhaps for a jumgaton {S, = ¢, < oc}. (By the discussion
in the preceding sectioi;s ;) is totally inaccessible.)

We now extend/°® andA° to AFs of X. Let us begin withA°. By an extension
procedure detailed in Theorem (4.8) of [11], there is a diffuse homogeneous
random measure of X such thatA? = « ([0, ¢]) for all r < §, P,,-a.s. We will
show thatx ([0, t]) < +oc for all ¥ < ¢, Py,-a.s., and then use the recige :=
a([0,t A L], t =0, as the desired extension 4f. DefineR :=inf{¢: ([0, ¢]) =
+o00}. Clearly R is a terminal time, and® > §, so thatR is thin and hence
exact, in the sense that + R o 0, decreases t&R asr decreases to 0. Now
define R, := inf{r: «([0, ¢t]) > n}, and notice thatR, < R. The strong Markov
property (applied at the stopping tim®) shows that the everiR, = R < ¢}
differs from the evenfR, = R < ¢, S o 6g > 0} by alP,-null set. Suppose that
w is a point of{f R, = R < ¢, So0p > 0}. Thena(w, [0,7]) <nfor0<t < R(w)
buta(w, [0, 1]) = 400 for t > R(w). In particular, iff > R(w), then

+o00 =a(w,[0,7]) = a(w, [0, R(w)]) + a(6rw, (0,1 — R(w)]).

The furthest right term above is finite wherns sufficiently close taR (w) since
S(Orw) > 0. Thereforea(w, [0, R(w)]) = 4+00. On the other handy(w, [0,
R(w))) = a(w, [0, R,(w))) < n. But a(w, {R(w)}) = 0 becausex is diffuse. It
follows thatP,,(R, = R < ¢) =0, so thatR’ := Rr) is a thin predictable
terminal time. ThuskR’ > ¢, which forcesR > ¢ as well. This shows that
([0, t]) defines a PCAF oX.
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Turning to M°, notice thatAM;? = AZ;/Z,_ = Z;/Z;,— — 1 > —1. Define
Br =3 0cs< AMPLape-1y, lET B} denote the dual predictable projection®f
and now defina/{*? := B, — B/ andM?! := M; — M?2. BothM°tandM°2 are
local martingales orf (S) and AFs of(X, S). By the argument of the last section,
the CAF [of (X, S)] B? extends to a CARB of X. Moreover, by (3.5) there is
a Borel functionp: E x Ex — [—1, 4o00[ such thatAM® = ¢(X_, X) on I(S).
Then

,2 57y
Mt* = Z (X5, Xs)]l{<p>1}(Xs—7 Xs) — B;

O<s<t

defines an extension @f°2 to a local martingale AF ok . Next, given a locally
square-integrable martingale AW, consider the covariation proce€s (N) :=
(M°1 N), viewed as a CAF ofX, S). As before, this CAF admits a unique
extension®(N) to a CAF of X. In addition, we have the Kunita—Watanabe
estimate

(M>Y N2 < (MY, - (N),  VielO,S],

and it is easy to check tha® (N),]2 < D, - (N),, whereD is the extension of the
CAF (M°1). A result of Kunita (Proposition 2.4 in [15]) now tells us that there
is a local martingale AR/*1 such thatd (N) = (M*1, N) for all N. Of course,
M*1=M°1onI(S). The local martingale AR := M*1 + M*2 is the desired
extension of\/°. Notice thatAM = p(X_, X)onI(¢). O

4. Absolute continuity and Dirichlet forms. Let Y = (2, M, M;, Yz, Qy,
x € E) be another symmetric Markov process with symmetry measuvehich
is realized on the same (canonical) path spa@es (X, P,, x € E). HereY,(w) =
X, (w) but we user for emphasis when referring . As with the procesX, we
assume that is a Borel right process.

We note that Lemmas 2.5, 3.4 and 3.9 in [5] are valid in the setting of symmetric
Borel right processes. The first result of this section is the analogue of [5],
Theorem 3.2.

THEOREM 4.1. Assume Q, <oc Py, in that Q,|u,ni<zy IS absolutely
continuous with respect to IP,,,| x4, (<) for each r > 0. Then v « m and there is
a (Y, v)-inessential Borel set N C E which is X-finely closed, and a version p? of
the Radon-Nikodym derivative dv/dm suchthat 0 < p(x) < oo forall x € E\ N
and:

(@) t > p(X;) isright-continuous on [0, Tx[ with left limits on 10, Tx A <[,
P.-as.forall x € E\ N;inparticular, p|g\n IS (X, Tn)-finely continuous;

(b) logp € F1oc(X, Ty) and there exists alocal martingale AF M, satisfying
(4.1) logp(X;) —logp(Xo) = (M; — M;or:)/2, Pyu-as.on{t <Tn A}
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PrROOF The existence oN follows from the proofs of Lemmas 3.4 and 3.9
in [5]. By Kunita ([16], Theorem 5.1), there is a supermartingale multiplicative
functional Z; of X satisfying

dQ,

(4.2) =7,
AP | p,nfr <) '

We setZ, =0 for¢ > ¢. SinceX is symmetric under the measurg, we have
P*(X0)Z = p*(X)Zi o1, Py-as.onfr <),
This implies that

2logp(X;) —2logp(Xo)
(4.3)
=logZ, —logZ; or, Pu-a.s.onf{t < Ty A}
But, by Theorem 3.1,
logZ, —logZo= M, — $(M®), — A, + H,, 0<t<g,
where

Hy:= ) (log(1+¢(X,-. X)) = ¢(Xs—, X,)),

O<s<t

which is absolutely convergent in view of (3.3). CleaHyis quasi-left-continuous
sinceX is so; thus its dual predictable projectiéf? is a CAF. Define

M} = 3(M, + H, — H]), Fi=3(H — 3(M) — A)).
ThenM; is a local martingale AF, andy is a CAF of finite variation with
logZ; —logZo=2M; + 2A;.
Note thatZo = p?(Xo) andA¥ is even. So ofir < Ty A ¢},
logZ, —l0gZ; or; + 2logp(X;) — 2logp(Xo) = 2M; — 2M; o ;.
Hence by (4.3)
logp(X:) —logp(Xo) = (M; — M; ory)/2.

Theorem 4.2 now implies that lgge 55|0C(X, Tx). Thereforep has a quasi-
continuous version with respect to subprocgésTy). O

THEOREM 4.2. Let f be a quasi-continuous Borel function on E, and
supposethat thereis a local martingale AF M such that
f(X) — f(Xo)= (M, —M;or,)/2, P,,-a.s. for eachr € [0, ¢[.

Then f € Foc.
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PrROOF We first assume that the jumps M&f are bounded, and then we show
how to reduce to this special case.

If there is a constant such thai AM;(w)| < C, then it is easy to check that
[M] is locally integrable, s@M) exists and is a PCAF of. Things being so, the
argument in [5], Lemma 3.15, can be used to reach the desired conclusion.

In general, defing” :=inf{r > 0:|AM,| > 1}. ThenT is a thin terminal time,
and the subprocessX, T') is m-symmetric with state spac&. Theorem 4.1
in [27] provides a precise description of the Dirichlet form(&f, T'), telling us,
in particular, that the Dirichlet spac® (X, T) of (X, T) is a subspace of .
Evidently, X and (X, T) have the same fine topologies (modeexceptional
sets). Clearly, ifNV is X-exceptional, then it i$X, T)-exceptional. Conversely, if
N is (X, T)-exceptional, then it is{-exceptional. To see this 1¢T;,} denote the
sequence of iterates @f. By assumptionX does not encounte¥ during any of
the open intervalg7,, T,,.1[. ThusX visits N at most countably ofteri?,,-a.s.
That is, N is m-semipolar, hence exceptional sinkds symmetric. Using quasi-
left-continuity, one now checks that any increasing sequé@gé of finely open
sets is arX-nest if and only if it is an X, T)-nest.

Now for f under the assumptions of the theorem, by modifylicat time T
we can produce a local martingale AF @, T), call it M*, with jumps bounded
by 1, such that

fX)— fXo)=MF—M] or)/2, P,,-a.s. for each € [0, T'[.

By the first section, f e }:(X, Tioc- The preceding section tells us that
F (X, T)ioc C Floc SinceF (X, T) C F. This completes the proof.[]

Fort > 0, we say that two sample pathsande’ arepre-z-equivalent provided
w(s) =a'(s) forall s € [0, ¢[. Observe that ifA = (A;) is a finite CAF ofX and if
o andw’ are pret-equivalent, then

Ag(w) = Ag (o)) forall0O<s <t.

It is easy to check that 0w is pre+-equivalent tor, @ and that,r; s is pre-
s-equivalent tor;w. This will be used repeatedly in the proof of next theorem.
Define

Z,:A;or; On{t<§}

Following [26], we have the following result.
THEOREM4.3. A= (A,:0<t <¢)isaCAF of X.

PROOF  First we need to show that, is an AF. On{r +s < ¢},
Args =Arrsorirs = (A + Ago0) oriyy = Aoy + Ag o or i

=A;or; 00+ Agory = Ag+ A, o 6.
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Note thaton{r < ¢}, forO<u < ¢,
gt_Zt—uzguoet—u:Auoruoet—u:Auort-
Hence
lim(A,_, — A;) = —lim A =0.
uio( t—u ‘) 110 uore

This shows thafl is left-continuous.
Let us now prove the right-continuity. Note that grH-u < ¢},

Zt—i—u _Zt :Zu 0 =Ayoryob=Ayor iy,
so it suffices to show that limoA, o r;y, = 0. For anys > u > 0, since
05—y o Fi+sw IS pre{t 4+ u)-equivalent tor,,w, we have
(A — As—y) orrps = Ay obs—y orips = Ay o reyy.
Thus
lim A, oy =liM(Ag — As—y) 01145 = (As — As—) o145 =0.
ul0 ul0

This proves the theorem ]

For simplicity, from now on we will assume th&t, <oc P, for all x and that
Z >00n[O0,¢[. Itis easy to reduce to this case by killicgat a terminal time and
removing a¥ -exceptional seV from E.

Defining ¢ :=log p, we havel 3~:|oc by Theorem 4.1. Recall that the density
processZ in (4.2) is a nonnegative supermartingale MFX0f which is strictly
positive on [0, ¢[. Hence by Theorem 3.1Z = Exp(M — A), where M is a
local martingale MF andt is a PCAF ofX. Let M¢ and M? be the continuous
and purely discontinuous components Mf, and lety be the Borel function:
E x Epx — [—1, +oo[ with ¢(x, x) =0 for all x € E such that

AME = AM, = o(X,_, X)), P,,-a.s.

In particular, M¢ is the compensated local martingale corresponding to
2 0<s<.9(X5—, X;). We now deduce from the identity (4.1) that

Lo _me 1 1+ oK, Xs)
(44) 00 X0 = 5087~ Mior) +5 3 Iog(1 o XS_))

P,,-a.s. on{r < ¢} for everyt > 0. The infinite series in (4.4) is to be understood
in the following sense:

1+ e(Xs—, Xy)
[ L et ek et
O<2S:§t Og<1+§0(XSv Xs—))
(4.5) = Z (log(1+ ¢(X,—, X;)) — 0(X,—, X))

O<s<t

— Y (log(1+ ¢(Xy, X)) — 9(Xs, X,2)),

O<s<t
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both sums on the right being absolutely converg@yt;a.s. on{r < ¢}. By
Theorem 4.3, (4.4) in fact holds for alk [0, ¢[, P,-a.s.

As { € Foc by Theorem 4.1, it follows from Lemma 2.2 that
6(X,) — 6(Xo) = S(M — M ory)

+lim D0 (6Xs) = () Ljecxro—exeol=e)

O<s<t

forall r € [0, ¢[, P,,-a.s. Identities (4.4)—(4.6) yield,,-a.s.

(4.6)

MS—Mfor, =M —M“or,  forallre[0,¢[.

Using the fact that an even martingale CAF must vanish [5], (3.25), we deduce
from the above that

M =M =p7H(X_) e MP<,

wherep~1(X_) ¢ M€ is an It6 integral, and the last equality follows from [8],
Theorem 5.6.2. It follows from Lemma 3.2 and (4.5) that

1+90(x,y))

J*-a.e.onE x E,
1+e¢(y,x)

Kx —E ——IO

P? _1+e(x.y)
p(x)2 14+ ¢(y,x)

Thus, the functiory defined by
(4.7) y(x,y) = p()?’[1+¢(x, y)]

is symmetric,J*-a.e.
Recall that by Theorem 3.1 the densHyin (4.2) can be written as

Z = EXp(M — A) = EXp(M) EXp(—A),

whereM is a local martingale MF and is a PCAF ofX. ASAZ, =Z,_ - AM;,
we haveZ;, = Z,_(14+ AM,) =Z,_(1+ ¢(X;_, X;)). By an argument used in
the proof of Lemma 2.9, one sees that', H) is a Lévy system of’, where
NY(x,dy) = (1+ ¢(x, y))N(x, dy). Hence the jump measure Bfis

(4.8)  JY(dx,dy) = p(x)*(1+¢(x,y))J(dx,dy) = y (x, y)J (dx,dy)

(cf. [5], Lemma 4.4).
To find the killing measure’ of Y, note thatQ = (Q,:x € E) andP =
(P, :x € E) are related by first making a Girsanov transformation using(EXp
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and then a Feynman-Kac transformation using(Exp). Hencex? is the Revuz
measure for the PCAF

(L2e)"(Q) = (Lg2))" (@) + (L2, M)(P) + A
= (Lp56) " )+ (AMg 115 (P) + A
= (1{.54))" ®) + (9(Xg—, M)p.5g))  (P) + A.
So
(4.9) k7 (dx) = p(0)*(1+ p(x, A))k(dx) + p(x)°a(dx).

The above discussion proves half of the theorem to follow(E&t FY) be the
Dirichlet form for processY, Q). From its probabilistic characterizatiof¥y }r>1
is an&? -nest if and only if it is arg-nest. So we can choo$e -nest{F;};>1 of
compact sets (see, e.g., V1.3 of [19]) such that £ p <k g.e. onFy.

THEOREM4.4. Let (&Y, FY) and {Fi}x>1 be as above. Then

o0
(4.10) U FrnL(y - HnL2")cF?
k=1

and for f inthe set on the left-hand side of (4.10),

e (f f)= %fp(x) S ) (d)
(4.11)

[0 = F0) @ran + [ FE! @,
with J¥ and «¥ given by (4.8)and (4.9).

PrROOF To calculate the continuous part of the energy measure, we pro-
ceed as in Section 2, using the method of forward—backward martingale de-
compositions together with martingale theory. Defifle= (Qy : x € E) by
d@x/dIP’ lpnie<z,) = EXP(My). Then (X, Q) is v-symmetric. Forf € b¥p, N

L2(Y) N £L2(y - J), by the Lyons—Zheng forward—backward martingale decom-
position,

fX)— fXo) =3 =Ml or),  P,-as.oni <),

whereM,f is the martingale part in Fukushima’s decompositioif 6X;) — f (Xo).
Hence

Ko=M — M5 My, 1<y,
is a local martingale AF undép and
K1, (@ =[M'1,(P), P.-a.s. forr < ¢,.
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Hence forr < ¢,,
(K)(Q) = (MT),(P) + (M7, M) (P)
t
= (M7),(P) +/ / (f(Xs) — f(y))ztp(Xs, YIN (X, dy)d H;.
0 JEA
So the Revuz measure oF) with respect ta X, Q) is
P21 (f)(dx) + 20 (x)? f (feo - FO)0(x, y)J (dx, dy)
ye

+p(x)%0(x, A) f(x)%K (dx)
= p(0)’uiy(dx) +2 f} 0 = )P dx.dy)

+ 00?1+ @(x, A)) f(x) %k (dx).

Let (€, F) [resp.(&¥, F1)] be the Dirichlet form for the proces, Q) [resp.
(Y,Q)]. As (Y, Q) is obtained from(X, Q) through Feynman—Kac transform by
EXp(—A), F¥' = F N L2A%ua) and FY(f. ) = E(f. ) + [ f ()% (x)? x
mna(dx). Becausef = 0 g.e. onFy for somek > 1, an argument similar to that
used in the proof of Theorem 2.6 [between (2.14) and (2.15)] showsfthaf .
Applying Feynman—Kac, one hgse £ with

§7(1. =1 [ pePuipy@n + [ (F) = £)27 @x.dy)

+ [ F@ @),
whereJY and«?! are given by (4.8) and (4.9).0]

In the remainder of this section, we will focus on the special case in which the
supermartingaleZ, in (4.2) is of pure jump type. That is, in the expression (3.2)
for Z, we assume tha7¢ =0, A =0, ¢ is symmetric onE x E with ¢ > —1
on E x E andg(x, A) =0, so Z is strictly positive on[0,¢,[ andr — Z; is
continuous at;;. As a consequence of Theoreni 3the integrability condition
(3.3) holds.

COROLLARY 4.5. In the setting of Theorem 4.4, suppose there are real
constants ¢1 and ¢z such that —1 < ¢1 < ¢(x,y) < ¢z for al x,y € E. Then
FY = and (4.11)holdsfor all f € F.

PROOF By Theorem 4.4 c #Y and (4.11) holds for alf € #. Moreover,
as in the discussion at (2.18), we hai@, |M,/a’IP> Iu, = Z;, where Z is the
exponential local martingale MF &f determined by the purely discontinuous local
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martingaleM with M, — M,_ = ¢(Y,_, Y;), andy := —¢/(1+ ¢). In short,X can

be recovered fronY by a pure-jump Girsanov transformation of the same type
that led fromX to Y. A second application of Theorem 4.4, in which the roles of
X andY are reversed, shows that! c #. O

We now suppose that
t
(4.12) /0 N(g)(X,)dH, <00 Viel0,z[, Pp-as.

Thus
M=) o(Xs_,Xs) — (Nox H),,

s<t
the infinite series converging absolutely for each(O, ¢ [, P,,-a.s. Consequently,
the local martingale AR/ has paths of locally finite variation. In particular,can
be expressed as

(4.13)  Z =[](Q+eX,— Xy))exp(—(No* H),)  Viel0,¢],
<t
the infinite product being absolutely convergent.

Conversely, if¢p: E x E —]1—1, oo is symmetric,¢(x, A) := 0 and (4.12)
holds, thenz; in (4.13) defines a positive local martingale MF. Under the family of
measure§) = (Q, :x € E) defined by:i@x/d]P’x|% = Z,,the proces¥ := (X, Q)
is anm-symmetric Markov process whose law is locally absolutely continuous
with respect to that oX. So we can just start with suchgaand construct the
symmetric process in this way. We will now identify the Dirichlet space &f.

LetpT:=¢pVvO0andg :=(—¢)Vv0.Then0<¢p~ <1,¢o=9¢" — ¢~ and
1+9=1+¢"N (1 -9 )onE x E. Define, forr € [0, ¢[,

t
zZh =[]+ ¢* (X, Xy)) exp(/o No~(Xy) dHS),
sS<t

(4.14) .
Z;7 =]](1— ¢~ (X, Xy)) exp(—/o N<p+(Xs)st).

sS<t
Clearly Z* is increasing and ~ is decreasing. BotlZ+ and Z— are MFs that
are finite and strictly positive of0, ¢[andZ = Z* - Z~. Let W = (W;,P¥) be
the subprocess afX, Z7) (“ X killed via the MFZ™"). It is easy to see thaW
coincides with the subprocess@f, 1/Z ).

The AF % > s<1 (X5, X;) is of bounded variation on compact subintervals

of [0, ¢[. We writev := ¢ - J for its bivariate Revuz measure, and defpne=
2v(1® ). As before,

L2v) = {u € L?(m) : u has a quasi-continuous version
(4.15)

such that u(x, y)zv(dx, dy) < oo}.
ExE
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Of course, each element &f has a quasi-continuous version. Hence we can define

FVi=FNL2O) = {u € 5«7:/ u(x, )2 v(dx,dy) < oo},
(4.16) ExE
8 (u,u) = 8(u,u)+/ u(x,y)?v(dx,dy), ueF .
ExXE

By Fatou’s lemma(&”, ") is a symmetric closable quadratic form aR(m) if
¢ >co>—1.

THEOREM 4.6. (i)Let ¢:E x E —]—1, oo[ be a symmetric Borel function
such that (4.12)holds. If ¢(x, y) > 0for all x,y € E, then
FNLA(wcFY cF,

where F N L2(1) isdensein F¥ with respect to the &) -norm, and for u € F7,

(4.17) &Y (u,u) =86, u) —l—/ (u(y) — u(x))zv(dx, dy).
ExE

(ii) If, in addition, ¢ is J-integrable, then F¥ = V.

PROOF (i) Using the notation in (4.14), we now have (in view of the non-
negativity ofy)

t
zr =TI+ o(Xee Xy). 27 = exp(— [ Nw(XsmHs),
s<t

and . is the Revuz measure df¢ « H. Hence the Dirichlet form&", #%)
associated withw andm is given by

FV =FnLw),
eV, ) =6, u)+puw®, ueFW.

But W is also the subprocesy,1/Z™) of Y, so by (4.8) the bivariate Revuz
measure of 1Z* computed with respect t6 andm is ¢(1+ ¢)~1- J¥, which is
nothing butv. It follows from [27], Theorem I11.3.10, that

FV =" nL* ),

(4.18)

(4.19)
eV u,u)=6Y(u,u) +viu @u), uefFV,

Combining (4.18) and (4.19), and noting thatis smooth with respect to both
X andY, we find that¥ N L?(w) is contained inF ¥ and is dense with respect to
the & -norm, and fom: € F N L?(11), (4.17) holds.

Assume that: € Y. We may choose a sequenieg} c F N L2(x) such that
Uy —> uin Sf—norm. Then{u,} is anSf—Cauchy sequence and by the result above
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it is also ang;1-Cauchy sequence. Therefares # andu,, — u in &1-norm and
guasi-everywhere (at least along a suitable subsequence). Invoking Fatou’s lemma,
we have

€, u) + (@) < M (& un, un) + v(i7)) = €7 (u, u) < 0.

It follows that #¥ c . As Up2y Fr, N L3(w) is € + (-, ")2(,) -dense in

F N L?(w), by Theorem 4.4, (4.17) holds fare £¥. (Here the nestF;} is as in
the statement of Theorem 4.4.)

(i) We now assume that is J-integrable. For any: € ¥V, setu, :=
(u A n) A (—n). Then theJ-integrability of ¢ guarantees, € ¥ N L%(x) and
u, — u in &-norm and qg.e. Sincéi,| < |i|, we may appeal the dominated
convergence theorem and ggt— u in &;-norm. This implies thafu, } C FYis

an 8{-Cauchy sequence. Therefare Y. O

In the more general case where (4.12) holds¢ig not necessarily positive,
we have a weaker result by a similar approach.ibet=¢™ - J,v" =9~ - J,
and letu™ =vT(1® ), »n~ =v (1® -) be the second marginal measures tf
andv ™, respectively. By [27], Theorem 1.4.6, the bivariate Revuz measuge of
computed with respect t§ andm, is

vz-(dx,dy) =@~ (x,y)J(dx,dy) + NoT (x)tn (dx)S(x)(dy)
= v (dx,dy) + pu T (dx)8(dy)

and the bivariate Revuz measure gZl" computed with respect t@/, m) is

ot
1+ ¢t
=0T (1 — @) J(dx,dy) + pn~ (dx)S(x)(dy)

=vh(dx,dy) + p~ (dx)8)(dy).

JY(dx,dy) + No™ (x)pp (dx)8(x)(dy)

vy, 7+ (dx, dy) =

It is now clear that
vz-(1®) =v],,+(1® ) =|ul.
Hence we have by [27], Theorem 11.3.10,
FV =FnLA(u)),

(4.20)
eV u,u) =86, u)+v (uQu), ue 7V,
and also
FYV=F nL3(u),
(4.21)

eV, u)y=€"w,u)+v), ;s w@u), ueF".

Combining (4.20) and (4.21), we have the following theorem.
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THEOREM 4.7. Let 9. E x E —]—1,o0[ be a symmetric Borel function
such that (4.12) holds. Then & N L2(|u|) is densely contained in £ and, for
u e F NL3(|u|), wehave

t
(4.22) &Y (u,u) =86, u) + %/ (u(y) — u(x))?v(dx, dy).
0
Moreover, if T =0,then ¢ FY N L£%(¢p~ - J) and (4.22)holdsfor all u € F.

PROOF. It only remains to show the last assertion. In this case;as: 0,

1 o~ (Y-, Ys) Ty ¢ )
@23 _S<t(l+1—w‘(Ys_,Ys))eXp( /ON T dH, ).

But o= /(1—¢7) = ¢~ /(14+¢) = 0, so the last assertion follows from Theo-
rem 4.5 with the roles ok andY interchanged. OJ
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