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RODEO: SPARSE, GREEDY NONPARAMETRIC REGRESSION

BY JOHN LAFFERTY1 AND LARRY WASSERMAN2

Carnegie Mellon University

We present a greedy method for simultaneously performing local band-
width selection and variable selection in nonparametric regression. The
method starts with a local linear estimator with large bandwidths, and in-
crementally decreases the bandwidth of variables for which the gradient of
the estimator with respect to bandwidth is large. The method—called rodeo
(regularization of derivative expectation operator)—conducts a sequence of
hypothesis tests to threshold derivatives, and is easy to implement. Under
certain assumptions on the regression function and sampling density, it is
shown that the rodeo applied to local linear smoothing avoids the curse of
dimensionality, achieving near optimal minimax rates of convergence in the
number of relevant variables, as if these variables were isolated in advance.

1. Introduction. Estimating a high-dimensional regression function is noto-
riously difficult due to the curse of dimensionality. Minimax theory precisely char-
acterizes the curse. Let

Yi = m(Xi) + εi, i = 1, . . . , n,(1.1)

where Xi = (Xi(1), . . . ,Xi(d)) ∈ R
d is a d-dimensional covariate, m : Rd → R is

the unknown function to estimate and εi ∼ N(0, σ 2). Then if m is in W2(c), the
d-dimensional Sobolev ball of order two and radius c, it is well known that

lim inf
n→∞ n4/(4+d) inf

m̂n

sup
m∈W2(c)

R(m̂n,m) > 0,(1.2)

where R(m̂n,m) = Em

∫
(m̂n(x) − m(x))2 dx is the risk of the estimate m̂n con-

structed from a sample of size n (Gyorfi et al. [12] and Stone et al. [25]). Thus, the
best rate of convergence is n−4/(4+d), which is impractically slow if d is large.

However, for some applications it is reasonable to expect that the true function
only depends on a small number of the total covariates. Suppose that m satisfies
such a sparseness condition, so that

m(x) = m(xR),(1.3)
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where xR = (xj : j ∈ R), R ⊂ {1, . . . , d} is a subset of the d covariates, of size
r = |R| � d . We call {xj }j∈R the relevant variables. Note that if an oracle were
to identify and isolate the relevant variables, the better minimax rate of n−4/(4+r)

could be achieved, and this would be the fastest rate possible. Thus, we are faced
with the problem of variable selection in nonparametric regression. Our strategy is
to seek a greedy method that incrementally searches through bandwidths in small
steps.

A large body of previous work has addressed this fundamental problem, which
has led to a variety of methods to combat the curse of dimensionality. Many of
these are based on very clever, though often heuristic techniques. For additive
models of the form m(x) =∑j mj (xj ), standard methods like stepwise selection,
Cp and AIC can be used (Hastie, Tibshirani and Friedman [14]). For spline mod-
els, Zhang et al. [31] use likelihood basis pursuit, essentially the lasso adapted to
the spline setting. CART (Breiman et al. [1]) and MARS (Friedman [8]) effec-
tively perform variable selection as part of their function fitting. Support vector
regression can be seen as creating a sparse representation using basis pursuit in
a reproducing kernel Hilbert space (Girosi [11]). There is also a large literature
on Bayesian methods, including methods for sparse Gaussian processes (Tipping
[27], Smola and Bartlett [24], Lawrence, Seeger and Herbrich [17]); see George
and McCulloch [10] for a brief survey. More recently, Li, Cook and Nachsteim
[19] use independence testing for variable selection and [2] introduced a boost-
ing approach. While these methods have met with varying degrees of empirical
success, they can be challenging to implement and demanding computationally.
Moreover, these methods are typically very difficult to analyze theoretically, and
so come with limited formal guarantees. Indeed, the theoretical analysis of sparse
parametric estimators such as the lasso (Tibshirani [26]) is challenging, and only
recently has significant progress been made on this front in the statistics and signal
processing communities (Donoho [3], Fu and Knight [9], Tropp [28, 29], Fan and
Peng [7] and Fan and Li [6]).

In this paper, we present a new approach for sparse nonparametric function es-
timation that is both computationally simple and amenable to theoretical analysis.
We call the general framework rodeo, for “regularization of derivative expecta-
tion operator.” It is based on the idea that bandwidth and variable selection can
be simultaneously performed by computing the infinitesimal change in a nonpara-
metric estimator as a function of the smoothing parameters, and then thresholding
these derivatives to get a sparse estimate. As a simple version of this principle,
we use hard thresholding, effectively carrying out a sequence of hypothesis tests.
A modified version that replaces testing with soft thresholding may be viewed as
solving a sequence of lasso problems. The potential appeal of this approach is that
it can be based on relatively simple and theoretically well-understood nonparamet-
ric techniques such as local linear smoothing, leading to methods that are simple
to implement and can be used in high-dimensional problems. Moreover, we show
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that they can achieve near optimal minimax rates of convergence, and therefore
circumvent the curse of dimensionality when the true function is indeed sparse.
When applied in one dimension, our method yields a local bandwidth selector and
is similar to the estimators of Ruppert [21] and Lepski, Mammen and Spokoiny
[18]. The method in Lepski, Mammen and Spokoiny [18] and its multivariate ex-
tension in Kerkyacharian, Lepski and Picard [16] yield estimators that are more
refined than our method in the sense that their estimator is spatially adaptive over
large classes of function spaces. However, their method is not greedy: it involves
searching over a large class of bandwidths. Our goal is to develop a greedy method
that scales to high dimensions.

Our method is related to the structural adaptation method of Hristache et al. [15]
and Samarov, Spokoiny and Vial [23], which is designed for multi-index models.
The general multi-index model is

Y = g0(T x) + ε,(1.4)

where x ∈ R
d and T is a linear orthonormal mapping from R

d onto R
r with r < d .

Variable selection corresponds to taking T to be a r by d matrix of 0’s and 1’s with
each Tij = 1 if xj is the ith relevant variable. Nonparametric variable selection
can also be regarded as a special case of the partially linear model in Samarov,
Spokoiny and Vial [23], which takes

Y = θTx1 + G(x2) + ε,(1.5)

where x = (x1, x2). Taking θ to be zero yields the model in this paper. The advan-
tage of structural adaptation is that it yields, under certain conditions,

√
n estimates

of the image of T in (1.4) and θ in (1.5). However, structural adaptation does not
yield optimal bandwidths or optimal estimates of the regression function, although
this is not the intended goal of the method.

In the following section we outline the basic rodeo approach, which is actually
a general strategy that can be applied to a wide range of nonparametric estimators.
We then specialize in Section 3 to the case of local linear smoothing, since the
asymptotic properties of this smoothing technique are fairly well understood. In
particular, we build upon the analysis of Ruppert and Wand [22] for local linear
regression; a notable difference is that we allow the dimension to increase with
sample size, which requires a more detailed analysis of the asymptotics. In Sec-
tion 4 we present some simple examples of the rodeo, before proceeding to an
analysis of its properties in Section 5. Our main theoretical result characterizes
the asymptotic running time, selected bandwidths, and risk of the algorithm. Fi-
nally, in Section 6, we present further examples and discuss several extensions of
the basic version of the rodeo considered in the earlier sections. The proofs of the
theoretical properties of the rodeo are given in Section 7.
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2. Rodeo: the main idea. The key idea in our approach is as follows. Fix a
point x and let m̂h(x) denote an estimator of m(x) based on a vector of smoothing
parameters h = (h1, . . . , hd). If c is a scalar, then we write h = c to mean h =
(c, . . . , c).

Let M(h) = E(m̂h(x)) denote the mean of m̂h(x). For now, assume that x = xi

is one of the observed data points and that m̂0(x) = Yi . In that case, m(x) =
M(0) = E(Yi). If P = (h(t) : 0 ≤ t ≤ 1) is a smooth path through the set of
smoothing parameters with h(0) = 0 and h(1) = 1 (or any other fixed, large band-
width) then

m(x) = M(0) = M(1) + M(0) − M(1)(2.1a)

= M(1) −
∫ 1

0

dM(h(s))

ds
ds(2.1b)

= M(1) −
∫ 1

0
〈D(h(s)), ḣ(s)〉ds,(2.1c)

where

D(h) = ∇M(h) =
(

∂M

∂h1
, . . . ,

∂M

∂hd

)T

(2.2)

is the gradient of M(h) and ḣ(s) = dh(s)
ds

is the derivative of h(s) along the path.
An unbiased, low variance estimator of M(1) is m̂1(x). An unbiased estimator of
D(h) is

Z(h) =
(

∂m̂h(x)

∂h1
, . . . ,

∂m̂h(x)

∂hd

)T

.(2.3)

The naive estimator

m̂(x) = m̂1(x) −
∫ 1

0
〈Z(h(s)), ḣ(s)〉ds(2.4)

is identically equal to m̂0(x) = Yi , which has poor risk since the variance of Z(h)

is large for small h. However, our sparsity assumption on m suggests that there
should be paths for which D(h) is also sparse. Along such a path, we replace Z(h)

with an estimator D̂(h) that makes use of the sparsity assumption. Our estimate of
m(x) is then

m̃(x) = m̂1(x) −
∫ 1

0
〈D̂(s), ḣ(s)〉ds.(2.5)

To implement this idea we need to do two things: (i) we need to find a path for
which the derivative is sparse and (ii) we need to take advantage of this sparseness
when estimating D along that path.

The key observation is that if xj is irrelevant, then we expect that changing the
bandwidth hj for that variable should cause only a small change in the estimator
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FIG. 1. Conceptual illustration: The bandwidths for the relevant variables (h1) are shrunk, while
the bandwidths for the irrelevant variables (h2) are kept relatively large.

m̂h(x). Conversely, if xj is relevant, then we expect that changing the bandwidth
hj for that variable should cause a large change in the estimator. Thus, Zj(h) =
∂m̂h(x)/∂hj should discriminate between relevant and irrelevant covariates. To
simplify the procedure, we can replace the continuum of bandwidths in the interval
with a discrete set where each hj ∈ B = {h0, βh0, β

2h0, . . .} for some 0 < β < 1.
Moreover, we can proceed in a greedy fashion by estimating D(h) sequentially
with hj ∈ B and setting D̂j (h) = 0 when hj < ĥj , where ĥj is the first h such that
|Zj(h)| < λj(h) for some threshold λj . This greedy version, coupled with the hard
threshold estimator, yields m̃(x) = m̂ĥ(x). A conceptual illustration of the idea is
shown in Figure 1.

To further elucidate the idea, consider now the one-dimensional case x ∈ R, so
that

m(x) = M(1) −
∫ 1

0

dM(h)

dh
dh = M(1) −

∫ 1

0
D(h)dh.(2.6)

Suppose that m̂h(x) = ∑n
i=1 Yi�i(x, h) is a linear estimator, where the weights

�i(x, h) depend on a bandwidth h.
In this case

Z(h) =
n∑

i=1

Yi�
′
i(x, h)(2.7)

where the prime denotes differentiation with respect to h. Then we set

m̃(x) = m̂1(x) −
∫ 1

0
D̂(h) dh(2.8)

where D̂(h) is an estimator of D(h). Now,

Z(h) ≈ N(b(h), s2(h))(2.9)
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where, for typical smoothers, b(h) ≈ Ah and s2(h) ≈ C/nh3 for some constants
A and C. Take the hard threshold estimator

D̂(h) = Z(h)I
(|Z(h)| > λ(h)

)
,(2.10)

where λ(h) is chosen to be slightly larger than s(h). An alternative is the soft-
threshold estimator

D̂(h) = sign(Z(h))
(|Z(h)| − λ(h)

)
+.(2.11)

The greedy algorithm, coupled with the hard threshold estimator, yields a band-
width selection procedure based on testing. This approach to bandwidth selection
is very similar to that of Lepski, Mammen and Spokoiny [18], who take

ĥ = max{h ∈ H :φ(h,η) = 0 for all η < h},(2.12)

where φ(h,η) is a test for whether m̂η improves on m̂h. This more refined test
leads to estimators that achieve good spatial adaptation over large function classes.
Kerkyacharian, Lepski and Picard [16] extend the idea to multiple dimensions.
Our approach is also similar to a method of Ruppert [21] that uses a sequence of
decreasing bandwidths and then estimates the optimal bandwidth by estimating
the mean squared error as a function of bandwidth. Our greedy approach only tests
whether an infinitesimal change in the bandwidth from its current setting leads
to a significant change in the estimate, and is more easily extended to a practical
method in higher dimensions.

3. Rodeo using local linear regression. Now we present the multivariate
rodeo in detail. We use local linear smoothing as the basic method since it is
known to have many good properties. Let x = (x(1), . . . , x(d)) be some target
point at which we want to estimate m. Let m̂H (x) denote the local linear estimator
of m(x) using bandwidth matrix H . Thus,

m̂H (x) = eT
1 (XT

x WxXx)
−1XT

x WxY ≡ SxY,(3.1)

where e1 = (1,0, . . . ,0)T,

Xx =
⎛⎜⎝1 (X1 − x)T

...
...

1 (Xn − x)T

⎞⎟⎠ ,(3.2)

Wx is diagonal with (i, i) element KH(Xi −x) and KH(u) = |H |−1/2K(H−1/2u).
The estimator m̂H can be written as

m̂H (x) =
n∑

i=1

G(Xi, x,h)Yi,(3.3)

where

G(u,x,h) = eT
1 (XT

x WxXx)
−1
(

1
(u − x)T

)
KH(u − x)(3.4)
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is called the effective kernel. One can regard local linear regression as a refinement
of kernel regression where the effective kernel G adjusts for boundary bias and
design bias; see Fan [5], Hastie and Loader [13] and Ruppert and Wand [22].

We assume that the covariates are random with density f (x) and that x is inte-
rior to the support of f . We make the same assumptions as Ruppert and Wand [22]
in their analysis of the bias and variance of local linear regression. In particular:

(i) The kernel K has compact support with zero odd moments and there exists
ν2 = ν2(K) �= 0 such that ∫

uuTK(u)du = ν2(K)I,(3.5)

where I is the d × d identity matrix.
(ii) The sampling density f (x) is continuously differentiable and strictly pos-

itive.

In the version of the algorithm that follows, we take K to be a product kernel
and H to be diagonal with elements h = (h1, . . . , hd) and we write m̂h instead of
m̂H .

Our method is based on the statistic

Zj = ∂m̂h(x)

∂hj

=
n∑

i=1

Gj(Xi, x,h)Yi,(3.6)

where

Gj(u, x,h) = ∂G(u, x,h)

∂hj

.(3.7)

Let

μj ≡ μj(h) = E(Zj |X1, . . . ,Xn) =
n∑

i=1

Gj(Xi, x,h)m(Xi)(3.8)

and

Var(Zj |X1, . . . ,Xn) = σ 2
n∑

i=1

Gj(Xi, x,h)2.(3.9)

In Section 4.3 we explain how to estimate σ ; for now, assume that σ is known.
The hard thresholding version of the rodeo algorithm is described in Figure 2.

To derive an explicit expression for Zj , equivalently Gj , we use

∂A−1

∂h
= −A−1 ∂A

∂h
A−1(3.10)
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Rodeo: Hard thresholding version

1. Select constant 0 < β < 1 and initial bandwidth

h0 = c0

log logn
.(3.11)

2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1,2, . . . , d .
(b) A = {1,2, . . . , d}.

3. While A is nonempty, do for each j ∈ A:

(a) Compute the estimated derivative expectation: Zj [equation (3.6)] and
sj [equation (3.9)].

(b) Compute the threshold λj = sj

√
2 logn.

(c) If |Zj | > λj , then set hj ← βhj ; otherwise remove j from A.

4. Output bandwidths h� = (h1, . . . , hd) and estimator m̃(x) = m̂h�(x).

FIG. 2. The hard thresholding version of the rodeo, which can be applied using the derivatives Zj

of any nonparametric smoother. The algorithm stops when all derivatives are below threshold. As
shown in the theoretical analysis, this happens after Tn = O(logn) iterations.

to get that

Zj = ∂m̂h(x)

∂hj

(3.12a)

= eT
1 (XTWX)−1XT ∂W

∂hj

Y

(3.12b)

− eT
1 (XTWX)−1XT ∂W

∂hj

X(XTWX)−1XTWY

= eT
1 (XTWX)−1XT ∂W

∂hj

(Y − Xα̂),(3.12c)

where α̂ = (XTWX)−1XTWY is the coefficient vector for the local linear fit (and
we have dropped the dependence on the local point x in the notation).

Note that the factor |H |−1 =∏d
i=1 1/hi in the kernel cancels in the expression

for m̂, and therefore we can ignore it in our calculation of Zj . Assuming a product
kernel we have

W = diag

(
d∏

j=1

K
(
(X1j − xj )/hj

)
, . . . ,

d∏
j=1

K
(
(Xnj − xj )/hj

))
(3.13)
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and ∂W/∂hj = WLj , where

Lj = diag

(
∂ logK((X1j − xj )/hj )

∂hj

, . . . ,
∂ logK((Xnj − xj )/hj )

∂hj

)
,(3.14)

and thus

Zj = eT
1 (XTWX)−1XTWLj(Y − Xα̂)

(3.15)
= eT

1 BLj(I − XB)Y = Gj(x,h)TY

where B = (XTWX)−1XTW .
The calculation of Lj is typically straightforward. As two examples, with the

Gaussian kernel K(u) = exp(−u2/2) we have

Lj = 1

h3
j

diag
(
(X1j − xj )

2, . . . , (Xnj − xj )
2)(3.16)

and for the Epanechnikov kernel K(u) = (5 − x2)I(|x| ≤ √
5) we have

Lj = 1

h3
j

diag
(

2(X1j − xj )
2

5 − (X1j − xj )2/h2
j

I
(|X1j − xj | ≤

√
5hj

)
, . . . ,(3.17a)

2(Xnj − xj )
2

5 − (Xnj − xj )2/h2
j

I
(|X1j − xj | ≤

√
5hj

))
.(3.17b)

4. Examples. In this section we illustrate the rodeo on some examples. We
return to the examples later when we discuss estimating σ , as well as a global
(nonlocal) version of the rodeo.

4.1. Two relevant variables. In the first example, we take m(x) = 5x2
1x2

2 with
d = 10, σ = 0.5 with xi ∼ Uniform(0,1). The algorithm is applied to the local
linear estimates around the test point x0 = (1

2 , . . . , 1
2), with β = 0.8. Figure 3

shows the bandwidths averaged over 200 runs of the rodeo, on data sets of size
n = 750. The second example in Figure 4 shows the algorithm applied to the func-
tion m(x) = 2(x1 + 1)3 + 2 sin(10x2), in this case in d = 20 dimensions with
σ = 1.

The plots demonstrate how the bandwidths h1 and h2 of the relevant variables
are shrunk, while the bandwidths of the relevant variables tend to remain large.

4.2. A one-dimensional example. Figure 5 illustrates the algorithm in one di-
mension. The underlying function in this case is m(x) = (1/x) sin(15/x), and
n = 1,500 data points are sampled as x ∼ Uniform(0,1)+ 1

2 . The algorithm is run
at two test points; the function is more rapidly varying near the test point x = 0.67
than near the test point x = 1.3, and the rodeo appropriately selects a smaller band-
width at x = 0.67. The right plot of Figure 5 displays boxplots for the logarithm
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FIG. 3. Rodeo run on synthetic data sets, showing average bandwidths over 200 runs (left), final
bandwidths with standard errors (right), and bandwidths on a single run of the algorithm (center).
In the top plots the regression function is m(x) = 5x2

1x2
2 with d = 10, n = 500 and σ = 0.5 and in

the lower plots the regression function is m(x) = 2(x1 + 1)3 + 2 sin(10x2), d = 20, n = 750 and
σ = 1. The figures show that the bandwidths for the relevant variables x1 and x2 are shrunk, while
the bandwidths for the irrelevant variables remain large.

of the final bandwidth in the base 1/β (equivalently, minus the number of steps in
the algorithm) where β = 0.8, averaged over 50 randomly generated data sets.

The figure illustrates how smaller bandwidths are selected where the function is
more rapidly varying. However, we do not claim that the method is adaptive over
large classes of function spaces. As discussed earlier, the technique is intentionally
a greedy algorithm; adapting to unknown smoothness may require a more refined
search over bandwidths that does not scale to large dimensions, and is out of the
scope of the current paper.

4.3. Estimating σ . The algorithm requires that we insert an estimate σ̂ of σ in
(3.9). An estimator for σ can be obtained by generalizing a method of Rice [20].
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FIG. 4. Squared error of the estimator on the previous examples, m(x) = 5x2
1x2

2 (left) and

m(x) = 2(x1 + 1)3 + 2 sin(10x2) (right). For each plot, the left six boxplots show the risk in different
dimensions (d = 5,10,15,20,25,30) when using a single bandwidth, chosen by leave-one-out cross
validation. The right six boxplots show the squared error on the same data with bandwidths selected
using the rodeo.

FIG. 5. A one-dimensional example. The regression function is m(x) = (1/x) sin(15/x), and
n = 1,500 data points are sampled, x ∼ Uniform(0,1) + 1

2 . The left plot shows the local linear
fit at two test points; the right plot shows the final log bandwidth, log1/β h� (equivalently, minus the
number of steps) of the rodeo over 50 randomly generated data sets.
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For i < �, let

di� = ‖Xi − X�‖.(4.1)

Fix an integer J and let E denote the set of pairs (i, �) corresponding the J smallest
values of di�. Now define

σ̂ 2 = 1

2J

∑
i,�∈E

(Yi − Y�)
2.(4.2)

Then

E(σ̂ 2) = σ 2 + bias,(4.3)

where

bias ≤ D sup
x

r∑
j=1

∣∣∣∣∂mj (x)

∂xj

∣∣∣∣(4.4)

with D given by

D = max
i,�∈E

‖Xi − X�‖.(4.5)

There is a bias-variance tradeoff: large J makes σ̂ 2 positively biased, and small
J makes σ̂ 2 highly variable. Note, however, that the bias is mitigated by sparsity
(small r).

A more robust estimate may result from taking

σ̂ =
√

π

2
median{|Yi − Y�|}i,�∈E(4.6)

where the constant comes from observing that if Xi is close to X�, then

|Yi − Y�| ∼ |N(0,2σ 2)| = √
2σ |Z|,(4.7)

where Z is a standard normal with E|Z| = √
2/π .

Now we redo the earlier examples, taking σ as unknown. Figure 6 shows the
result of running the algorithm on the examples of Section 4.1, however, now es-
timating the noise using estimate (4.6). For the higher-dimensional example, with
d = 20, the noise variance is over-estimated, with the primary result that the irrele-
vant variables are more aggressively thresholded out; compare Figure 6 to Figure 3.

Although we do not pursue it in this paper, there is also the possibility of allow-
ing σ(x) to be a function of x and estimating it locally.

4.4. Computational cost. When based on a local linear estimator, each step
of the rodeo algorithm has the same computational cost as constructing a single
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FIG. 6. Rodeo run on the examples of Section 4.1, but now estimating the noise using the estimate σ̂

discussed in Section 4.3. Top: σ = 0.5, d = 10; bottom: σ = 1, d = 20. In higher dimensions the noise
is over-estimated (center plots), which results in the irrelevant variables being more aggressively
eliminated; compare Figure 3.

local linear fit. This is dominated by the cost of constructing the matrix inverse
(XTWX)−1 in equation (3.15). Since the derivative needs to be computed for every
variable, the algorithm thus scales as O(d4) in the dimension d . Implemented in R,
the 20 dimensional example in Figure 3 takes 4 hours, 4 minutes and 40 seconds
for 200 runs, or 73.4 seconds per run, when executed on a 1.5 GHz PowerPC
Macintosh laptop. Although we focus on local linear regression, it should be noted
that very similar results are obtained with kernel regression, which requires no
matrix inversion. Using kernel regression, the same example requires 12 minutes
and 33 seconds, or 3.7 seconds per run.

5. Properties of the rodeo. We now give some results on the statistical prop-
erties of the hard thresholding version of the rodeo estimator. Formally, we use a
triangular array approach so that m(x), f (x), d and r can all change as n changes,
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although we often suppress the dependence on n for notational clarity. We assume
throughout that m has continuous third order derivatives in a neighborhood of x.
For convenience of notation, we assume that the covariates are numbered such that
the relevant variables xj correspond to 1 ≤ j ≤ r and the irrelevant variables xj

correspond to r + 1 ≤ j ≤ d .
A key aspect of our analysis is that we allow the dimension d to increase with

sample size n, and show that the algorithm achieves near optimal minimax rates
of convergence if d = O(logn/ log logn). This hinges on a careful analysis of the
asymptotic bias and variance of the estimated derivative Zj , taking the increasing
dimension into account. We conjecture that, without further assumptions, d cannot
increase at a significantly faster rate, while obtaining near optimal rates of conver-
gence.

The results are stated below, with the complete proofs given in Section 7.
Our main theoretical result characterizes the asymptotic running time, selected

bandwidths and risk of the algorithm. In order to get a practical algorithm, we need
to make assumptions on the functions m and f .

(A1) The density f (x) of (X1, . . . ,Xd) is uniform on the unit cube.
(A2)

lim inf
n→∞ min

1≤j≤r
|mjj (x)| > 0.(5.1)

(A3) All derivatives of m up to and including fourth order are bounded.

Assumption (A1) greatly simplifies the proofs. If we drop (A1), it is necessary
to use a smaller starting bandwidth.

THEOREM 5.1. Assume the conditions of Lemma 7.1 and suppose that as-
sumptions (A1) and (A2) hold. In addition, suppose that

Amin = min
j≤r

|mjj (x)| = �̃(1)

and

Amax = max
j≤r

|mjj (x)| = Õ(1).

Then the rodeo outputs bandwidths h� that satisfy

P(h�
j = h0 for all j > r) → 1(5.2)

and for every ε > 0,

P
(
n−1/(4+r)−ε ≤ h�

j ≤ n−1/(4+r)+ε for all j ≤ r
)→ 1.(5.3)

Let Tn be the stopping time of the algorithm. Then P(tL ≤ Tn ≤ tU ) → 1 where

tL = 1

(r + 4) log(1/β)
log
(

nA2
min

8C2 logn(log logn)d

)
,(5.4)

tU = 1

(r + 4) log(1/β)
log
(

nA2
max

aC2 logn(log logn)d

)
(5.5)
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and 0 < a < 2.

COROLLARY 5.2. Under the conditions of Theorem 5.1,(
m̂h�(x) − m(x)

)2 = OP

(
n−4/(4+r)+ε)(5.6)

for every ε > 0.

6. Extensions and variations of the rodeo. The rodeo represents a general
strategy for nonparametric estimation, based on the idea of regularizing or testing
the derivatives of an estimator with respect to smoothing parameters. There are
many ways in which this basic strategy can be realized. In this section we discuss
several variants of the basic hard thresholding version of the rodeo, including a
soft thresholding version, a global rather than local bandwidth selection procedure,
the use of testing and generalized cross validation, and connections to least angle
regression. Further numerical examples are also given to illustrate these ideas.

6.1. Subtracting off a linear lasso. Local linear regression is a nonparametric
method that contains linear regression as a special case when h → ∞. If the true
function is linear but only a subset of the variables are relevant, then the rodeo will
fail to separate the relevant and irrelevant variables since relevance is defined in
terms of departures from the limiting parametric model. Indeed, the results depend
on the Hessian of m which is zero in the linear case. The rodeo may return a full
linear fit with all variables. A simple modification can potentially fix this problem.
First, do linear variable selection using, say, the lasso (Tibshirani [26]). Then run
the rodeo on the residuals from that fit, but using all of the variables. An example
of this procedure is given below in Section 6.4.

6.2. Other estimators and other paths. We have taken the estimate

D̂j (h) = Zj(h)I
(|Zj(h)| > λj

)
(6.1)

with the result that

m̃(x) = m̂h0(x) −
∫ 1

0
〈D̂(s), ḣ(s)〉ds = m̂h�(x).(6.2)

There are many possible generalizations. First, we can replace D̂ with the soft-
thresholded estimate

D̂j (t) = sign(Zj (h))
(|Zj(h)| − λj

)
+(6.3)

where the index t denotes the t th step of the algorithm. Since hj is updated mul-
tiplicatively as hj ← βhj , the differential dhj (t) is given by dhj (t) = (1 − β)hj .
Using the resulting estimate of D(t) and finite difference approximation for ḣ(t)

leads to the algorithm detailed in Figure 7.
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Rodeo: Soft thresholding version

1. Select parameter 0 < β < 1 and initial bandwidth h0.
2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1,2, . . . , d .
(b) A = {1,2, . . . , d}.
(c) Initialize step, t = 1.

3. While A is nonempty

(a) Set dhj (t) = 0, j = 1, . . . , d .
(b) Do for each j ∈ A:

(1) Compute the estimated derivative expectation Zj and sj .

(2) Compute the threshold λj = sj

√
2 logn.

(3) If |Zj | > λj , set dhj (t) = (1 − β)hj and hj ← βhj ;
otherwise remove j from A.

(4) Set D̂j (t) = sign(Zj (h))(|Zj(h)| − λj )+.
(c) Increment step, t ← t + 1.

4. Output bandwidths h� = (h1, . . . , hd) and estimator

m̃(x) = m̂h0(x) −
t∑

s=1

〈D̂(s), dh(s)〉(6.4)

FIG. 7. The soft thresholding version of the rodeo.

Figure 8 shows a comparison of the hard and soft thresholding versions of the
rodeo on the example function m(x) = 2(x1 + 1)3 + 2 sin(10x2) in d = 10 dimen-
sions with σ = 1; β was set to 0.9. For each of 100 randomly generated datasets,
a random test point x ∼ Uniform(0,1)d was generated, and the difference in losses
was computed: (

m̃hard(x) − m(x)
)2 − (m̃soft(x) − m(x)

)2
.(6.5)

Thus, positive values indicate an advantage for soft thresholding, which is seen to
be slightly more robust on this example.

Another natural extension would be to consider more general paths than paths
that are restricted to be parallel to the axes. We leave this direction to future work.

6.3. Global rodeo. We have focused on estimation of m locally at a point x.
The idea can be extended to carry out global bandwidth and variable selection
by averaging over multiple evaluation points x1, . . . , xk . These could be points of
interest for estimation, could be randomly chosen, or could be taken to be identical
to the observed Xi’s.
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FIG. 8. Comparison of hard and soft thresholding. Left: m(x) = 5x2
1x2

2 , d = 10 and σ = 0.5;

right: m(x) = 2(x1 + 1)3 + 2 sin(10x2), d = 10 and σ = 1. The hard and soft thresholding ver-
sions of the rodeo were compared on 100 randomly generated data sets, with a single random
test point x chosen for each; β = 0.9. The plots show two views of the difference of losses,
(m̃hard(x) − m(x))2 − (m̃soft(x) − m(x))2; positive values indicate an advantage for soft thresh-
olding.

Averaging the Zj ’s directly leads to a statistic whose mean for relevant vari-
ables is asymptotically k−1hj

∑k
i=1 mjj (xi). Because of sign changes in mjj (x),

cancellations can occur resulting in a small value of the statistic for relevant vari-
ables. To eliminate the sign cancellation, we square the statistic. Another way of
deriving a global method would be to use the statistic supx |Z∗

j (x)|.
Let x1, . . . , xk denote the evaluation points. Let

Zj(xi) =
n∑

s=1

YsGj (Xs, xi).(6.6)

Then define the statistic

Tj ≡ 1

k

k∑
i=1

Z2
j (xi) = 1

k
Y TPjY,(6.7)

where Pj = GjG
T
j , with Gj (s, i) = Gj(Xs, xi).

If j ∈ Rc then we have E(Zj (xi)) = o(1), so it follows that, conditionally,

E(Tj ) = σ 2

k
tr(Pj ) + oP (1),(6.8a)
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Var(Tj ) = 2σ 4

k2 tr(PjPj ) + oP (1).(6.8b)

We take the threshold to be

λj = σ̂ 2

k
tr(Pj ) + 2

σ̂ 2

k

√
tr(PjPj ) log(n).(6.9)

Note that if j > r , we have

E(Tj ) = 1

k

∑
i

s2
j (Xi) + O(h6

0)(6.10)

but for j ≤ r we have

E(Tj ) = 1

k

∑
i

s2
j (Xi) + O(h2

0).(6.11)

We give an example of this algorithm in the following section, leaving the detailed
analysis of the asymptotics of this estimator to future work.

6.4. Greedier rodeo and LARS. The rodeo is related to least angle regression
(LARS) (Efron et al. [4]). In forward stagewise linear regression, one performs
variable selection incrementally. LARS gives a refinement where at each step in the
algorithm, one adds the covariate most correlated with the residuals of the current
fit, in small, incremental steps. LARS takes steps of a particular size: the smallest
step that makes the largest correlation equal to the next-largest correlation. Efron
et al. [4] show that the lasso can be obtained by a simple modification of LARS.

The rodeo can be seen as a nonparametric version of forward stagewise re-
gression. Note first that Zj is essentially the correlation between the Yi’s and the
Gj(Xi, x,h)s (the change in the effective kernel). Reducing the bandwidth is like
adding in more of that variable. Suppose now that we make the following modifi-
cations to the rodeo: (i) change the bandwidths one at a time, based on the largest
Z∗

j = Zj/λj , (ii) reduce the bandwidth continuously, rather than in discrete steps,
until the largest Zj is equal to the next largest. Some examples of the greedy ver-
sion of this algorithm follow.

6.4.1. Diabetes example. Figure 9 shows the result of running the greedy ver-
sion of the rodeo on the diabetes dataset used by [4] to illustrate LARS. The algo-
rithm averages Z∗

j over a randomly chosen set of k = 100 data points, and reduces
the bandwidth for the variable with the largest value; note that no estimate of σ is
required. The resulting variable ordering is seen to be very similar to, but different
from, the ordering obtained from the parametric LARS fit. The variables were se-
lected in the order 3 (body mass index), 9 (serum), 7 (serum), 4 (blood pressure),
1 (age), 2 (sex), 8 (serum), 5 (serum), 10 (serum), 6 (serum). The LARS algorithm
adds variables in the order 3, 9, 4, 7, 2, 10, 5, 8, 6, 1. One notable difference is in
the position of the age variable.
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FIG. 9. Greedy rodeo on the diabetes data, used to illustrate LARS (Efron et al. [4]). A set of
k = 100 of the total n = 442 points were sampled (d = 10), and the bandwidth for the variable with
largest average |Zj |/λj was reduced in each step.

6.4.2. Turlach’s example. In the discussion to the LARS paper, Berwin
Turlach [30] gives an interesting example of where LARS and the lasso fails.
The function is

Y = (X1 − 1
2

)2 + X2 + X3 + X4 + X5 + ε(6.12)

with ten variables Xi ∼ Uniform(0,1) and σ = 0.05. Although X1 is a relevant
variable, it is uncorrelated with Y , and LARS and the lasso miss it.

Figure 10 shows the greedy algorithm on this example, where bandwidth corre-
sponding to the largest average Z∗

j is reduced in each step. We use kernel regres-
sion rather than local linear regression as the underlying estimator, without first
subtracting off a Lasso fit. The variables x2, x3, x4, x5 are linear in the model, but
are selected first in every run. Variable x1 is selected fifth in 72 of the 100 runs;
a typical run of the algorithm is shown in the left plot. In contrast, as discussed in
Turlach [30], LARS selects x1 in position 5 about 25% of the time.

Figure 11 shows bandwidth traces for this example using the global algorithm
described in Section 6.3 with k = 20 evaluation points randomly subselected from
the data, and σ taken to be known. Before starting the rodeo, we subtract off a
linear least squares fit, and run the rodeo on the residuals. The first plot shows
h1, . . . , h5. The lowest line is h1 which shrinks the most since m is a nonlinear
function of x1. The other curves are the linear effects. The right plot shows the
traces for h6, . . . , h10, the bandwidths for the irrelevant variables.

7. Proofs of technical results. In this section we give the proofs of the results
stated in Section 5. We begin with three lemmas.
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FIG. 10. Top: A typical run of the greedy algorithm on Turlach’s example. The bandwidths are first
reduced for variables x2, x3, x4, x5, and then the relevant, but uncorrelated with Y variable x1 is
added to the model; the irrelevant variables enter the model last. Bottom: Histogram of the position
at which variable x1 is selected, over 100 runs of the algorithm.

We write Yn = ÕP (an) to mean that Yn = OP (bnan) where bn is logarithmic
in n. As noted earlier, we write an = �(bn) if lim infn |an

bn
| > 0; similarly an =

�̃(bn) if an = �(bncn) where cn is logarithmic in n.
Let

H =
(

HR 0
0 0

)
denote the Hessian of m(x). For a given bandwidth h = (h1, . . . , hd), denote the
bandwidth matrix by H = diag(h2

1, . . . , h
2
d). Similarly, let HR = diag(h2

1, . . . , h
2
r ).
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FIG. 11. The global rodeo averaged over 10 runs on Turlach’s example. The left plot shows the
bandwidths for the five relevant variables. Since the linear effects (variables two through five) have
been subtracted off, bandwidths h2, h3, h4, h5 are not shrunk. The right plot shows the bandwidths
for the other, irrelevant, variables.

Define

μj(h) = ∂

∂hj

E[m̂H (x) − m(x)|X1, . . . ,Xn],(7.1)

which is the derivative of the conditional bias. The first lemma analyzes μj(h) and
E(μj (h)) under the assumption that f is uniform. The second lemma analyzes the
variance. The third lemma bounds the probabilities P(|Zj | ≥ λj ) in terms of tail
inequalities for standard normal variables.

In each of these lemmas, we make the following assumptions. We assume that
f is uniform, K is a product kernel, and 0 < β < 1. Moreover, we make use of the
following set B of bandwidths

B =
{
h = (h1, . . . , hd) = (βk1h0, . . . , β

kr h0︸ ︷︷ ︸
r terms

, h0, . . . , h0︸ ︷︷ ︸
d−r terms

) :

(7.2)

0 ≤ kj ≤ Tn, j = 1, . . . , r

}
,

where Tn ≤ c1 logn. Finally, we assume that

r = O(1),(7.3)
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d = O

(
logn

log logn

)
,(7.4)

h0 = c0

log logn
for some c0 > 0.(7.5)

LEMMA 7.1. For each h ∈ B,

E(μj (h)) =
{

ν2mjj (x)hj + gj (xR,hR)hj , j ≤ r ,
0, j > r ,

(7.6)

where ν2 is defined in equation (3.5), and gj (xR,hR) depends only on the relevant
variables and bandwidths, and satisfies

|gj (xR,hR)| = O

(∑
k≤r

sup
x

|mjjkk(x)|h2
k

)
.(7.7)

Furthermore, for any δ > 0,

P

(
max
h∈B

1≤j≤d

|μj(h) − E(μj (h))|
sj (h)

>

√
δ logn

log logn

)
≤ 1

nδσ 2/(8c0)
(7.8)

where

s2
j (h) = C

nh2
j

d∏
k=1

1

hk

,(7.9)

with

C = σ 2
∫

K2(u) du/f (x).(7.10)

REMARK 7.2. If we drop the assumption that f (x) = 1 then the mean be-
comes

E(μj (h))
(7.11)

=
{

ν2mjj (x)hj + o(hj ), j ≤ r ,
− tr(HRHR)ν2

2(∇j logf (x))2hj + o(hj tr(HR)), j > r .

PROOF OF LEMMA 7.1. We follow the setup of Ruppert and Wand [22] but
the calculations need to be uniform over h ∈ B and we have to allow for increasing
dimension d .

Note that there are Nn = (Tn + 1)r elements in the set B. Fix an h ∈ B. Then
hj = h0 for j > r and

βTnh0 ≤ hj ≤ h0, 1 ≤ j ≤ r.(7.12)
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Let

H =
(

HR 0
0 0

)
denote the Hessian of m(x). Let ∇m be the gradient of m at x, and let

Q = ((X1 − x)TH(X1 − x), . . . , (Xn − x)TH(Xn − x)
)T

.(7.13)

Note that ∇m and Q are only functions of the relevant variables. Then

m(Xi) = m(x) + (Xi − x)T∇m + 1
2Qi + Ri(7.14)

where, using multi-index notation,

Ri = 1
6

∑
|α|=3

(Xi − x)α
∫ 1

0
Dαm

(
(1 − s)x + sXi

)
ds

(7.15)
= ∑

|α|=3

(Xi − x)αRα(Xi)

for functions Rα that only depend on the relevant variables and satisfy

|Rα(Xi)| ≤ 1
6 sup

x
|Dαm(x)|.(7.16)

Thus, with M = (m(X1), . . . ,m(Xn))
T,

M = Xx

(
m(x)

∇m

)
+ 1

2Q + R,(7.17)

where R = (R1, . . . ,Rn)
T. Since SxXx(m(x),∇m)T = m(x), the conditional bias

bn(x) = E
(
m̂H (x)|X1, . . . ,Xn

)− m(x)(7.18)

is given by

bn(x) = SxM − m(x) = 1

2
SxQ + SxR(7.19a)

= 1

2
eT

1 (XT
x WxXx)

−1XT
x WxQ + eT

1 (XT
x WxXx)

−1XT
x WxR(7.19b)

= 1

2
eT

1 ϒ−1
n �n + eT

1 ϒ−1
n

1

n
XT

x WxR,(7.19c)

where ϒn = n−1(XT
x WxXx) and �n = n−1(XT

x WxQ).
Analysis of ϒn. We write

ϒn =

⎛⎜⎜⎜⎜⎝
1

n

n∑
i=1

Wi

1

n

n∑
i=1

Wi(Xi − x)T

1

n

n∑
i=1

Wi(Xi − x)
1

n

n∑
i=1

Wi(Xi − x)(Xi − x)T

⎞⎟⎟⎟⎟⎠(7.20a)

=
(

A11 A12
A21 A22

)
,(7.20b)
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where

Wi =
d∏

j=1

1

hj

K

(
xj − Xij

hj

)
=

d∏
j=1

Khj
(xj − Xij ).(7.21)

Now, the variance of Wi can be bounded as

Var(Wi) ≤ E(W 2
i ) =

d∏
j=1

1

hj

E

[
d∏

j=1

1

hj

K2
(

xj − Xij

hj

)]
(7.22)

=
d∏

j=1

1

hj

∫
K2(v)f (x + H 1/2v) dv(7.23)

= C

σ 2

d∏
j=1

1

hj

(7.24)

= nh2
j

σ 2 s2
j ≡ �(7.25)

since f ≡ 1, where C is as defined in (7.10). Therefore,

Var(A11) ≤ �

n
.(7.26)

Also, Wi ≤ �. Hence, by Bernstein’s inequality,

P
(|A11 − E(A11)| > εsj (h)

) ≤ 2 exp
{
−1

2

( nε2s2
j (h)

� + �εsj (h)/3

)}
(7.27a)

= 2 exp
{
−1

2

σ 2ε2

h2
j (1 + εsj )

}
.(7.27b)

Now taking ε =
√

δ logn
log logn

, and using the definition of h0 = c0/ log logn, this gives

P

(
|A11 − E(A11)| > sj (h)

√
δ logn

log logn

)
≤ 2 exp

{
−σ 2δ logn

4c0

}
(7.28)

= 2n−σ 2δ/(4c0)(7.29)

and so with this choice of ε,

P

(
sup
h∈B

|A11 − E(A11)|
sj (h)

> sj (h)

√
δ logn

log logn

)
≤ 2(Tn + 1)rn−σ 2δ/(4c0)

(7.30)
≤ n−σ 2δ/(8c0).
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Also, since f (x) = 1, E(A11) = ∫ 1
h1h2···hd

K(H−1/2(x − u))f (u)du = f (x).
Hence, for any ε > 0,

P

(
sup
h∈B

|A11 − f (x)|
s0(h)

> ε

)
→ 0.(7.31)

Next consider A21. Now E(A21) = ν2(K)HD where D is the gradient of f .
Thus, in the uniform f case, E(A21) = E(A12) = 0, and by a similar argument as
above, P(suph∈B |A12|/s0 > ε) → 0. Turning to A22, we again have convergence
to its mean and E(A22) = ν2f (x)H .

Thus,

E(ϒn) =
(

f (x) 0
0 ν2f (x)H

)
.(7.32)

Thus, if

ϒ̃−1
n =

⎛⎜⎜⎝
1

f (x)
0

0
H−1

ν2f (x)

⎞⎟⎟⎠(7.33)

then

P

(
max
jk

|ϒ−1
n (j, k) − ϒ̃−1

n (j, k))|
s0

> ε

)
→ 0.(7.34)

Analysis of �n = 1
n
XT

x WxQ. We can write

�n ≡ 1

n
XT

x WxQ =

⎛⎜⎜⎜⎜⎝
1

n

n∑
i=1

Wi(Xi − x)TH(Xi − x)

1

n

n∑
i=1

(Xi − x)Wi(Xi − x)TH(Xi − x)

⎞⎟⎟⎟⎟⎠
(7.35)

=
(

γ1
γ2

)
.

Now,

E(γ1) =
∫

K(v)(H 1/2v)TH(H 1/2v)f (x + H 1/2v)dv(7.36a)

= f (x)

∫
K(v)(H 1/2v)TH(H 1/2v)dv

+
∫

K(v)(H 1/2v)TH(H 1/2v)DT(H 1/2v)dv(7.36b)

+ 1
2

∫
K(v)(H 1/2v)TH(H 1/2v)(H 1/2v)TDT

2 (H 1/2v)dv(7.36c)

= ν2f (x) tr(HHR).(7.36d)
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The stochastic analysis of γ1 from its mean is similar to the analysis of A12 and
we have |γ1 − ν2f (x) tr(HHR)|/s0(h) = o(1) uniformly.

Next,

E(γ2) =
∫

K(v)(H 1/2v)(H 1/2v)TH(H 1/2v)f (x + H 1/2v) dv(7.37a)

= f (x)

∫
(H 1/2v)K(v)(H 1/2v)TH(H 1/2v) dv

+
∫

K(v)(H 1/2v)(H 1/2v)TH(H 1/2v)DT(H 1/2v) dv

+ 1
2

∫
K(v)(H 1/2v)(H 1/2v)T(7.37b)

× H(H 1/2v)(H 1/2v)TDT
2 (H 1/2v) dv

=
∫

K(v)(H 1/2v)(H 1/2v)TH(H 1/2v)DT(H 1/2v) dv

+ 1
2

∫
K(v)(H 1/2v)(H 1/2v)T(7.37c)

× H(H 1/2v)(H 1/2v)TDT
2 (H 1/2v) dv

= 0

Thus,

E(�n) =
(

ν2f (x) tr(HHR)

0

)
.(7.38)

Analysis of remainder eT
1 ϒ−1

n
1
n
XT

x WxR. We can write

1

n
XT

x WxR =

⎛⎜⎜⎜⎜⎝
1

n

n∑
i=1

WiRi

1

n

n∑
i=1

(Xi − x)WiRi

⎞⎟⎟⎟⎟⎠=
(

δ1
δ2

)
.(7.39)

Then we have, using the definition of Rα in (7.15),

E(δ1) =
∫

K(v)
∑

|α|=3

Rα(x + H 1/2v)(H 1/2v)αf (x + H 1/2v) dv(7.40)

= f (x)
∑

|α|=3

∫
K(v)Rα(x + H 1/2v)(H 1/2v)α dv.(7.41)
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Due to the fact that
∫

K(v)vα dv = 0 for α of odd order, we can expand one more
order to obtain

E(δ1) = f (x)
∑

|α|=4

∫
K(v)Rα(x + H 1/2v)(H 1/2v)α dv(7.42)

= f (x)
∑

|α|=4

R̄α(x,h)hα(7.43)

for functions R̄α which satisfy

|R̄α(xR,hR)| = O

(
sup
x

|Dαm(x)|
)
.(7.44)

Thus, we have that

E(δ1) = O

( ∑
j,k≤r

sup
x

|mjjkk(x)|h2
jh

2
k

)
.(7.45)

Similarly,

E(δ2) = O

( ∑
j,j≤r

sup
x

|mjkk(x)|h2
jh

2
k

)
.(7.46a)

Hence,

eT
1 ϒ−1

n

1

n
XT

x WxR = OP

( ∑
j,k≤r

h2
jh

2
k

)
.(7.47)

Putting all of this together, we conclude that

Ebn(x) = 1
2ν2 tr(HHR) + g(x,h),(7.48)

where

g(x,h) = O

( ∑
j,k≤r

sup
x

|mjjkk(x)|h2
jh

2
k

)
.(7.49)

Taking the derivative with respect to bandwidth hj , for j ≤ r , we obtain

Eμj(h) = ν2mjj (x)hj + gj (x,h)hj ,(7.50)

where

gj (x,h) = O

(∑
k≤r

sup
x

|mjjkk(x)|h2
k

)
.(7.51)

The probability bounds established with Bernstein’s inequality then give the state-
ment of the lemma. �
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REMARK 7.3. Special treatment is needed if x is a boundary point; see The-
orem 2.2 of Ruppert and Wand [22].

LEMMA 7.4. Let vj (h) = Var(Zj (h)|X1, . . . ,Xn). Then

P

(
max
h∈B

1≤j≤d

∣∣∣∣vj (h)

s2
j (h)

− 1
∣∣∣∣> ε

)
→ 0,(7.52)

for all ε > 0.

PROOF. Let � denote the first row of Sx . Then, with ξ ∼ N(0, σ 2),

m̂H (x) =∑
i

�iYi =∑
i

�im(Xi) +∑
i

�iεi(7.53a)

d=∑
i

�im(Xi) + ξ

√∑
i

�2
i(7.53b)

=∑
i

�im(Xi) + �√
nh1 · · ·hd

ξ,(7.53c)

where

� =
√

nh1 · · ·hd

∑
i

�2
i .(7.54)

Thus,

Var(Zj (t)|X1, . . . ,Xn) = σ 2 Var
(

∂

∂hj

�√
nh1 · · ·hd

)
.(7.55)

Now we find an asymptotic approximation for �.
Recall that

Sx =
(

1

n
XT

x WxXx

)−1 1

n
XT

x Wx(7.56)

and from our previous calculations

ϒ−1
n =

(
1

n
XT

x WxXx

)−1

=

⎛⎜⎜⎝
1

f (x)
0

0
H−1

ν2f (x)

⎞⎟⎟⎠(1 + oP (1)
)
.(7.57)

Note that
∑

i �
2
i is the (1, 1) entry of SxS

T
x . But

SxS
T
x =

(
ϒ−1 1

n
XT

x Wx

)(
ϒ−1 1

n
XT

x Wx

)T

(7.58a)



56 J. LAFFERTY AND L. WASSERMAN

= 1

n2 ϒ−1XT
x W 2

x Xxϒ
−1(7.58b)

= 1

n
ϒ−1

⎛⎜⎜⎜⎝
1

n

∑
i

W 2
i

1

n

∑
i

(Xi − x)TW 2
i

1

n

∑
i

(Xi − x)W 2
i

1

n

∑
i

(Xi − x)(Xi − x)TW 2
i

⎞⎟⎟⎟⎠ϒ−1.(7.58c)

So �2 is the (1,1) entry of

ϒ−1

⎛⎜⎜⎜⎝
h1 · · ·hd

n

∑
i

W 2
i

h1 · · ·hd

n

∑
i

(Xi − x)TW 2
i

h1 · · ·hd

n

∑
i

(Xi − x)W 2
i

h1 · · ·hd

n

∑
i

(Xi − x)(Xi − x)TW 2
i

⎞⎟⎟⎟⎠ϒ−1

= ϒ−1
(

a11 a12
a21 a22

)
ϒ−1.(7.59)

Next, as in our earlier analysis,

E(a11) =
∫

K2(v)f (x − H 1/2v)dv(7.60a)

= f (x)

∫
K2(v) dv(7.60b)

and similarly, E(a21) = E(a22) = 0 and E(a22) = f (x)ν̄2H , where ν̄2I = ∫ vvT ×
K2(v) dv. Hence, the leading order expansion of �2 is given by∫

K2(v) dv

f (x)
+ O(tr(H)).(7.61)

Taking the derivative with respect to hj we thus conclude that

Var(Zj (t)|X1, . . . ,Xn) = σ 2 ∫ K2(v) dv

f (x)h2
j

1

nh1 · · ·hd

(
1 + oP (1)

)
,(7.62)

which gives the statement of the lemma. �

LEMMA 7.5.

1. For any c > 0 and each j > r ,

P
(|Zj(h0)| > λj(h0)

)= o

(
1

nc

)
.(7.63)

2. Uniformly for h ∈ B we have the following: for any c > 0, j ≤ r ,

P
(|Zj(h)| < λj(h)

)≤ P

(
N(0,1) >

ν2|mjj (x)|hj + zn

sj (h)

)
+ o

(
1

nc

)
,(7.64)

where zn = O(h3
j ).



GREEDY REGRESSION 57

PROOF. Proof of (1). Fix δ > 0, c > 0. By the previous lemmas, there ex-
ists a sequence of sets Vn and sequences of constants ξ1,n, ξ2,n such that ξ1,n ≤√

δ logn/ log logn, ξ2,n → 0, P(V c
n ) = O(n−δσ 2/(8c0)). On Vn we have that

|μj(h0)|/sj (h0) ≤ ξ1,n(7.65)

and ∣∣sj (h)/
√

vj (h0) − 1
∣∣≤ ξ2,n.(7.66)

The events Vn depend on the Xi’s but not εi ’s. Choosing δ large enough we have
that P(V c

n ) = o(n−c). So, for all j > r ,

P
(
Zj(h0) > λj (h0)

)
(7.67a)

= P

(
Zj(h0) − μj(h0)

sj (h0)
>

λj (h0) − μj(h0)√
vj (h0)

)
(7.67b)

= E

(
P

(
Zj(h0) − μj(h0)

sj (h0)
>

λj (h0) − μj(h0)√
vj (h0)

∣∣∣X1, . . . ,Xn

))
(7.67c)

= E

(
P

(
N(0,1) >

λj (h0) − μj(h0)√
vj (h0)

∣∣∣X1, . . . ,Xn

))
(7.67d)

= P

(
N(0,1) >

λj (h0) − μj(h0)√
vj (h0)

)
(7.67e)

= P

(
N(0,1) >

λj (h0) − μj(h0)√
vj (h0)

,Vn

)
+ o

(
1

nc

)
(7.67f)

= P

(
N(0,1) >

λj (h0) − μj(h0)

sj (h0)

√
vj (h0)

sj (h0)
,Vn

)
+ o

(
1

nc

)
(7.67g)

= P
(
N(0,1) >

√
2 logn(1 − ξ2,n) − ξ1,n(1 + ξ2,n)

)+ o

(
1

ncl

)
(7.67h)

and the result follows from the normal tail inequality and the fact that
√

2 logn −
ξ1,n >

√
(2 − γ ) logn for any γ > 0.

Proof of (2). By the previous lemmas, there exists a sequence of sets Vn and
sequences of constants ξ1,n, ξ2,n such that ξ1,n ≤ √

δ logn/ log logn, ξ2,n → 0,
P(V c

n ) = o(1/nc) for any c > 0 and on Vn we have that |μj(h) − ν2mjj (x)hj +
O(h3

j )|/sj (h) ≤ ξ1,n and |sj (h)/
√

vj (h) − 1| ≤ ξ2,n. The events Vn depend on the
Xi’s but not εi ’s. Without loss of generality assume that mjj (x) > 0. Then

P
(|Zj(h)| < λj(h)

)
(7.68a)
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= P

(−λj (h) − μj(h)√
vj (h)

< N(0,1) <
λj (h) − μj(h)√

vj (h)

)
(7.68b)

≤ P

(
−∞ < N(0,1) <

λj (h) − μj(h)√
vj (h)

)
(7.68c)

= P

(
N(0,1) >

μj (h) − λj (h)√
vj (h)

)
(7.68d)

= P

(
N(0,1) >

μj (h) − λj (h)√
vj (h)

√
vj (h)

sj (h)

)
(7.68e)

= P

(
N(0,1) >

μj (h) − λj (h)√
vj (h)

√
vj (h)

sj (h)
,Vn

)
+ o

(
1

nc

)
(7.68f)

= P

(
N(0,1) >

ν2mjj (x)hj − λj (h) − zn

sj (h)
(1 − ξ2,n)

)
+ o

(
1

nc

)
.(7.68g) �

7.1. Proof of Theorem 5.1.

PROOF OF THEOREM 5.1. Let At be the active set at step t . Define At to be
the event that At = {1, . . . , r}. Let Ct = {At = ∅}. Recall the definitions of tL and
tU from equations (5.4) and (5.5). We will show that

P

(
CtU ∩

(
tL⋂

j=1

Aj

))
→ 1(7.69)

from which the theorem follows. We analyze the algorithm as it progresses through
steps 1, . . . , t, . . . Tn. Fix c > 0. In what follows, we let ξn(c) denote a term that is
o(n−c); we will suppress the dependence on c and simply write ξn.

Step t = 1. Define the event

B1 = {|Zj | > λj for all j ≤ r} ∩ {|Zj | < λj for all j > r}.(7.70)

Thus, A1 = B1. We claim that

P(Bc
1) ≤ 2d

n
+ ξn.(7.71)

To show (7.71), we proceed as follows. First consider j > r . From Lemma 7.5,

P

(
max
j>r

|Zj | > λj

)
≤

d∑
j=r+1

P(|Zj | > λj) ≤ dξn = ξn.(7.72)
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Now consider j ≤ r . Note that μ2
j (h)/s2

j (h) > 8 logn and hence, from Lemma 7.5,

P(|Zj | < λj for some j ≤ r) ≤ O

(
1

n

)
+ ξn.(7.73)

This proves (7.71).
Step t = 2. Let h̃ = (h̃1, . . . , h̃d) be the random bandwidth at step t = 2. Let

h∗ = (βh0, . . . , βh0︸ ︷︷ ︸
r terms

, h0, . . . , h0︸ ︷︷ ︸
d−r terms

).(7.74)

Let B2 = {|Z1| > λ1, . . . , |Zr | > λr}. Then A2 = B1 ∩B2 and h̃ = h∗ on A2. Now,
P(Ac

2) ≤ P(Bc
1) + P(Bc

2) and

P(Bc
2) = P(Bc

2,A1) + P(Bc
2,Ac

1) ≤ P(Bc
2,A1) + P(Ac

1)(7.75)

= P(Bc
2,A1) + 1

n
+ ξn(7.76)

= P

(
min
j≤r

|Zj(h̃)| < λj ,A1

)
+ 1

n
+ ξn(7.77)

= P

(
min
j≤r

|Zj(h∗)| < λj ,A1

)
+ 1

n
+ ξn(7.78)

≤ P

(
min
j≤r

|Zj(h∗)| < λj

)
+ 1

n
+ ξn(7.79)

≤ 1

n
+ ξn +

(
1

n
+ ξn

)
(7.80)

where the last step follows from the same argument as in step 1. So,

P(Ac
2) ≤ P(Ac

1) + P(Bc
2) ≤ 2P(Ac

1) + 2

n
+ 2ξn.(7.81)

Step t for t ≤ tL. Let h̃ = (h̃1, . . . , h̃d) be the random bandwidth at step t . Let

h∗ = (βt−1h0, . . . , β
t−1h0︸ ︷︷ ︸

r terms

, h0, . . . , h0︸ ︷︷ ︸
d−r terms

).(7.82)

Let Bt = {|Z1| > λ1, . . . , |Zr | > λr}. Then At =⋂t
s=1 Bs and h̃ = h∗ on At . Now,

P(Ac
t ) ≤∑t

s=1 P(Bc
s ) and

P(Bc
t ) = P(Bc

t ,At−1) + P(Bc
t ,A

c
t−1)(7.83)

≤ P(Bc
t ,At−1) + P(Ac

t−1)(7.84)

= P(Bc
2,At−1) + 1

n
+ ξn(7.85)

= P

(
min
j≤r

|Zj(h̃)| < λj ,At−1

)
+ 1

n
+ ξn(7.86)
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= P

(
min
j≤r

|Zj(h∗)| < λj ,At−1

)
+ 1

n
+ ξn(7.87)

≤ P

(
min
j≤r

|Zj(h∗)| < λj

)
+ 1

n
+ ξn(7.88)

≤ 1

n
+ ξn + 1

n
+ ξn(7.89)

from Lemma 7.5 and the fact that μ2
j (h)/s2

j (h) > 8 logn for all t ≤ tU . Now,

P(Ac
t ) ≤ P(Ac

t−1) + P(Bc
j )

≤ P(Ac
t−1) +

(
P(Ac

t−1) + 1

n

)
(7.90)

≤ 2P(Ac
t−1) + 1

n

and so, by induction,

P(Ac
t ) ≤ 2t−1

n
+
(

1

n
+ ξn

) t−2∑
j=0

2j

(7.91)

≤ 2t

n
+ 2t ξn = o(1)

since 2t ξn(c) = o(1) for sufficiently large c, for all t ≤ tL.
Step t = tU . Fix 0 < a < 2. We use the same argument as in the last case except

that μ2
j (h)/s2

j (h) < a logn for t = tU . Let χ solve a = 4 − 2χ − 4
√

1 − χ . Then
0 < χ < 1 and

√
2 logn − √

a logn ≥ √
2(1 − χ) logn. By Lemma 7.5,

P(CtU ) ≤ P

(
max
j≤r

|Zj | > λj

)
≤ rP

(
N(0,1) >

√
2(1 − χ) logn

)+ ξn(7.92)

≤ r

n1−χ
+ ξn.

Summarizing,

1 − P

(
CtU ∩

(
tL⋂

s=1

As

))
= o(1)(7.93)

which proves the theorem. �

PROOF OF COROLLARY 5.2. First note that, for any deterministic bandwidths
h� satisfying equations (5.2) and (5.3), we have that the squared (conditional) bias
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is given by

Bias2(m̂h�) =
(∑

j≤r

Ajh
�
j

2

)2

+ oP (tr(H�))(7.94a)

= ∑
i,j≤r

AiAjh
�
i

2
h�

j
2 + oP (tr(H�))(7.94b)

= OP

(
n−4/(4+r)+ε)(7.94c)

by Theorem 5.1. Similarly, from Theorem 7.4 the (conditional) variance is

Var(m̂h�) = 1

n

(∏
i

1

h�
i

)
R(K)

f (x)
σ 2(1 + oP (1)

)
(7.95a)

= OP

(
n−1+r/(r+4)+ε)(7.95b)

= OP

(
n−4/(4+r)+ε),(7.95c)

where R(K) = ∫ K(u)2 du. Let h� denote the random bandwidths output from the
algorithm. There exists sets Vn such that P(V c

n ) = o(1) and on Vn, the bandwidths
satisfy equations (5.2) and (5.3). Let δn = n−(4/(4+r))+ε . It follows that

P
(|m̂h�(x) − m(x)| > δn

)
(7.96)

≤ P
(|m̂h�(x) − m(x)| > δn,Vn

)+ P(V c
n ) = o(1). �
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