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VARIABLE SELECTION IN SEMIPARAMETRIC
REGRESSION MODELING

BY RUNZE LI1 AND HUA LIANG2

Pennsylvania State University and University of Rochester

In this paper, we are concerned with how to select significant variables
in semiparametric modeling. Variable selection for semiparametric regression
models consists of two components: model selection for nonparametric com-
ponents and selection of significant variables for the parametric portion. Thus,
semiparametric variable selection is much more challenging than parametric
variable selection (e.g., linear and generalized linear models) because tra-
ditional variable selection procedures including stepwise regression and the
best subset selection now require separate model selection for the nonpara-
metric components for each submodel. This leads to a very heavy computa-
tional burden. In this paper, we propose a class of variable selection proce-
dures for semiparametric regression models using nonconcave penalized like-
lihood. We establish the rate of convergence of the resulting estimate. With
proper choices of penalty functions and regularization parameters, we show
the asymptotic normality of the resulting estimate and further demonstrate
that the proposed procedures perform as well as an oracle procedure. A semi-
parametric generalized likelihood ratio test is proposed to select significant
variables in the nonparametric component. We investigate the asymptotic be-
havior of the proposed test and demonstrate that its limiting null distribution
follows a chi-square distribution which is independent of the nuisance para-
meters. Extensive Monte Carlo simulation studies are conducted to examine
the finite sample performance of the proposed variable selection procedures.

1. Introduction. Semiparametric regression models retain the virtues of both
parametric and nonparametric modeling. Härdle, Liang and Gao [13], Ruppert,
Wand and Carroll [21] and Yatchew [26] present diverse semiparametric regression
models along with their inference procedures and applications. The goal of this pa-
per is to develop effective model selection procedures for a class of semiparamet-
ric regression models. Let Y be a response variable and {U,X,Z} its associated
covariates. Further, let μ(u,x, z) = E(Y |U = u,X = x,Z = z). The generalized
varying-coefficient partially linear model (GVCPLM) assumes that

g{μ(u,x, z)} = xT α(u) + zT β,(1.1)
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where g(·) is a known link function, β is a vector of unknown regression coeffi-
cients and α(·) is a vector consisting of unspecified smooth regression coefficient
functions. Model (1.1) is a semiparametric model, zT β is referred to as the para-
metric component and xT α(u) as the nonparametric component as α(·) is non-
parametric. This semiparametric model retains the flexibility of a nonparametric
regression model and has the explanatory power of a generalized linear regression
model. Many existing semiparametric or nonparametric regression models are spe-
cial cases of model (1.1). For instance, partially linear models (see, e.g., Härdle,
Liang and Gao [13] and references therein), generalized partially linear models
(Severini and Staniswalis [23] and Hunsberger [15]), semivarying-coefficient mod-
els (Zhang, Lee and Song [27], Xia, Zhang and Tong [25] and Fan and Huang [8])
and varying coefficient models (Hastie and Tibshirani [14] and Cai, Fan and Li [4])
can be written in the form of (1.1). Thus, the newly proposed procedures provide
a general framework of model selection for these existing models.

Variable selection is fundamental in statistical modeling. In practice, a number
of variables are available for inclusion in an initial analysis, but many of them
may not be significant and should be excluded from the final model in order to
increase the accuracy of prediction. Variable selection for the GVCPLM is chal-
lenging in that it includes selection of significant variables in the nonparametric
component as well as identification of significant variables in the parametric com-
ponent. Traditional variable selection procedures such as stepwise regression and
the best subset variable selection for linear models may be extended to the GVC-
PLM, but this poses great challenges because for each submodel, it is necessary to
choose smoothing parameters for the nonparametric component. This will dramat-
ically increase the computational burden. In an attempt to simultaneously select
significant variables and estimate unknown regression coefficients, Fan and Li [9]
proposed a family of variable selection procedures for parametric models via non-
concave penalized likelihood. For linear regression models, this family includes
bridge regression (Frank and Friedman [12]) and LASSO (Tibshirani [24]). It has
been demonstrated that with proper choice of penalty function and regularization
parameters, the nonconcave penalized likelihood estimator performs as well as an
oracle estimator (Fan and Li [9]). This encourages us to adopt this methodology for
semiparametric regression models. In this paper, we propose a class of variable se-
lection procedures for the parametric component of the GVCPLM. We also study
the asymptotic properties of the resulting estimator. We illustrate how the rate of
convergence of the resulting estimate depends on the regularization parameters
and further establish the oracle properties of the resulting estimate. To select sig-
nificant variables in the nonparametric component of the GVCPLM, we extend
generalized likelihood ratio tests (GLRT, Fan, Zhang and Zhang [10]) from fully
nonparametric models to semiparametric models. We show the Wilks phenomenon
for model (1.1): the limiting null distribution of the proposed GLRT does not de-
pend on the unknown nuisance parameter and it follows a chi-square distribution
with diverging degrees of freedom. This allows us to easily obtain critical values
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for the GLRT using either the asymptotic chi-square distribution or a bootstrap
method.

The paper is organized as follows. In Section 2, we first propose a class of vari-
able selection procedures for the parametric component via the nonconcave penal-
ized likelihood approach and then study the sampling properties of the proposed
procedures. In Section 3, variable selection procedures are proposed for the non-
parametric component using GLRT. The limiting null distribution of the GLRT is
derived. Monte Carlo studies and an application involving real data are presented
in Section 4. Regularity conditions and technical proofs are presented in Section 5.

2. Selection of significant variables in the parametric component. Sup-
pose that {Ui,Xi ,Zi , Yi}, i = 1, . . . , n, constitute an independent and identically
distributed sample and that conditionally on {Ui,Xi ,Zi}, the conditional quasi-
likelihood of Yi is Q{μ(Ui,Xi ,Zi), Yi}, where the quasi-likelihood function is
defined by

Q(μ,y) =
∫ y

μ

s − y

V (s)
ds

for a specific variance function V (s). Throughout this paper, Xi is p-dimensional
Zi is d-dimensional and U is univariate. The methods can be extended for multi-
variate U in a similar way without any essential difficulty. However, the extension
may not be very useful in practice due to the “curse of dimensionality.”

2.1. Penalized likelihood. Denote by �(α,β) the quasi-likelihood of the col-
lected data {(Ui,Xi ,Zi , Yi), i = 1, . . . , n}. That is,

�(α,β) =
n∑

i=1

Q[g−1{XT
i α(Ui) + ZT

i β}, Yi].

Following Fan and Li [9], define the penalized quasi-likelihood as

L(α,β) = �(α,β) − n

d∑
j=1

pλj
(|βj |),(2.1)

where pλj
(·) is a prespecified penalty function with a regularization parameter λj ,

which can be chosen by a data-driven criterion such as cross-validation (CV) or
generalized cross-validation (GCV, Craven and Wahba [6]). Note that the penalty
functions and regularization parameters are not necessarily the same for all j . For
example, we wish to keep some important variables in the final model and therefore
do not want to penalize their coefficients.

Before we pursue this further, let us briefly discuss how to select the penalty
functions. Various penalty functions have been used in the literature on variable
selection for linear regression models. Let us take the penalty function to be the
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L0 penalty, namely, pλj
(|β|) = 0.5λ2

j I (|β| �= 0), where I (·) is the indicator func-

tion. Note that
∑d

j=1 I (|βj | �= 0) equals the number of nonzero regression coeffi-
cients in the model. Hence, many popular variable selection criteria such as AIC
(Akaike [1]), BIC (Schwarz [22]) and RIC (Foster and George [11]) can be derived
from a penalized least squares problem with the L0 penalty by choosing different
values of λj , even though these criteria were motivated by different principles.
Since the L0 penalty is discontinuous, it requires an exhaustive search of all pos-
sible subsets of predictors to find the solution. This approach is very expensive in
computational cost when the dimension d is large. Furthermore, the best subset
variable selection suffers from other drawbacks, the most severe of which is its
lack of stability, as analyzed, for instance, by Breiman [3].

To avoid the drawbacks of the best subset selection, that is, expensive compu-
tational cost and the lack of stability, Tibshirani [24] proposed the LASSO, which
can be viewed as the solution of the penalized least squares problem with the L1
penalty, defined by pλj

(|β|) = λj |β|. Frank and Friedman [12] considered the Lq

penalty, pλj
(|β|) = λj |β|q , 0 < q < 1, which yields a “bridge regression.” The

issue of the selection of the penalty function has been studied in depth by various
authors, for instance, Antoniadis and Fan [2]. Fan and Li [9] suggested using the
smoothly clipped absolute deviation (SCAD) penalty, defined by

p′
λj

(β) = λj

{
I (β ≤ λj ) + (aλj − β)+

(a − 1)λj

I (β > λj )

}
for some a > 2 and β > 0,

with pλj
(0) = 0. This penalty function involves two unknown parameters,

λj and a. Arguing from a Bayesian statistical point of view, Fan and Li [9] sug-
gested using a = 3.7. This value will be used in Section 4.

Since α(·) consists of nonparametric functions, (2.1) is not yet ready for opti-
mization. We must first use local likelihood techniques (Fan and Gijbels [7]) to
estimate α(·), then substitute the resulting estimate into (2.1) and finally maxi-
mize (2.1) with respect to β . We can thus obtain a penalized likelihood estimate
for β . With specific choices of penalty function, the resulting estimate of β will
contain some exact zero coefficients. This is equivalent to excluding the corre-
sponding variables from the final model. We thus achieve the objective of variable
selection.

Specifically, we linearly approximate αj (v) for v in a neighborhood of u by

αj (v) ≈ αj (u) + α′
j (u)(v − u) ≡ aj + bj (v − u).

Let a = (a1, . . . , ap)T and b = (b1, . . . , bp)T . The local likelihood method is to
maximize the local likelihood function

n∑
i=1

Q[g−1{aT Xi + bT Xi(Ui − u) + ZT
i β}, Yi]Kh(Ui − u)(2.2)
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with respect to a, b and β , where K(·) is a kernel function and Kh(t) =
h−1K(t/h) is a rescaling of K with bandwidth h. Let {ã, b̃, β̃} be the solution
of maximizing (2.2). Then

α̃(u) = ã.

As demonstrated in Lemma 2, α̃ is
√

nh-consistent, but its efficiency can be im-
proved by the estimator proposed in Section 3.1. As β was estimated locally, the re-
sulting estimate β̃ does not have root-n convergence rate. To improve efficiency, β
should be estimated using global likelihood.

Replacing α in (2.1) by its estimate, we obtain the penalized likelihood

LP (β) =
n∑

i=1

Q{g−1(XT
i α̃(Ui) + ZT

i β), Yi} − n

d∑
j=1

pλj
(|βj |).(2.3)

Maximizing LP (β) results in a penalized likelihood estimator β̂ . The proposed ap-
proach is in the same spirit as the one-step backfitting algorithm estimate, although
one may further employ the backfitting algorithm method with a full iteration or
profile likelihood approach to improve efficiency. The next theorem demonstrates
that β̂ performs as well as an oracle estimator in an asymptotic sense. Compared
with fully iterated backfitting algorithms and profile likelihood estimation, the
newly proposed method is much less computationally costly and is easily imple-
mented. For high-dimensional X- and Z-variables, the Hessian matrix of the local
likelihood function (2.2) may be nearly singular. To make the resulting estimate
stable, one may apply the idea of ridge regression to the local likelihood function.
See Cai, Fan and Li [4] for a detailed implementation of ridge regression to local
likelihood modeling.

2.2. Sampling properties. We next study the asymptotic properties of the
resulting penalized likelihood estimate. We first introduce some notation. Let
α0(·) and β0 denote the true values of α(·) and β , respectively. Furthermore, let
β0 = (β10, . . . , βd0)

T = (βT
10,β

T
20)

T . For ease of presentation and without loss of
generality, it is assumed that β10 consists of all nonzero components of β0 and that
β20 = 0. Let

an = max
1≤j≤d

{|p′
λj

(|βj0|)|, βj0 �= 0}(2.4)

and

bn = max
1≤j≤d

{|p′′
λj

(|βj0|)|, βj0 �= 0}.

THEOREM 1. Under the regularity conditions given in Section 5, if an → 0,
bn → 0, nh4 → 0 and nh2/log(1/h) → ∞ as n → ∞, then there exists a lo-
cal maximizer β̂ of LP (β) defined in (2.3) such that its rate of convergence is
OP (n−1/2 + an), where an is given in (2.4).
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We require further notation in order to present the oracle properties of the re-
sulting penalized likelihood estimate. Define

bn = {p′
λ1

(|β10|) sgn(β10), . . . , p
′
λs

(|βs0|) sgn(βs0)}T
and

�λ = diag{p′′
λ1

(|β10|), . . . , p′′
λs

(|βs0|)},
where s is the number of nonzero components of β0. Let μj = ∫

tjK(t) dt and
νj = ∫

tjK2(t) dt for j = 0,1,2. Define

ρl(t) = {dg−1(t)/dt}l
σ 2V {g−1(t)} for l = 1,2

and let q1(x, y) = ρ1(x){y − g−1(x)}. Let R = αT
0 (U)X + ZT

1 β10 and

�(u) = E
[
ρ2(R)

(
XXT XZT

ZXT ZZT

) ∣∣∣U = u
]
.(2.5)

Denote by κk the kth element of q1(R,Y )�−1(u)(XT
1 ,ZT

1 )T and define

�1(u) =
p∑

k=1

κkE[ρ2(R)XkZ1|U = u].

THEOREM 2. Suppose that the regularity conditions given in Section 5 hold
and that

lim inf
n→∞ lim inf

βj→0+ λ−1
jn p′

λjn
(|βj |) > 0.

If
√

nλjn → ∞, nh4 → 0 and nh2/log(1/h) → ∞ as n → ∞, then the root-

n consistent estimator β̂ in Theorem 1 must satisfy β̂2 = 0, and
√

n(B1 +
�λ){β̂1 − β10 + (B1 + �λ)

−1bn} D−→ N(0,�), where B1 = [ρ2(R)Z1ZT
1 ] and

� = var{q1(R,Y )Z1 − �1(U)}.

Theorem 2 indicates that undersmoothing is necessary in order for β̂ to have
root-n consistency and asymptotic normality. This is a standard result in general-
ized partially linear models; see Carroll et al. [5] for a detailed discussion. Thus,
special care is needed for bandwidth selection, as discussed in Section 3.1.

2.3. Issues arising in practical implementation. Many penalty functions
pλj

(|βj |), including the L1 penalty and the SCAD penalty, are irregular at the
origin and may not have a second derivative at some points. Direct implementa-
tion of the Newton–Raphson algorithm may be difficult. Following Fan and Li [9],
we locally approximate the penalty function by a quadratic function at every step
of the iteration, as follows. Given an initial value β(0) that is close to the maximizer
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of the penalized likelihood function, when β
(0)
j is not very close to 0, the penalty

pλj
(|βj |) can be locally approximated by the quadratic function as

[pλj
(|βj |)]′ = p′

λj
(|βj |) sgn(βj ) ≈ {

p′
λj

(∣∣β(0)
j

∣∣)/∣∣β(0)
j

∣∣}βj .

Otherwise, set β̂j = 0. In other words, for βj ≈ β
(0)
j , we have

pλj
(|βj |) ≈ pλj

(∣∣β(0)
j

∣∣) + 1
2

{
p′

λj

(∣∣β(0)
j

∣∣)/∣∣β(0)
j

∣∣}(β2
j − β

(0)2
j

)
.

For instance, this local quadratic approximation for the L1 penalty yields

|βj | ≈ 1

2

∣∣β(0)
j

∣∣ + 1

2

β2
j

|β(0)
j | for βj ≈ β

(0)
j .

With the aid of the local quadratic approximation, the Newton–Raphson algorithm
can be modified to search for the solution of the penalized likelihood. The conver-
gence of the modified Newton–Raphson algorithm for other statistical settings has
been studied by Hunter and Li [16].

Standard error formula for β̂ . The standard errors for estimated parameters
can be obtained directly because we are estimating parameters and selecting vari-
ables at the same time. Following the conventional technique in the likelihood
setting, the corresponding sandwich formula can be used as an estimator for the
covariance matrix of the estimates β̂ . Specifically, let

�′(β) = ∂�(α̃,β)

∂β
, �′′(β) = ∂2�(α̃,β)

∂β ∂βT

and

�λ(β) = diag
{
p′

λ1
(|β1|)

|β1| , . . . ,
p′

λd
(|βd |)

|βd |
}
.

The corresponding sandwich formula is then given by

ĉov(β̂) = {�′′(β̂) − n�λ(β̂)}−1ĉov{�′(β̂)}{�′′(β̂) − n�λ(β̂)}−1.

This formula can be shown to be a consistent estimator and will be shown to have
good accuracy for moderate sample sizes.

Choice of λj ’s. We suggest selecting the tuning parameters λj using data-
driven approaches. Similarly to Fan and Li [9], we will employ generalized cross-
validation (GCV) to select the λj ’s. In the last step of the Newton–Raphson itera-
tion, we may compute the number of effective parameters:

e(λ1, . . . , λd) = tr[{�′′(β̂) − n�λ(β̂)}−1�′′(β̂)].
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The GCV statistic is defined by

GCV(λ1, . . . , λd) =
∑n

i=1 D{Yi, g
−1(XT

i α̂(Ui) + ZT
i β̂(λ))}

n{1 − e(λ1, . . . , λd)/n}2 ,

where D{Y,μ} denotes the deviance of Y corresponding to the model fit with λ.
The minimization problem over a d-dimensional space is difficult. However, it is
expected that the magnitude of λj should be proportional to the standard error of
the unpenalized maximum pseudo-partial likelihood estimator of βj . In practice,
we suggest taking λj = λSE(β̂u

j ), where SE(β̂u
j ) is the estimated standard error

of β̂u
j , the unpenalized likelihood estimate. Such a choice of λj works well from

our simulation experience. The minimization problem will thus reduce to a one-
dimensional problem and the tuning parameter can be estimated by means of a
grid search.

3. Statistical inferences for nonparametric components. In this section, we
will propose an estimation procedure for α(·) and extend the generalized likelihood
ratio test from nonparametric models to model (1.1).

3.1. Estimation of nonparametric component. Replacing β in (2.2) by its es-
timate β̂ , we maximize the local likelihood function

n∑
i=1

Q[g−1{aT Xi + bT Xi(Ui − u) + ZT
i β̂}, Yi]Kh(Ui − u)(3.1)

with respect to a and b. Let {â, b̂} be the solution of maximizing (3.1) and let
α̂(u) = â. Similarly to Cai, Fan and Li [4], we can show that

(nh)1/2
{
α̂(u) − α0(u) − μ2

2
α′′

0(u)h2
}

D−→ N

{
0,

ν0

f (u)
�∗(u)

}
,

where �∗(u) = (E[ρ2{αT
0 (U)X + βT

0 Z}XXT |U = u])−1 and where f (u) is the
density of U . Thus, α̂(u) has conditional asymptotic bias 0.5h2μ2α

′′
0(u) + oP (h2)

and conditional asymptotic covariance (nh)−1ν0�∗(u)f −1(u) + oP ( 1
nh

). From
Lemma 2, the asymptotic bias of α̂ is the same as that of α̃, while the asymptotic
covariance of α̂ is smaller than that of α̃.

A theoretic optimal local bandwidth for estimating the elements of α(·) can be
obtained by minimizing the conditional mean squared error (MSE) given by

E{‖α̂(u) − α(u)‖2|Z,X} = 1

4
h4μ2

2‖α′′
0(u)‖2 + 1

nh

ν0 tr{�∗(u)}
f (u)

+ oP

(
h4 + 1

nh

)
,

where ‖ · ‖ is the Euclidean distance. Thus, the ideal choice of local bandwidth is

ĥopt =
{

ν0 tr{�∗(u)}
f (u)μ2

2‖α′′
0(u)‖2

}1/5

n−1/5.
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With expressions for the asymptotic bias and variance, we can also derive a theo-
retic or data-driven global bandwidth selector by utilizing the existing bandwidth
selection techniques for the canonical univariate nonparametric model, such as the
substitution method (see, e.g., Ruppert, Sheather and Wand [20]). For the sake of
brevity, we omit the details here.

As usual, the optimal bandwidth will be of order n−1/5. This does not satisfy
the condition in Theorems 1 and 2. A good bandwidth is generally generated by
ĥopt × n−2/15 = O(n−1/3).

In order for the resulting variable selection procedures to possess an oracle prop-
erty, the bandwidth must satisfy the conditions nh4 → 0 and nh2/(logn)2 → ∞.
The aforementioned order of bandwidth satisfies these requirements. This enables
us to easily choose a bandwidth either by data-driven procedures or by an asymp-
totic theory-based method.

3.2. Variable selection for the nonparametric component. After obtaining
nonparametric estimates for {α1(·), . . . , αp(·)}, it is of interest to select signifi-
cant X-variables. For linear regression models, one conducts an F -test at each
step of the traditional backward elimination or forward addition procedures. The
purpose of variable selection may be achieved by a sequence of F -tests. Follow-
ing the strategy of the traditional variable selection procedure, one may apply the
backward elimination procedure to select significant x-variables. In each step of
the backward elimination procedure, we essentially test the following hypothesis

H0 :αj1(u) = · · · = αjk
(u) = 0 versus H1 : not all αjl

(u) �= 0

for some {j1, . . . , jk}, a subset of {1, . . . , p}. The purpose of variable selection may
be achieved by a sequence of such tests. For ease of presentation, we here consider
the following hypothesis:

H0 :α1(u) = · · · = αp(u) = 0 versus H1 : not all αj (u) �= 0.(3.2)

The proposed idea is also applicable to more general cases.
Let α̂(u) and β̂ be the estimators of α(u) and β under the alternative hypothesis,

respectively, and let β̄ be the estimators of β under the null hypothesis. Define

R(H1) =
n∑

i=1

Q
{
g−1(

α̂T (Ui)XT
i + ZT

i β̂
)
, Yi

}
and

R(H0) =
n∑

i=1

Q{g−1(ZT
i β̄), Yi}.

Following Fan, Zhang and Zhang [10], we define a generalized quasi-likelihood
ratio test (GLRT) statistic

TGLR = rK{R(H1) − R(H0)},
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where

rK =
{
K(0) − 0.5

∫
K2(u) du

}{∫
{K(u) − 0.5K ∗ K(u)}du

}−1

.

THEOREM 3. Suppose that the regularity conditions given in Section 5 hold
and that nh8 → 0 and nh2/(logn)2 → ∞. Under H0 in (3.2), the test statistic
TGLR has an asymptotic χ2 distribution with dfn degrees of freedom, in the sense
of Fan, Zhang and Zhang [10], where dfn = rKp|�|{K(0) − 0.5

∫
K2(u) du}/h

and where |�| denotes the length of the support of U .

Theorem 3 reveals a new Wilks phenomenon for semiparametric inference and
extends the generalized likelihood ratio theory (Fan, Zhang and Zhang [10]) for
semiparametric modeling. We will also provide empirical justification for the null
distribution. Similarly to Cai, Fan and Li [4], the null distribution of TGLR can
be estimated using Monte Carlo simulation or a bootstrap procedure. This usually
provides a better estimate than the asymptotic null distribution since the degrees
of freedom tend to infinity and the results in Fan, Zhang and Zhang [10] only give
the main order of the degrees of freedom.

4. Simulation study and application. In this section, we conduct extensive
Monte Carlo simulations in order to examine the finite sample performance of the
proposed procedures.

The performance of the estimator α̂(·) will be assessed by using the square root
of average square errors (RASE)

RASE =
{
n−1

grid

ngrid∑
k=1

‖α̂(uk) − α(uk)‖2

}1/2

,(4.1)

where {uk, k = 1, . . . , ngrid} are the grid points at which the functions {α̂j (·)} are
evaluated. In our simulation, the Epanechnikov kernel K(u) = 0.75(1 − u2)+ and
ngrid = 200 are used.

In an earlier version of this paper (Li and Liang [17]), we assessed the perfor-
mance of the proposed estimation procedure for β without the task of variable
selection and concluded that the proposed estimation procedures performs well.
We have since further tested the accuracy of the proposed standard error formula
and found that it works fairly well. In this section, we focus on the performance
of the proposed variable selection procedures. The prediction error is defined as
the average error in the prediction of the dependent variable given the independent
variables for future cases that are not used in the construction of a prediction equa-
tion. Let {U∗,X∗,Z∗, Y ∗} be a new observation from the GVCPLM model (1.1).
The prediction error for model (1.1) is then given by

PE(α̂, β̂) = E{Y ∗ − μ̂(U∗,X∗,Z∗)}2,
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where the expectation is a conditional expectation given the data used in construct-
ing the prediction procedure. The prediction error can be decomposed as

PE(α̂, β̂) = E{Y ∗ − μ(U∗,X∗,Z∗)}2 + E{μ̂(U∗,X∗,Z∗) − μ(U∗,X∗,Z∗)}2.

The first component is the inherent prediction error due to noise. The second
component is due to the lack of fit with an underlying model. This component
is called the model error. Note that α̂, β̂ provide a consistent estimate and that
μ(U∗,X∗,Z∗) = g−1{Z∗T α(U∗) + Z∗T β}. By means of a Taylor expansion, we
have the approximation

μ̂(U∗,X∗,Z∗)
≈ μ(U∗,X∗,Z∗) + ġ−1{X∗T α(U∗) + Z∗T β}X∗T {α̂(U∗) − α(U∗)}

+ ġ−1{X∗T α(U∗) + Z∗T β}Z∗T (β̂ − β),

where ġ−1(t) = dg−1(t)/dt . Therefore, the model error can be approximated by

E[ġ−1{X∗T α(U∗) + Z∗T β}]2([X∗T {α̂(U∗) − α(U∗)}]2 + [Z∗T (β̂ − β)]2

+ [X∗T {α̂(U∗) − α(U∗)}] × [Z∗T (β̂ − β)]).
The first component is the inherent model error due to the lack of fit of the non-
parametric component α0(t), the second is due to the lack of fit of the parametric
component and the third is the cross product between the first two components.
Thus, we define generalized mean square error (GMSE) for the parametric com-
ponent as

GMSE(β̂) = E[Z∗T (β̂ − β)]2 = (β̂ − β)E(Z∗Z∗T )(β̂ − β)(4.2)

and use the GMSE to assess the performance of the newly proposed variable se-
lection procedures for the parametric component.

EXAMPLE 4.1. In this example, we consider a semivarying Poisson regres-
sion model. Given (U,X,Z), Y has a Poisson distribution with mean function
μ(U,X,Z) where

μ(U,X,Z) = exp{XT α(U) + ZT β}.
In our simulation, we take U ∼ U(0,1), X = (X1,X2)

T with X1 ≡ 1 and
X2 ∼ N(0,1), α1(u) = 5.5 + 0.1 exp(2u − 1) and α2(u) = 0.8u(1 − u). Fur-
thermore, β = [0.3,0.15,0,0,0.2,0,0,0,0,0]T and Z has a 10-dimensional nor-
mal distribution with zero mean and covariance matrix (σij )10×10 with σij =
0.5|i−j |. In our simulation, we take the sample size n = 200 and bandwidth
h = 0.125.
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Performance of procedures for β . Here, we compare the variable selection
procedures for Z. One may generalize the traditional subset selection criteria for
linear regression models to the GVCPLM by taking the penalty function in (2.1)
to be the L0 penalty. Specifically, pλj

(|β|) = 0.5λ2
j I (|β| �= 0). We will refer

to the AIC, BIC and RIC as the penalized likelihood with the L0 penalty with
λj = √

2/n,
√

log(n)/n and
√

2 log(d)/n, respectively. Since the L0 penalty is
discontinuous, we search over all possible subsets to find the correspond solutions.
Thus, these procedures will be referred to as best subset variable selection. We
compare the performance of the penalized likelihood with the L1 penalty and the
SCAD penalty with the best subset variable selection in terms of GMSE and model
complexity. Let us define relative GMSE to be the ratio of GMSE of a selected final
model to that of the full model. The median of relative GMSE over the 400 simu-
lations, along with the median of absolute deviation divided by a factor of 0.6745,
is displayed in the column of Table 1 labeled “RGMSE.” The average number of 0
coefficients is also given in Table 1, where the column labeled “C” gives the aver-
age number of the seven true zero coefficients, correctly set to zero and the column
labeled “I” gives the average number of the three true nonzeros incorrectly set to
zero. In Table 1, “Oracle” stands for the oracle estimate computed by using the
true model g{E(y|u,x, z)} = xT α(u)+β1z1 +β2z2 +β5z5. According to Table 1,
the performance of the SCAD is close to that of the oracle procedure in terms of
model error and model complexity, and it performs better than penalized likeli-
hood with the L1 and best subset variable selection using the AIC and RIC. The
performance of the SCAD is similar to that of best subset variable selection with
BIC. However, best subset variable selection demands much more computation.
To illustrate this, we compare the computing time for each procedure. Table 2 in-
cludes the average and standard deviation of computing times over 50 Monte Carlo
simulations for d = 8, 9 and 10. For d = 8 and 9, β1 = 0.3, β2 = 0.15, β5 = 0.2
and other components of β = 0; Z has multivariate normal distribution with zero
mean and the same covariance structure as that for d = 10; U , X and α(U) are the

TABLE 1
Comparisons of variable selection

Poisson with h = 0.125 Logistic with h = 0.3

RGMSE RGMSE
Penalty Median(MAD) C I Median(MAD) C I

SCAD 0.3253 (0.2429) 6.8350 0 0.5482 (0.3279) 6.7175 0
L1 0.8324 (0.1651) 4.9650 0 0.7247 (0.2024) 5.3625 0
AIC 0.7118 (0.2228) 5.6825 0 0.8353 (0.1467) 5.7225 0
BIC 0.3793 (0.2878) 6.7400 0 0.5852 (0.3146) 6.9100 0
RIC 0.4297 (0.2898) 6.6475 0 0.6665 (0.2719) 6.7100 0
Oracle 0.2750 (0.1983) 7 0 0.5395 (0.3300) 7 0
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TABLE 2
Computing times

Penalty d = 8 d = 9 d = 10

Poisson SCAD 0.0485 (0.0145) 0.0584 (0.0155) 0.0471 (0.0132)
L1 0.0613 (0.0145) 0.0720 (0.0217) 0.0694 (0.0188)

BIC 0.8255 (0.1340) 2.1558 (0.6836) 4.6433 (1.3448)
Logistic SCAD 2.7709 (0.1606) 2.8166 (0.1595) 2.8337 (0.1449)

L1 8.1546 (0.8931) 7.9843 (0.9196) 8.1952 (0.9491)
BIC 61.5723 (1.4404) 131.8402 (2.6790) 280.0237 (6.6325)

same as those for d = 10. We include only the computing time for BIC in Table 2.
Computing time for AIC and RIC is almost identical to that for BIC. It is clear
from Table 2 that BIC needs much more computing time than the SCAD and L1
and that it exponentially increases as d increases.

Performance of procedures for α(u). It is of interest to assess the impact of
estimation of β on the estimation of α(·). To this end, we consider two scenarios:
one is to estimate α(·) using the proposed backfitting algorithm, and the other is
to estimate α(·) with the true value of β . The plot of one RASE versus the other
is depicted in Figure 1(a), from which it can be seen that the estimate α̂ using
the proposed backfitting algorithm performs as well as if we knew the true value
of β . This is consistent with our theoretic analysis because β̂ is root-n consistent
and this convergence rate is faster than the convergence rate of a nonparametric
estimate.

We now assess the performance of the test procedures proposed in Section 3.
Here, we consider the null hypothesis

H0 :α2(u) = 0 versus H1 :α2(u) �= 0.

We first examine whether the finite sample null distribution of the proposed GLRT
is close to a chi-square distribution. To this end, we conduct 1000 bootstraps to ob-
tain the null distribution of the proposed GLRT. The kernel density estimate of the
null distribution is depicted in Figure 1(c), in which the solid line corresponds to
the estimated density function and the dotted line to a density of the χ2-distribution
with degrees of freedom approximately equaling the sample mean of the bootstrap
sample. From Figure 1(c), the finite sample null distribution is quite close to a
chi-square distribution.

We next examine the Type I error rate and power of the proposed GLRT. The
power functions are evaluated under a sequence of alternative models indexed by δ:

H1 :α2(u) = δ × 0.8u(1 − u).

Figure 1(e) depicts four power functions based on 400 simulations at four differ-
ent significance levels: 0.25, 0.1, 0.05 and 0.01. When δ = 0, the special alternative
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FIG. 1. Plots for Examples 4.1 (left panel) and 4.2 (right panel). In (a) and (b), RASE0 stands
for the RASE of α̂(u) with the true β and RASE1 stands for the RASE of α̂(u) using the backfitting
algorithm. In (c) and (d), the solid lines correspond to the estimated null density and the dotted lines
to the density of the χ2-distribution with dfn being the mean of the bootstrap sample. (e) and (f) are
power functions of the GLRT at levels 0.25, 0.10, 0.05 and 0.01.
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collapses into the null hypothesis. The powers at δ = 0 for these four significance
levels are 0.2250, 0.0875, 0.05 and 0.0125. This shows that the bootstrap method
gives a correct Type I error rates. The power functions increase rapidly as δ in-
creases. This shows that the proposed GLRT works well.

EXAMPLE 4.2. In this example, we consider a semivarying coefficient logistic
regression model. Given (U,X,Z), Y has a Bernoulli distribution with success
probability p(U,X,Z), where

p(U,X,Z) = exp{XT α(U) + ZT β}/[1 + exp{XT α(U) + ZT β}].
In our simulation, U,X,Z are the same as those in Example 4.1, but the coefficient
functions are taken to be

α1(u) = exp(2u − 1), α2(u) = 2 sin2(2πu)

and β = [3,1.5,0,0,2,0,0,0,0,0]T . We conduct 400 simulations and in each
simulation, the sample size n is set at 1000 and the bandwidth at h = 0.3.

Performance of procedures for β . We investigate the performance of the pro-
posed variable selection procedures. Simulation results are summarized in the
rightmost column of Table 1, from which we can see that the SCAD performs
the best and that its performance is very close to that of the oracle procedure. We
employ the same strategy as in Example 4.1 to compare computing times of each
variable selection procedure. The mean and standard deviation of computing time
are given in the bottom row of Table 2, from which it can be seen that the comput-
ing time for the best subset variable selection procedure increases exponentially
as the dimension of β increases, while this is not the case for penalized likelihood
with the SCAD penalty and the L1 penalty.

Performance of procedures for α(u). We employ RASE to assess the perfor-
mance of α̂(u). Figure 1(b) plots the RASE of α̂(·) using the proposed backfitting
algorithm against that of α̂(·) using the true value of β . The performance of the
backfitting algorithm is quite close to that using the true value of β .

We next examine the performance of the proposed GLRT for logistic regression.
Here, we consider the null hypothesis

H0 :α2(u) = 0 versus H1 :α2(u) �= 0.

The estimated density of null distribution is depicted in Figure 1(d), from which
we can see that it is close to a χ2-distribution. The power functions are evaluated
under a sequence of alternative models indexed by δ:

H1 :α2(u) = δ × 2 sin2(2πu).

The power functions are depicted in Figure 1(d), from which it can be seen that
the power functions increase rapidly as δ increases.
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EXAMPLE 4.3. We now apply the methodology proposed in this paper to the
analysis of a data set compiled by the General Hospital Burn Center at the Univer-
sity of Southern California. The binary response variable Y is 1 for those victims
who survived their burns and 0 otherwise, the variable U in this application rep-
resents age and fourteen other covariates were considered. We first employ a gen-
eralized varying-coefficient model (Cai, Fan and Li [4]) to fit the data by allowing
the coefficients of all fourteen covariates to be age-dependent. Based on the result-
ing estimates and standard errors, we consider a generalized varying-coefficient
partially linear model for binary response,

logit{E(Y |U = u,X = x,Z = z)} = xT α(u) + zT β,(4.3)

where X1 ≡ 1 and α1(u) is the intercept function. Other covariates are as fol-
lows. X2 stands for log(burn area + 1), X3 for prior respiratory disease (coded
by 0 for none and 1 for yes), Z1 for gender (coded by 0 for male and 1 for fe-
male), Z2 for days injured prior to admission date (coded by 0 for one or more
days and 1 otherwise), Z3 for airway edema (coded by 0 for not present and 1 for
present), Z4 for sootiness (coded by 1 for yes and 0 for no), Z5 for partial pressure
of oxygen, Z6 for partial pressure of carbon dioxide, Z7 for pH (acidity) reading,
Z8 for percentage of CbHg, Z9 for oxygen supply (coded by 0 for normal and 1
for abnormal), Z10 for carbon dioxide status (coded by 0 for normal and 1 for ab-
normal), Z11 for acid status coded by (0 for normal and 1 for abnormal) and Z12
for hemo status (coded by 0 for normal and 1 for abnormal).

In this demonstration, we are interested in studying how the included covariates
affect survival probabilities for victims in different age groups. We first employ
a multifold cross-validation method to select a bandwidth. We partition the data
into K groups. For each j , k = 1, . . . ,K , we fit the data to model (4.3), excluding
data in the kth group, denoted by Dk . The deviance is computed. This leads to a
cross-validation criterion,

CV (h) =
K∑

k=1

∑
i∈Dk

D{yi, μ̂−k(ui,xi , zi)},

where D(y, μ̂) is the deviance of the Bernoulli distribution, μ̂−k(ui,xi , zi) is the
fitted value of Yi , that is, logit−1{xT

i α̂−k(ui) + zT
i β̂−k}, and α̂−k(·) and β̂−k are

estimated without including data from Dk . In our implementation, we set K = 10.
Figure 2(a) depicts the plot of cross-validation scores over the bandwidth. The se-
lected bandwidth is 48.4437. With the selected bandwidth, the resulting estimate
of α(u) is depicted in Figures 2(b), (c) and (d). From the plot of α̂3(u) in Fig-
ure 2(d), we see that the 95% pointwise confidence interval almost covers zero.
Thus, it is of interest to test whether or not X3 is significant. To this end, we
employ the semiparametric generalized likelihood ratio test procedure for the fol-
lowing hypothesis:

H0 :α3(u) = 0 versus H1 :α3(u) �= 0.
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FIG. 2. Plots for Example 4.3.

The resulting generalized likelihood ratio test for this problem is 15.7019, with
a P value of 0.015, based on 1,000 bootstrap samples. Thus, the covariate prior
respiratory disease is significant at level 0.05. The result also implies that the gen-
eralized likelihood ratio test is quite powerful as the resulting estimate of α3(u)

only slightly deviates from 0.
We next select significant z-variables. We apply the SCAD procedure proposed

in Section 2 to the data. The tuning parameter λ is chosen by minimizing the
GCV scores. The selected λ equals 0.4226. With this selected tuning parameter,
the SCAD procedure yields a model with only three z-variables: Z3, Z5 and Z7.
Their estimates and standard errors are −1.9388(0.4603), −0.0035(0.0054) and
−0.0007(0.0006), respectively. As a result, we recommend the following model:

Ŷ = α̂1(U) + α̂2(U)X2 + α̂3(U)X3 − 1.9388Z3 − 0.0035Z5 − 0.0007Z7,

where the α̂(U)’s and their 95% confidence intervals are plotted in Figure 2.

5. Proofs. For simplicity of notation, in this section, we absorb σ 2 into V (·),
so that the variance of Y given (U,X,Z) is V {μ(U,X,Z)}. Define q�(x, y) =
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(∂�/∂x�)Q{g−1(x), y} for � = 1,2,3. Then

q1(x, y) = {y − g−1(x)}ρ1(x),
(5.1)

q2(x, y) = {y − g−1(x)}ρ′
1(x) − ρ2(x),

where ρ�(t) = {dg−1(t)
dt

}�/V {g−1(t)} was introduced in Section 2. In the following
regularity conditions, u is a generic argument for Theorem 2 and the condition
must hold uniformly in u for Theorems 1–3.

Regularity conditions:

(i) The function q2(x, y) < 0 for x ∈ R and y in the range of the response
variable.

(ii) The random variable U has bounded support �. The elements of the func-
tion α′′

0(·) are continuous in u ∈ �.
(iii) The density function f (u) of U has a continuous second derivative.
(iv) The functions V ′′(·) and g′′′(·) are continuous.
(v) With R = αT

0 (U)X + ZT β0, E{q2
1 (R,Y )|U = u}, E{q2

1 (R,Y )Z|U =
u} and E{q2

1 (R,Y )ZZT |U = u} are twice differentiable in u ∈ �. Moreover,
E{q2

2 (R,Y )} < ∞ and E{q2+δ
1 (R,Y )} < ∞ for some δ > 2.

(vi) The kernel K is a symmetric density function with bounded support.
(vii) The random vector Z is assumed to have bounded support.

Condition (i) is imposed so that the local likelihood is concave in the parameters,
which ensures the uniqueness of the solution. Conditions (vi) and (vii) are imposed
just to simplify the proofs; they can be weakened significantly at the expense of
lengthy proofs. In our proofs, we will repeatedly use the following lemma, a direct
result of Mack and Silverman [18].

LEMMA 1. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors, where the
Yi’s are scalar random variables. Assume further that E|Y |r < ∞ and that
supx

∫ |y|rf (x, y) dy < ∞, where f denotes the joint density of (X, Y ). Let K

be a bounded positive function with bounded support, satisfying a Lipschitz condi-
tion. Then

sup
x∈D

∣∣∣∣∣n−1
n∑

i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}
∣∣∣∣∣ = OP

[{
nh

log(1/h)

}−1/2]
,

provided that n2ε−1h → ∞ for some ε < 1 − r−1.

To establish asymptotic properties of β̂ , we first study the asymptotic behav-
iors of ã, b̃ and β̃ . Let us introduce some notation. Let ᾱi = ᾱi(u) = XT α0(u) +
ZT

i β0 + (Ui − u)XT
i α′

0(u). Write X∗
i = (XT

i , (Ui − u)XT
i /h,ZT

i )T ,

A(X,Z) =
⎛⎝ XXT 0T XZT

0 μuXXT 0
ZXT 0 ZZT

⎞⎠
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and

B(X,Z) =
⎛⎝ν0XXT 0 ν0XZT

0 ν2XXT 0
ν0ZXT 0 ν0ZZT

⎞⎠ .

Denote the local likelihood estimate in (2.2) by ã, b̃ and β̃ and let

β̂
∗ = √

nh
{
(ã − α0(u))T , h

(
b̃ − α′

0(u)
)T

, (β̃ − β0)
T }T

.

We then have the following asymptotic representation of β̂
∗
.

LEMMA 2. Under the regularity conditions given in Section 5, if h → 0 and
nh → ∞ as n → ∞, then β̂

∗ = A−1Wn + OP {h2 + cn log1/2(1/h)} holds uni-
formly in u ∈ �, the support of U , where

Wn = √
h/n

n∑
i=1

q1(ᾱi, Yi)X∗
i Kh(Ui − u)

and

A = f (u)E[ρ2(α
T
0 (U)X + ZT β0)A(X,Z)|U = u].

By some direct calculation, we then have the following mean and variance
of Wn:

EWn = √
nh

μu

2
α′′

0
T
(u)h2f (u)E[ρ2{αT

0 (U)X + ZT β0}(XT ,0,ZT )T X|U = u]
+ o(c−1

n h2)

and

var(Wn) = f (u)E[ρ2{αT
0 (U)X + ZT β0}B(X,Z)|U = u] + o(1).

Since Wn is a sum of independent and identically distributed random vectors, the
asymptotic normality of ã, b̃ and β̃ can be established by using the central limit
theorem and the Slutsky theorem. The next two theorems show that the estimate β̃
can be improved by maximizing the penalized likelihood (2.3).

PROOF OF LEMMA 2. Throughout this proof, terms of the form Ĝ(u) =
OP (an) always stand for supu∈� |Ĝ(u)| = OP (an). Let cn = (nh)−1/2. If (ã, b̃,

β̃)T maximizes (2.2), then β̂
∗

maximizes

�n(β
∗) = h

n∑
i=1

[Q{g−1(cnβ
∗T X∗

i + ᾱi), Yi} − Q{g−1(ᾱi), Yi}]Kh(Ui − u)

with respect to β∗. The concavity of the function �n(β
∗) is ensured by condi-

tion (i). By a Taylor expansion of the function Q{g−1(·), Yi}, we obtain that

�n(β
∗) = WT

n β∗ + 1
2β∗T Anβ

∗{1 + oP (1)},(5.2)
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where An = hc2
n

∑n
i=1 q2(ᾱi, Yi)X∗

i X∗T
i Kh(Ui − u). Furthermore, it can be shown

that

An = −A + oP (1).(5.3)

Therefore, by (5.2),

�n(β
∗) = WT

n β∗ − 1
2β∗T Aβ∗ + oP (1).(5.4)

Note that each element in An is a sum of i.i.d. random variables of kernel
form and hence, by Lemma 1, converges uniformly to its corresponding element
in A. Consequently, expression (5.4) holds uniformly in u ∈ �. By the Convex-
ity Lemma (Pollard [19]), it also holds uniformly in β∗ ∈ C and u ∈ � for any
compact set C. Lemma A.1 of Carroll et al. [5] then yields

sup
u∈�

|β̂∗ − A−1Wn| P−→ 0.(5.5)

Furthermore, from the definition of β̂
∗
, we have that

∂

∂β∗ �n(β
∗)

∣∣∣∣
β∗=β̂

∗ = cnh

n∑
i=1

q1(ᾱi + cnβ̂
∗T

X∗
i , Yi)X∗

i X∗T
i Kh(Ui − u)β̂

∗ = 0.

By using (5.5) and a Taylor expansion, we have

Wn + Anβ̂
∗ + c3

nh

2

n∑
i=1

q3(ᾱi + ζ̂i , Yi)X∗
i {β̂∗T

X∗
i }2Kh(Ui − u) = 0,(5.6)

where ζ̂i is between 0 and cnβ̂
∗T

X∗
i . The last term in the above expression is

of order OP (cn‖β̂∗‖2). Since each element in An is of kernel form, we can de-
duce from Lemma 1 that An = EAn + OP {cn log1/2(1/h)} = −A + OP {h2 +
cn log1/2(1/h)}. Consequently, by (5.6), we obtain that

Wn − Aβ̂
∗[1 + OP {h2 + cn log1/2(1/h)}] + OP (cn‖β̂∗‖2) = 0.

Hence,

β̂
∗ = A−1Wn + OP {h2 + cn log1/2(1/h)}

holds uniformly for u ∈ �. This completes the proof. �

PROOF OF THEOREM 1. Let γn = n−1/2 + an. It suffices to show that for any
given ζ > 0, there exists a large constant C such that

P

{
sup

‖v‖=C

LP (β0 + γnv) < LP (β0)

}
≥ 1 − ζ.(5.7)
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Define

Dn,1 =
n∑

i=1

[
Q{g−1(

α̂T
(Ui)Xi + ZT

i (β0 + γnv)
)
, Yi}

− Q
{
g−1(

α̂T
(Ui)Xi + ZT

i β0
)
, Yi

}]
and Dn,2 = −n

∑s
j=1{pλn(|βj0 + γnvj |) − pλn(|βj0|)}, where s is the number of

components of β10. Note that pλn(0) = 0 and pλn(|β|) ≥ 0 for all β . Thus,

LP (β0 + γnv) − LP (β0) ≤ Dn,1 + Dn,2.

We first deal with Dn,1. Let m̂i = α̂T (Ui)Xi + ZT
i β0. Thus,

Dn,1 =
n∑

i=1

[Q{g−1(m̂i + γnvT Zi ), Yi} − Q{g−1(m̂i), Yi}].(5.8)

By means of a Taylor expansion, we obtain

Dn,1 =
n∑

i=1

q1(m̂i, Yi)γnvT Zi − n

2
γ 2
n vT Bnv,(5.9)

where Bn = n−1 ∑n
i=1 ρ2{g−1(m̂i + ζni)}ZiZT

i , with ζni between 0 and γnvT Zi ,
independent of Yi . It can be shown that

Bn = −Eρ2{αT
0 (U)X + ZT β0}ZZT + oP (1) ≡ −B + oP (1).(5.10)

Let mi = αT
0 (Ui)Xi + ZT

i β0. We have

n−1/2
n∑

i=1

q1(m̂i, Yi)Zi

= n−1/2
n∑

i=1

q1(mi, Yi)Zi

+ n−1/2
n∑

i=1

q2(mi, Yi)[{α̂(Ui) − α0(Ui)}T Xi]Zi

+ OP (n1/2‖α̂ − α0‖2∞).

By Lemma 2, the second term in the above expression can be expressed as

n−3/2
n∑

i=1

q2(mi, Yi)f (Ui)
−1

n∑
j=1

(W̃ T
j X)Kh(Uj − Ui)Zi

+ OP {n1/2c2
n log1/2(1/h)}

≡ Tn1 + OP {n1/2c2
n log1/2(1/h)},

where W̃j is the vector consisting of the first p elements of q1(mj , yj )�
−1(u).
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Define τ j = τ (Xj , Yj ,Zj ), consisting of the first p elements of

q1(mj ,Yj )�
−1(u)(XT

i ,ZT
j )T .

Using the definition of ᾱj (Ui), we obtain ᾱj (Ui) − mj = O((Uj − Ui)
2) and

therefore

Tn1 = n−3/2
n∑

i=1

n∑
j=1

q2(mi, Yi)f (Ui)
−1(τT

j Xi )Kh(Uj − Ui)Zi + OP (n1/2h2)

≡ Tn2 + OP (n1/2h2).

It can be shown, by calculating the second moment, that

Tn2 − Tn3
P−→ 0,(5.11)

where Tn3 = −n−1/2 ∑n
j=1 γ (Uj ) with

γ (uj ) =
p∑

k=1

τjkE[ρ2{αT
0 (u)X + ZT β0}XkZ|U = uj ].

Combining (5.8)–(5.11), we obtain that

Dn,1 = γnv
n∑

i=1

�(Xi,Yi,Zi) − 1
2γ 2

n vT Bv + oP (1),(5.12)

where �(Ui,Yi,Zi) = q1(mi, Yi)Zi − γ (Ui). The orders of the first term and the
second term are OP (n1/2γn) and OP (nγ 2

n ), respectively. We next deal with Dn,2.
Note that n−1Dn,2 is bounded by

√
sγnan‖v‖ + γ 2

n bn‖v‖2 = Cγ 2
n (

√
s + bnC),

by the Taylor expansion and the Cauchy–Schwarz inequality. As bn → 0, the
second term on the right-hand side of (5.12) dominates Dn,2 as well as the first
term on the right-hand side of (5.12), provided C is taken to be sufficiently large.
Hence, (5.7) holds for sufficiently large C. This completes the proof of the theo-
rem. �

To prove Theorem 2, we need the following lemma.

LEMMA 3. Under the conditions of Theorem 2, with probability tending to 1,
for any given β1 satisfying ‖β1 −β10‖ = OP (n−1/2) and any constant C, we have

LP

{(
β1
0

)}
= max

‖β2‖≤Cn−1/2
LP

{(
β1
β2

)}
.
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PROOF. We will show that, with probability tending to 1, as n → ∞, for
any β1 satisfying ‖β1 − β10‖ = OP (n−1/2) and β2 satisfying ‖β2‖ ≤ Cn−1/2,
∂LP (β)/∂βj and βj have different signs for βj ∈ (−Cn−1/2,Cn−1/2), for j =
s + 1, . . . , d . Thus, the maximum is attained at β2 = 0. It follows by an argument
similar to the proof of Theorem 1 that

�′
j (β) ≡ ∂�(α̃,β)

∂βj

= n

{
1

n

n∑
i=1

�j(Xi , Yi,Zi) − (β − β0)
T Bj + oP (n−1/2)

}
,

where �j(Xi , Yi,Zi) is the j th element of �(Xi , Yi,Zi) and Bj is the j th column
of B. Note that ‖β − β0‖ = OP (n−1/2) by the assumption. Thus, n−1�′

j (β) is of

the order OP (n−1/2). Therefore, for βj �= 0 and j = s + 1, . . . , d ,

∂LP (β)

∂βj

= �′
j (β) − np′

λjn
(|βj |) sgn(βj )

= −nλjn

{
λ−1

jn p′
λjn

(|βj |) sgn(βj ) + OP

(
1√
nλn

)}
.

Since lim infn→∞ lim infβj→0+ λ−1
jn p′

λjn
(|βj |) > 0 and

√
nλjn → ∞, the sign of

the derivative is completely determined by that of βj . This completes the proof.
�

PROOF OF THEOREM 2. From Lemma 3, it follows that β̂2 = 0. We next es-
tablish the asymptotic normality of β̂1. Let θ̂ = √

n(β̂1 −β10), m̂i1 = α̂T (Ui)Xi +
ZT

i1β10 and mi1 = αT
0 (Ui)Xi + ZT

i1β10. Then, θ̂ maximizes

n∑
i=1

[Q{g−1(m̂i1 +n−1/2ZT
i1θ), Yi}−Q{g−1(m̂i1), Yi}]−n

s∑
j=1

pλn(β̂j1).(5.13)

We consider the first term, say �n1(θ). By means of a Taylor expansion, we have

�n1(θ) = n−1/2
n∑

i=1

q1(m̂i1, Yi)ZT
i1θ + 1

2θT Bn1θ ,

where Bn1 = 1
n

∑n
i=1 ρ2{g−1(m̂i1 + ζni)}Zi1ZT

i1, with ζni between 0 and n−1/2 ×
ZT

i1θ , independent of Yi . It can be shown that

Bn1 = −Eρ2{αT
0 (U)X + ZT

1 β10}Z1ZT
1 + oP (1) = −B1 + oP (1).(5.14)

A similar proof for (5.12) yields that

�n1(θ) = n−1/2
n∑

i=1

θ̂�1(Ui, Yi,Zi1) − 1
2θT B1θ + oP (1),
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where �1(Ui, Yi,Zi1) = q1(mi1, Yi)Zi1 −�1(Ui). By the Convexity Lemma (Pol-
lard [19]), we have that

(B1 + �λ)̂θ + n1/2bn = n−1/2
n∑

i=1

�1(Ui, Yi,Zi1) + oP (1).

The conclusion follows as claimed. �

PROOF OF THEOREM 3. Decompose R(H1) − R(H0) = In,1 + In,2 + In,3,

where

In,1 =
n∑

i=1

[
Q

{
g−1(

α̂T (Ui)Xi + ZT
i β̂

)
, Yi

} − Q
{
g−1(

α̂T (Ui)Xi + ZT
i β0

)
, Yi

}]
,

In,2 = −
n∑

i=1

[Q{g−1(ZT
i β̄), Yi} − Q{g−1(ZT

i β0), Yi}],

In,3 =
n∑

i=1

[
Q

{
g−1(

α̂T (Ui)Xi + ZT
i β0

)
, Yi

} − Q{g−1(ZT
i β0), Yi}].

Using Theorem 10 of Fan, Zhang and Zhang [10], under H0, we have

rKIn,3 ∼ χ2
dfn,

where dfn → ∞ as n → ∞. It suffices to show that In,1 = oP (In,3) and In,2 =
oP (In,3).

A direct calculation yields that

In,1 =
n∑

i=1

q1{XT
i α̂(Ui) + ZT

i β0, Yi}ZT
i (β̂ − β0)

− 1
2(β̂ − β0)

T
n∑

i=1

ZiZT
i q2

{
g−1(

α̂(Ui)Xi + ZT
i β0

)}
(β̂ − β0) + op(1).

Using techniques related to those used in the proof of Theorem 2, we obtain

1

n

n∑
i=1

ZiZT
i q2[g−1{α̂(Ui)Xi + ZT

i β0}] = B + oP (1),

n∑
i=1

q1{α̂(Ui)Xi + ZT
i β0, Yi}Zi = nB(β̂ − β0) + oP (1).

Thus,

2In,1 = (β̂ − β0)
T B(β̂ − β0) + op(1)

D−→ χ2
d .

Under H0, −2In,2 equals a likelihood ratio test statistic for H ∗
0 :β = β0 versus

H ∗
1 :β �= β0. Thus, under H0, −2In,2 → χ2

d . Thus, In,1 = oP (In,3) and In,2 =
oP (In,3). This completes the proof. �
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