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ENDOGENOUS POST-STRATIFICATION IN SURVEYS:
CLASSIFYING WITH A SAMPLE-FITTED MODEL

BY F. JAY BREIDT1 AND JEAN D. OPSOMER2

Colorado State University

Post-stratification is frequently used to improve the precision of survey
estimators when categorical auxiliary information is available from sources
outside the survey. In natural resource surveys, such information is often ob-
tained from remote sensing data, classified into categories and displayed as
pixel-based maps. These maps may be constructed based on classification
models fitted to the sample data. Post-stratification of the sample data based
on categories derived from the sample data (“endogenous post-stratification”)
violates the standard post-stratification assumptions that observations are
classified without error into post-strata, and post-stratum population counts
are known. Properties of the endogenous post-stratification estimator are de-
rived for the case of a sample-fitted generalized linear model, from which the
post-strata are constructed by dividing the range of the model predictions
into predetermined intervals. Design consistency of the endogenous post-
stratification estimator is established under mild conditions. Under a super-
population model, consistency and asymptotic normality of the endogenous
post-stratification estimator are established, showing that it has the same as-
ymptotic variance as the traditional post-stratified estimator with fixed strata.
Simulation experiments demonstrate that the practical effect of first fitting a
model to the survey data before post-stratifying is small, even for relatively
small sample sizes.

1. Introduction. Post-stratification (PS) provides a convenient and inexpen-
sive way to improve the precision of estimators in a survey, and is very widely
used. In traditional PS, survey observations are classified without error into two
or more categories, called post-strata, where the corresponding population counts
in those categories are known from some source outside the survey. In surveys of
human populations, post-strata are often demographic subgroups, with population
counts available from a census. In natural resource surveys, post-strata may be
landcover or -use classifications, with population counts obtained from remotely
sensed data.
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An important example of a natural resource survey is the Forest Inventory and
Analysis (FIA) program conducted by the U.S. Forest Service (see, e.g., Frayer and
Furnival [5] for a description). In FIA, data of interest are collected annually during
intensive field visits and are used to produce official estimates for a large number
of forest attributes. In the Interior West region of the United States, FIA estimates
are computed as PS estimators, with the strata defined by homogeneous landuse
and groundcover categories (e.g., nonforest, broadleaf forest, etc.). Population to-
tals and sample point classifications for those categories are obtained from maps,
which are maintained in a geographic information system (GIS). These maps are
derived from satellite imagery and other ancillary data layers.

Satellite imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+)
as well as from the Moderate Resolution Imaging Spectroradiometer (MODIS) is
an important source of remotely sensed data for mapping vegetation over large ge-
ographic extents. These data consist of collections of pixel-based maps of physical
measurements, such as reflectance values at different wavelengths, which cannot
immediately be converted into useable classifications. Instead, categories are ob-
tained by first “training” a classification algorithm on existing satellite imagery and
other ancillary digital information, and then predicting the categories of all pix-
els in the region using that algorithm. Because of the multidimensional and often
highly nonlinear nature of the relationships among the variables, the classification
algorithms in use today can be quite complex. Examples of such algorithms for
forest resources are neural nets and expert systems (Moisen and Frescino [7]). The
end result of the classification is a digital (raster) map showing the geographical
distribution of the classes over a region of interest. This map is often an important
“deliverable” for the organization producing it, and is used by scientists and land
managers for a variety of purposes.

Because of the large sample size, detailed nature and high quality of the FIA
data, it is attractive to use FIA data to train classification algorithms to produce
landcover maps. There are numerous local as well as nationwide mapping efforts
that use FIA data for this purpose. Some examples of national efforts include de-
velopment of the National Landcover Data (http://www.epa.gov/mrlc/nlcd.html),
Landfire (http://www.landfire.gov/), and FIA’s forest type mapping (Ruefenacht,
Moisen and Blackard [10]). Questions have been raised about the appropriate use
of these maps in FIA’s PS estimation process (Scott et al. [12]), because the post-
strata are delimited with error (since they are based on a model fit) and depend on
the sample observations themselves. This violates two fundamental assumptions
of traditional PS: the exact post-stratum counts for the population are unknown,
and the classification of the sample observations into the post-strata is imperfect.
Therefore, it is not clear whether the resulting estimator continues to be consistent
and whether the traditional variance estimator remains valid.

We explore the statistical properties of survey estimators that are post-stratified
based on a model fitted to the sample observations. To emphasize the relationship
between the survey data and the stratification, we will refer to such an estimator
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as an endogenous post-stratification estimator, or EPSE for short. The EPSE is
useful in practice whenever population information to construct traditional post-
strata is not available, but predictions from a sample-fitted classification model
can be generated for the entire population. We restrict our attention to classification
schemes based on parametrically specified generalized linear models (McCullagh
and Nelder [6]). Some of our results will be further restricted to the case of equal-
probability sampling, as is used in much of FIA.

An alternative to the EPSE approach is to construct a regression estimator, using
the available auxiliary variables as regressors. This can be done using linear mod-
els as in the generalized regression estimation (GREG) approach (Cassel, Särndal
and Wretman [3]), nonlinear models (Wu and Sitter [14]) or nonparametric mod-
els (Breidt and Opsomer [2] and Breidt, Claeskens and Opsomer [1]). Since these
models use the auxiliary variables directly, instead of relying only on a classifica-
tion based on these variables, a properly constructed regression estimator might be
more efficient than the EPSE and would have known design properties. However,
there are a number of reasons why the EPSE could still be preferable in practice.

First, suitable classification algorithms have already been developed (involving
extensive variable selection, model validation and calibration) and maps with well-
defined categories are being produced. These maps synthesize information from
many layers of geospatial data, so it is operationally efficient to use the generated
categories in other estimation problems, rather than building new regression mod-
els. Further, categories in the classification can often be readily interpreted (e.g.,
forest/nonforest), whereas the remote sensing variables (e.g., reflectance at a spe-
cific wavelength) are not, so that it is easier to explain the estimation procedure
and the resulting fits to diverse end users.

Second, both maps and survey estimates are typically generated by the same
organization, so it is clearly desirable to ensure that the survey estimates are cali-
brated to the map “control” totals. This is automatically achieved under the EPSE
approach, but not with a regression estimator.

Third, PS weights based on a modest number of classes may tend to be more
stable than the weights obtained from regression estimation, especially in cases
where many potentially correlated variables are used in the regression model. In
particular, PS weights are guaranteed to be nonnegative, while regression weights
are not. Negative weights are an especially serious consideration if survey data
are to be used in model fitting, with many statistical programs unable to properly
operate in the presence of negative weights.

Finally, the EPSE estimator is robust in the sense that it can compete with the re-
gression estimator when the regression model is correctly specified, and can dom-
inate the regression estimator when the regression model is misspecified.

The EPSE is defined in Section 2 and its properties are described in Section 3,
first under a general probability sampling design and then under a superpopulation
model. Section 4 describes simulation experiments performed to assess the practi-
cal consequences of endogenous PS in a design-based context, and closes with a
brief discussion. Proofs are provided in the Appendix.
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2. Notation and definitions.

2.1. Post-stratification. Consider a finite population UN = {1, . . . , i, . . . ,N}.
For each i ∈ UN , an auxiliary vector xi is observed. A probability sample s of
size n is drawn from UN according to a sampling design pN(·), where pN(s) is the
probability of drawing the sample s. Assume πiN = Pr{i ∈ s} = ∑

s:i∈s pN(s) > 0
for all i ∈ UN , and define πijN = Pr{i, j ∈ s} = ∑

s:i,j∈s pN(s) for all i, j ∈ UN .
For compactness of notation we will suppress the subscript N and write πi , πij

in what follows. Various study variables, generically denoted yi , are observed for
i ∈ s.

We now introduce some nonstandard notation for PS that will be useful in our
later discussion of endogenous PS. Using the {xi}i∈UN

and a known vector λ,
a scalar index {m(λ′xi )}i∈UN

is constructed and used to partition UN into H strata
according to predetermined stratum boundaries −∞ ≤ τ0 < τ1 < · · · < τH−1 <

τH ≤ ∞. Choice of these boundaries is discussed in Section 3.3 below.
For exponents � = 0,1,2 and stratum indices h = 1, . . . ,H , we define

ANh�(λ) = 1

N

∑
i∈UN

y�
i I{τh−1<m(λ′xi )≤τh}(1)

and

A∗
Nh�(λ) = 1

N

∑
i∈UN

y�
i

I{i∈s}
πi

I{τh−1<m(λ′xi )≤τh},(2)

where I{C} = 1 if the event C occurs, and zero otherwise. In this notation, stra-
tum h has population stratum proportion ANh0(λ), design-weighted sample post-
stratum proportion A∗

Nh0(λ), and design-weighted sample post-stratum y-mean
A∗

Nh1(λ)/A∗
Nh0(λ). The traditional design-weighted PS estimator (PSE) for the

population mean ȳN = N−1 ∑
i∈UN

yi is then

μ̂∗
y(λ) =

H∑
h=1

ANh0(λ)
A∗

Nh1(λ)

A∗
Nh0(λ)

(3)

= ∑
i∈s

{
H∑

h=1

ANh0(λ)
N−1π−1

i I{τh−1<m(λ′xi )≤τh}
A∗

Nh0(λ)

}
yi = ∑

i∈s

w∗
is(λ)yi,

where the sample-dependent weights {w∗
is(λ)}i∈s do not depend on {yi}, and so

can be used for any study variable.
For the important special case of equal-probability designs, in which πi =

nN−1, we write

Anh�(λ) = 1

n

∑
i∈s

y�
i I{τh−1<m(λ′xi )≤τh}.(4)
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In this case, the equal-probability PSE for the population mean ȳN is

μ̂y(λ) =
H∑

h=1

ANh0(λ)
Anh1(λ)

Anh0(λ)
= ∑

i∈s

wis(λ)yi,(5)

where the weights {wis(λ)}i∈s are obtained by substituting nN−1 for πi in (3).

2.2. Classification based on a generalized linear model. The notation intro-
duced above does not indicate how the function m(·) might be constructed, nor
how values for the parameter vector λ should be determined. One possibility is to
suppose that a particular study variable, zi , follows a generalized linear model

E(zi |xi ) = m(λ′xi ), Var(zi |xi ) = v(xi ),(6)

where the expectations are with respect to the model. [For concreteness, think
of zi as a forest/nonforest indicator, with logistic mean function m(λ′xi ) =
exp(λ′xi )/{1 + exp(λ′xi )}, and xi derived from satellite imagery.] We will refer
to zi as the PS variable.

If λ were known, we could use m(λ′xi ) as an index to form the PSE in (3)
for any study variable yi (even though the PS is based on a single PS variable zi ,
the resulting weights can be applied to any response variable yi ). If model (6) is
true, then m(λ′xi ) is a good predictor for zi . Hence, the estimator (3) applied to
the study variable zi will be more efficient than the Horvitz–Thompson estimator,
z̄π = N−1 ∑

i∈s π−1
i zi , which ignores the auxiliary variables xi . For other study

variables yi , the efficiency of (3) relative to ȳπ = N−1 ∑
i∈s π−1

i yi will depend on
the relationship between the PS variable zi and the yi .

2.3. Endogenous post-stratification. In endogenous PS, the vector λ is un-
known, so that estimator (3) is infeasible. Instead, λ is estimated from the sample
{(x′

i , zi) : i ∈ s} by λ̂ using, for instance, maximum likelihood estimation and for
any i ∈ UN , zi is predicted by ẑi = m(λ̂′xi ).

The endogenous post-stratification estimator (EPSE) for the population
mean ȳN is then defined as

μ̂∗
y(λ̂) =

H∑
h=1

ANh0(λ̂)
A∗

Nh1(λ̂)

A∗
Nh0(λ̂)

= ∑
i∈s

w∗
is(λ̂)yi.(7)

As with the PSE weights, the EPSE weights {w∗
is(λ̂)}i∈s as defined in (7) can be

applied to any study variable y. In the special case of equal-probability designs,
we write

μ̂y(λ̂) =
H∑

h=1

ANh0(λ̂)
Anh1(λ̂)

Anh0(λ̂)
= ∑

i∈s

wis(λ̂)yi.(8)
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Intuitively, it is reasonable to expect that if λ̂ is a “good” estimator for λ, then the
estimator (7) will behave like the estimator (3), at least asymptotically. We show
this equivalence in the sense of design consistency under mild design assumptions
in the next section. Such results do not readily yield rates of convergence, because
μ̂∗

y(λ) is not a differentiably smooth function of λ, so that traditional Taylor se-
ries approaches for the analysis of nonlinear survey estimators (e.g., Särndal et
al. [11], Chapter 5) cannot be applied. We therefore restrict our attention to the
equal-probability case and study the model-based properties of μ̂y(λ̂), by exploit-
ing the fact that the model expectations of the quantities in (1) and (4) are smooth
functions, even though the quantities themselves are not. In particular, we estab-
lish a central limit theorem and a consistent variance estimator for μ̂y(λ̂) under
an assumed superpopulation model. Section 4 provides simulation evidence that
these good model properties also carry over into good design properties.

3. Main results.

3.1. Design assumptions and design consistency. We assume the general
probability sampling design described in Section 2.1 and consider an asymptotic
framework in which N → ∞ while the number of strata, H , and their boundaries,
{τh}, remain fixed. Assume:

• D1. The covariates {xi} satisfy ‖xi‖ ≤ M < ∞. For λ 	= 0, the empirical dis-
tribution function GNλ(z) = N−1 ∑

i∈UN
I{x′

iλ≤z} converges uniformly in z to
a limit Gλ(z), limN→∞ supz |GNλ(z) − Gλ(z)| = 0, where the limit is almost
sure if the covariates are stochastic.

• D2. The link m(·) is a known, strictly monotone function, λ 	= 0 is an unknown
parameter vector, and m−1(τh) (h = 1,2, . . . ,H ) are continuity points of Gλ(z).
Further, Gλ(m

−1(τh)) − Gλ(m
−1(τh−1)) > 0 for h = 1,2, . . . ,H .

• D3. There is a sequence of estimators of λ, {λ̂}, with the property that for every
ε > 0, there exists δε ∈ (0,∞) such that Pr{‖λ̂ − λ‖ > δε} < ε for all N , where
the probability is with respect to the sampling design and the covariate model.

• D4. For all N , mini∈UN
πi ≥ π∗

N > 0 where Nπ∗
N → ∞, and there exists κ ≥ 0

such that N1/2+κ(π∗
N)2 → ∞ and

max
i∈UN

∑
j∈UN :j 	=i

�2
ij = O(N−2κ)

as N → ∞, where �ij = πij − πiπj .
• D5. The study variables {yi}i∈UN

satisfy lim supN→∞ N−1 ∑
i∈UN

y2
i < ∞.

REMARKS.

1. Note that no stochastic model is assumed for the {yi} in this design-based set-
ting. Randomness comes from the probability mechanism that selects s, and
possibly from the process generating xi .
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2. The uniform convergence in D1 is met by independent and identically dis-
tributed sequences (Glivenko–Cantelli lemma), stationary ergodic sequences
(Tucker [13]), certain deterministic sequences [e.g., polynomials of the form
x′
iλ = ∑p

j=0 λj (iN
−1)j ], and so forth.

3. D2 ensures that the post-strata are nonempty and can be unambiguously deter-
mined from the inverse link; D3 asserts that the parameters in the generalized
linear model can be estimated consistently.

4. The first part of D4 allows for sparse sampling in the sense that mini∈UN
πi → 0

is allowed as N → ∞. The second part of D4 allows for nontrivial dependen-
cies in the sampling. Sparser sampling is possible under weaker design de-
pendence. For example, under simple random sampling without replacement
maxi∈UN

∑
j∈UN :j 	=i �

2
ij = (N −1)−1(n/N)2(1−n/N)2 = O(N−1) so that D4

holds with κ = 1/2. On the other hand, consider single-stage cluster sampling
of m equally sized clusters from M clusters via simple random sampling with-
out replacement. All elements in each selected cluster are observed. Let c de-
note the cluster size, and assume it is fixed as cm = n → ∞ and cM = N → ∞.
Then

max
i∈UN

∑
j∈UN :j 	=i

�2
ij

= (c − 1)

(
m

M

(
1 − m

M

))2

+ (M − 1)c

(
− m

M(M − 1)

(
1 − m

M

))2

≤
{
(c − 1) + c

M − 1

}
= O(1),

so that D4 holds with κ = 0. Note that the corresponding design-covariance as-
sumptions A5 in Robinson and Särndal [9] and A6 in Breidt and Opsomer [2]
are not met in general for this design. The Horvitz–Thompson estimator is mean
square consistent under D4 and D5, a result of independent interest that is es-
tablished as a lemma in the Appendix.

RESULT 1. Assume D1–D5. Then the unequal-probability EPSE in (7) is de-
sign consistent in the sense that for all ε > 0,

Pr{|μ̂∗
y(λ̂) − ȳN | > ε} → 0 as N → ∞.

The proof is deferred to the Appendix.

3.2. Superpopulation model assumptions. To study further the properties of
EPSE, we restrict attention to equal-probability designs and introduce a superpop-
ulation model, which specifies the joint distribution of the random vector (x′

i , yi),
while the randomness of s is not explicitly considered. In what follows, all expecta-
tion, probability, and order in probability statements are with respect to this super-
population model. We continue to consider an asymptotic framework in which n,
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N → ∞ while the number of strata, H , and their boundaries, {τh}, remain fixed.
Our proofs rely on the approach of Randles [8]. Formally, we assume the follow-
ing:

• M1. The covariates {xi} are independent and identically distributed (i.i.d.) ran-
dom p-vectors with nondegenerate continuous joint probability density function
f and compact support.

• M2. The link m(·) is a known, strictly monotone function on its domain, λ 	= 0
is an unknown parameter vector and v(·) in (6) is a bounded, positive function.

• M3. There is a sequence of estimators of λ, {λ̂}, such that λ̂ − λ = Op(n−1/2).
• M4. The study variables yi |xi are conditionally independent random variables

with E(y4
i |xi ) ≤ K1 < ∞. Also,

αh�(λ) = E
(
y�
i I{τh−1<m(λ′xi )≤τh}

)
(9)

is continuous in λ for � = 0,1,2, and αh0(λ) > 0 for h = 1, . . . ,H . In particular,
the variables zi |xi are conditionally independent random variables with

E(zi |xi ) = m(λ′xi ), Var(zi |xi ) = v(xi ), E(z4
i |xi ) ≤ K1 < ∞.

• M5. The sample s is selected according to an equal-probability design of fixed
size n, with πi = nN−1 → π ∈ [0,1] as n,N → ∞.

While the conditional independence in M4 rules out certain clustered designs, it
seems quite plausible in large-scale natural resource surveys, where it is often the
case that sampling locations are widely dispersed and, after correcting for covari-
ates, no spatial dependence remains. (We investigate the effect of residual spatial
dependence via simulation in Section 4.) The equal-probability design assumed
in M5 is also somewhat limiting, but it does cover the systematic designs used by
the U.S. Forest Service in FIA. Further, our results extend trivially to the case of
a fixed number of design strata (determined prior to sampling, unlike post-strata)
with a large equal-probability sample within each stratum, and possibly unequal
probabilities across strata.

3.3. Central limit theorem. The proof of consistency and asymptotic normal-
ity for the EPSE in (8) with respect to the superpopulation model is deferred to the
Appendix.

RESULT 2. Under assumptions M1–M5,{
1

n

(
1 − n

N

)}−1/2(
μ̂y(λ̂) − ȳN

) L→ N (0,Vyλ),

where

Vyλ =
H∑

h=1

Pr{τh−1 < m(λ′xi ) ≤ τh}Var
(
yi |τh−1 < m(λ′xi ) ≤ τh

)
.
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REMARKS.

1. When H = 1, the asymptotic model variance of μ̂y(λ̂) − ȳN from Result 2 is

1

n

(
1 − n

N

)
Var(yi).(10)

This is the model variance of ȳπ − ȳN under any equal-probability design, or
the model-averaged design variance of the ordinary sample mean under simple
random sampling without replacement.

2. For general H , the asymptotic model variance in Result 2 is equal to that of the
traditional post-stratified estimator (i.e., in which λ is known). This variance
has an intuitive form: it sums stratum fraction times within-stratum variance of
y over the post-strata. Note that

H∑
h=1

αh0(λ)

(
αh1(λ)

αh0(λ)

)2

≥
(

H∑
h=1

αh0(λ)
αh1(λ)

αh0(λ)

)2

= (E[yi])2,

with equality only if the post-stratum means are all identical: αh1(λ)/αh0(λ) ≡
E(yi) for h = 1, . . . ,H . Thus, we have that

Var(yi) =
H∑

h=1

αh0(λ)
αh2(λ)

αh0(λ)
− (E[yi])2

≥
H∑

h=1

αh0(λ)

(
αh2(λ)

αh0(λ)
−

(
αh1(λ)

αh0(λ)

)2)

=
H∑

h=1

Pr{τh−1 < m(λ′xi ) ≤ τh}Var
(
yi |τh−1 < m(λ′xi ) ≤ τh

)
,

so that unless the post-stratum means of y are all identical, the EPSE will be as-
ymptotically more efficient than the Horvitz–Thompson estimator (the ordinary
sample mean in this case).

3. For the PS variable zi , it can be shown that

Vzλ = E[v(xi )] +
H∑

h=1

Pr{τh−1 < m(λ′xi ) ≤ τh}
(11)

× Var
(
m(λ′xi )|τh−1 < m(λ′xi ) ≤ τh

)

with v(xi ) = Var(zi |xi ). A lower bound for the asymptotic model variance of
μ̂z(λ̂) − z̄N is given by

1

n

(
1 − n

N

)
E[v(xi )],
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which is also the asymptotic model variance of the error of the nonlinear re-
gression estimator

η̂z(λ̂) = N−1
∑

i∈UN

m(λ̂′xi ) + n−1
∑
i∈s

(
zi − m(λ̂′xi )

)
.(12)

Hence, the quantity

1

n

(
1 − n

N

)(
Vzλ − E[v(xi )])

measures the asymptotic loss in efficiency of the EPSE relative to the regression
estimator η̂z(λ̂). The EPSE will be as asymptotically efficient as the regression
estimator (12), that is, Vzλ = E[v(xi )], if the m(λ′xi ) are constant within each
stratum. If this is not the case, the EPSE will fail to match the asymptotic ef-
ficiency of the regression estimator. It should be noted that although the EPSE
for the study variable z is therefore likely to be dominated by the regression
estimator (12), this is not necessarily the case if a different regression estimator
is used. For other study variables y, the EPSE may be better than a regression
estimator, depending on the relationship between y and x in the population. We
explore this further in the simulation study in the next section.

4. In some applications, it might be of interest to select the {τh} defining the cate-
gories to improve the efficiency of the EPSE for a “target” variable z. As noted
in Section 1, these class boundaries are often determined by the requirements
of the classification algorithm and the desired map output to which the EPSE
is calibrated, so that little choice might be available when they are applied in
the construction of the post-strata, except for possibly collapsing neighboring
post-strata in case of small sample sizes. If the operational environment allows
for the selection of stratum boundaries, then boundaries might be constructed
by applying the cumulative root-density method described in Cochran [4], Sec-
tion 5A.7, to the m(λ̂′xi ), though this method requires further study.

3.4. Variance estimation. We now consider variance estimation for the EPSE.
The standard post-stratified design variance estimator under simple random sam-
pling without replacement is

V̂ (μ̂y(λ)) = 1

n

(
1 − n

N

) H∑
h=1

(NhN
−1)2

nhn−1 s2
yh

(13)

= 1

n

(
1 − n

N

){
H∑

h=1

A2
Nh0(λ)

Anh0(λ)

Anh2(λ) − A2
nh1(λ)/Anh0(λ)

Anh0(λ) − n−1

}
,

where Nh and nh are population and sample counts within post-stratum h, and
s2
yh is the sample y-variance within post-stratum h (see, e.g., Särndal et al. [11],

equation (7.6.5)).
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The next result shows that the analogous estimator under endogenous PS con-
sistently estimates the asymptotic model variance of the EPSE. The proof is again
deferred to the Appendix.

RESULT 3. Let

V̂ (μ̂y(λ̂)) = 1

n

(
1 − n

N

){
H∑

h=1

A2
Nh0(λ̂)

Anh0(λ̂)

Anh2(λ̂) − A2
nh1(λ̂)/Anh0(λ̂)

Anh0(λ̂) − n−1

}
.(14)

Under assumptions M1–M5, as n,N → ∞
V̂ (μ̂y(λ̂))−1/2(

μ̂y(λ̂) − ȳN

) L→ N(0,1).

4. Simulations. The two main goals of the simulation are to assess the de-
sign efficiency of the EPSE and the design bias of the variance estimator (14);
we also look at confidence interval coverage. The simulations are performed in a
setting that mimics a real survey, in which characteristics of multiple study vari-
ables are estimated using one set of weights. The weights for estimation of a mean
are the Horvitz–Thompson estimator (HTE) weights {n−1}i∈s , the PSE weights
{wis(λ)}i∈s , the EPSE weights {wis(λ̂)}i∈s , or the simple linear regression (REG)
weights (e.g., (6.5.12) of Särndal et al. [11]). The HTE does not use auxiliary in-
formation; the PSE uses auxiliary information with a known model; and the EPSE
and REG use auxiliary information with fitted models.

We consider two different models for the PS variable, zi . First, we look at the
situation in which the true model in (6) for the PS variable is continuous and fol-
lows a ratio model (see, e.g., Särndal et al. [11], page 226), so that m(·) is the
identity function. Second, we consider the case where the PS variable is binary
and m(·) is the logistic link.

4.1. Ratio model post-stratification. We first describe the simulation setup for
the ratio model PS. We assume a population of size N = 1000 with eight survey
variables of interest. For the PS variable zi , we let E(zi |x) = m(λ′x) = 1 + 2(x −
0.5) and Var(zi |x) = v(x) = 2σ 2x, while for the remaining seven variables (yi),
we take their mean functions to be equal to gk ,

quadratic: g1(x) = 1 + 2(x − 0.5)2,

bump: g2(x) = 1 + 2(x − 0.5) + exp
(−200(x − 0.5)2)

,

jump: g3(x) = {1 + 2(x − 0.5)}I{x≤0.65} + 0.65I{x>0.65},
exponential: g4(x) = exp(−8x),

cycle 1: g5(x) = 2 + sin(2πx),

cycle 2: g6(x) = 2 + sin(8πx),

white noise: g7(x) = 8,
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and variance equal to σ 2, with x uniformly distributed on (0,1) and the errors for
all functions independent and normally distributed. The variance function for the
PS variable is chosen so that, averaging over the covariate x, we have E[v(x)] =
σ 2. Thus, the PS variable and the remaining seven study variables all have the
same variance, averaged over x. We considered two different values of σ : 0.25
and 0.50.

For each noise level, we fixed the population (i.e., simulated N values for each
of the eight variables of interest) and drew 1000 replicate samples of size n = 50
and n = 100, each via simple random sampling without replacement from this
fixed population. We constructed HTE and REG weights using standard methods.
We used the model for the PS variable for constructing the PSE weights, using
known parameter values, and the EPSE weights, using fitted parameter values. The
weights were then applied to the remaining seven study variables. Hence, the PS
model will only be correctly specified for the PS variable. The EPSE and PSE were
calculated using two strata with boundaries τ = (−∞,1.0,∞), using four strata
with boundaries τ = (−∞,0.5,1.0,1.5,∞), and using six strata with boundaries
τ = (−∞,0.5,0.75,1.0,1.25,1.5,∞).

Table 1 summarizes the design efficiency results as ratios of the MSE of the
HTE, PSE(H), or REG over the MSE of the EPSE(H), where H = 2,4 or 6
strata. Overall, the results show that the EPSE behaves as expected: it produces
a large improvement in efficiency relative to the HTE for the variable on which
the PS is based, as well as for most of the other variables that are correlated with
it. When the number of strata increases, the efficiency gains become more pro-
nounced, though EPSE begins to break down due to post-stratum sample sizes of
zero or 1 when the number of strata is large and the sample size is small. When the
relationship between the variables of interest and the auxiliary variable becomes
less strong (i.e., higher noise levels), the efficiency gains of EPSE decrease. EPSE
is typically as good as or better than REG for study variables on which the re-
gression model is badly misspecified, but loses out to REG when the true model
is linear or nearly so (“bump”). The “white noise” variable shows that, when a
variable is not related to the stratification variable, the efficiency is near that of the
HTE, but with decreasing efficiency as the number of strata increases (since the
strata are entirely unnecessary).

Table 1 also shows that the EPSE is essentially equivalent to the PSE in terms
of design efficiency, even for n = 50, implying that the effect of basing the PS on
a fitted model instead of on exogenous strata is negligible for moderate to large
sample sizes.

Next, we consider the variance estimator proposed in (14) by computing per-
centage relative biases (100% times the variance bias divided by the true design
variance) for the PSE variance estimator (13) and the EPSE variance estima-
tor (14). These results (not tabled) show that neither estimator is unbiased, and
both tend to show negative bias (147 of the 192 cases in Table 1). The bias of the
EPSE variance estimator tracks that of the PSE variance estimator closely for low
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TABLE 1
Ratio of MSE of Horvitz–Thompson (HTE), post-stratification on H strata [PSE(H)] and linear regression (REG)

estimators to MSE of endogenous post-stratification estimator on H strata [EPSE(H)]

Response EPSE(2) versus EPSE(4) versus EPSE(6) versus

Variable σ n HTE PSE(2) REG HTE PSE(4) REG HTE PSE(6) REG

PS 0.25 50 2.76 1.06 0.42 4.57 1.02 0.70 4.95 0.99 0.73
variable 0.25 100 2.46 1.01 0.41 4.36 1.01 0.72 4.75 1.01 0.78

0.50 50 1.78 1.04 0.74 2.14 1.01 0.87 2.17 1.01 0.86
0.50 100 1.65 1.04 0.74 2.01 1.02 0.90 2.00 1.01 0.90

quad 0.25 50 0.94 1.00 1.01 1.09 1.01 1.18 1.04 0.98 1.10
0.25 100 0.93 1.00 1.00 1.10 1.01 1.19 1.08 0.99 1.16
0.50 50 0.95 1.00 1.00 0.94 1.00 1.00 0.89 0.99 0.94
0.50 100 0.93 1.00 0.99 0.96 0.99 1.02 0.93 0.98 1.00

bump 0.25 50 2.17 0.98 0.70 3.13 0.97 1.01 4.29 0.99 1.35
0.25 100 2.16 0.98 0.69 3.21 0.97 1.02 4.20 0.98 1.33
0.50 50 1.55 0.97 0.83 1.84 0.99 0.98 2.06 1.00 1.10
0.50 100 1.57 0.98 0.84 1.86 0.99 1.01 2.09 1.00 1.13

jump 0.25 50 1.09 0.99 0.99 1.54 0.99 1.40 1.79 0.97 1.60
0.25 100 1.10 0.99 1.00 1.55 0.98 1.41 1.83 0.99 1.66
0.50 50 1.01 1.00 0.99 1.13 1.01 1.11 1.12 0.97 1.10
0.50 100 1.00 0.99 1.00 1.14 1.00 1.14 1.17 0.98 1.17

expon 0.25 50 1.12 1.01 0.88 1.26 1.01 1.00 1.19 0.99 0.94
0.25 100 1.08 1.00 0.85 1.31 1.00 1.04 1.29 0.99 1.02
0.50 50 1.02 1.00 0.96 1.01 1.01 0.95 0.94 0.99 0.90
0.50 100 0.98 1.01 0.94 1.03 0.99 0.98 1.01 0.98 0.96
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TABLE 1
(Continued)

Response EPSE(2) versus EPSE(4) versus EPSE(6) versus

Variable σ n HTE PSE(2) REG HTE PSE(4) REG HTE PSE(6) REG

cycle 1 0.25 50 3.59 1.02 1.67 3.57 1.04 1.66 4.84 1.00 2.09
0.25 100 3.77 1.00 1.65 3.73 1.00 1.64 4.82 1.01 2.11
0.50 50 2.11 0.98 1.28 2.14 1.04 1.30 2.33 0.99 1.35
0.50 100 2.23 1.01 1.28 2.23 1.02 1.29 2.43 1.00 1.40

cycle 4 0.25 50 1.05 1.00 0.98 1.00 1.00 0.93 1.40 0.95 1.28
0.25 100 1.07 1.00 0.97 1.05 1.01 0.95 1.59 0.98 1.45
0.50 50 1.02 1.01 0.98 0.97 1.00 0.93 1.12 0.89 1.06
0.50 100 1.06 1.01 0.98 1.04 1.02 0.96 1.26 0.89 1.16

white 0.25 50 0.96 1.00 1.00 0.91 1.00 0.94 0.86 0.98 0.89
noise 0.25 100 0.94 1.00 0.99 0.92 1.00 0.98 0.90 0.99 0.96

0.50 50 0.96 1.00 1.00 0.90 1.00 0.94 0.85 0.98 0.89
0.50 100 0.94 1.00 0.99 0.92 0.99 0.97 0.90 0.98 0.95

Numbers greater than 1 favor EPSE. Based on ratio model post-stratification in 1000 replications of simple random sampling from a fixed population of
size N = 1000. Replications in which at least one stratum had fewer than two samples are omitted from the summary: 55 reps for six strata at n = 50,
σ = 0.25; 58 reps for six strata at n = 50, σ = 0.5; and 3 reps for four strata at n = 50, σ = 0.5.



ENDOGENOUS POST-STRATIFICATION 417

noise, low number of strata and large sample size, but the tracking deteriorates as
noise increases, number of strata increases or sample size decreases.

Finally, we assess the quality of the normal approximation by constructing ap-
proximate 95% confidence intervals from the pivotal quantity in Result 3. These
confidence intervals, μ̂y(λ̂) ± 1.96{V̂ (μ̂y(λ̂))}1/2, attained empirical coverages
(not tabled) ranging from 92.1% to 95.8% for the 96 combinations of noise level,
sample size, number of strata and study variable. These empirical coverages track
closely the empirical coverages of confidence intervals constructed from the PSE.

We repeated the experiments with σ = 0.25, n = 50, and H = 2,4 or 6 strata
for the case with xi = i/(N + 1) (i = 1,2, . . . ,N ) and with the residuals for every
variable autocorrelated: corr(zi, zj ) = corr(yi, yj ) = 0.99|i−j |. This setting clearly
violates the conditional independence assumption of M4. The results (not tabled)
indicate that the EPSE remains essentially unbiased and its confidence intervals
continue to have close to nominal coverage (92.9%–95.6%). Efficiency compared
to HTE is even greater than in the conditionally independent case, because positive
autocorrelation is trend-like behavior that is captured to some extent by the post-
strata. The variance estimator tends to have less negative bias or more positive bias
than in the conditional independence case. Overall, these limited simulations sug-
gest that EPSE maintains its good behavior outside of the limited setting described
in the technical assumptions of Section 3.

4.2. Logistic model post-stratification. Since the theory of this paper covers
generalized linear models, the above simulation experiments were repeated after
replacing the ratio model for the PS variable by a logistic model, but keeping all
other models the same. In this case, the PS variable zi is now a Bernoulli vari-
able with expectation m(x) = exp(λ0 + λ1x)/(1 + exp(λ0 + λ1x)). The values for
(λ0, λ1) were chosen as (−10,20) for the “low noise” case (σ = 0.25 for the re-
maining variables) and as (−3,6) for the “high noise” case (σ = 0.50 for the other
variables). These levels will be denoted as the “steep” and the “flat” model. Two,
four and six equal-size strata partitioning [0,1] are considered for the PSE and
EPSE. All estimators remain as in Section 4.1.

Table 2 displays the relative efficiency for the logistic model simulations using
n = 200 (the logistic fits were problematic at smaller sample sizes). The findings
are very similar to those discussed for the ratio model. The EPSE continues to im-
prove substantially over the HTE for most variables, while not deviating substan-
tially from the PSE with known stratum classifications. Further, the EPSE contin-
ues to be competitive with the REG estimator. Efficiency tends to increase from
two to four strata, but level off from four to six strata.

Approximate 95% confidence intervals computed from the pivotal quantity in
Result 3 attained empirical coverages (not tabled) ranging from 93.7% to 96.3%
for the 48 combinations of model, number of strata and study variable in Table 2.
These empirical coverages track closely the empirical coverages of confidence in-
tervals constructed from the PSE, and are quite close to nominal in spite of finite-
sample bias in the variance estimator.
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TABLE 2
Ratio of MSE of Horvitz–Thompson (HTE), post-stratification on H strata [PSE(H)] and linear regression (REG) estimators to MSE of endogenous

post-stratification estimator on H strata [EPSE(H)]

EPSE(2) versus EPSE(4) versus EPSE(6) versus

Population σ HTE PSE(2) REG HTE PSE(4) REG HTE PSE(6) REG

PS steep 0.25 3.62 1.01 1.15 4.33 0.93 1.37 4.59 0.98 1.44
variable flat 0.50 1.42 1.02 0.88 1.52 1.00 0.95 1.51 0.98 0.94

quad steep 0.25 1.07 1.00 1.00 1.13 1.01 1.06 1.14 1.00 1.06
flat 0.50 1.08 1.00 1.00 1.12 1.01 1.04 1.10 0.99 1.02

bump steep 0.25 2.32 0.94 0.61 3.46 0.95 0.91 3.85 0.94 1.03
flat 0.50 1.73 0.96 0.77 2.22 1.00 0.99 2.49 0.99 1.11

jump steep 0.25 1.11 0.99 0.97 1.21 0.99 1.05 1.32 1.01 1.15
flat 0.50 1.05 0.99 0.98 1.25 0.97 1.16 1.29 1.04 1.20

expon steep 0.25 1.25 0.99 0.87 1.27 1.00 0.89 1.29 1.00 0.89
flat 0.50 1.14 1.00 0.96 1.18 1.00 0.99 1.17 1.00 0.98

cycle 1 steep 0.25 3.98 0.99 1.67 4.80 0.97 2.02 5.14 1.02 2.14
flat 0.50 2.39 0.97 1.29 2.47 0.98 1.34 2.74 1.01 1.48

cycle 4 steep 0.25 1.04 1.00 0.97 1.12 1.03 1.05 1.19 0.99 1.12
flat 0.50 1.04 1.00 0.97 1.04 0.99 0.98 1.18 0.92 1.11

white steep 0.25 1.06 1.00 1.00 1.04 1.01 0.98 1.04 1.00 0.97
noise flat 0.50 1.06 1.00 1.00 1.05 1.00 0.99 1.02 1.00 0.96

Numbers greater than 1 favor EPSE. Based on logistic model post-stratification in 1000 replications of simple random sampling of size n = 200 from a
fixed population of size N = 1000. Replications in which at least one stratum had fewer than two samples are omitted from the summary: 42 reps for six
strata and 2 reps for four strata on steep curve, σ = 0.25.
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Overall, these simulation experiments demonstrate that the practical effect of
first fitting a parametric model with a fixed number of parameters to the survey data
before post-stratifying is small, even for relatively small sample sizes. Given the
types of models actually being used for classification in forest inventory applica-
tions, it would be of interest to study the case of semiparametric and nonparametric
classification models, either analytically or via simulation, to assess the effect of a
large number of unknown parameters that grows with sample size.

APPENDIX

We begin with design results, in which all probability computations are with re-
spect to the sampling design and the covariate model, specified in D1. To establish
the design consistency of the EPSE, we begin with two lemmas.

LEMMA A.1. Under D4 and D5, the Horvitz–Thompson estimator

ȳπ = 1

N

∑
i∈UN

yiI{i∈s}
πi

is mean square consistent in the sense that

E[(ȳπ − ȳN )2] → 0 as N → ∞
and hence design-consistent in the sense that for all ε > 0,

Pr{|ȳπ − ȳN | > ε} → 0

as N → ∞.

PROOF. It suffices to show mean square consistency. Because the Horvitz–
Thompson estimator is unbiased,

E[(ȳπ − ȳN )2]
= N−2

∑
i,j∈UN

�ij

yiyj

πiπj

≤ 1

Nπ∗
N

∑
i∈UN

y2
i

N
+ 1

N2(π∗
N)2

( ∑
i,j∈UN :i 	=j

�2
ij

)1/2( ∑
i,j∈UN :i 	=j

y2
i y2

j

)1/2

≤ 1

Nπ∗
N

∑
i∈UN

y2
i

N

+ 1

N1/2+κ(π∗
N)2

(N maxi∈UN

∑
j∈UN :j 	=i �

2
ij

N1−2κ

)1/2
{( ∑

i∈UN

y2
i

N

)2}1/2

which converges to zero as N → ∞ under D4 and D5. �
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LEMMA A.2. Assume that D1–D5 hold and fix h ∈ {1,2, . . . ,H }. Define

Li(u) =
{

1, if m−1(τh−1) < x′
i (λ + u) ≤ m−1(τh),

0, otherwise,

and Li = Li(0). Define QN1(u) = N−1 ∑
i∈UN

(Li(u) − Li), QN2(u) = N−1 ×∑
i∈UN

I{i∈s}π−1
i (Li(u) − Li) and QN3(u) = N−1 ∑

i∈UN
yiI{i∈s}π−1

i (Li(u) −
Li). Then for � = 1,2,3 and for all ε > 0, Pr{|QN�(λ̂−λ)| > ε} → 0 as N → ∞.

PROOF. Consider QN3(u); the arguments are similar for QN1(u) and QN2(u).
Let ε, δ > 0 be given. Then

Pr{|QN3(λ̂ − λ)| > ε}
= Pr{|QN3(λ̂ − λ)| > ε,‖λ̂ − λ‖ > δ}

(15)
+ Pr{|QN3(λ̂ − λ)| > ε,‖λ̂ − λ‖ ≤ δ}

≤ Pr{‖λ̂ − λ‖ > δ} + Pr
{

sup
u:‖u‖≤δ

|QN3(u)| > ε

}
.

By D3, the first term converges to zero as N → ∞. Consider the second term:

Pr
{

sup
u:‖u‖≤δ

|QN3(u)| > ε

}
≤ E[supu:‖u‖≤δ |QN3(u)|]

ε
.(16)

Now, using the fact that |x′
iu| ≤ Mδ from D1,

|Li(u) − Li | = ∣∣−I{m−1(τh−1)<x′
iλ≤m−1(τh−1)−x′

iu} + I{m−1(τh−1)−x′
iu<x′

iλ≤m−1(τh−1)}
+ I{m−1(τh)<x′

iλ≤m−1(τh)−x′
iu} − I{m−1(τh)−x′

iu<x′
iλ≤m−1(τh)}

∣∣
≤ ∣∣I{m−1(τh−1)<x′

iλ≤m−1(τh−1)+Mδ} + I{m−1(τh−1)−Mδ<x′
iλ≤m−1(τh−1)}

+ I{m−1(τh)<x′
iλ≤m−1(τh)+Mδ} + I{m−1(τh)−Mδ<x′

iλ≤m−1(τh)}
∣∣

=: I1i + I2i + I3i + I4i ,

which does not depend on u. Hence

E
[

sup
u:‖u‖≤δ

|QN3(u)|
]

≤ E

[
sup

u:‖u‖≤δ

N−1
∑

i∈UN

|yi |I{i∈s}
πi

|Li(u) − Li |
]

≤ E

[
sup

u:‖u‖≤δ

N−1
∑

i∈UN

|yi |I{i∈s}
πi

(I1i + I2i + I3i + I4i )

]

= E

[
N−1

∑
i∈UN

|yi |I{i∈s}
πi

(I1i + I2i + I3i + I4i )

]
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= N−1
∑

i∈UN

|yi |(I1i + I2i + I3i + I4i )

≤
(

4N−1
∑

i∈UN

y2
i

)1/2(
N−1

4∑
j=1

∑
i∈UN

I 2
ji

)1/2

.

By D5, it suffices to show that the second term in this product converges to zero as
N → ∞. Now

N−1
∑

i∈UN

I 2
1i = N−1

∑
i∈UN

I1i

= GNλ
(
m−1(τh−1) + Mδ

) − GNλ(m
−1(τh−1))

= GNλ
(
m−1(τh−1) + Mδ

) − Gλ
(
m−1(τh−1) + Mδ

)
+ Gλ

(
m−1(τh−1) + Mδ

) − Gλ(m
−1(τh−1))

+ Gλ(m
−1(τh−1)) − GNλ(m

−1(τh−1))

≤ 2 sup
z

|GNλ(z) − Gλ(z)|

+ {
Gλ

(
m−1(τh−1) + Mδ

) − Gλ(m
−1(τh−1))

}
.

The sup term goes to zero as N → ∞ by D1, and the remaining term in curly
braces can be made arbitrarily small because δ > 0 was arbitrary and m−1(τh−1)

is a continuity point of Gλ. Similar arguments can be applied for I2i , I3i and I4i . It
therefore follows that Pr{supu:‖u‖≤δ |QN3(u)| > ε} → 0 as N → ∞, so the desired
result follows from (15). �

PROOF OF RESULT 1, DESIGN CONSISTENCY OF EPSE. Define

L̂h = {xi :m−1(τh−1) < x′
i λ̂ ≤ m−1(τh)}

and define Lh similarly, with λ̂ replaced by λ. For fixed h ∈ {1,2, . . . ,H }, define

Fh = Gλ(m
−1(τh)) − Gλ(m

−1(τh−1)), g(w1,w2) = w1

w2 + Fh

,

Ŵ1Nh = N−1
∑

i∈UN

I{xi∈L̂h}, W1Nh = N−1
∑

i∈UN

I{xi∈Lh},

Ŵ2Nh = N−1
∑

i∈UN

I{xi∈L̂h}I{i∈s}π−1
i − Fh, W2Nh = N−1

∑
i∈UN

I{xi∈Lh} − Fh,

Ŵ3Nh = N−1
∑

i∈UN

yiI{xi∈L̂h}I{i∈s}π−1
i , W3Nh = N−1

∑
i∈UN

yiI{xi∈Lh}.

Note that g(·) is continuous for w2 	= −Fh and that Ŵ1Nh and W1Nh are bounded
by 1. Choose δ ∈ (0,Fh), where Fh > 0 by D2. Then

Pr{|W2Nh| > δ} = Pr{|GNλ(m
−1(τh)) − GNλ(m

−1(τh−1)) − Fh| > δ},
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which goes to zero as N → ∞ by D1. Combining Lemma A.1 and Lemma A.2 we
have that for all δ > 0, Pr{|ŴkNh −WkNh| > δ} → 0 as N → ∞ for k = 1,2,3, so

Pr{|Ŵ2Nh| > δ} ≤ Pr{|Ŵ2Nh − W2Nh| > δ/2} + Pr{|W2Nh| > δ/2} → 0

as N → ∞. Now given any ε > 0,

Pr{|g(Ŵ1Nh, Ŵ2Nh)Ŵ3Nh − g(W1Nh,W2Nh)W3Nh| > ε}
≤ Pr{|Ŵ2Nh| > δ} + Pr{|W2Nh| > δ}

+ Pr{|g(Ŵ1Nh, Ŵ2Nh)Ŵ3Nh − g(W1Nh,W2Nh)W3Nh| > ε,

|Ŵ2Nh| ≤ δ, |W2Nh| ≤ δ}.
From above, the first and second probabilities go to zero as N → ∞, so consider
the third term. Write ĝ = g(Ŵ1Nh, Ŵ2Nh) and g = g(W1Nh,W2Nh) and note that

ĝŴ3Nh − gW3Nh = ĝ(Ŵ3Nh − W3Nh) + (ĝ − g)W3Nh,

so that the third term in the probability statement above is bounded by

Pr{|ĝ||Ŵ3Nh − W3Nh| > ε/2, |Ŵ2Nh| ≤ δ}
+ Pr{|ĝ − g||W3Nh| > ε/2, |Ŵ2Nh| ≤ δ, |W2Nh| ≤ δ}.

Now g(w1,w2) is uniformly continuous and bounded between zero and (Fh−δ)−1

on the set where |w2| ≤ δ < Fh, so the first term converges to zero as N → ∞
by Lemma A.2. For the second term, first note that |W3Nh| ≤ N−1 ∑

i∈UN
|yi | ≤

(N−1 ∑
i∈UN

y2
i )1/2, which is finite by D5. Then, by uniform continuity of g there

exists δε > 0 such that for all N ,

Pr{|g(Ŵ1Nh, Ŵ2Nh) − g(W1Nh,W2Nh)||W3Nh| > ε/2, |Ŵ2Nh| ≤ δ, |W2Nh| ≤ δ}
≤ Pr{‖(Ŵ1Nh, Ŵ2Nh) − (W1Nh,W2Nh)‖ > δε},

which converges to zero as N → ∞ by Lemma A.2. Since the above results hold
for each h ∈ {1,2, . . . ,H }, it follows that

Pr

{∣∣∣∣∣μ̂∗
y(λ̂) − N−1

∑
i∈UN

yi

∣∣∣∣∣ > ε

}

= Pr

{∣∣∣∣∣
H∑

h=1

(
Ŵ1NhŴ3Nh

Ŵ2Nh + Fh

− W1NhW3Nh

W2Nh + Fh

)∣∣∣∣∣ > ε

}
(17)

→ 0 as N → ∞,

and the result is proved. �

PROOF OF RESULT 2, CENTRAL LIMIT THEOREM FOR EPSE UNDER SUPER-
POPULATION MODEL. In what follows, the probability mechanism is the joint
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distribution for (x′
i , yi) as given in model assumptions M1, M2 and M4. In par-

ticular, all expectation, probability and order in probability statements are with
respect to this superpopulation model. Let K(λ) be a neighborhood of λ which is
bounded away from 0, and consider γ ∈ K(λ). For � ∈ {0,1,2}, both ANh�(γ ) and
Anh�(γ ) are U -statistics with kernel y�

i I{τh−1<m(γ ′xi )≤τh} and common expectation
αh�(γ ) given in (9). We will apply Theorem 2.8 of Randles [8] to derive asymptotic
approximations for ANh�(γ ) and Anh�(γ ) for γ ∈ K(λ), which requires checking
that Conditions 2.2 and 2.3 on page 465 of Randles [8] hold.

Condition 2.2 is immediate by M3. To verify Condition 2.3, we need to establish
that (2.4) and (2.5) on page 465 of Randles [8] hold. Let D(γ , d) ⊂ K(λ) be a
sphere of radius d centered at γ , and let θ ∈ D(γ , d). Then the supremum random
variable in (2.4) of Randles [8] is

sup
θ∈D(γ ,d)

∣∣y�
i I{τh−1<m(θ ′xi )≤τh} − y�

i I{τh−1<m(γ ′xi )≤τh}
∣∣

(18)
= |yi |� sup

θ∈D(γ ,d)

∣∣I{τh−1<m(θ ′xi )≤τh} − I{τh−1<m(γ ′xi )≤τh}
∣∣.

Since E(|yi |�|xi ) ≤ 1 + K
1/4
1 + K

1/2
1 + K1 =: K2 for � = 0,1,2 and 4 by hypoth-

esis, it suffices to look at the difference of the indicators in (18). Similarly to the
reasoning in the proof of Lemma A.2,∣∣I{τh−1<m(θ ′xi )≤τh} − I{τh−1<m(γ ′xi )≤τh}

∣∣
≤ I{θ ′xi<m−1(τh)<γ ′xi} + I{γ ′xi<m−1(τh−1)<θ ′xi}(19)

+ I{γ ′xi<m−1(τh)<θ ′xi} + I{θ ′xi<m−1(τh−1)<γ ′xi}.
We now bound this sum by maximizing the indicated events with respect
to θ , subject to the constraint that θ is in the closure of D(γ , d). Let θ inf =
arg infθ∈D(γ ,d) θ

′xi and θ sup = arg supθ∈D(γ ,d) θ
′xi . Then, θ inf and θ sup must oc-

cur on the boundary of the sphere D(γ , d), since any point on the interior of the
sphere has nonzero derivative for the linear function θ ′xi . Optimizing θ ′xi subject
to d2 = (γ −θ)′(γ −θ), we have that (θ inf, θ sup) = (γ −dxi/‖xi‖,γ +dxi/‖xi‖),
so that the sum of the indicators in (19) is bounded above by

I{γ ′xi−d‖xi‖≤m−1(τh)≤γ ′xi} + I{γ ′xi≤m−1(τh−1)≤γ ′xi+d‖xi‖}
(20)

+ I{γ ′xi≤m−1(τh)≤γ ′xi+d‖xi‖} + I{γ ′xi−d‖xi‖≤m−1(τh−1)≤γ ′xi}.
Consider the first of these four indicators. Define

Gγ (t) = Pr{γ ′xi ≤ t}

=
∫ t

−∞
1

|γ1|
{∫

· · ·
∫

f
(
(s − γ2x2 − · · · − γpxp)/γ,

x2, . . . , xp

)
dx2 · · · dxp

}
ds
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(assume without loss of generality that γ ∗
1 , the first element of γ , is not zero).

Since ‖xi‖ ≤ M < ∞ with probability 1,

E
(
I{γ ′xi−d‖xi‖≤m−1(τh)≤γ ′xi}

) ≤ E
(
I{γ ′xi−dM≤m−1(τh)≤γ ′xi}

)
= Gγ

(
m−1(τh) + dM

) − Gγ (m−1(τh))

≤ dK3

for some constant K3, using the mean value theorem and the continuity and com-
pact support of f . Arguing in this fashion for the remaining three indicators in (20)
establishes (2.4) of Randles [8].

Next,

lim
d→0

E
[

sup
θ∈D(γ ,d)

∣∣y�
i I{τh−1<m(θ ′xi )≤τh} − y�

i I{τh−1<m(γ ′xi )≤τh}
∣∣2]

= lim
d→0

E
[
y2�
i sup

θ∈D(γ ,d)

∣∣I{τh−1<m(θ ′xi )≤τh} − I{τh−1<m(γ ′xi )≤τh}
∣∣]

≤ lim
d→0

K2E
[
I{γ ′xi−d‖xi‖≤m−1(τh)≤γ ′xi} + I{γ ′xi≤m−1(τh−1)≤γ ′xi+d‖xi‖}

+ I{γ ′xi≤m−1(τh)≤γ ′xi+d‖xi‖} + I{γ ′xi−d‖xi‖≤m−1(τh−1)≤γ ′xi}
]

= 0

by the previous linear bound on the expectation, so that (2.5) of Randles [8] is
satisfied. It follows from Randles’ Theorem 2.8 that

ANh�(λ̂) = αh�(λ̂) + ANh�(λ) − αh�(λ) + op(N−1/2),(21)

Anh�(λ̂) = αh�(λ̂) + Anh�(λ) − αh�(λ) + op(n−1/2).(22)

Define ah = ANh0(λ)−Anh0(λ) and bh = ANh1(λ)−Anh1(λ). Straightforward
calculations show that

Cov(ah, ak) = 1

n

(
1 − n

N

)(
αh0(λ)I{h=k} − αh0(λ)αk0(λ)

)
,

Cov(ah, bk) = 1

n

(
1 − n

N

)(
αh1(λ)I{h=k} − αh0(λ)αk1(λ)

)
,

from which it follows that ah = Op(n−1/2) and bh = Op(n−1/2). Also note that
αh�(λ̂) − αh�(λ) = op(1) by M3 and M4, and that

ANh�(λ) − αh�(λ) = Op(N−1/2) and Anh�(λ) − αh�(λ) = Op(n−1/2)

by the central limit theorem.
Since ȳN = ∑H

h=1 ANh1(γ ) for any γ , we have that

μ̂y(λ̂) − ȳN =
H∑

h=1

{
ANh0(λ̂)Anh1(λ̂) − Anh0(λ̂)ANh1(λ̂)

Anh0(λ̂)

}
.(23)
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Substituting (21) and (22) in the numerator of the summand in (23), we apply the
order results above to obtain

ANh0(λ̂)Anh1(λ̂) − Anh0(λ̂)ANh1(λ̂)

= (
αh0(λ̂) − αh0(λ)

)(
Anh1(λ) − ANh1(λ)

)
− (

αh1(λ̂) − αh1(λ)
)(

Anh0(λ) − ANh0(λ)
)

+ ANh0(λ)Anh1(λ) − Anh0(λ)ANh1(λ) + op(n−1/2)

= ANh0(λ)Anh1(λ) − Anh0(λ)ANh1(λ) + op(n−1/2)
(24)

= (
ANh0(λ) − αh0(λ) + αh0(λ)

)(
Anh1(λ) − αh1(λ) + αh1(λ)

)
− (

Anh0(λ) − αh0(λ) + αh0(λ)
)

× (
ANh1(λ) − αh1(λ) + αh1(λ)

) + op(n−1/2)

= αh1(λ)
(
ANh0(λ) − Anh0(λ)

)
+ αh0(λ)

(
Anh1(λ) − ANh1(λ)

) + op(n−1/2),

where we have used the facts that Anhl(λ) and ANhl(λ) are Op(1) by the weak
law of large numbers.

From (22), the denominator of the summand in (23) is Anh0(λ̂) = αh0(λ) +
op(1), and so

1

Anh0(λ̂)
= 1

αh0(λ)
+ op(1)(25)

since αh0(λ) > 0 by M4.
Substituting (24) and (25) into (23), we have

μ̂y(λ̂) − ȳN =
H∑

h=1

{
αh1(λ)

αh0(λ)

(
ANh0(λ) − Anh0(λ)

) − (
ANh1(λ) − Anh1(λ)

)}
(26)

+ op(n−1/2),

so that the asymptotic distribution is the same as that obtained when λ is known.
It remains to derive this asymptotic distribution. Applying the central limit the-

orem to (26), we have that the limiting distribution of the EPSE error is nor-
mal with mean zero. Using earlier covariance computations, and the fact that∑H

h=1 bh = ȳN − ȳπ , it follows that the variance of the leading terms in (26) is
approximated by

Var
(
μ̂y(λ̂) − ȳN

)

 −1

n

(
1 − n

N

) H∑
h=1

α2
h1(λ)

αh0(λ)
+ 1

n

(
1 − n

N

)(
H∑

h=1

αh1(λ)

)2

(27)
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+ Var(ȳπ − ȳN )

= 1

n

(
1 − n

N

){
−

H∑
h=1

α2
h1(λ)

αh0(λ)
+ [E(yi)]2 + Var(yi)

}
.

Note that, by definition of expectation given an event,

αh1(λ)

αh0(λ)
= E

(
yi |τh−1 < m(λ′xi ) ≤ τh

)
and

E(y2
i ) =

H∑
h=1

αh0(λ)
{
Var

(
yi |τh−1 < m(λ′xi ) ≤ τh

)

+ [
E

(
yi |τh−1 < m(λ′xi ) ≤ τh

)]2}
from which the variance given in Result 2 immediately follows. �

PROOF OF RESULT 3, CONSISTENT ESTIMATION OF EPSE VARIANCE UN-
DER SUPERPOPULATION MODEL. Note that ANh�(λ)

p→ αh�(λ) and Anh�(λ)
p→

αh�(λ) as n,N → ∞ by the weak law of large numbers, and αh�(λ̂)
p→ αh�(λ) by

continuity of αh�(·) for � = 0,1,2. Using (21) and (22) of the Appendix, the term
in curly braces in (14) converges in probability to

H∑
h=1

αh0(λ)

{
αh2(λ)

αh0(λ)
−

(
αh1(λ)

αh0(λ)

)2}

from which the result follows by Slutsky’s theorem and Result 2. �
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