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STABLE STATIONARY PROCESSES
RELATED TO CYCLIC FLOWS!

BY VLADAS PIPIRAS AND MURAD S. TAQQU
Boston University

We study stationary stable processes related to periodic and cyclic
flows in the sense of Rasski [Ann. Probab. 23 (1995) 1163-1187].
These processes are not ergodic. We provide their canonical representations,
consider examples and show how to identify them among general stationary
stable processes. We conclude with the unique decomposition in distribution
of stationary stable processes into the sum of four major independent
components: 1. A mixed moving average component. 2. A harmonizable
(or “trivial”’) component. 3. A cyclic component 4. A component which is
different from these.

1. Introduction. Consider a symmetrig-stable (%S, for in short)x € (0, 2),
stationary procesq X, (¢) };cr that has an integral representation

(L.1) Ka@her £{ [ fiMaan] .
S teT

where£ stands for equality in the sense of the finite-dimensional distributions.

Here,T =Z or T =R, (S, 4, v) is a standard Lebesgue space (see Appendix A

for a precise definition),

{fl‘}lET C LOC(S’ /57 V)

is a collection of deterministic functions such that the nfg@): 7 x S+— R or

C is measurable an#f,, is, respectively, either a real-valued or a complex-valued

rotationally invariant &S random measure i, §) with the control measure.

(Rotationally invariant means theft’ M, 4 M, for any real angle’.) The process

X, is real-valued if the random measu¥g, and the functiong; are real-valued;

it is complex-valued if the measure and the functions are complex-valued.
Relationship (1.1) then means that the characteristic function of the prégess

can be expressed as

(1.2) Eexp{i Xn: GkXO,(tk)} = exp{ - /S

k=1

V(dS)},

D Ok fi(5)
k=1
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wherebd, € R, 1, € T, in the real-valued case, and as

Eexp[i Ziﬁ(gan(tk))}

k=1
n

(1.3) =E exp{i 3 (ROOR (X (1)) + 603 (Xe (tk)))}

k=1

:exp[ —co/
Sli=1

wheret, e C,1r € T, co = (2n)7 1 [02” |cosp|“d¢ andz denotes the complex
conjugate ofz € C, in the complex-valued case [see, e.g, Samorodnitsky and
Taqqu (1994)]. It is known, for example, that every measurable real-valu&d S
processX, has an integral representation (1.1) with, for exampgles (O, 1),
8 = B(0,1) andv = Lebesgue measure [see Samorodnitsky and Taqqu (1994),
Theorems 13.2.1 and 9.4.2]. Finally, recall that, (¢)};cr is stationary if, for all
h € T, the finite-dimensional distributions of the procegg(t + h), t € T, are
identical to those of the proce&, (¢),r € T.

In a fundamental paper, Résiki (1995) showed that a¥S stationary process
X, can be related to a flow and a corresponding cocycle as in Definition 1.1. A flow
is a collection of deterministic mage, };<r that satisfy

(s)

V(dS)},

¢t1+t2 = ¢l‘1 o ¢t2v n,rneT.

A cocycle{a;};cr for the flow{¢;};cr satisfies relationship

Aty 41, = Ay, Ay, © Py f1,2€T.

See Appendix A for precise definitions. By support ¢f};c7, we mean a minimal
(a.e.) setA € 8 such thatv{f;(s) #0,s ¢ A} =0 for everyr € T. The support is
denoted suppy;,t € T}.

DErFINITION 1.1 [Roshski (1995)]. A %S stationary procesX, that has
a representation (1.1) is said to be generated by a nonsingular measurable flow
{d: e ON(S, 8, v) if, forall r €T,

d(vog;)

1/a
(1.4) ft<s>—af<s>{ <>} foldi(s)  aew(ds),

where fo € L%(S, $,v) and {a;};c7 is a cocycle for the flow{¢,};cr taking
values in{—1, 1} in the real-valued case and in the unit cir¢le:|w| = 1} in
the complex-valued case, and

(1.5) supd fi,t €T} =S, v-a.e.
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Observe that this definition is consistent with stationarity because it implies, by
using the definitions of a flow and a cocycle, that

Zekﬁk+h(s> Cuds)

‘/ éek“w“){W@}wm(%m)) Cuds)

- / ;eka,k ¢h(s)){d(v P (g s ))}1/af0(¢tk(¢h(s))) a(voqﬁh)(ds)
-/ élekftkmav(ds),

where the last equality follows by a change of varialfg&) — s and (1.4).

Definition 1.1 relatesf; to fp o ¢;. By using this connection between kernels
and flows, Rogiski (1995) obtained a unique decomposition in distributionad S
stationary processes into two independent processes

(1.6) Xy £ xP 4 xC,

where the procesx? is generated by a dissipative flow and the procjégsis
generated by a conservative flow (see Appendix A for definitions of dissipative
and conservative flows). Moreover, Riaski showed that dissipative procesxés

have a canonical representation

@7 /){Lk(x,t—i—u)Mde,du),

where (X, X, u) is a standard Lebesgue space afigl has the control measure
w(dx))(du) with (§ denotes a counting measure)
87.(du), if T =7,

(1.8) Mdu) = {du, if T =R,

and showed that conservative proceskgscan be uniquely decomposed further

into two independent processEg andXC\F
In the complex-valued case, the proc&dsis theharmonizable process

(1.9) xE@ i/Ae’”Na(a’x),
T

whereN,, has a finite control measureon
~ {R, if T =R,

(1.10) [0, 277), if 7T=27.
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In the real-valued cas&[ is thetrivial stationary process
(1.11) xF@) 4 X1+nt)X,= / Ny (dx) + n(t)/ Ny (dx) asVvreT,
{1} {2}

whereX, and X» are independentds random variablesy, has a finite control
measure; on {1, 2} and

0, if T =R,

(1.12) n(t):{(_l)t’ P,

thatis, X (1) £ X1 if T =R andXF (1) £ X1 + (-1 X, if T =Z.

The process(!, whether harmonizable or trivial, is a stationarySSprocess
generated essentially by the simplest type of conservative flows, namely, the
identity flows defined byg, (s) =s forallt € T, s € S with § = 7 in the complex-
valued case anl= {1, 2} in the real case. The other process in the decomposition
of Xg, that is,XS\F, is a xS stationary process generated by a conservative
flow which does not have a harmonizable (or trivial) component, meaning that it
cannot be decomposed into two independent processes one of which is either a
harmonizable process in the complex-valued case or a trivial stationary process
in the real-valued case. This led Raski (1995) to the unique decomposition in
distribution of S¢S stationary processes into three independent processes

(1.13) Xy £ XD 4 xF 4 xC\F,

A nice review can be found in Raski (1998).

In this work, we focus on &S stationary processes generategéyodic flows
in the sense of Definition 1.1 and more specificallycpglic flows. Periodic flows
are examples of conservative flows such that any point in the space comes back
to its initial position in a finite period of time. Identity flows are periodic flows
with period zero. Cyclic flows are periodic flows with positive period. We will
show that &S stationary processes generated by periodic flows have a canonical
representation which is given by the sum of two terms. The first term is the
harmonizable or trivial process

/A " Ny (dx) (complex-valued case),
(1.14)

/ Ny (dx) +n(t) / Ny (dx) (real-valued case);

{1} {2

the second term is
(1.15) fz /[0 o, PO IOR (e, (0t ) Matdz, dv),
,q(z

where, fora > 0 andx € R,

(1.16) [x]la =maX{n € Z:na < x}, {x}, =x —alx], =0,
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(Z,Z, o) is a standard Lebesgue spag&;,) € T with

(1.17) T _{(O, 00), if T =R,
' T 2,3,...), ifT=17,
and
{w:|w| =1}, (complex-valued case),
b1(z) € {
{—1,1}, (real-valued case),

g € LYZ x[0,q()), 0 (dz)r(dv)),

with A(dv) defined in (1.8). MoreoveM,, and N, above areéndependent SaS
random measures with the control measurész) A (dv) andn(dx), respectively,

so that (1.14) and (1.15) are independent processes. The processes represented by
the sum of (1.14) and (1.15) are callgdtionary periodic processes. Observe that

the term “periodic” refers to the flow and not to the sample path behavior of the
process. A stationary periodic process is callsthtonary cyclic processif it does

not have a harmonizable (or trivial) component, that is, if it cannot be represented
as a sum of two independent stationary processes one of which is a nondegenerate
harmonizable (or trivial) process. Note that stationary cyclic processes cannot be
defined by (1.15) because, for example, harmonizable or trivial processes (1.14)
can also be represented by (1.15) (see Lemma 3.1).

Stationary periodic processes (1.14) and (1.15) are always generated by periodic
flows because the process (1.14) is generated by an identity flow and the
process (1.15) is generated by a cyclic flow (see Theorem 3.1). We show in
Theorem 3.2 that if representation (1.14) and (1.15) mmimal, that is, if
there is no redundancy in the representation (minimal representations are defined
in Appendix B), then a stationary periodic (cyclic, resp.) process can only be
generated by a periodic (cyclic, resp.) flow.

If the representation is not minimal, stationary periodic processes
(1.14) and (1.15) may also be generated by flows that are not periodic (see Ex-
ample 3.1) and stationary cyclic processes may also be generated by flows that
are not cyclic. To determine, therefore, whether a given stationary stable processes
is a stationary periodic or cyclic process, it is in general not enough to examine
whether the underlying flow is periodic or cyclic. There is, however, an alternate
criterion that can be used to identify stationary periodic and cyclic processes. This
criterion is based on the structure of the kernel functfprin (1.1) (see Theo-
rems 4.1 and 5.1). Thus while flows have a physical interpretation, the identifica-
tion criterion, which is based on the kernel, has the advantage that it can be used
whether the representation is minimal or not. An analogous approach was fol-
lowed by Rognski (1995) in the case of harmonizable (or trivial) processes (1.9)
[or (1.11)], typically associated with identity flows.

Our goal then is to identify stationary periodic (cyclic, resp.) processes among
general &S stationary processes, namely, to be able to conclude that a gr&en S
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stationary process is a stationary periodic (cyclic, resp.) process, either by using
flows in the case of a minimal representation or by applying the identification
criterion mentioned above.

The identification criterion provides also a decomposition @SStationary
processes which is more refined than the decomposition (1.13) obtained by
Roshski (1995). More precisely, we will show (see Theorem 6.1) that the “third
kind” processX(f\F in (1.13) can be further uniquely decomposed into two
independent processes

(1.18) xC\F L xL 4 xC\P,

where XL is a stationary cyclic process arXf\P is a xS stationary process
generated by a conservative flow, that is without a periodic component.

A simple example of a real-valuedS stationary cyclic process with=R is
the real part of a harmonizable process (1.9),

. 2
suf el’XMa(dx)ic/f COS(v + 26) M, (dz. dv)
@19 °F R0

d 21/lz|
:Céfo cos(z{w + t}2r/|z)) Ma(dz, dw),

thatis, the process (1.15) with(z) = 1,9 (z) = 27 /|z| andg(z, u) = cozu) (see
Example 3.2). We show in Example 5.1 that the process (1.19) is indeed a station-
ary cyclic process, thatis, an example of a processn the decomposition (1.18).

An example of the procesﬁsg \Pis the stationary sub-Gaussian process (see Ex-
ample 6.1).

This paper is organized as follows. In Section 2, we prove some results on
periodic and cyclic flows that are used in the sequel. In Section 3, we show
that stationary &S processes generated by periodic flows have a canonical
representation given by the sum of (1.14) and (1.15). In Section 4, we provide a
criterion to identify stationary periodic processes among gener8l Sationary
processes. In Section 5, we do this for stationary cyclic processes. A further
decomposition of stationaryoS processes is established in Section 6. Finally,
in Appendix A, we collect some basic facts related to flows and, in Appendix B,
we recall the definition of minimal integral representations for stable processes.

2. Periodic and cyclicflows. Let{¢;};cr be a measurable flow on a standard
Lebesgue spaass, 48, v), whereT =Z or T =R (see Appendix A). Let also

(2.2) P:={s:3p=p(s) eT\{0}):¢,(s) =s},
(2.2) F:={s:¢:(s)=sforallt €T},
(2.3) L:=P\F

be theperiodic, fixed andcyclic points of the flow{¢; };<r, respectively.
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DEFINITION 2.1. A measurable flow¢;};er on (S, 48, v) is periodic if
S = P v-a.e., isidentityif S = F v-a.e., and igyclicif S=L v-a.e.

We say henceforth that a satc S or a mapf on S is v-measurable if it is
measurable with respect to a measuyahat is, measurable with respect to the
completion of the Borel sets under that measure.

LEMMA 2.1. Theset F in(2.2)is (Borel) measurable and the sets P in (2.1)
and L in (2.3)are v-measurable.

PrROOF  Since the proof of the lemma is elementary whies Z, we consider
only the casel’ = R. To show that the sef is measurable, we first show that
F :={s:¢,;(s) =s a.e.dt} satisfiesF’ = F. Indeed, ifs € F’, then, by definition,
t:={t:¢:(s) =s} =R a.e. Observe that is an additive group oR [if #1,72 € T,
thent + 1 € t, becauseap;, 1, (s) = ¢y, (¢1,(s)) = ¢, (s) = s] and hence by
Corollary 1.1.4 in Bingham, Goldie and Teugels (1987), we haxeR and hence
F'=F.Then, F = {s:h(s) = 0}, whereh(s) = [ Lig,(s)s}(t, 5) dt. Since the
function 4 (-) is measurable by the Fubini theorem, the Beis measurable as
well [use Theorem A in Halmos (1950), page 143]. To prove that thePset
{s:3p=p(s) #0:¢,(s) = s} is v-measurable, consider the measurable%ve-‘t
{(s,p):¢p(s) = s, p # 0}. Observe thatP = projg{P}:={s:3p:(s, p) € P}.
The v-measurability ofP follows from Lemma 4.2. The sdt is v-measurable
becausd. =P\ F. O

We use in the sequel the following alternative definition of a cyclic flow, which
is equivalent to Definition 2.1 by Theorem 2.1.

DEFINITION 2.2. A measurable flowg,},cr on (S, 8, v) is cyclic if it is
null isomorphic (mod 0) to the flow

(2.4) ¢ (z,v) = (2, (v + 1}g0)

on(Z x [0,q(-),Z x B([0,q(-))),o(dz)A(dv)), whereq(z) € Ty a.e. is some
measurable function [see also the notation (1.8), (1.16) and (1.17)].

The o-field Z x B([0, ¢(-))) in Definition 2.2 is defined as the restriction
of the o-field Z x B(R) to the setZ x [0, g(-)). Null isomorphic (mod 0) in
Definition 2.2 means that there are two null sdts= S and N C Z x [0,¢4()),
and a Borel measurable, one-to-one, onto and nonsingular map with a measurable
inverse (a so-called null isomorphism): Z x [0, ¢(-)) \ N — S\ N such that

(2.5) ¢ (2. v)) = D (2. v))

forall 7 € T and(z,v) € Z x [0, ¢(-)) \ N. The null setsN andN are required
to be invariant under the flows, and¢,, respectively. We can view (2.4) in two
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ways. At each on the horizontal axis, we climb teight ¢ (z) before falling back

on the horizontal axis to the same starting points. Equivalently, we can view the
space(z, v) shaped as a torus where at each pgim the “grand circle,” we rotate
around the “small circle” of length(z).

EXAMPLE 2.1. A collection of maps
¢i(s)=e""s,  1€R,

with some fixed > 0, is a measurable flow on the unit cirdle |s| = 1}. The flow
{¢:}:er is cyclic since each point of the space is not fixed and comes back to its
initial position in a finite time (Definition 2.1) or since it is isomorphic to the flow
[ﬁ(v) ={v+tly-1,t €R,ve[0, 276~1) (Definition 2.2). This corresponds to
representing motion on the circle by a periodic motion on an interval.

EXAMPLE 2.2. Supposé& = R. The collection of maps

(2.6) b1z, v) = (z, {v+5(Dthgr),  tER,

wheres(z) € R\ {0}, g(z) € R, a.e. are measurable functions, is a measurable
flow on Z x [0, ¢(-)). It is a cyclic flow because each point of the space comes
back to its initial position in a finite (naero) time. We may think of the function
|s(z)| as thespeed at which a point(z, v) moves under the flog, };cr. Observe
also that the flowi¢, };cr is isomorphic to the flowg, (z, v) = (z, {v + 1Y) /1))

onZ x [0,g()/Is()D.

EXAMPLE 2.3. Consider now the cage=Z. The maps

(2.7) ¢1(z,v) = (2, {v +5D1t}4(2) teZ,

still define a cyclic flow onZ x ([0, ¢(-)) N Z) or, equivalently, on the space
(Z x [0,¢(-),o(dz)A(dv)) with A(dv) = 87(dv) by using the notation of
Definition 2.2. The definition of this cyclic flow, however, is not very natural.
Consider, for example, the flow, (v) = {v + 2t}4, ¢t € Z, defined by (2.7) with
the suppressed = {1}, o (dz) = 6;13(dz) on the spacg0, 1, 2, 3}. Sincer € Z,
this flow takes 0 to 2 and then 2 back to 0, and takes 1 to 3 and then 3 back to 1.
It hence consists of two separate cyclic flows: the fiplp 2, restricted to the
points {0, 2} and the flowg|1 3y restricted to the pointél, 3}. For a fixedz, the
flow in the v coordinate of (2.7) may hence consist of a number of distinct cyclic
flows.

To avoid this type of situation wheh = Z, it is preferable to consider, instead
of (2.7), the flow

(2.8) $1(z,v) = (2, v+ 5@t s)9), €L,

on Z x ([0, |s()Ig(-)) N |s(-)|Z), whereq(z) € Z+ a.e. anthZ = {ap: p € 7},
a € R, or equivalently, on the spad& x [0, [s(-)|g(-)), 0 (d2)d|s()z(dv)). For
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example, the flowp; (v) = {v + 2t}4 is now defined only on the poin{§, 2} and
thus, we do not have to deal with two flows anymore. In general, for a fixed
the flow in thev coordinate of (2.8) takes 0 t0(z)|, |s(z)| to 2|s(2)], ..., (g(z) —
2)|s(z)| to (g(z) — 1)|s(z)| before returning to 0. Since the spdfe|s(z)|g(z)) N
|s(2)|Z consists only of these points[0(z)|, ..., (¢(z) — 1)|s(z)], there can be no
other distinct cyclic flow on this space. Observe that the funcitiog)| in (2.8)
still plays the role of speed.

Observe also that the flows (2.6) and (2.8) have a common representation
(z, {v +s(2)t}4(z)) only for [s(z)| = 1. Since we prefer to work with a cyclic flow
representation valid for both = R and7" = Z, and since a flowz, {v+s(2)t}4(2))
with [s(z)| = 1 is isomorphic to the simpler cyclic flow, {v+t},(;)), we suppose
in (2.4) of Definition 2.2 thak(z) = 1.

THEOREM2.1. Definitions2.1and 2.2 of cyclic flows are equivalent.

PrROOF If the flow {¢,};c7 is cyclic in the sense of Definition 2.2, then every
point in the spac& x [0, ¢(-)) is cyclic and henc& = L a.e. by using (2.5).

To show the converse, we suppose thét};cr is cyclic in the sense of
Definition 2.1. We first consider the ca®e= R. Since{¢;};cr has no fixed points
(a.e.), we may suppose without loss of generality that the fihlycr is a special
flow on a spac& x [0, r(-)) as defined in Appendix A (see also Figure 1 in that
appendix), that is,

(2.9) ¢ (y,u)=(V"y, t +u—r,(y)

for ra(y) < u +t < raga(y), Wherer, (y) = S3Z5r(VEy), n > 1, ro(y) =0,
ra(y) = Z,::lnr(ka), n<-1 r() >0 ae. andV is a one-to-one, onto,
bimeasurable map on a a standard Lebesgue s@@eg. Indeed, as stated in
Appendix A, given a flow{¢;};cr Without fixed points, there is a special flow
given by (2.9) which is null isomorphic t@; };cr. If {¢:}:cr is cyclic in the sense
of Definition 2.1, then the null isomorphic special flow (2.9) is cyclic as well. Then,
if the flow (2.9) is shown to be null isomorphic to a flow given by (2.4), then the
original flow {¢,};cr is null isomorphic to the flow (2.4) as well (this is because
null isomorphism is an equivalence relationship).

Since, by assumption, a.e. poifit, u) comes back to its initial position in a
finite period of time, we have that

(e e] (e e]
y=Uty:vly=y=4,
@10 =t

=J A\ (ALU---uA, _pD)=JA:,  (with Aj=0)
n=1 n=1

a.e.r(dy). The seta,, represents thosethat are attained for the first time B/ y.
SinceV A, = A,, the set,, :={(y,u):y € A,} are invariant under the flow. We
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now want to show that the flow (2.9) satisfying (2.10) is indeed cyclic in the sense
of Definition 2.2. Since the set§, are invariant under the flow, it is enough to
show that, fom > 1, the flow (2.9) restricted t@, is cyclic. We do so fon =2

only, since the proof for other values ofis similar.

To prove thatp|c, is cyclic, we show that there is a null isomorphism mapping
¢lc, into a flowg of the type (2.4). The first step is to construct a space where the
flow ¢ is defined. The idea is to reduce the space sa(that) and(Vy, v) are only
represented by eithé€y, v) or (Vy, v) or, since we are focusing ofi, to reduce
the space so that € A, and Vy are represented only by eithgror Vy. To do
so, we proceed in a way similar to the exhaustion principle used in ergodic theory
[see, e.qg., page 17 in Krengel (1985)]. lz€be a finite measure oh equivalent
to 7. Let first

B1={measurabl Cc A,:BNVB =g},

T1 = SUPT(B): B € 81} and takeB; € 81 such that'(By) > 71/2. Then define a
sequence of setB,,, n > 2, recursively, by letting

B, = {measurabl® c A2\ (B1U---UB,_1UVB1U---UVB,_1):BNVB =&},

T, = SUPT(B): B € 8B, } and pickingB,, € 8, such thaf'(B,) > 7,/2. SinceT is
finite and the set8y, ..., B, 11 are disjoint, we havé(B,) — 0 and hencé&, — 0
asn — oQ.

We argue next that

(2.11) Az=JB,UVBy,)
n=1

a.e.7(dy) and hence a.ea.(dy).
Relationship (2.11) must hold because if it does not then we have a contradic-
tion: we will show that it is then possible to construct a measurabl®setA»
with T(B) > 0, BN VB = @& and the set®3 and B, U V B,, being disjoint for
all n. This is a contradiction because the argument preceding (2.11) precludes the
existence of such a set. Assume then that (2.11) does not hold, that is, there is
a setA C Az such thatt(A) > 0 and the setst and(J;2,(B, U VB,) are dis-
joint. By the definition ofA,, we haveVy # y on A (a.e.) and hence there is a
setAg C A such thatt(Ag) > 0 andAg # VAg a.e. Then defin® = Ag \ V Ao.
SinceAg #£ V Ag a.e., we havé(B) > 0. Moreover, sincd® = AgNV A, we have
BNVB=AoNVA§NVAgN V2A§= Ao N V(A5N Ag) N V2A§ = @ because
V is one-to-one. Sincd and|J;2,(B, U V B,) are disjoint, the set8 C A and
B, U VB, are disjoint for alln as well. We therefore conclude that (2.11) holds.
Now let

z=\] B,

n=1
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and observe that

00 00 00
AZZU(BnUVBn):<UBn)U< VBn>=ZUVZ
n=1 n=1

n=1

a.e.t(dy).

The spaceg andV Z are disjoint by construction. Instead of focusing on the
spaced; C Y, whereA, =Z U VZ a.e.t(dy), we “combine”Z andV Z. We
do so by focusing on the spaconly and by defining the flowy on the space
(Z x[0,r2(-), T(dz)dv) as

(2.12) (2, v) = (2. {v + 1),

where
r2(z) =r(z) +r(Vz)

is the function which appears in the special representation (2.9). (To visualize this,
see Figure 1 in Appendix A.) By using(z), we have replaced the “vertical”
motions on{(z, u),0<u < r(z)} and{(Vz,u),0<u < r(Vz)} by a single motion

on

{(z,u),0<u<r(z)+r(Vz)}.

Our new spac€& x [0, r2(+)) is thus related to the previous spacg= {(y, u) :
y € A2} bythe mapd: Z x [0, r2(-)) — C> defined by

(z,v), ifO<v<r(z),

PEV=N o vr@), i r@) < <.

Then, by usingi, = ZUV Z a.e.t(dy) and the fact thaZ andV Z are disjoint,
we obtain thatb is a null isomorphism and

Gl ey (P (z,v)) = D(r (2, v)).

This shows that the flow|c, is indeed cyclic in the sense of Definition 2.2.

To show the converse in the caBe=Z is easier. We sketch here only the main
ideas of the proof. The functiofi(s) = min{n € N: ¢, (s) = s} is measurable and
a.e. finite onS. It is enough to show, for example, that the fl§gy},<7 restricted
to C2 = {s:q(s) = 2} is cyclic. Arguing as above, we can construct a measurable
setZ such thatC, = Z U ¢1Z, whereZ and¢1Z are disjoint. The flowp|c, can
then be shown to be isomorphic to the flgw(z, v) = (z, {v +1}2). O

In the following lemma, we characterize cocycles associated with cyclic flows.
(See the end of Appendix A for a definition of a cocycle.) This result is used in the
next section.
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LEMMA 2.2. Let {¢:};cr be a cyclic flow and let {a;};c7 be a cocycle for
{#¢}rer taking values in a second countable group (A, -). Suppose that ®:Z x
[0 qg(-)\ NS \ N is the null isomorphism between the flows {¢;};cr and
{&:}:er in Definition 2.2, Let a/(z, v) = a;(P(z,v)) if (z,v) € Z x [0,q(-)) \ N,
andd;(z,v) =eif (z,v) € N, wheree isthe group unity. Then {a; };cr isa cocycle
for {¢}ier and
(2.13) dy(z,v) = (@(z, 1) "a@THOG(Z, (v + 1))

forallt e Tand (z,v) € Zx[0,¢(-)),whered:Z x[0,g(-))— Aandd1: Z+— A
are some measurabl e functions.

PROOF We may suppose without loss of generality that= N = & because
the proof below shows that (z, v) = a,(®(z, v)) satisfies the cocycle relationship
on the setZ x [0,4(-)) \ N (WhICh is invariant for the flow) and so obviously

doesd;(z, v) = e on the setV. By substitutings = ®(z, v) in the definition (A.3)
of a cocycle, we obtain that

al‘1+t2(q>(z, U)) = atz(qD(Z’ U))al‘l (¢t2((b(Z, U)))

and hence, sincg, o ® = ® o ¢, we get that
(2.14) iy 1, (20 V) = Ty (2, V)1, (Biy (2, V)
(2.15) = A1, (2, V) (2, (v + 12}q(2))-
Relationship (2.14) shows thd#;},cr is a cocycle for the flow{¢;};cr. To
show (2.13), we use (2.15). We consider the cZse {1} only. The proof for
a general spac€ follows as below by working with a fixed. For notational
simplicity, we denotei; (1, v) by g, (v) and, to avoid writing indices, b§(z, v).

By takingv =0 in (2.15), we geli(t1 + 12, 0) = a(t2, 0)a(t1, {t2}4). Then
(2.16) at,v) = (@, 0) aw+1,0
if ve[0,q)NT.Observe now that, by (1.16) and (2.15),

aw+1,0 =aglv+tly +{v+1t},,0 =aqlv+1tly, 0a{v+1t},,0

forallt € T andv € [0,¢) N T. Then, by (2.16), fov € [0,¢9) N T,

a(t,v) = (@, 0) a(glv + 114, 0)a({v + 1}, 0)

= (@) (gl + 1)a({v + 1)),
whered(-) = d(-, 0), but by setting = ng, 1 = mg andv =0 in (2.15), we get
thatda(gm + gn) =da(gm)a(gn) for all n,m € Z. It follows thata(gm) = ay’ for
somedy € A and hence
at,v) = @) ay " adv + 1),
which proves (2.13) whe = {1}. O
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3. Representation of stationary processesgener ated by periodicflows. We
now provide a representation of stable stationary processes generated by periodic
flows. This basic result is used several times in this and the following section.

THEOREM 3.1. Suppose that a stationary SoS, o € (0, 2), process X, is
generated by a periodic flow in the sense of Definition 1.1. Then X, can be
represented in distribution as the sum of two independent stationary stable
processes. The first processis a harmonizable processin the complex-valued case
or atrivial processin the real-valued case,

/A €™ Ny (dx) (complex-valued case),
(3.1)

/ Ny (dx) +n(t)/ Ny (dx) (real-valued case),

{1} {2}

where N,, has a finite control measure n(dx) and n(z) is defined by (1.12). The
second process can be represented as

(3.2) fz /[0 ())bl(z)[”mq(wg(z, {v+1}y0)) Mo (dz, dv).
,q(z

Here, (Z,Z,0) is a standard Lebesgue space, ¢(z) € Ty ae o(dz), g €
LY(Z x [0,q()),0(dz)A(dv)) and b1(z) € {—1,1} [or b1(z) € {w:|w| =1} in
the compl ex-valued case] are measurable functions, and SeSrandom measure M,
has the control measure o (dz)A(dv).

PROOF Suppose that the procesg, is generated by a flowWe,};,c7 on
(S, 4, v) which is periodic. Since the flow is periodic, we haVe- P a.e.v(ds)
and henceS = F + L a.e.v(ds) as well, whereF and L are the fixed and the
cyclic points of the flow{¢; };c7. Then

Xo(t) 2 /F £i(5)Ma(ds) + fL Fi()Ma(ds) =: Yo(t) + Za (),

where the stationary stable proces$gsand Z, are independent, the process
Y, is generated by an identity flow and the proc&ssis generated by a cyclic
flow. (The processe¥, and Z, are independent becaugen L = @&.) By
Propositions 5.1 and 5.2 in Rasiki (1995), the procesg, is harmonizable (or
trivial). To conclude the theorem, we still need to show that the proZgdwas a
representation (3.2).

By Definition 2.2, there is a spa¢&, Z, o), functiong(z) € T4 a.e.o (dz) and
a null isomorphismb : Z x [0, g(-)) — L such that

(3.3) ¢:i(®(z.v)) = (2. {v +1}4r))
forallr e T and(z,v) € Z x [0, g()). In other words, the flowg, };e7 on (L, v)
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is null isomorphic to the flowg, };c7 on (Z x [0, ¢(-)), o (dz)A(dv)) defined by

5;(2, v) = (Z, {v+ l‘}q(z)).

[We may suppose that the null sets in (2.5) are empty because, otherwise, we can
replaceL by L \ N in the definition ofZ, without changing its distribution.] By
replacings with ®(z, v) in (1.4) and using (3.3), we get that for akk T,

d(vodgy)
d

v

1/ N
(34) f(®G )= (DG, v)){ (@, v))} )

a.e.o (dz)A(dv). Now, by Lemma 2.24,(®(z,v)) = 1)o7 (g, (2, v))/
a(z,v). Sinceg; o ® = ® o ¢,, we also have that

d(v o) Oq)_d(VO®o$,)

dv T d(wo®)
_< dv Oq,og)d((o@x)o«%t)d(o@x)
" \d((c®@rod 1 ") dle®)r)  dvod)

D

d ~\d L)o@t
= <d Y — oCDod),) (@®4) )o
(c®A)od™H) dv

S
“\doansoD P’ \iGansoD® ’

whered((c ® A) o ¢;)/d(c ® A) = 1 because the first componentdp(z, v) =
(z, {v+1}4(;)) remains the same and the second, whesethe variable, preserves
the measure. Hence, by setting

dv
d((c ®X) o d~1)
in relationship (3.4), we obtain that, for ale T,
(3.6) 8:(z,v) = a1(2)" O go(r (2, v))

a.e.o (dz)A(dv). Finally, observe that by writing the characteristic functions, it is
easy to see that (3.5) implies

1/a
35  g(v)=at, v){ (@, v))} F(D(z0)

{Zaa)}@i{ / ﬁ(s)Ma(ds)}teTi{ [ /[O’q(z))gxz,v)%(dz,dv)} ,

teT

whereM,, (dz, dv) has the control measusddz)A(dv). The result of the theorem
then follows from (3.6) by setting1(z) = a1(z) andg(z, v) = go(z,v). O

REMARK 3.1. The proof of Theorem 3.1 shows that stationar$ processes
generated by cyclic flows have a representation (3.2).
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DEFINITION 3.1. A stationary stable process that can be represented by the
sum of the processes (3.1) and (3.2) as in Theorem 3.1 is calktationary
periodic process.

The following result is useful for recognizing stationary periodic processes and,
more specifically, processes (3.2) whena= R.

ProOPOSITION3.1. Withthenotation of Theorem3.1and letting s(z) € R\ {0}
a.e. be a measurable function, processes

(3.7) /Z f[o ())bl(z)[v+s(Z)t]‘1<Z)g(z,{v+s(z)t}q(z))Ma(dz,dv), teR,
,q(Z

have a representation (3.2) (with possibly different functions ¢ and g) and hence
are stationary periodic processes.

PROOFE By using the relationships

{v+stlq =611—{—v—sf}q =q —{(q —v) —st}y,
[v+stly = 5(1} + st —{v +st}y)

1
= —5((4 —v) = st —{(g —v) —stly) = (g —v) — st

and by making the change of variable$o ¢(z) — v whens(z) < 0, we can first
represent the process in (3.7) as

(3.8) /Z /[O o, @I OHOGe, (o4 I5(@) 1)) Mo dz, ),
,q (2

whereg(z, u) = g(z,q(z) —u) if s(z) <0andg(z,u) = g(z, u) if s(z) > 0. Then,
by using the relationships

v+ Isltlg = IsHIs| ™M + )51,
1
[v-+Islrly = 2 (@ +Isl0) = (0 +Islt),)
1

- (s o+ 0 = {IsI ™o + 1) 1) = OsIHo + 151,

and by making the change of variable&)| v = 7, we can represent the process
in (3.8) as

(3.9) /Z /[ . b1(2) PO G (2, (T + 1)) Ma(dz, dD),
,q (2

whereg(z, u) = |s(2)|Y%g(z, |s(z)|"1u) andg(z) = s ()| Yq(z). O
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REMARK 3.2. We can also use Theorem 3.1 to show that the process (3.7)
has a representation (3.2). Indeed, Example 2.2 showsptliatv) = (z, {v +
s(Dtlg), t € R, is a cyclic flow onZ x [0,4(-)). By using the relationship
[v+s(t1+12)]g = [v + st1ly + [{v + st1}, + st2], [to verify it, use the second
relationship in (1.16) and the fact th@s, } is a flow], we get thab, (z)[V 5@
is a cocycle for the flow¢, };cr. The process (3.7) is thus generated by the flow
{#:}:cr in the sense of Definition 1.1. Since this flow is cyclic, the remark before
Definition 3.1 shows that the process (3.7) has a representation (3.2). Observe,
however, that this does not prove that to obtain (3.2), only the functicarsd g
may need to be modified.

The term “periodic” in “stationary periodic processes” refers to a process that
has a representations (3.1) and (3.2), where the kernel has a periodic-like structure
[asin (4.1)]. It does not necessarily imply that an underlying generating flow of the
process is periodic. In fact, as the following elementary example shows, without
any restrictions on the kernel of a process, a stationary periodic process can be
generated in the sense of Definition 1.1 by conservative flows other than periodic
flows.

ExampLE 3.1. Let (¥,¥%,7) be a standard Lebesgue space with<0
7(Y) < oo. Observe that a stationary periodic process that has a representa-
tion (3.2) can also be represented as

(3.10) (z(v))~ Y« / / / b1()V T g (7, {v + 1}y (o)) Ma(dy, dz, dv),
Y JZ J[0,q(z))

where the &S random measurdf, has control measure(dy)o (dz)A(dv),
because there is no variable in the kernel of (3.10). Let now¢,},cr be

any measure preserving conservative flow @Y, r). Then the stationary
periodic process (3.2), when represented by (3.10), is also generated by the
flow ¢ (y,z,v) = (¢ (y), 2, {v + t}4) ON Y x Z x [0,4() in the sense of
Definition 1.1. The generating flow is therefore not unique. Observe that since
we can choose the floy, };cr to be nonperiodic, the flovig, };cr will also be
nonperiodic. A similar problem exists when we consider harmonizable (or trivial)
processes and identity flows.

Without any restrictions on a kernel function, the generating flow may not be
unique. In this case, not only stationary periodic processes can be generated by
nonperiodic flows, but harmonizable (or trivial) processes can also be represented
by (3.2) (Lemma 3.1). This result further indicates that we cannot associate, in
general, harmonizable (or trivial) processes with identity flows and processes that
have the representation (3.2) with cyclic flows.

LEMMA 3.1. The &S « € (0, 2), harmonizable processes (or trivial proces-
sesin the real-valued case) can be represented as (3.2).
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PrROOF Consider the process

Xo(t) = /A / (&%) HI2(oi%) V2 (dz, dv)
T J[0,2)
(3.11)
=[] @M@z dn, e,
7J10,2)

where M,, is a complex-valued rotationally invarianteS random measure with
control measurey(dz)A(dv) and n(T) < 0o [see also the notation (1.10)]. The
processX, has a representation (3.2) with= T, o (dz) = n(dz), b1(z) = €'%,
q(z) = 2 andg(z, u) = ¢'**. Observe that sincg?(t) = ¢i2Vei? | |¢/2%| =1 and
¢'?’ does not involve time,

(3.12) {Xam}tgi{ /T /[OZ)efZ’Mawz,dv)} Té{zl/“ /feiZfMauzz)} ,
y te

teT

where M, is a complex-valued rotationally invariant measure with control
measure;(dz). Hence X, is also a harmonizable process, showing the result for
harmonizable processes.

The case of trivial processes with= R follows by taking, for exampleZ =
{1}, b1(z) =1, g(1,z) =1 andg(1) =1 in (3.2). WhenT = Z, takeZ = {1, 2},
b1(z) =1 andg(z,v) =a(z)! witha(l) =1,a(2) = —1 andg(z) = 2. Then (3.2)
becomes

/ / (@(2) 12 My (dz, dv)
{1,2} J{0,1}

- f f (@(2)"* My (dz, dv)
{1,2} J{0,1}

d t
4 /{ 1y Netd)

= [ Not@d)+ -1 [ Not@a),
{1} {2}
which shows the result in the case of trivial processes whenz. [
Lemma 3.1 has the following implication:

CoROLLARY 3.1. Sationary periodic processes can also be represented
by (3.2).

The representation of the process in Example 3.1 and the representation (3.2) of
a harmonizable (or trivial) process in Lemma 3.1 have a built-in redundancy [e.g.,
there is no variable in the kernel of (3.10)]. If we eliminate redundancy and focus
onminimal representationsonly, then by Theorem 3.2, stationary periodic process
defined by (3.1) and (3.2) can only be generated by periodic flows. This explains
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our use of the term “stationary periodic processes.” (Another justification is
provided in the following sections.) Moreover, as shown in the following theorem,
under minimal representations, harmonizable (or trivial) processes cannot have a
minimal representation (3.2) and they are generated only by identity flows.

THEOREM 3.2. If representations (3.1) and (3.2) of X, is minimal, then X,
is generated by a unique flow in the sense of Definition 1.1. This flow is periodic
for (3.1)and (3.2),identity for (3.1) and cyclic for (3.2). The representation (3.1)
is always minimal.

PrRooOF If the representation is minimal, then the generating flow is unique
by Theorem 3.1 in RoBBki (1995). Representations (3.1) and (3.2) are obviously
generated by an identity flow and a cyclic flow, respectively, in the sense of
Definition 1.1 and, therefore, representations (3.1) and (3.2) of their sum is
generated by a periodic flow in the sense of Definition 1.1. The minimality of the
representation (3.1) in the complex-valued case was shown byskp$1998a),
Example 4.8. The minimality in the real-valued case can be seen directly from
the definition of minimal representations. [In the c&e= R, sincen(t) = 0,
we assume implicitly that the representation (3.1) is defined on the $ppaad
not{1,2}.] O

By Definition 3.1, harmonizable (or trivial) processes are also stationary
periodic processes. Here is another example of stationary stable process which
is a stationary periodic process.

ExXAMPLE 3.2. Considerthe process

27
Xq (1) :/R/O coqv + zt)My(dz, dv), teR,

where the &S random measurd,, has control measuye(dz) dv andu(R) < oo.
The proces¥, is well defined, that is, c@s + zt) € L*(R x (0, 21), u(dz) dv)
for eacht € R. Since co&) = cog{u}2,), it has a representation (3.7) with
Z =R, o(dz) = u(dz), b1(z) =1, s(z) =z, q(z) = 2m and g(z, u) = coqu).
Hence, by Proposition 3.1, the process is a stationary periodic process. This
can also be seen directly by using the proof of Proposition 3.1 to observe that

2n/\z|
Xq (1) ié/(‘) COS(z{w +t}2ﬂ/‘z‘)Ma(dz,dv).

As shown in Example 2.5 of Rasski (2000), the procesk, has the same (up
to a constant) finite-dimensional distributions as the real part of a harmonizable
process (1.9); more precisely,

(3.13) {Xaa)}teki{(zn)l/“m [ e’”Mawx)} ,
R teR
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where M,, is a complex-valued rotationally invariant measure with the control
measureu(dx).

Since harmonizable (or trivial) processes are also stationary periodic processes,
we may want to single out stationary periodic processes that do not have a
harmonizable (or trivial) component. The following definition makes this precise.
The introduced terminology is often used in the sequel, along with that of
stationary periodic processes.

DEeFINITION 3.2. A stationary periodic process is calledtationary cyclic
processif it does not have a harmonizable (or trivial) component, that is, it cannot
be represented as a sum of two independent stationary processes, one of which is
a nondegenerate harmonizable (or trivial) process.

REMARK 3.3. A stationary periodic (harmonizable or trivial, resp.) process is
defined as a process which can have representations (3.1) and (3.2) [(3.1), resp.].
A stationary cyclic process, however, cannot be defined as a process which can
have the representation (3.2), because, by Lemma 3.1, a harmonizable (or trivial)
process can also be represented as (3.2). It is necessary, therefore, to exclude
explicitly the harmonizable (or trial) component in Definition 3.2.

How can one determine whether a given stationary process is a stationary
periodic or cyclic process? Example 3.1 and Lemma 3.1 show that, in general,
it is not enough to examine whether an underlyflogy of the process is periodic
or cyclic. We can, however, identify these processes through underlying flows if
their representations are minimal (see Theorem 3.2 and also Corollary 6.2).

Since minimal representations are typically not easy to determine in practice,
we would like to have an identification criterion which does not rely on minimal
representations. We can do so through periodic and cyclic component sets which
we define next. We work now with the kernel of a stationary process itself rather
than with a generating flow. Flows, however, are still used as a tool to obtain an
identification result (see Theorem 4.1 and its proof). The identification results
are used in Section 6 to establish a further decomposition of stationary stable
processes.

4. Characterization of stationary periodic processes. Consider a stationary
process with representation (1.1) involving the kerrfel We first provide a
criterion on f; for the process to be a stationary periodic process.

DEFINITION 4.1. A periodic component set of a stationary stable proceXs
that has a representation (1.1) is defined as

4.1) Cp={seS:3h="h(s) e T\{0}: fiyn(s) =a(h,s) f;(s)
' a.e.A(dr) for somea(h, s) # 0}.
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Relationship (4.1) expresses physically the fact that, startingzaf p, we come
back to f; (s) after some timéi(s).

LEMMA 4.1. A periodic component set Cp in (4.1) is v-measurable. More-
over, the functions A(s) and a(s) = a(h(s),s) in (4.1) can be taken to be
v-measurable as well.

ProoOFE We first show that the safp is v-measurable. Observe that the
condition (4.1) says that the ratif); (s)/f;(s) does not depend onand hence
Cp can be also expressed as

Cp={s€S:3h="h(s) #0: fi1n(5) [1,(8) = frprn(s) f1,(5) a.€A(dr1)A(d12)}.
To deal with the potential measurability problem raisedildy consider the set
A={(s,h) # (5,0): frren(8) fi(8) = fip4n () fiy () @.€.A(d11)A(d12)}.

SinceA = {(s, h) # (s, 0): F (s, h) = 0}, where the function

F(s,h) = fT /T1{ﬁ1+h(s)ff2<s)¢ﬁ2+h(s)fflm}(S’h’fl, t2)A(d11)A(d12)

is Borel measurable by the Fubini’s theorem [use Theorem A in Halmos (1950),
page 143, and the fact that the functigns) — f;(s) is Borel], we obtain that

the setA is Borel measurable. We can verify now th@p is the projection

of the setA on s, namely, thatCp = projg A := {s:3h:(s, h) € A}. By using
Lemma 4.2, the se€p is v-measurable and we can choose the functigs

in (4.1) to bev-measurable. The»-measurability ofa(s) follows since, for

s € Cpy futh(s)($) [12(8) = frpn(s) (5) fry (s) @.€.A(dr1)A(d12) and hencei(s) =
Frotn(s) ) (fr(s)) "L a.ew(ds) for somer, e T. O

The following result characterizes stationary periodic processes.
THEOREM4.1. A xS « € (0, 2), stationary process X, given by (1.1) with
SUpdfi,.t € T} = S a.e v(ds) isastationary periodic processif and only if
Cp=S§ a.e v(ds),
where Cp isthe periodic component set definedin (4.1).
PROOFE Suppose first thaX,, is a SxS process given by (1.1) and that it is a

stationary periodic process. Then, by Corollary 3.1 following LemmaX,lhas
a representation (3.2) on a spate [0, ¢ (-)) and with a kernel function

8 (z,v) = b1 (@)@ g(z, fu + 1))

Since{v + (1 + ¢(2)}qz) = (v +t}qr) and[v + (¢ + q(2)]g) =[v +tlg) + 1,
we have

&r4h(z,v)(2,v) =a(z,v)g(z,v)
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for all (z,v) € Z x [0,¢(-)), where h(z,v) = g(z) and a(z,v) = b1(z). By
Theorem 1.1 in Rogiski (1995), there are measurable mdpsS — Z x [0, ¢(+))
andk: S +— R\ {0} (or C\ {0}) such that, for a.eu(ds), fi(s) = k(s)g:(P(s)) a.e.
A(d?). Then, for a.ev(ds),

Jrah(@(s) () = k() grn(@(5)) (P(5)) = k(s)a(P(5))g: (P (s)) = a(P(s)) fi (s)

a.e.A(dt). This shows tha€Cp = S a.e.v(ds).

Suppose now thafX, is a stationary stable process given by (1.1) with
supd f:,t € T} = S a.e.v(ds) and such tha€p = S a.e.v(ds). We want to show
that X, is a stationary periodic process. The proof involves a number of steps.

STEP 1. First, we show that one may suppose without loss of generality that
the representatiofy; };cr of the proces¥, is minimal withCp = S a.e. (minimal
representations are defined in Appendix B). By Theorem 2.2(a), imBkigiL995)

[due to Hardin (1982), Theorem 5.1], the procegs has a minimal integral
representation

(4.2) fs i) M (d5).

where (S, 8,7) is some standard Lebesgue spatf}er C L*(S, 4,7) and
M, has the control measufié Let Cp be the periodic component set &f,
defined through the representatipfa};cr. To conclude the first step, it is enough
to show thatCp = S a.e.¥(d5). By Remark 2.5 in Rosiski (1995), there are
Borel measurable maps: S — § andk: S +— R\ {0} (or C\ {0}) such that, for
anyreT,

(4.3) f1(5) = k(s) fi(D(s))
a.e.v(ds) and
(4.4) V=10 (D_l,

wherevy (ds) = |k(s)|*v(ds). Since, fors € Cp, fiyrns)(s) =a(s) fi (s) a.e.r(dt),
we expect, in view of (4.3) that, for a.ec Cp,

(4.5) Frin) (@) =als) fi(®(s))  a.er(dr)

and hence thab (s) € Cp a.e.v(ds).

To demonstrate that (4.5) follows from (4.3), consider first the set
{(s, ) frn(s) = k(s) fr+n(D(s)) @and frn(s) = a(h, s) fi (s) a.e.r(dr) for some
a(h,s) # 0} and, by Lemma 4.2, chooseiameasurable map(s) such that
both fiin(s)(s) = k($) fr4n(s) (P (s)) and frins)(s) = a(s) fi(s) a.e.r(dr) for
s € projg A. Observe that prgJA = Cp a.e. because prgj(s, h): firn(s) =
a(h, s) fi(s) a.e.r(dt) for somea(h, s) # 0} = Cp by the definition ofCp, and
{(s,h): fren(s) = k(s) fi+n(P(s)) a.er(dr)} =S x R a.e. by (4.3). This then
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implies that, for a.es € Cp, a(s)k(s)ft(CD(s)) = a(s) fi(s) = fryns) () =
k(s)f,+h(s)(<1>(s)) a.e.A(dt) and hence that (4.5) holds.

Since (4.5) implies € Cp = ®(s) € Cp a.e.v(ds), we haveCp C ®~1(Cp)
a.e.v(ds). SinceS = Cp a.e.v(ds), we have

S=o YCp) a.ew(ds).

This implies thatS = Cp a.e.7(d5). Indeed, ifi(S \ Cp) > 0, then by (4.4), we
havev(®~1(S\ Cp)) > 0 as well. However, this contradicts= ®~1(Cp) a.e.
v(ds) since®~1(Cp) andd~1(S\ Cp) are disjoint.

REMARK 4.1. Inthe case whelp is not equal ta5 a.e.v(ds), we may argue
as above for the converse and show thabifs) € Cp, thens € Cp a.e.v(ds).
In other words,®~1(Cp) C Cp a.e.v(ds). SinceCp C ®1(Cp) a.e.v(ds) as
shown above, we conclude that

(4.6) Cp=dYCp) a.e.w(ds).
Relationship (4.6) is used in the proof of Theorem 6.1.

CONTINUATION OF STEP1. We may thus suppose without loss of generality
that the representatioff;},cr of X, is minimal and thatCp = S a.e.v(ds).

By Theorem 3.1 in Roéiski (1995), there is a floWe,;},cr on (S, $,v) and a
corresponding cocyclg:, };er such that, foralt € T,

d(vo¢y)

1/a
(.7) £i(s) —at<s>{ (s )} Foldi(5))

a.e.w(ds), wherefp e L¥(S, 4, v), thatis, the procesk,, is generated by the flow
{¢:}:er In the sense of Definition 1.1.

STEP 2. We now show that the flove, },c7 is periodic. To do so, consider

the set
4.8) A={(s,h) €S x (T\{O): fizn(s) =a(h,s) fi(s)
' a.e.r(dt) for somea(h, s) # 0}.

Observe now that by using (4.7) and the definition of a flow and a cocycle in
Appendix A, foranyt,h e T,

fins) =an ()| L2 )}wft(abh(s))
a.e.v(ds). Then, setting
4.9) Ao=AN{(s,h) €S x(T\{O): frn(s) =b(h,s) fi(Pn(s))
a.e.(dr) for someb(h, s) # 0},
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we haveA = Ag a.e.v(ds)t(dh), wheret (dh) is anyo -finite measure of". We
now want to show that by setting

(4.10) Ar=AoN{(s.h) € S x (T \ {0} : ¢hn(s) = s},

we also haved; = Ag a.e.v(ds)t(dh). It is enough to prove that,(s) = s a.e.
v(ds)t(dh) for (s, h) € Ag. Supposing that this is not true, we can finduch that
on(s) # s a.e. on a set of positive measure fols, k) € Ag [otherwise g, (s) =s
a.e.v(ds)t(dh) for (s, h) € Ag by the Fubini theorem]. Then, settigg (s) = s
for (s, h) € A§, we claim that a.er(dt),

(4.11) fi(Pn(s)) =c(h, s) fi (s) a.e.v(ds),

wherec(h, s) # 0. This is clearly true foris, h) € A sinceg,(s) =s. This is
also true for(s, h) € Ag, because it follows from the definition ofg that the
relationshipsf;1, = af; and fi1n = bf; o ¢y IMply f; o ¢y = cf;. We claim now
that (4.11) is true not only a.2(dr), but for allz € T. We only need to consider the
caseTl =R, because whefl = Z, the statements “a.e¢(dr)” and “forall r € T"
are equivalent. Lete R be fixed. Since (4.11) holds axdr), there is a sequence
{t,} such that,, — ¢ and (4.11) holds with replaced by,. Since, by Lemma 4.3,
fi, — frIn L¥(S, v), we can selecta subsequengsuch thatf, , — f; a.e. Then,
relationship (4.11) withr follows from analogous relationships withreplaced
by z,» by letting n’ — oco. Together with the facts that,(s) # s on a set of
positive measure andgy, (s) is nonsingular, (4.11) contradicts the minimality of
the representatiofif;};cr [see Appendix B and, in particular, condition (W
Hence,A1 = Ag a.e.v(ds)t(dh) and sincedg = A a.e.v(ds)t(dh) as well, we
have

(4.12) A=A1  ae.w(ds)t(dh).

By Lemma 4.2, we can choosevaneasurable functioh = h(s) # 0 defined for
s € projg A1 such that(s, 4(s)) € A1 and, in particular,

(4.13) Gn(s)(s) =s.

By using (4.12), we have prpA; = projg A a.e.v(ds). Since proj A = Cp

by (4.1) andCp = S a.e. by assumption, we have pyaj; = S a.e.v(ds), that
is, (4.13) holds for a.e. € S. This shows thaf = P a.e.v(ds), whereP are the
periodic points of the flowg, };cr defined by (2.1).

STEP 3. We can now easily conclude the proof. We have
Xa L [ fi(5)Mu(ds) = X[ 0.

The processx? is generated by a periodic flow,|p},cr and hence, by
Theorem 3.1, it is a stationary periodic processl
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EXAMPLE 4.1. Consider the procesg, of Example 3.2 defined through the
kernel

fi(v, z) =coqv + zt), ve(0,27),ze Randr e R.

Since f;, o, ,-1(v,2) = fi(v,2) forallv € (0, 2), z € R, the periodic component
setCp associated with the representatipfi};cr is the full spaceR x (0, 2r).
Hence, Theorem 4.1 implies that, as already shown in Example 3.2, the process
X, is a stationary periodic process.

EXAMPLE 4.2. Consider the process

1
(4.14) Xo,(t):/o 0+ My (dv).  teR,

whereM, has control measurév. Setting f; (v) = {v + t}1 for the kernel ofX,,
we see thaf;1(v) = f;(v) forall v € [0, 1). Since the periodic component g&t
associated with the representatiofa} is the full spacd0, 1), X, is a stationary
periodic process. This fact can also be seen directly from the representation (3.2)
which becomes that of, whenZ = {1}, b1(1) = 1,49 (1) =1 andg(1,v) = v.

Observe also that the representation (4.14) is minimal (see Appendix B). Indeed,
taking ¢t € (0, 1), since fo(v) < f1—+(v) for v € [0,7) and f1_;(v) < fo(v) for
v € [t,1), we have that(f1_;/fo) 1([1, 00)) = [0,7) and hence thaf0,r) €
o{fi/fs,s,t € R}. It follows that B([0, 1)) = o{f;/fs,s,t € R}. The condition
supd f;, t € R} =[O0, 1) is obviously satisfied.

Since the kernel of the stationary periodic procEssin Example 4.2 satisfies
relationshipf;+1(v) = f;(v) forall v € [0, 1), t € R, we haveX, () = X,(t + 1)
for all + € R, and hence the process, is not ergodic. Since the kernels of other
stationary periodic processes are also periodic in nature, we can expect that all
these processes are not ergodic either. The following theorem shows that this is
indeed the case.

THEOREM 4.2. The &S « € (0, 2), stationary periodic processes are not
ergodic.

PrROOF In view of Corollary 3.1, we can suppose that a stationary periodic
process has a representation (3.2). We may suppose without loss of generality that
the measure (dz)A(dv) is finite on S := Z x [0, ¢(-)), because, otherwise, we
may replaces (dz)A(dv) by a finite measuré(z)*o (dz)A(dv), wherek(z) > 0
satisfies

L[, ., k@re@ran = [ k0. g@)ow < oe.

and define the proces§, as in (3.2) withg(z, {v + t},()) divided byk(z). Then
a stationary periodic process (3.2) is generated by adldw v) = (z, {v+1}4(;))



2246 V. PIPIRAS AND M. S. TAQQU

onaspace = Z x [0, g(-)) such that, without loss of generality; ® A)(S) < oc.
Observe that the measure= o ® A is invariant under the flow, sinced(v o
¢r)/dv =1. Sincev(S N ¢, S) = v(S) is not only finite but also positive and does

not depend om € T, we have lim_, o v(S N ¢,S) # 0. Applying Theorem 4.1 in
Gross (1994) [see also Corollary 2.1 of Ruskii and Samorodnitsky (1996)], we
conclude that a stationary periodic process is not mixing. Applying the same result
of Gross together with a statement at the top of page 279 in Gross (1994) [see also
Remark 2.3 of Rosgiski and Samorodnitsky (1996)], it follows that it is not weak-
mixing either and since, for stable processes, weak mixing and ergodicity coincide
[see Samorodnitsky and Taqqu (1994), page 580], it follows that the process is not
ergodic. O

Finally, we establish the results used in the proofs of Lemma 4.1 and
Theorem 4.1.

LEMMA 4.2. Let (S1,41,v1) and (S2, 82, v2) be two standard Lebesgue
spaces and let (S1 x S2, 81 ® 482, v1 ® v2) be their Cartesian product. Let also
A € 81 ® 8> beaBorel set of S1 x S». Then the set

pI’OjSlA ={s1€ 81:3ds520€ S2:(51,52) € A}

is v1-measurable and thereis a v1-measurable function / : projs, A — A such that
(s1, h(s1)) € A for all 51 € projg, A.

PROOFE  The setprgj, A is vi-measurable because the map pr@j, s2) = s1
is continuous and the set can be approximatedv; ® vo)-a.e. by rectangles
whose projections are measurable. We show next that thereisreeasurable
maph : projs, A — A such thaf(s1, h(s1)) € A for s1 € projg, A. To do so, we use
Theorem 3.4.3 in Arveson (1976), page 77, which concerns the so-called cross
sections of Borel maps. Consider the mfip= projg, : A = f(A) = proj, A.
The image sef (A), together with the induced Borel structufe(A) = {f(A) N
B: B € 41}, is a Borel space. Moreover, this Borel space is countably separated
[as defined in Arveson (1976), page 69] since the underlying standard Lebesgue
space(S1, 41, v1) is countably separated. The Borel skt equipped with the
Borel structures = {A N B: B € 41 ® 4>}, is also a Borel space. It is an analytic
Borel space [as defined in Arveson (1976), page 71] by using the Corollary in
Arveson (1976), page 65, and the fact thds a Borel set. Sincg ~1(f(A)NB) =
AN(B x R) e A for all B € 81, the mapf:(A, A) — (f(A), F(A)) is Borel.
It follows from Theorem 3.4.3 in Arveson (1976) that there isjameasurable
mapg: f(A) — A such thatf (g(s1)) = s1. Sincef is a projection, we have that
g(s1) = (s1, h(s1)) for somev-measurable map(s1) and hence that there is a
v-measurable maj(s1) such that(sy, h(s1)) € A. O

The next result follows from Surgailis, Résiki, Mandrekar and Cambanis
(1998), who considered measurable stationary increments processes. We present
their proof here for the convenience of the reader.
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LEMMA 4.3. Everymeasurablestationary process{X (¢)};cr iScontinuousin
probability.

PrROOF Consider||&]| = Emin(|é],1) defined for random variable§ e
L9(Q, P). (We use| -| as a convenient notation.) To show that a process
{X (t)};cr is continuous in probability, it is enough to prove thiat(s) — X (s)|| —

Oass —t.

Fix an arbitrary smalk > 0. Fort e R, let B, = {s e R: || X () — X (s)] < €}.
Since the procesX is assumed measurable, by Theorem 3 in Cohn (1972), the
mapR > r — X (¢) is Borel and has a separable range. Hence, we can choose a
sequencér,} C R suchthaf B, } are Borelan® = J,, B;,. Then, there i, such
that the Lebesgue measureByf is positive. By the Steinhaus lemma [see, e.g.,
Bingham, Goldie and Teugels (1987), page 2], theBset B, — B;, (of pointsz
suchthat = x — y, x, y € B,,) contains an open intervél-$§, §) with somes > 0.

If |s —t] <é, thens — ¢t =u — v for someu, v € B;,, and hence

[X(®) = XN =1Xw) =X = 1Xw) = X@) + X () = X@) < 2,

where we used the stationarity &f and the fact thai, v € B;,. This shows that
X () — X(s)| > Oass —¢. O

5. Characterization of stationary cyclic processes. We know from Sec-
tion 4 how to identify stationary periodic processes. We want to identify stationary
cyclic processes, namely stationary periodic processes without a harmonizable (or
trivial) component (see Definition 3.2). Raski (1995) showed that harmonizable
processes (or trivial processes in the real-valued case) can be identified through the
harmonizable (or trivial) component set

(51)  Cr={s€S: furer() fols) = fir(5) fin(5) Q. A(1DA(A1)).

LEMMA 5.1. Wehave
(5.2) CrCCp aev(ds).
PROOF By Lemma 5.5 in Rosiski (1995), fo # 0 a.e. onCr. Hence, by

fixing 11 = h in the definition (5.1) ofCr, we get that, for a.es. € Cp, fi1n(s) =
a(s) f:(s) a.e.r(dt) with a(s) = fr(s)/fo(s). This shows (5.2). O

Since stationary cyclic processes are stationary periodic processes without a
harmonizable (or trivial) component, we expect that stationary cyclic processes
can be identified through the s€f = Cp \ Cr.

DEFINITION 5.1. A cyclic component set of a stationary stable process,
having a representation (1.1) is defined as
(5.3) CL=Cp\CF,
where the set€p andCr are defined by (4.1) and (5.1), respectively.
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The next result shows that stationary cyclic processes can indeed be identified
through the cyclic component s€f. .

THEOREM5.1. A S¢S « € (0, 2), stationary process X,, given by (1.1) with
supd fi,t € T} = S a.e. v(ds) isa stationary cyclic processif and only if

CrL=S a.e v(ds),
where C, isthe cyclic component set defined in (5.3).

PrROOF If X, is a stationary cyclic process, then it is a stationary periodic
process as well. However, by Theorem £, = S a.e.v(ds). By (5.3), we have
Cp =Cr + Cy. SinceX, does not have a harmonizable (or trivial) component,
Rosiski (1995) results show th&ty = @ a.e.v(ds) and hence thaf;, = S a.e.
v(ds). Conversely, ifC; = S a.e.v(ds), thenCr = @ a.e.v(ds) andCp = S a.e.
v(ds). Hence, by Theorem 4.1, the process is a stationary periodic process.
SinceCr = &, by Roshski (1995), the process,, does not have a harmonizable
(or trivial) component. [

SinceCr C Cp by Lemma 5.1, we may ask how the definition (5.3) of the set
Cr relates to the definition (4.1) of the periodic componentetThe following
result provides an answer.

PrRoPOSITION5.1. Wehave

Cr={s€8:3T\{0}>h, =h,(s) > 0asn— oo:
(5.4)
Srah, () = a(hy, s) fi(s) a.e A(dr) for somea(h,, s) # 0}

a.e.v(ds) when T =R and
(5.5) Cr={seS:fir1(s) =a(s)fi(s) a.e. A(dr) for somea(s) # 0}
aev(ds)ywhenT =Z.

PrROOF We first consider the caseé = R. Denote the set on the right-hand
side of (5.4) byC%. Let us first show thaCy C C% a.e.v(ds). As shown in
the proof of Theorem 5.7 in Rasski (1995), for each e T, f;(s) = ¢k fo(s)
a.e.s € Cr, wherek(s) is some function [in the real-valued case, the relationship
is fi(s) = fo(s)]. By the Fubini's theorem, we also have that, for a.& Cp,
fi(s) = &™) fo(s) a.e.r(dr). Then, since for a.e.€ Cr, fin(s) = ™ f,(s)

a.e. A(dt) for any h € R, it holds in particular for a sequends, (not even
depending o) satisfyingh,, — 0. Settinga(h,,, s) = ¢/"%) we obtainCr C
C% a.ev(ds).
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We now show thaC% c Cr a.e.v(ds). Let{f;};er be the kernel in a minimal
integral representation (4.2) for the procegs Let alsoCy and C’% be the sets
defined in the same way & andC2, but by using only the kernef;. We can
show as in the proof of Theorem 4.1 th@d = ®~(C%) a.e.v(ds), where® is
the map appearing in (4.3). Moreover, as shown in the proof of Theorem 5.7
in Roshski (1995),Cr = ®1(Cp) a.e.v(ds). It is then enough to show that
C% c Cr a.e. or, equivalently, that® c Cr a.e., but wheré f,},cr is supposed
to be a minimal representation. {ff;};cr is minimal, then it is generated by a
flow {¢,};er in the sense of Definition 1.1 [Theorem 3.1 in Rssii (1995)]. By
Lemma 5.2, the s&t‘% is a.e. invariant under the flojg; };c7. The process

[, i Mutds)
CF

is then stationary, its representatibfalcg},eT is minimal and is generated by the
flow {¢,|C2},ET. Arguing as in the proof of Theorem 4.1 [see (4.13)], we can show

that, for a.es € C9,
(5.6) S () =5  Tor T\ {0} 3 hy(s) — O.

In view of the special representation (A.2) of a flow without fixed points, the last
relationship cannot hold for points which are not fixed and hence we obtain that, for
a.e.s € C, ¢,(s) =s for all t € T. Then, by Proposition 5.8 in Ra®ki (1995),
% c craewvds).

The casd” = Z can be proved in a similar way. The main difference is that (5.6)
is replaced byp1(s) =s fora.e.s € Cg. This shows thap; (s) =s a.e.s € Cr for
allt € T and henc&® c Cr a.e.v(ds) aswell. O

The setsCr andCp are explicitly identified by (5.1) and (4.1), respectively.
Proposition 5.1 yields the following explicit identification 6f = Cp \ Cp.

COROLLARY 5.1. Wehave

CL={seS:3hg=ho(s) € T\ {0}, AT \ {0} > h,, = h,(s) - 0asn — oo
&0 Stn, (s) =a(hy, s) f;(s) ae rdr),n >0, for somea(h,, s) # 0}
a.e.v(ds) whenT =R and

Cr={seS:3h="h(s) e T\{0}: fran(s) =a(h,s)fi(s)
(5.8) a.e. r(dr) for somea(h, s) # 0}
N{seS: fir1(s) #a(s) f;(s) ae r(dr) for al a(s) # 0}

aev(ds)ywhenT =7Z.
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ExAMPLE 5.1. The real part of a harmonizable procégs of Examples
3.2 and 4.1 is a stationary cyclic process, becatise= R x [0, 27) as shown
in Example 4.1 and"r = @ a.e. by using Proposition 5.1. To see tligt = @
a.e., observe that the conditighy; (s) = a(h, s) f;(s) a.e.dt for the procesxX,
becomescds+z(t+h)) = a(h, z, v) cogv+zt) a.edt. After fixing v andz # 0,
we get coéw + zh) = a(h, z) cogw) a.e.dw. This holds only forh =wk/z # 0,
k € Z\ {0} [with a(h, z) = (—1)¥], which cannot be taken arbitrarily small.

The process of Example 4.2 is also a stationary cyclic processGineea as
implied by Proposition 5.1.

Finally, we establish an auxiliary result used in the proof of Proposition 5.1.

LEMMA 5.2. If {fi};er IS a representation of a SuS, « € (0, 2), stationary
process generated by a flow {¢; },c7 in the sense of Definition 1.1and C% denotes
the set on the right-hand side of either (5.4) or (5.5), then C(F’ is a.e. invariant
under the flow {¢,},c7, that is, v(C2A¢;1(C%)) =0forall r e T.

PROOF  We have to show that fap € 7', C% = ¢,,*(C%) a.e., but since the
flow {¢,},cr satisfies the group property, it is enough to show thatrfos T,
C0 C ¢51(C ), thatis,s € C implies ¢4, (s) € C% a.e.v(ds). We consider only
the casd’ = RR. Observe that by using (1.4),forh € T,

1/a
(5.9) fﬁm+h@)=am@){( ¢“V>} ()

a.e.v(ds). By Lemma 4.2 above, we can choose a sequenceroasurable
functionsh,, : C% - T\ {0} such that,, (s) — 0 and, fors € C2, fii11h,5)(5) =
an(s) fiy,(s) a.e. A(dt) for somea,(s) # 0, and that for a.es e C%, the
relationship (5.9) holds a.e.(dt) with i replaced by, (s). Since we also have
that by (5.9), for a.ev(ds),

1/«
dlvo %%ﬁ £ (0(®))

a.e.A(dp), it follows that, for a.es € CF, S (5) (D15 (8)) = b (5) f (P (5)) a.E.
A(dt) for someb,(s) # 0, that is,¢,,(s) € C% a.e.w(ds). O

ﬁmm—mwﬂ

6. Further decompaosition of stationary stable processes. In this section,
we refine the decomposition (1.13) of Roski (1995) by showing that (1.18)
holds. We first need to recall some basic facts behind the decompositions (1.6)
and (1.13) found in RoBBski (1995). Consider adSs stationary procesk, given
by (1.1) with suppf;,t € T} = S a.e.v(ds). Let

(6.1) D:{seS:/Tlf,(s)l"‘k(dt)<oo}
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and
(6.2) C:{seS:/ |f,(s)|“k(dt)=oo}.
T

If, in addition, the proces¥X, is generated by a flowg,};cr in the sense of
Definition 1.1, thenD andC are (a.e.) the dissipative and the conservative parts of
the flow{¢, };c7, respectively [see Rasski (1995)]. Recall also the definition (5.1)
of a harmonizable (or trivial) component s&t. If the process(, is generated by
a flow {¢:};cr and if its representation is minimal (in the sense of Appendix B),
thenCr = F a.e., whereF is the set of the fixed points defined by (2.2). We can
show thatCr C C a.e. [see RoAski (1995)].

The processex? and X¢ in (1.6) are then defined as

63)  XP@)= / f©Mlds), XS = / () Ma(ds),
D C

that is, by replacing the full space in (1.1) by its disjoint subset® and C,
respectively. The other two processes on the right-hand side of (1.13) are defined
as

6.4 xio= / fi(s)My(ds), XS\ = / fi(s)My(ds).
Cr C\CFr

As one can see from these definitions, the idea behind decompositions
(1.6) and (1.13) is to partition the underlying spat@eto appropriately chosen
subsets and then define the processes in a decomposition as integrals over these
subsets. To get the decomposition (1.18), we pursue the same idea. We use the
following lemma.

LEMMA 6.1. Wehave
(6.5) CpCC a.e v(ds),

wherethe sets Cp and C are defined by (4.1)and (6.2).

PrRoOOFE Observe that, fos € Cp,

o0

/Tlft(sn A(dr)=f[o’|h(s)|)|ft<s)| x(dr)( > la(h,s)l )=oo.

n=—oo
Hences € C by (6.2). O
By using Lemmas 5.1 and 6.1, and the definitiorX&f\F in (6.4), we can write
(6.6) xCVF L xL 4 xC\P,
where

6.7 XLt = / fi(My(ds), XS\ ()= / f1() My (ds).
Cr C\Cp



2252 V. PIPIRAS AND M. S. TAQQU

The following result refines the decomposition (1.13) of Reki (1995). We say

that the decomposition (6.6) is unique in distribution if the distribution of its two
components does not depend on the representation (1.1) of the piacevée

also say that a stable stationary process does not have a periodic component if it
cannot be represented as the sum of two independehpBocesses, one of which

is a nondegenerate stationary periodic process.

THEOREM 6.1. The decomposition (6.6)is unique in distribution. Moreover,

the process X% is a stationary cyclic process. The process XC\P isa xS
stationary process generated by a conser vative flow without a periodic component.

PROOF.  The idea is similar to that of the proof of Theorem 5.7 in Reki
(1995). Let{f;};cr be a minimal integral representation (4.2) for the process
X, so that, in particular, relationships (4.3) and (4.4) hold. Let aiscr, Cp.
andCp be the sets defined in (6.2), (5.1), (5.3) and (4.1), respectively, by using
the functionsf,. Let aIszL and XC\P be the two components on the right-
hand side of the decomposmon (6.6) for the proc&¥gsobtained by using the

setsC, Cr, C1, Cp and the kernelf;. It is enough to show thax’ £ XL and

xS\ L d XS\ As shown in the proofs of Theorems 4.3 and 4.7 in Rgli
(1995) and in (4.6) in Theorem 4.1, we have= ®~1(C), Cr = @ 1(Cr) and
Cp=o1Cp) ae. v(ds), where® is the map appearing in (4. 3) Hencg, =

Cp\ cF ®~1(Cp \ Cr) = ®(Cp) andC \ Cp = @7H(C \ Cp) a.e.v(ds).

The two requwed identities in distribution above foIIow from these relationships
by using (4.3), (4.4) and a change of variables as at the end of the proof of
Theorem 4.3 in Roéiski (1995).

Let us show now that the procexd is a stationary cyclic process. By using

the preceding discussion, we may suppose without loss of generality that the
representatiot f; },cr for the process(, is minimal and hence, by Theorem 3.1
in Roshski (1995), generated by a flof, };cr in the sense of Definition 1.1.
By using Lemma 6.2, the sélp is a.e. invariant under the floge;};c7. Since
the setCr is a.e. invariant under the flow by Lemma 5.6 in R&i (1995),
the setC; = Cp \ Cr is a.e. invariant under the flow as well. Consequently, the
processX . defined on the sef is stationary. It is a stationary cyclic process by
construction in view of Theorem 5.1.

We now focus on the procesfsg\P. SinceXoLl and XS\P are independent

and sincex$\" and XL are both &S, stationary and conservative, so is the
processXa\ [“‘conservative” follows from the uniqueness in distribution of the

decomposition (1.6)]. It remains to show thaf \* does not have a periodic
component. We do so by adapting the end of the proof of Theorem 5.7 ingkosi

(1995) to our case. Suppose mé\f’ admits a periodic component, that is,

xSV Ly 4w,
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where V and W are independentdS processes an® is a nondegenerate

stationary periodic process. LeftC\P }ier be the representation of the process
5\", that is, the restriction of; to C \ Cp, and let{g; };c7 be the representation

of the procesdV defined in (3.2) on the spad& x [0, ¢(-)), o (dz)A(dv)) by

using function®1(z), ¢(z) andg(z, v). By using Theorem 1.1 in Rasski (1995),

we obtain that
68) & v)=hGvf (V@)  aeird)o(drdv),

where¥:Z x [0,g(-))— C\Cp andh:Z x [0,¢(-)) — R or C are some maps.
Sinceo is not a zero measure (otherwi#é would be degenerate), then (6.8) is
a contradiction to the fact thab(z,u) € C \ Cp in view of the definitions of a
stationary periodic process agg. [

The following result was used in the proof of Theorem 6.1.

LEMMA 6.2. If {f;};er is arepresentation of a SuS « € (0, 2), stationary
process generated by a flow {¢;};c7 in the sense of Definition 1.1, then the
periodic component set Cp in (4.1)isa.e. invariant under the flow {¢, };<7, that is,
v(CpAg Y(Cp))=0forallreT.

PrROOF The proof of this lemma is similar and simpler than that of
Lemma 5.2, and hence is omitted.]

The real part of a harmonizable process in (3.13) and the process in Example 4.2
are examples of stationary cyclic procesa€sin the decomposition (6.6) (see

Example 5.1). We now provide examples of the “fourth” kind of process%\f
in that decomposition. We consider the cdse R only. Extensions td” = Z are
elementary.

EXAMPLE 6.1. Let{Y(¢)};cr be a stationary process which has cadlag (that
is, right-continuous and with limits from the left) paths, satisigsl' (¢)| <c¢) <1
for all c > 0, E|Y(#)|* < o0 and is ergodic. Let als& = {w} be the space of
cadlag functions ofR in the real-valued case, 162 = {w = w1 + iw2} be the
space of cadlag functions; andw2 on R in the complex-valued case, and let
P(dw) be a probability measure on the spdzeorresponding to the proce¥s
Consider now the process

(6.9) Xo(t) = / fMo(dw),  1€R,
Q
where

fitw)=w(#) and M,(dw) has the control measur(dw).
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We can show thak, is a well-defined &S stationary process. Whénis a real-
valued Gaussian process, the process (6.9) is callesbas8b-Gaussian stationary
process [see, e.g., Samorodnitsky and Taqqu (1994)]. Ergodicityoéquivalent
to the continuity of its spectral measure [see page 163 in Rozanov (1967)]. When
Y is a S¥'S stationary process with < o/, the process (6.9) is called a substable
process [page 143 in Samorodnitsky and Taqqu (1994)]. To prov& thiatindeed
the “fourth kind” process in the decomposition (6.6), it is enough to showXhat
is generated by a conservative flow and that= @ a.e.dP.

Since 2, equipped with the usual Skorokhafi-topology, is a complete
separable metric space, the sp&Qe ¥, P), where¥ is theo-field of the Borel
sets, is standard Lebesgue. Observe now that

fr(w) =w(@®) = (¢:(w))(0) = fo(¢r(w)),

whereg¢, : Q > Q is defined by(¢,(w))(s) = w(z + s). The collection of maps
{¢:}:er IS @ measurable flow on a standard Lebesgue sfasmed hence, in view
of Definition 1.1, the proces¥, is generated by the flo,},cr. The flow is
conservative since it is measure preserving and the me@sore is finite (in
other words, there can be no wandering set of positive measure).

Let us show now thal'p = @ a.e.d P. By the definition (4.1) oCp, we have

Cp={weQ:Fh=h(w)#£0:wk+h)=alh, w)w(r)
a.e.dt for somea(h, w) # 0}.

If we Cp and|al # 1, thenw(r) — 0 when either — +o0 a.e.dt ort - —oo
a.e.dt (t —» +oo a.e.dt, for example, means that—> +oo on a setB such that

B¢ = @ a.e.dt). In either case, th@& measure of such sets is zero. For example, if
w(r) — 0 ast — +oo a.edr, thenT = [ 1) <1y () dt — 1 asT — oo. If the

P measure of that set is positive, this would contradict the ergodicity according to
which the limit isP(Jw(0)| < 1) < 1. If w € Cp and|a| = 1, thenw is bounded
a.e.dt on R. Supposing thaP (w € Cp, |[a] = 1) > 0, we obtain a contradiction

in the same way as above by considering the integral (& 1y, <) () dt for

large enougtv. Hence,P (Cp) = 0.

If we work exclusively with minimal representations of stationary stable
processes, then we can relate theGGet= Cp \ Cr used in the definition (6.7) of
the procesx L to the set of cyclic pointé of the underlying flow. This extends to
the cyclic case, Proposition 5.8, in Raski (1995), where the sétr is identified
as the set of the fixed poin#s of the flow.

PrRoOPOSITIONG6.1. If the representation { f;},c7 is minimal for the process
Xq and {¢; };c7 isthe flow related to { f; },c7 in the sense of Definition 1.1, then
(6.10) CrL=L a.e v(ds),
where L isthe set of cyclic points of the flow {¢;};<7 definedin (2.3).
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PROOF By Proposition 5.8 in Roéski (1995),Cr = F a.e., whereF is the
set of the fixed points of the flow. It is therefore enough to provedhat P a.e.
By using the fact thaf f;|c, };e7 IS @ minimal representation for axS process
generated by the flol,|c, };cr and arguing as in the proof of Theorem 4.1, we
can deduce [see (4.13)] thpi () (s) = s for a.e.s € Cp. This shows thaCp C P
a.e. Suppose, on the other hand, th@ \ Cp) > 0 and consider the process

(6.11) /P o, iOMatds).

SinceP andCp are a.e. invariant under the flow, the process (6.11) is stationary.
Since the points of? are periodic for the flow, so are those Bf\ Cy. Hence

the stationary process (6.11) is periodic by Theorem 3.1. This shows that the
processXS\P in the decomposition (6.6) has a nontrivial periodic component
which contradicts Theorem 6.1[]

COROLLARY 6.1. Under the assumptions of Proposition 6.1, we also have
Cp = P a.e v(ds), where P isthe set of periodic points of the flow.

COROLLARY 6.2. A &S « € (0, 2), stationary process X, with a minimal
representation (1.1)is a stationary periodic (cyclic, resp.) processif and only if

S=P v-a.e. (S=L v-a.e,resyp.),

where P and L are the periodic and the cyclic points of the generating flow,
respectively. The equivalent is true if and only if the generating flow is periodic

(cyclic, resp.).

PrRoOOFE Consider the case of stationary periodic processes=fP v-a.e.,
then § = Cp v-a.e. since, by Corollary 6.1Cp = P v-a.e. for minimal
representations. Hence, by Theorem 4.1, the proXgsis a stationary periodic
process. Conversely, iX, is a stationary periodic process with a minimal
representation (1.1), thefip = S v-a.e. by Theorem 4.1 andp = P v-a.e. by
Corollary 6.1. This impliesS = P v-a.e. The case of stationary cyclic processes
can be considered in the same way by using Theorem 5.1 and Proposition6.1.

Gathering the previous results, we obtain the following unique decomposition
of SaS stationary processes into four independent components.

THEOREM6.2. Let {X,()}ier bea xS o € (0, 2), stationary process with
a representation (1.1). Then the process X, can be decomposed uniquely in
distribution into four independent processes

(6.12) Xo XD+ x@ 4 x® 4 x@,
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where

XP ) =xPw = /D £ (5)Ma(ds),

X2 = xE @) = /C F1(5)Ma(ds),

X (1) = XL(t) = f F1(5)Ma(ds),
Cr

X® (1) = XE\P (1) = fc o, SO M),

andthesets D, C, Cr, C and Cp aredefinedin (6.1), (6.2), (5.1), (5.33nd (4.1),
respectively. Here:

1. The process X(S,l) has a mixed moving average representation (1.7) and is

generated by a dissipative flow.

2. The process Xéz) is a harmonizable processwith the representation (1.9) in the
complex-valued case and is a trivial process with the representation (1.11)in
the real-valued case.

. The process Xé3) isa stationary cyclic processin the sense of Definition 3.2.

4. The process xP isa stationary process generated by a conservative flow

without a periodic component.

w

If the process X, is generated by a flow {¢:};cr, then the sets D and C
are identical to the dissipative and the conservative parts of the flow {¢;};e7,
respectively. If, in addition, the representation of the process X,, is minimal, then
thesetsCr, C and Cp arethefixed, cyclic and periodic points of the flow {¢; };c 7,
respectively.

PrROOF The theorem follows from the decomposition of aSSstationary
process into three components in Rusii (1995), Theorem 6.1, Proposition 6.1
and Corollary 6.1. O

APPENDIX A

Flows on a standard Lebesgue space. We provide here a number of
definitions related to flows which are used throughout the paper. A measure space
(S, 4, v) is called asstandard Lebesgue spacewhen(s, ) is a standard Borel space
equipped with a -finite measure. A standard Borel space is a measurable space
measurably isomorphic (i.e., there is a one-to-one, onto and bimeasurable map) to
a Borel subset of a complete separable metric space. We may thus suppose without
loss of generality that a standard Borel space is a subset of a complete separable
metric space. The correspondiagfield § is defined as the smallestfield that
contains all Borel sets. Standard Lebesgue spaces (or standard Borel spaces) are
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convenient to work with, have nice properties and are widely used in ergodic theory
[see Walters (1982) and Petersen (1983)] and in other areas of mathematics [see
Zimmer (1984), Arveson (1976) and Mackey (1957)]. They were used byBkisi
(1995) and Pipiras and Taqqu (2002a, b) in the context of stable processes. The
Euclidean space equipped with a Lebesgue measure, for example, is a standard
Lebesgue space.

Aflow {¢;};e7 With T =R or T = Z on a standard Lebesgue spa&ses, v) is
a collection of deterministic mags : (S, 8) — (S, 8) such thatpo(s) = s and

(A1) Bty+1, () = Puy (1, (5)) forallfy,10€T,s €.

A flow {¢;};c7 is callednonsingular if, for everyt € T, v(N) = 0 if and only
if v(¢, L(N)) = 0. It is called measurable if the map ¢,(s):T x S+ S is
measurable.

It is known that a measurable nonsingular flow on a spacd, v) has the
so-calledHopf decomposition [see Krengel (1985), page 17, Raski (1995),
page 1171, or Pipiras and Tagqu (2002a, b)]. The Hopf decomposition is a (a.e.)
partition of the spaces into two disjoint setsC and D. The setD, called a
dissipative part of the flow, can be writtend3 =3, ., ¢’1‘(B) for some wandering
setB. ["Wandering” means that the set§' (B) andg¢? (B) are disjoint form # n.]
The setC, called aconservative part of the flow, is such that it has no wandering
set of positive measure. Moreover, the sétand D can be taken to be invariant
under the flow [i.e..¢;1(C) = C and ¢, X(D) = D for all + € T]. The flow
{¢:}:e7 is called conservative (dissipative, respJi& C (S = D, resp.) a.e. Fora
general flow{¢, };e7, its restriction{¢;|c}ser ({¢:1p}rer, reSp.) is a conservative
(dissipative, resp.) flow.

In this work, we use the notion of special flow {¢;};c7. Informally, the flow
$t(y, u) is defined on the set of points

Q:{(y’u)O§M<V()’)’)’EY}:YX[OJ’()),

wherer (y) is a positive function. Plottingy, «) in two dimensions, we can view
the flowg, as moving up vertically at constant speed until it reaches the t¢ygl
and then jumps back to a poi@t’, 0) before it renews its vertical climb, this time
from the pointy’ (see Figure 1). Thus, if we focus only on the horizortaxis,
the flow starting ab moves toy’ = Vy, thentoV?y, ..., V"y, .... Since the flow
#: moves constantly, observe that it has no fixed points.

The flow ¢, is defined formally as follows. LetY,¥,r) be a standard
Lebesgue space, 1& be a one-to-one, onto, bimeasurable and nonsingular map
of Y onto itself, and letr be a positive measurable function dhsuch that
Sor(VEy) = Y2 r(VEy) = o0, SetQ = {(y,u):0<u < r(y),y € Y},

& =Y ® B(0,r(-))) and let P be a measure or€2, &) such thatd P(y, u) =
p(y,u)t(dy)du and P (2) = 1. Consider now the map defined @by

(A.2) Gy, u) = (Vy,u+1—rp(y))
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u
\/\\'\ ‘ r(y)
\\ ‘\
\ AY
i S \ p
\ ‘\ Q
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N Y sy
L) 1" 2
y y=Vy y'=V7y

FIG. 1. View the flow ¢; as moving up vertically at constant speed until it reaches the level r(y)
and then jumps back to a point (y', 0) before it renewsits vertical climb, thistime fromthe point y'.

for
O<u+t—rp(y) <r(V"'y),

where r,(y) = Zz;ér(ka) if n>1 r,(y) =0 if n =0, and r,(y) =
Zk_:ln r(V¥y) if n < —1. We can verify thafg, };cr is a (measurable, nonsingular)
flow on (€2, &, P). Itis called a special flow built under the functienAccording
to Theorem 3.1 in Kubo (1969), a (measurable, nonsingular) figw.r without
fixed points on a standard Lebesgue space is null isomorphic (mod 0) to some
special flow{¢; };cr built under the function-.

In addition to flows, we also use a related functional calles@ycle. Let A
be a second countable group, that is, a topological group that has a countable
base for the topology. For examplg,= {—1,1} or A = {w:|w| = 1} with a
multiplication operation and = R with an addition operation. A measurable map
a;(s):T x S+ Ais called a cocycle for a measurable flowy}, 7 if

(A.3) Aty +1,(8) = agy (8)as, (¢, (5)) Vi, tpeT,s€S.

In this paper, we use exclusively the cages {—1, 1} andA = {w: jw| = 1}, but
cocycles are typically associated in the literature [see Zimmer (1984)] with second
countable groups.

APPENDIX B

Minimal representations for stable processes. Finally, we define minimal
integral representations of stable processes which play a central role in relating
stable processes to flows. An integral representatiffyer C L*(S, 8,v) is
called minimal for the process,, given by (1.1) if:
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(M1) supdf;,teT}=S v-ae,;
(M2) o{fu/fo,u,veT}=48 modulov

[see Hardin (1982), Rasski (1995, 1998a) and Pipiras and Taqqu (2002a)].
A condition equivalent to (M2) is the following:

(M2") For every nonsingular magp: S +— S andh : S — R\ {0} such that, for each
teT,

(B.1) Ji(s) =h(s) fi (¢ (s)) a.e.w(ds),
we havep (s) = s a.e.v(ds) [see Rogiski (1998a)].

As shown in Hardin (1982), every separable in probabiliSSprocess has
a minimal integral representation. Riski (1995) showed that minimal integral
representations of stationaryS processes are related to flows in the sense of
Definition 1.1.
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