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CONTROL OF GENERALIZED ERROR RATES IN MULTIPLE
TESTING
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Consider the problem of testing s hypotheses simultaneously. The usual
approach restricts attention to procedures that control the probability of even
one false rejection, the familywise error rate (FWER). If s is large, one might
be willing to tolerate more than one false rejection, thereby increasing the
ability of the procedure to correctly reject false null hypotheses. One possi-
bility is to replace control of the FWER by control of the probability of k or
more false rejections, which is called the k-FWER. We derive both single-
step and step-down procedures that control the k-FWER in finite samples or
asymptotically, depending on the situation. We also consider the false dis-
covery proportion (FDP) defined as the number of false rejections divided by
the total number of rejections (and defined to be 0 if there are no rejections).
The false discovery rate proposed by Benjamini and Hochberg [J. Roy. Sta-
tist. Soc. Ser. B 57 (1995) 289–300] controls E(FDP). Here, the goal is to
construct methods which satisfy, for a given γ and α, P {FDP > γ } ≤ α, at
least asymptotically. In contrast to the proposals of Lehmann and Romano
[Ann. Statist. 33 (2005) 1138–1154], we construct methods that implicitly
take into account the dependence structure of the individual test statistics in
order to further increase the ability to detect false null hypotheses. This fea-
ture is also shared by related work of van der Laan, Dudoit and Pollard [Stat.
Appl. Genet. Mol. Biol. 3 (2004) article 15], but our methodology is quite dif-
ferent. Like the work of Pollard and van der Laan [Proc. 2003 International
Multi-Conference in Computer Science and Engineering, METMBS’03 Con-
ference (2003) 3–9] and Dudoit, van der Laan and Pollard [Stat. Appl. Genet.
Mol. Biol. 3 (2004) article 13], we employ resampling methods to achieve
our goals. Some simulations compare finite sample performance to currently
available methods.

1. Introduction. The main goal of this paper is to show how computer-
intensive methods can be used to construct asymptotically valid tests of multiple
hypotheses under very weak conditions. In particular, we construct computation-
ally feasible methods which provide control (at least asymptotically) of some gen-
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eralized notions of the familywise error rate. However, the theory also applies to
exact finite sample control in certain situations.

Consider the problem of testing hypotheses H1, . . . ,Hs . A classical approach
to dealing with the multiplicity problem is to restrict attention to procedures that
control the probability of one or more false rejections, which is called the family-
wise error rate (FWER). For a given family, control of the FWER at (joint) level α

requires that FWER ≤ α for all possible distributions of the data considered in the
model.

Of course, safeguards against false rejections are not the only concern of mul-
tiple testing procedures. Corresponding to the power of a single test, one must
also consider the ability of a procedure to detect departures from the null hypothe-
ses. When the number of tests, s, is large, such as in genomics studies, control of
the FWER at conventional levels becomes so stringent that individual departures
from the null hypotheses have little chance of being detected. For this reason, we
shall consider alternatives to the FWER that control false rejections less severely
in hopes of better power.

First, we shall consider the k-FWER, the probability of rejecting at least k true
null hypotheses. More formally, suppose data X is available from some model
P ∈ �. A general hypothesis H can be viewed as a subset ω of �. For testing
Hi :P ∈ ωi , i = 1, . . . , s, let I (P ) denote the set of true null hypotheses when P is
the true probability distribution; that is, i ∈ I (P ) if and only if P ∈ ωi . Then, the
k-FWER, which depends on P is defined to be

k-FWERP = P {reject at least k hypotheses Hi : i ∈ I (P )}.(1)

Control of the k-FWER requires that k-FWER ≤ α for all P ; that is,

k-FWERP ≤ α for all P.(2)

Evidently, the case k = 1 reduces to control of the usual FWER.
We will also consider control of the false discovery proportion (FDP), defined

as the total number of false rejections divided by the total number of rejections
(and equal to 0 if there are no rejections). Given a user specified value γ ∈ [0,1),
the measure of error control we wish to control is P {FDP > γ }; thus, we wish to
construct methods satisfying

P {FDP > γ } ≤ α for all P.(3)

We will derive methods where this holds (at least asymptotically). Evidently, con-
trol of the FDP with γ = 0 reduces to the usual FWER. Control of the false dis-
covery rate (FDR) requires that E(FDP) ≤ γ .

Recently there have been a number of methods that control generalized error
rates which are less stringent than the FWER. A prominent such technique is the
FDR controlling method of [1]. Additional methods that control the FDR are given
in [2] and [30]. Genovese and Wasserman [10] study asymptotic procedures that
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control the FDP (and the FDR) in the framework of a random effects mixture
model. These ideas are extended in [20], where in the context of random fields, the
number of null hypotheses is uncountable. Korn et al. [15] provide methods that
control both the k-FWER and FDP; they provide some justification for their meth-
ods, but they are limited to a multivariate permutation model. Alternative methods
of control of the k-FWER and FDP are given in [34]; they include both finite sam-
ple and asymptotic results. Like our work, their approach implicitly accounts for
the dependence between the tests with the goal of improved ability to detect false
hypotheses; comparisons between the methods will be made in Section 5. Building
upon work for control of the FWER in [9, 22] and [28], we employ resampling to
achieve our goals, which does not require the use of the subset pivotality condition
of [35]. A further key ingredient is the use of the so-called k-max statistic, initially
suggested in [9] in the construction of a single-step procedure. Our procedures here
can be seen as step-down improvements over such single-step methods. A further
new method is given in [33].

Some methods that control the k-FWER and FDP are now briefly reviewed.
Suppose that p-values p̂1, . . . , p̂s are available for testing H1, . . . ,Hs . For p̂i to be
a p-value, it is required that, for all u ∈ [0,1] and all P ∈ ωi , P {p̂i ≤ u} ≤ u. Then,
for any fixed k, the procedure that rejects Hi if p̂i ≤ kα/s controls the k-FWER at
level α, and can be viewed as a generalization of the Bonferroni procedure which
uses k = 1; see [17]. It is an example of a single-step procedure, meaning any
null hypothesis is rejected if its corresponding p-value is less than or equal to a
common cutoff value.

Improvements are possible by considering a class of step-down procedures,
which we now describe. Order the p-values by p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(s), and let
H(1), . . . ,H(s) denote the corresponding hypotheses. Let

α1 ≤ α2 ≤ · · · ≤ αs(4)

be constants. If p̂(1) > α1, reject no null hypotheses. Otherwise, if

p̂(1) ≤ α1, . . . , p̂(r) ≤ αr,(5)

reject hypotheses H(1), . . . ,H(r), where the largest r satisfying (5) is used. The
procedure of [13] uses αj = α/(s − j + 1) and controls the FWER at level α.
For general k, consider the following generalized Holm step-down procedure de-
scribed in (5), where now we specifically set

αj =




kα

s
, j ≤ k,

kα

s + k − j
, j > k.

(6)

Of course, the αj depend on s and k, but we suppress this dependence in the
notation. Then the step-down method described in (5) with αj given by (6) controls
the k-FWER; that is, (2) holds; see [14] and [17].
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Turning to FDP control, [17] reason as follows. To develop a step-down proce-
dure satisfying (3), let F denote the number of false rejections. At step j , having
rejected j −1 hypotheses, we want to guarantee F/j ≤ γ , that is, F ≤ �γj�, where
�x� is the greatest integer ≤ x. So, if k = �γj� + 1, then F ≥ k should have prob-
ability no greater than α; that is, we must control the number of false rejections to
be ≤ k. Therefore, we use the step-down constant αj with this choice of k (which
now depends on j ); that is,

αj = (�γj� + 1)α

s + �γj� + 1 − j
.(7)

Under certain dependence assumptions on the p-values, this method satisfies (3).
Some more conservative methods that hold under no dependence assumptions are
also developed in [17, 25] and [26]. Typically, these generalized Holm type of
methods assume a least favorable joint distribution for the p-values. In contrast,
here we implicitly try to estimate the joint distribution of p-values with the hope
of greater ability to detect false hypotheses.

In general, we suppose that rejection of Hi is based on large values of a test
statistic Tn,i (with the subscript n used for asymptotic purposes). If a p-value p̂i

is available for testing Hi , one can take Tn,i = −p̂i . Then we restrict attention
to tests that reject an intersection hypothesis HK when the kth largest of the test
statistics {Tn,i : i ∈ K} is large. In some problems, [19] show that such stepwise
procedures are optimal in a certain sense, in the case k = 1. Here, our primary goal
is to show how computationally feasible step-down procedures can be constructed
quite generally that control the k-FWER and FDP under minimal conditions.

In Section 2 we show that, if we estimate critical values that have a monotonic-
ity property, then the basic problem of constructing a valid multiple test procedure
that controls the k-FWER can essentially be reduced to the problem of sequen-
tially constructing critical values for (at most order s) single tests that control the
usual Type 1 error. In particular, if finite sample methods which offer control of the
Type 1 error are available for each of the individual tests, then this will immedi-
ately translate into control of the k-FWER. Otherwise, we can apply bootstrap and
subsampling methods to achieve asymptotic control, as described in Section 3. Re-
sults for control of the FDP are obtained in Section 4. Comparisons with the aug-
mentation procedures of [34] are discussed in Section 5. In Section 6 we present
a simulation study to examine the finite sample performance of various methods.
The simulations demonstrate that our methods outperform or are at least competi-
tive with currently available methods. All proofs are collected in the Appendix.

2. Basic results for control of the k-FWER. Suppose data X is generated
from some unknown probability distribution P . In anticipation of asymptotic re-
sults, we may write X = X(n), where n typically refers to the sample size. A model
assumes that P belongs to a certain family of probability distributions �, though
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we make no rigid requirements for �; it may be a parametric, semiparametric or a
nonparametric model.

Consider the problem of simultaneously testing a hypothesis Hi against H ′
i ,

for i = 1, . . . , s. Of course, a hypothesis Hi can be viewed as a subset ωi of �,
in which case the hypothesis Hi is equivalent to P ∈ ωi and H ′

i is equivalent to
P /∈ ωi . For any subset K ⊂ {1, . . . , s}, define HK = ⋂

i∈K Hi to be the intersec-
tion hypothesis that P ∈ ⋂

i∈K ωi . We also assume a test of the individual hy-
pothesis Hi is based on a test statistic Tn,i , with large values indicating evidence
against Hi .

Some further notation is required. Suppose {yi : i ∈ K} is a collection of real
numbers indexed by a finite set K having |K| elements. Then, for k ≤ |K|,
k- max(yi : i ∈ K) is used to denote the kth largest value of the yi with i ∈ K .
So, if the elements yi , i ∈ K , are ordered as y(1) ≤ · · · ≤ y(|K|), then k- max(yi : i ∈
K) = y(|K|−k+1).

2.1. Single-step control of the k-FWER. Throughout this section, k is fixed.
First, we briefly discuss a single-step approach to control the k-FWER, since it
serves as a building block for the more powerful step-down procedures considered
later. For any subset K ⊂ {1, . . . , s}, let cn,K(α, k,P ) denote an α-quantile of the
distribution of k- max(Tn,i : i ∈ K) under P . Concretely,

cn,K(α, k,P ) = inf
{
x :P {k- max(Tn,i : i ∈ K) ≤ x} ≥ α

}
.(8)

(We use the subscript n for asymptotic purposes, though the priority in this section
is to study nonasymptotic results.) For testing the intersection hypothesis HK with
K ⊂ {1, . . . , s}, it is only required to approximate a critical value for P ∈ ⋂

i∈K ωi .
Because there may be many such P , we define

cn,K(1 − α, k) = sup

{
cn,K(1 − α, k,P ) :P ∈ ⋂

i∈K

ωi

}
.(9)

[In order to define cn,K(α, k), we implicitly assume
⋂s

i=1 ωi is not empty.]
Consider the idealized test that rejects any Hi for which Tn,i > cn,I (P )(1 −

α, k,P ). This is a single-step method in that each Tn,i is compared with a com-
mon cutoff. However, this is an idealization because the critical value cn,I (P )(1 −
α, k,P ) is in general unknown. Such a fictional test clearly controls the k-FWER
at level α. Indeed, if |I (P )| < k, then there is nothing to prove; otherwise,

P {k or more false rejections}
= P

{
k- max

(
Tn,i : i ∈ I (P )

)
> cn,I (P )(1 − α, k,P )

} ≤ α,

with equality if the distribution of k- max(Tn,i : i ∈ I (P )) is continuous under P .
Unfortunately, the test is unavailable as the critical value is in general unknown.
One possible approach is to replace cn,I (P )(1 − α, k,P ) by cn,I (P )(1 − α, k), but
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this still depends on P through I (P ). Since I (P ) is unknown, a conservative ap-
proach would be to assume all hypotheses are true and replace cn,I (P )(1−α, k) by
cn,A(1 − α, k), where A = {1, . . . , s}.

Unfortunately, in nonparametric problems, the sup in (9) may be formidable or
impossible to calculate, and may be way too conservative anyway. Instead, another
possibility is to replace the critical value cn,I (P )(1 − α, k,P ) by some estimate
ĉn,I (P )(1 − α, k), which is at least consistent or conservative. In general, suppose
ĉn,K(1 −α, k) represents an approximation or estimate of the 1 −α quantile of the
distribution of k- max(Tn,i : i ∈ K), at least valid when Hi is true for i ∈ K . Boot-
strap and subsampling methods offer viable general approaches, and will be used
later. Such a single-step approach using the k-max statistic was also discussed in
[9]. (Rather than formalizing the required conditions for consistency right now, we
will later give explicit conditions for more powerful step-down methods.) A single-
step approach would then be to replace K by A = {1, . . . , s}.

EXAMPLE 2.1 (Multivariate normal mean). Suppose (X1, . . . ,Xs) is multi-
variate normal with unknown mean µ = (µ1, . . . ,µs) and known covariance ma-
trix � having (i, j) component σi,j . Consider testing Hi :µi ≤ 0 versus µi > 0.
Let Tn,i = Xi/

√
σi,i , since the test that rejects for large Xi/

√
σi,i is UMP for

testing Hi . For |K| ≥ k, cn,K(1 − α, k) is the 1 − α quantile of the distribu-
tion of k- max(Tn,i : i ∈ K) when µ = 0. A single-step approach would reject
any Hi for which Tn,i > cn,A(1 − α, k), where A = {1, . . . , s}. Since cn,A(1 −
α, k) ≥ cn,I (P )(1 − α, k) ≥ cn,I (P )(1 − α, k,P ), this procedure clearly controls
the k-FWER.

More generally, suppose Hi specifies {P : θi(P ) ≤ 0} for some real-valued pa-
rameter θi . Let θ̂n,i be an estimate of θi(P ). Also, let Tn,i = τnθ̂n,i for some non-
negative (nonrandom) sequence τn → ∞. The sequence τn is introduced for later
asymptotic purposes so that a limiting distribution for τn[θ̂n,i − θi(P )] exists. In
typical situations, τn = n1/2.

For K ⊂ {1, . . . , s} with |K| ≥ k, let Ln,K(k,P ) denote the distribution under
P of k- max(τn[θ̂n,i − θi(P )] : i ∈ K), with corresponding cumulative distribution
function Ln,K(x, k,P ) and α-quantile bn,K(α, k,P ) = inf{x :Ln,K(x, k,P ) ≥ α}.
By the definition of these quantiles and using k = 1,{

(θi : i ∈ A) : max
i∈A

τn[θ̂n,i − θi] ≤ bn,A(1 − α,1,P )

}
(10)

is an exact 1 − α level joint confidence region for the subset of parameters
{θi(P ) : i ∈ A}. That is, the probability that the entire subset {θi(P ) : i ∈ A} will
be contained in (10) is greater than or equal to 1 − α. By allowing k ≥ 1, we can
construct a “generalized” joint confidence region. More precisely, the probability
that at least |A| − k + 1 elements of {θi(P ) : i ∈ A} will be contained in{

(θi : i ∈ A) :k- max
i∈A

τn[θ̂n,i − θi] ≤ bn,A(1 − α, k,P )

}
(11)
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is greater than or equal to 1 − α. In other words, the probability that k or more
elements of {θi(P ) : i ∈ A} will fall outside (11) is less than or equal to α.

A value of 0 for θi(P ) falls outside the region (11) if and only if τnθ̂n,i >

bn,A(1 − α, k,P ). By the usual duality of confidence sets and hypothesis tests,
this suggests the use of the critical value

cn,A(1 − α, k) = bn,A(1 − α, k,P )(12)

to control the k-FWER. The problem is that the critical value (12) is not feasi-
ble, since P is unknown. Section 3 describe how approximate but feasible critical
values can be obtained by the use of resampling methods. For example, the boot-
strap replaces P by an estimated distribution Q̂n, resulting in the critical value
ĉn,A(1 − α, k) = bn,A(1 − α, k, Q̂n).

2.2. Step-down methods that control the k-FWER. Let

Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rs(13)

denote the observed ordered test statistics, and let Hr1 , Hr2, . . . ,Hrs be the cor-
responding hypotheses. Step-down methods begin by first applying a single-step
method, but then additional hypotheses may be rejected after this first stage by
proceeding in a stepwise fashion, which we now describe. Begin by testing the
joint null (intersection) hypothesis H{1,...,s} that all hypotheses are true. This hy-
pothesis is rejected if Tn,r1 is deemed large, in which case Hr1 is rejected. Here,
the meaning of large is determined by some critical value ĉn,A(1 − α, k), which
is designed to offer single-step control when testing the intersection hypothesis
HA with A = {1, . . . , s}. If it is not large, accept all hypotheses; otherwise, re-
ject the hypothesis corresponding to the largest test statistic. Once a hypothesis
is rejected, the next most significant hypothesis corresponding to the next largest
test statistic is considered, and so on. At any stage, one tests appropriate intersec-
tion hypotheses HK . Suppose that critical constants ĉn,K(1 − α, k) are available
from our statistical tool chest, which we might contemplate for use as a single step
procedure for testing HK . The critical constants ĉn,K(1 − α, k) may be fixed or
random, but the reader should have in mind that they each could be used as a test
of HK .

ALGORITHM 2.1 (Generic step-down method for control of the k-FWER).

1. Let A1 = {1, . . . , s}. If max(Tn,i : i ∈ A1) ≤ ĉn,A1(1 − α, k), then accept all hy-
potheses and stop; otherwise, reject any Hi for which Tn,i > ĉn,A1(1 − α, k)

and continue.
2. Let R2 be the indices i of hypotheses Hi previously rejected, and let A2 be the

indices of the remaining hypotheses. If |R2| < k, then stop. Otherwise, let

d̂n,A2(1 − α, k) = max
I⊂R2,|I |=k−1

{ĉn,K(1 − α, k) :K = A2 ∪ I }.
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Then, reject any Hi with i ∈ A2 satisfying Tn,i > d̂n,A2(1 − α, k). If there are
no further rejections, stop.

...

j. Let Rj be the indices i of hypotheses Hi previously rejected, and let Aj be the
indices of the remaining hypotheses. Let

d̂n,Aj
(1 − α, k) = max

I⊂Rj ,|I |=k−1
{ĉn,K(1 − α, k) :K = Aj ∪ I }.

Then, reject any Hi with i ∈ Aj satisfying Tn,i > d̂n,Aj
(1 − α, k). If there are

no further rejections, stop.

...

And so on.

Note that, in the case k = 1, once a hypothesis is removed, it no longer enters
into the algorithm. However, for k > 1, the algorithm becomes slightly more com-
plex. The reason is that, for control of the k-FWER, we must acknowledge that
when we consider a set of hypotheses not previously rejected, we may have gotten
to that stage by rejecting true null hypotheses, but hopefully at most k − 1 of them.
Since we do not know which of the hypotheses rejected thus far are true or false,
we must maximize over subsets including some of those rejected, but at most k −1
among the previously rejected ones. Our main point will be that, if we can control
the k-FWER at any stage of the algorithm, then the step-down test will control the
k-FWER.

REMARK 2.1 (Modified generic step-down method for control of the k-FWER).
One can modify the above algorithm or any method that controls the k-FWER as
follows. If the method rejects at least k − 1 hypotheses, no modification is applied;
otherwise, reject the k − 1 most significant hypotheses. This would not change
control of the k-FWER. However, we do not generally promote this modification,
because hypotheses can be rejected without compelling evidence (i.e., even if they
have large unadjusted p-values).

In order to prove such an algorithm controls the k-FWER for suitable choice
of critical values ĉn,K(1 − α, k), we assume monotonicity of the estimated critical
values; that is, for any K ⊃ I (P ),

ĉn,K(1 − α, k) ≥ ĉn,I (P )(1 − α, k).(14)

Ideally, we would also like the following to hold: if ĉn,K(1 − α, k) is used to test
the intersection hypothesis HK , then the chance of k or more false rejections is
bounded above by α when K = I (P ); that is,

P
{
k- max

(
Tn,i : i ∈ I (P )

)
> ĉn,I (P )(1 − α, k)

} ≤ α.(15)
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Under the monotonicity assumption (14), we will show the basic inequality that
k-FWERP is bounded above by left-hand side of (15). This will then show that, if
we can construct monotone critical values such that each intersection test controls
the k-FWER, then the step-down procedure controls the k-FWER. Thus, the con-
struction of a step-down procedure is effectively reduced to construction of single
tests, as long as the monotonicity assumption holds (and it always does for specific
choices studied later).

THEOREM 2.1. Let P denote the true distribution generating the data. Con-
sider Algorithm 2.1 with critical values ĉn,K(1 − α, k) satisfying (14).

(i) Then

k-FWERP ≤ P
{
k- max

(
Tn,i : i ∈ I (P )

)
> ĉn,I (P )(1 − α, k)

}
.(16)

(ii) Therefore, if the critical values also satisfy (15), then k-FWERP ≤ α.

The monotonicity assumption (14) cannot be removed, as shown in Example 2.1
of [28] in the case k = 1; an analogous construction works for general k. The
general resampling constructions we describe later will inherently satisfy (14).

As a corollary, consider the nonrandom choice of critical values ĉn,K(1 −
α, k) = cn,K(1 −α, k) defined in (9). Assume the following monotonicity assump-
tion: for K ⊃ I (P ),

cn,K(1 − α, k) ≥ cn,I (P )(1 − α, k).(17)

The condition (17) can be expected to hold in many situations because the left-
hand side is based on computing the 1 − α quantile of the kth largest of |K|
variables, while the right-hand side is based on the kth largest of |I (P )| ≤ |K|
variables (though one must be careful and realize that the quantiles are computed
under possibly different P , which is why some condition is required).

COROLLARY 2.1. Let P denote the true distribution generating the data. As-
sume

⋂s
i=1 ωi is not empty.

(i) Consider Algorithm 2.1 with ĉn,K(1 − α, k) = cn,K(1 − α, k) and as-
sume (17). Then k-FWERP ≤ α.

(ii) Control persists if in Algorithm 2.1 the critical constants ĉn,K(1 − α, k)

are replaced by dn,K(1 − α, k) which satisfy dn,K(1 − α, k) ≥ cn,K(1 − α, k).
(iii) Moreover, the condition (17) may then be removed if the dn,K(1 − α, k)

satisfy dn,K(1 − α, k) ≥ dn,I (P )(1 − α, k) for any K ⊃ I (P ).

EXAMPLE 2.2 (Multivariate normal mean, continuation of Example 2.1). Re-
call the setup of Example 2.1 with Tn,i = Xi/

√
σi,i . To apply Corollary 2.1, as-

sume that |I (P )| ≥ k or there is nothing to prove. Let cn,K(1 − α, k) be the
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1 − α quantile of the distribution of k- max(Tn,i : i ∈ K) when µ = 0. Since
k- max(Tn,i : i ∈ I ) ≤ k- max(Tn,i : i ∈ K) whenever I ⊂ K , (17) is satisfied. More-
over, the resulting procedure rejects at least as many hypotheses as the generalized
Holm procedure, as it accounts for the dependence of the test statistics.

The previous example is parametric in nature. However, we will see that a valid
step-down approach can apply to nonparametric problems. Our main goal will be
to apply resampling methods that can account for the dependence structure of the
test statistics. We also observe that Theorem 2.1 applies to certain semiparamet-
ric problems where permutation and randomization tests apply. This was accom-
plished in the case k = 1 by [28], but the argument generalizes given Theorem 2.1.
In fact, the result in [15] for k-FWER control in a specialized multivariate permu-
tation setup is a special case of our results.

However, we first observe the fact that the generalized Holm procedure
described by (5) with critical values given by (6) controls the k-FWER. This fol-
lows from Theorem 2.1 and the fact that, when testing |K| hypotheses, the single-
step procedure that rejects any Hi whose corresponding p-value is ≤ kα/|K| con-
trols the k-FWER; see Theorem 2.1(i) of [17]. Note the critical values kα/|K| are
monotone in |K|.

Outside some parametric models, application of the generic step-down method
can be computationally intensive, so we will also consider the following more
streamlined algorithm. The basic idea is that at any stage, when testing whether or
not to include further rejections, we need only look at the hypotheses not previ-
ously rejected together with the k − 1 hypotheses that are least significant among
those previously rejected. So, we avoid maximizing over all subsets of size k−1 of
previously rejected hypotheses and just look at the most “recent” k − 1 rejections.
The arguments for such a procedure will be asymptotic.

ALGORITHM 2.2 (Streamlined step-down method for control of the k-FWER).
The algorithm is analogous to Algorithm 2.1. The only difference is that in any
step j > 1 the critical value

d̂n,Aj
(1 − α, k) = max

I⊂Rj ,|I |=k−1
{ĉn,K(1 − α, k) :K = Aj ∪ I }

is replaced by the critical value

d̃n,Aj
(1 − α, k) = ĉn,K(1 − α, k),

where K = {
r(|Rj |−k+2), r(|Rj |−k+1), . . . , r(s)

}
.

3. Asymptotic results on k-FWER control. The main goal of this section
is to show how Theorem 2.1 can be used to construct step-down procedures that
asymptotically control the k-FWER under very weak assumptions. The use of re-
sampling techniques will be a key ingredient. The methods constructed will be
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based on Algorithm 2.1, and so potentially many tests are constructed in a step-
wise fashion. However, a key feature is that the methods will only require one set
of resamples for all of the tests, whether they are bootstrap samples or subsamples.

In order to accomplish this, we will consider resampling schemes that do not
obey the null hypothesis constraints. Such schemes have been suggested previ-
ously by [9] and [22], and have the benefit of avoiding the subset pivotality con-
dition of [35]. Hypothesis test constructions that do obey the constraints imposed
by the null hypothesis, as discussed in [4] and [24], are based on the idea that
the critical value should be obtained under the null hypothesis and so the resam-
pling scheme should reflect the constraints of the null hypothesis. This idea is even
advocated as a principle in [12], and it is enforced throughout [35]. While appeal-
ing, it is by no means the only approach toward inference in hypothesis testing. In
some problems, the subset pivotality condition of [35] holds, and so the same null
distribution can be used at each step. However, this condition does not hold in gen-
eral; for instance, see Example 4.1 of [28]. To obtain a more general construction,
we exploit the well-known explicit duality between tests and confidence intervals;
so, if one can construct good or valid confidence intervals, then one can construct
good or valid tests, and conversely. The same holds for simultaneous confidence
sets and multiple tests.

We shall consider two concrete applications of Theorem 2.1, the first based

on the bootstrap and the second based on subsampling. The symbols
L→ and

P→
will denote convergence in law (or distribution) and convergence in probability,
respectively.

3.1. A bootstrap construction. We now apply Theorem 2.1 to develop an as-
ymptotically valid approach based on the bootstrap, but specializing to the case
where Hi is concerned with a test of a parameter. Suppose hypothesis Hi is spec-
ified by {P : θi(P ) ≤ 0} for some real-valued parameter θi . Implicitly, the alterna-
tives are one-sided, but the two-sided case can be similarly handled. Suppose θ̂n,i

is an estimate of θi . Also, let Tn,i = τnθ̂n,i for some nonnegative (nonrandom) se-
quence τn → ∞. The sequence τn is introduced for asymptotic purposes so that a
limiting distribution for τn[θ̂n,i − θi(P )] exists. In typical situations, τn = n1/2.

The bootstrap method relies on its ability to approximate the joint distri-
bution of {τn[θ̂n,i − θi(P )] : i ∈ K}, which we denote by Jn,K(P ). For K ⊂
{1, . . . , s} with |K| ≥ k, let Ln,K(k,P ) denote the distribution under P of
k- max(τn[θ̂n,i − θi(P )] : i ∈ K), with corresponding c.d.f. Ln,K(x, k,P ) and
α-quantile bn,K(α, k,P ) = inf{x :Ln,K(x, k,P ) ≥ α}.

We will assume the normalized estimates satisfy the following.

ASSUMPTION B1.

(i) Jn,{1,...,s}(P )
L→ J{1,...,s}(P ), a nondegenerate limit law.
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(ii) LI(P )(·, k,P ) is continuous and strictly increasing on its support.

Part (i) implies that, for every K ⊂ I (P ), Ln,K(k,P ) has a limiting distribution
LK(k,P ). Indeed, the k-max function is a continuous function and the continu-
ous mapping theorem applies; see Lemma A.1. Part (ii) makes an additional mild
assumption on the limit law LI(P )(k,P ). In particular, under Assumption B1, it
follows that

bn,I (P )(1 − α, k,P ) → bI (P )(1 − α, k,P ),(18)

where bI (P )(α, k,P ) is the α-quantile of the limiting distribution LI(P )(k,P ).
Let Q̂n be some unrestricted estimate of P , that is, Q̂n does not obey the null

hypothesis constraints. For i.i.d. data, in the absence of a parametric model for
P , Q̂n is typically taken to be the empirical distribution of the observed data, or
possibly a smoothed version (i.e., nonparametric bootstrap); on the other hand,
if a parametric model for P is assumed, then Q̂n should be based on this model
(i.e., parametric bootstrap); see [7]. For time series or data-dependent situations,
bootstrap methods that can capture the underlying dependence structure should be
employed, such as block bootstraps, sieve bootstraps or Markov bootstraps; see
[16]. Then a nominal 1 − α level bootstrap joint confidence region for the subset
of parameters {θi(P ) : i ∈ K} is given by

{(θi : i ∈ K) : max(τn[θ̂n,i − θi] : i ∈ K) ≤ bn,K(1 − α,1, Q̂n)}
(19)

= {(θi : i ∈ K) : θi ≥ θ̂n,i − τ−1
n bn,K(1 − α,1, Q̂n)}.

So a value of 0 for θi(P ) falls outside the region if and only if τnθ̂n,i > bn,K(1 −
α,1, Q̂n). By the usual duality of confidence sets and hypothesis tests, this sug-
gests the use of the critical value

ĉn,K(1 − α,1) = bn,K(1 − α,1, Q̂n),(20)

to control the familywise error rate (i.e., the k-FWER with k = 1). Since here
we require control of the k-FWER, we merely replace the max in (19) with the
k-max and bn,K(1 − α,1, Q̂n) with bn,K(1 − α, k, Q̂n). Such a generalized joint
confidence region should asymptotically contain all true parameter values except
for possibly at most k −1 of them, with probability (asymptotically) at least 1−α.
Thus, the bootstrap critical value we use will be

ĉn,K(1 − α, k) = bn,K(1 − α, k, Q̂n).(21)

Note that, regardless of asymptotic behavior, the monotonicity assumption (14)
is always satisfied for the choice (21). Indeed, for any Q and if I ⊂ K , bn,I (1 −
α, k,Q) is the 1−α quantile under Q of the k-max of |I | variables, while bn,K(1−
α, k,Q) is the 1−α quantile of the k-max of these same |I | variables together with
|K| − |I | additional variables. This simple observation together with Theorem 2.1
immediately yields:
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COROLLARY 3.1. Under the setup and notation of this subsection, consider
Algorithm 2.1 with critical values given by (21). Then

k-FWERP ≤ P
{
k- max

(
Tn,i : i ∈ I (P )

)
> bn,I (P )(1 − α, k, Q̂n)

}
.(22)

Therefore, in order to conclude lim supn k-FWERP ≤ α, it is now only neces-
sary to study the asymptotic behavior of bn,I (P )(1 −α, k, Q̂n). For this, we further
assume the usual conditions for bootstrap consistency when testing the single hy-
pothesis that θi(P ) ≤ 0 for all i ∈ I (P ); that is, we assume the bootstrap consis-
tently estimates the joint distribution of τn[θ̂n,i − θi(P )] for i ∈ I (P ). Specifically,
consider the following (more general) assumption.

ASSUMPTION B2. For any metric ρ metrizing weak convergence on R
|{1,...,s}|,

ρ
(
Jn,{1,...,s}(P ), Jn,{1,...,s}(Q̂n)

) P→ 0.

The Assumptions B1 and B2 are quite standard in the bootstrap literature, and
readily hold for general classes of statistics, such as estimators which are smooth
functions of means, U -statistics, L-statistics, estimators which are differentiable
functions of the empirical process, and so forth; see [11, 31] and Chapter 1 of [21].
Thus, our results apply to a wide range of problems. Under these assumptions,
the following theorem proves asymptotic control of the k-FWER of our bootstrap
method.

THEOREM 3.1. Fix P satisfying Assumption B1. Let Q̂n be an estimate of P

satisfying Assumption B2. Consider the method of Algorithm 2.1 with ĉn,K(1 −
α, k) given by bn,K(1 − α, k, Q̂n).

(i) Then lim supn k-FWERP ≤ α.
(ii) If P is such that i /∈ I (P ), that is, Hi is false and θi(P ) > 0, then the

probability that the step-down method rejects Hi tends to 1.

REMARK 3.1. Typically, one would like to choose test statistics that lead to
procedures that are balanced in the sense that all tests have about the same power
and contribute equally to error control, as argued by [5, 23] and [32]. Achieving
balance is best handled by appropriate choice of test statistics. For example, using
p-values as the basic statistics will lead to better balance. Quite generally, Be-
ran’s prepivoting transformation can lead to balance; see [5] and [6]. Alternatively,
balance can sometimes be achieved by Studentization.

We now briefly consider the two-sided case. Suppose Hi specifies θi(P ) = 0
against the alternative θi(P ) 
= 0. Let L′

n,K(k,P ) denote the distribution un-

der P of k- max(τn|θ̂n,i − θi(P )| : i ∈ K) with corresponding distribution func-
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tion L′
n,K(x, k,P ) and α-quantile b′

n,K(α, k,P ) = inf{x :L′
n,K(x, k,P ) ≥ α}. Ac-

cordingly, L′
K(k,P ) denotes the limiting distribution of L′

n,K(k,P ). Finally, let

T ′
n,i = τn|θ̂n,i |. The following theorem extends Theorem 3.1 to the two-sided case.

THEOREM 3.2. Fix P satisfying Assumption B1, but with LI(P )(k,P ) in As-
sumption B1(ii) replaced by L′

I (P )(k,P ). Let Q̂n be an estimate of P satisfy-
ing Assumption B2. Apply Algorithm 2.1 using the test statistics T ′

n,i and with

ĉn,K(1 − α, k) given by b′
n,K(1 − α, k, Q̂n).

(i) Then lim supn k-FWERP ≤ α.
(ii) If P is such that i /∈ I (P ), that is, Hi is false and θi(P ) 
= 0, then the

probability that the step-down method rejects Hi tends to 1.
(iii) Moreover, if the above algorithm rejects Hi and it is declared that θi > 0

when θ̂n,i > 0, the probability of making a Type 3 error [i.e., of declaring θi(P )

positive when it is negative or declaring it negative when it is positive] tends to 0.

So far, the bootstrap construction has been based on Algorithm 2.1. The fol-
lowing theorem shows that asymptotic control of the k-FWER is also achieved by
the computationally less expensive streamlined Algorithm 2.2. For brevity we only
focus on the one-sided case, that is, the setting of Theorem 3.1; the two-sided case
is similar.

THEOREM 3.3. Fix P satisfying Assumption B1. Let Q̂n be an estimate of P

satisfying Assumption B2. Consider the step-down method in Algorithm 2.2 with
ĉn,K(1 − α, k) replaced by bn,K(1 − α, k, Q̂n). Then the conclusions of Theorem
3.1 continue to hold.

REMARK 3.2. The proofs of both Theorems 3.1 and 3.3 rely on asymptotic
arguments. Nevertheless, some important differences should be pointed out. First,
the method based on Algorithm 2.1 is more conservative than the one based on the
streamlined Algorithm 2.2: the latter will reject all the hypotheses rejected by the
former and potentially some further ones.

Second, if instead of the estimated critical values bn,K(1 − α, k, Q̂n) the exact
critical values bn,K(1 − α, k,P ) could be used in place of ĉn,K(1 − α, k), then
Algorithm 2.1 would provide finite sample control of the k-FWER while Algo-
rithm 2.2 would not.

Third, the bootstrap construction based on Algorithm 2.1 provides asymptotic
control of the k-FWER in the case of contiguous alternatives while the construc-
tion based on Algorithm 2.2 may not. (An introduction to contiguity is given in
Section 12.3 of [18].)
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REMARK 3.3 (Operative method). The previous remark provides some mo-
tivation to base the bootstrap construction on the more conservative generic Al-
gorithm 2.1. On the other hand, its computational burden can be very high. To
compute the critical value d̂n,Aj

(1 − α, k) in the j th step, one has to evaluate

Nj = ( Rj

k−1

)
quantiles ĉn,K(1 − α, k) in order to then take the largest one of those.

Depending on Rj and k, this number Nj may be very large. Therefore, we now
suggest an operative method that retains some of the desirable properties of Al-
gorithm 2.1 while remaining always computationally feasible. The suggestion is
as follows. Pick a user specified number Nmax, say Nmax = 50, and let M be the
largest integer for which

( M
k−1

) ≤ Nmax. In step j of Algorithm 2.1, the critical
value is then computed as

d̂n,Aj
(1 − α, k) = max

I⊂{rmax{1,|Rj |−M+1},...,r|Rj |},|I |=k−1
{ĉn,K(1 − α, k) :K = Aj ∪ I }.

That is, we maximize over subsets I not necessarily of the entire index set Rj

of previously rejected hypotheses, but only of the index set corresponding to the
M least significant hypotheses rejected so far. (Of course, when M ≥ |Rj |, we
maximize over all subsets I of Rj of size k − 1.) The philosophy of this opera-
tive method is to be as close as possible to the generic Algorithm 2.1, given the
limitation to the computational burden expressed by Nmax. Finally, note that the
streamlined algorithm is a special case of the operative method when Nmax = 1 is
chosen, resulting in M = k − 1.

3.2. A general subsampling construction. In this subsection, we present an al-
ternative construction of critical values in our step-down procedure by using sub-
sampling. Unlike the previous subsection, we do not assume Hi is concerned with
the test of a parameter θi ; the approach here is quite general and will hold un-
der weaker asymptotic conditions as well. For any K ⊂ {1, . . . , s}, let Gn,K(P )

be the joint distribution of the statistics Tn,i , i ∈ K , under P , with correspond-
ing joint c.d.f. Gn,K(x,P ), x ∈ R

|K|. Also, let Hn,K(k,P ) denote the distribution
of k- max(Tn,i : i ∈ K) under P . As in Section 2.1, let cn,K(1 − α, k,P ) denote a
1 − α quantile of Hn,K(k,P ).

We will make the following general assumption.

ASSUMPTION S. Under P , the joint distribution of the test statistics Tn,i , i ∈
I (P ), has a limiting distribution; that is,

Gn,I (P )(P )
L→ GI(P )(P ).(23)

This implies that, under P , k- max(Tn,i : i ∈ I (P )) has a limiting distribution,
say HI(P )(k,P ), with limiting c.d.f. HI(P )(x, k,P ). Let cI (P )(α, k,P ) denote an
α-quantile of HI(P )(k,P ); that is,

cI (P )(α, k,P ) = inf
{
x :HI(P )(x, k,P ) ≥ α

}
.
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We will assume further that HI(P )(x, k,P ) is continuous and strictly increasing at
x = cI (P )(1 − α, k,P ).

Note that the above continuity condition is satisfied if the |I (P )| univariate mar-
ginal distributions of GI(P )(P ) are continuous; see Lemma A.1. Also, the strictly
increasing assumption can be removed; see Remark 1.2.1 of [21].

We now detail the general subsampling construction. To this end, assume that
we have available an i.i.d. sample X1, . . . ,Xn from P , and Tn,i = Tn,i(X1, . . . ,Xn)

is the test statistic we wish to use for testing Hi . To describe the test construction,
fix a positive integer b < n and let Y1, . . . , YNn be equal to the Nn := (n

b

)
subsets of

{X1, . . . ,Xn}, ordered in any fashion. Let T
(a)
b,i be equal to the statistic Tb,i evalu-

ated at the data set Ya , for a = 1, . . . ,Nn. Then, for any subset K ⊂ {1, . . . , s}, the
joint distribution of (Tn,i : i ∈ K) can be approximated by the empirical distribu-
tion of the Nn values {T (a)

b,i : i ∈ K}. In other words, for x ∈ R
s , the true joint c.d.f.

of the test statistics evaluated at x,

Gn,{1,...,s}(x,P ) = P {Tn,1 ≤ x1, . . . , Tn,s ≤ xs},
is estimated by the subsampling distribution

Ĝn,{1,...,s}(x) = 1

Nn

∑
a

I
{
T

(a)
b,1 ≤ x1, . . . , T

(a)
b,s ≤ xs

}
.(24)

Note that the marginal distribution of any subset K ⊂ {1, . . . , s}, Gn,K(P ), is then
approximated by the marginal distribution induced by (24) on that subset of vari-
ables. So, Ĝn,K refers to the empirical distribution of the values {T (a)

n,i : i ∈ K}.
(In essence, one only has to estimate one joint sampling distribution for all the
test statistics because this then induces that of any subset, even though we are not
assuming anything like subset pivotality.)

Similarly, the estimate of the whole joint distribution of test statistics induces
an estimate for the distribution of the maximum or kth largest of test statistics.
Specifically, Hn,K(k,P ) is estimated by the empirical distribution Ĥn,K(x, k) of
the values k- max(T

(a)
n,i : i ∈ K); that is,

Ĥn,K(x, k) = 1

Nn

∑
a

I
{
k- max

(
T

(a)
b,i : i ∈ K

) ≤ x
}
.

Also, let

ĉn,K(1 − α, k) = inf{x : Ĥn,K(x, k) ≥ 1 − α}(25)

denote the estimated 1 − α quantile of the k- max of test statistics Tn,i with i ∈ K .
Note the monotonicity of the critical values: for I ⊂ K

ĉn,K(1 − α, k) ≥ ĉn,I (1 − α, k).(26)

This simple observation together with Theorem 2.1 immediately yields:
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COROLLARY 3.2. Under the setup and notation of this subsection, consider
Algorithm 2.1 with critical values given by (25). Then

k-FWERP ≤ P
{
k- max

(
Tn,i : i ∈ I (P )

)
> ĉn,I (P )(1 − α, k)

}
.(27)

The following result proves consistency and k-FWER control of our step-down
algorithm based on these subsample estimates of critical values. Note, in partic-
ular, that Assumption B2 is not needed here at all, a reflection of the fact that
the bootstrap requires much stronger (local uniform convergence) assumptions for
consistency; see [21].

THEOREM 3.4. Suppose Assumption S holds. Let b/n → 0, τb/τn → 0 and
b → ∞.

(i) The subsampling approximation satisfies ρ(Ĝn,I (P ),Gn,I (P )(P ))
P→ 0 for

any metric ρ metrizing weak convergence on R
|I (P )|.

(ii) The subsampling critical values satisfy ĉn,I (P )(1−α, k)
P→ cI (P )(1−α, k).

(iii) Therefore, using Algorithm 2.1 with ĉn,K(1 − α, k) given by (25) results in
lim supn k-FWERP ≤ α.

The above approach can be extended to dependent data; see [21].

4. Asymptotic results on FDP control. In some applications, one might be
willing to tolerate a larger number of false rejections in case the total number of
rejections is large. In other words, one might be willing to tolerate a certain (small)
fraction of false rejections out of the total rejections. This leads to control based
on the false discovery proportion (FDP). Let F be the number of false rejections
made by a multiple testing procedure and let R be the total number of rejections.
Then the FDP is defined as

FDP =



F

R
, if R > 0,

0, if R = 0.

A multiple testing procedure is said to control the FDP at level α if, for the given
sample size n, P {FDP > γ } ≤ α, for all P . A multiple testing procedure is said to
asymptotically control the FDP at level α, if lim supn P {FDP > γ } ≤ α, for all P .
Our focus will be on procedures that provide asymptotic control. Notice that a
procedure satisfying P {FDP > γ } ≤ 0.5 guarantees that the median of the FDP
is ≤ γ . The main goal of this section is to construct a method which provides
asymptotic control of the FDP.

The approach we propose is built upon an underlying procedure that (asymptot-
ically) controls the k-FWER for any fixed k ≥ 1. We then sequentially apply this
k-FWER procedure for k = 1,2, . . . until a stopping rule indicates termination. In
the end, we reject all hypotheses that were rejected in the last round of applying
the k-FWER procedure.
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ALGORITHM 4.1 (Generic method for control of the FDP).

1. Let j = 1 and let k1 = 1.
2. Apply the kj -FWER procedure and denote by Nj the number of hypotheses it

rejects.
3. (a) If Nj < kj/γ − 1, stop and reject all hypotheses rejected by the

kj -FWER procedure.
(b) Otherwise, let j = j + 1 and then kj = kj−1 + 1. Return to Step 2.

Note that the algorithm does not assume anything about the nature of the un-
derlying k-FWER procedure. However, in order to reject as many false hypotheses
as possible while maintaining (asymptotic) control of the FDP, we suggest to em-
ploy a stepwise procedure that accounts for the dependence structure of the test
statistics Tn,i . Algorithm 4.1 is similar to the proposal of [15] for FDP control
which is, however, restricted to a multivariate permutation model. The proposal of
[15] is heuristic in the sense that they cannot guarantee finite sample or asymp-
totic control of the FDP even if the permutation hypothesis is valid. However, we
will show asymptotic control (and simulations presented later show good finite
sample control). The theorem below considers a general bootstrap construction
where the individual tests are one-sided and concern univariate parameters θi(P ).
The bootstrap construction for two-sided tests and the more general subsampling
construction can be handled similarly.

THEOREM 4.1. Consider the setup of Theorem 3.1. Fix P satisfying As-
sumption B1. Let Q̂n be an estimate of P satisfying Assumption B2. Employ the
step-down procedure of Algorithm 2.1 with ĉn,K(1 − α, k) replaced by bn,K(1 −
α, Q̂n, k) as the underlying k-FWER procedure. Then the following statements
concerning Algorithm 4.1 are true:

(i) lim supn P {FDP > γ } ≤ α.
(ii) If P is such that i /∈ I (P ), that is, Hi is false and θi(P ) > 0, then the

probability that the method rejects Hi tends to 1.

REMARK 4.1. The theorem remains valid if the bootstrap k-FWER procedure
is based on the operative method of Remark 3.3 or the streamlined Algorithm 2.2
instead of the generic Algorithm 2.1. But, again, in view of finite sample perfor-
mance, we suggest the use of the generic Algorithm 2.1 if feasible or at least the
use of the operative method.

5. Comparison with related methods. We have proposed step-down proce-
dures that control the k-FWER and the FDP, with the goal of improving upon
methods that do not attempt to incorporate or estimate the dependence structure
between the test statistics or p-values. An alternative approach toward achieving
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this goal is given in [34]. We briefly discuss their proposal. (Note that resampling-
based procedures of [9] and [34], among others, are implemented in the open
source R package multtest released as part of the Bioconductor Project; see
cran.r-project.org and www.bioconductor.org.)

The approach of [34] begins with an initial procedure that controls the 1-FWER
(i.e., the usual FWER) and then rejects in addition the k − 1 most significant hy-
potheses not rejected so far. They coin this an augmentation procedure, since the
1-FWER rejection set is augmented by the k − 1 next most significant hypothe-
ses to arrive at the k-FWER rejection set. Obviously, if the 1-FWER procedure
succeeds in (asymptotically) controlling the 1-FWER, then the augmented proce-
dure provides (asymptotic) control of the k-FWER. However, this approach seems
suboptimal, because it makes the worst case assumption that, having achieved
1-FWER control, the k − 1 next most significant hypotheses are all true hypothe-
ses. Moreover, k − 1 additional hypotheses are always rejected, even if the test
statistics or p-values to which they correspond are clearly not significant. In addi-
tion, the approach really does not fully utilize the weaker measure of error control
afforded by using the k-FWER with k > 1, in that the augmentation method will
reject more than k − 1 hypotheses if and only if the 1-FWER controlling proce-
dure rejects some hypotheses, and this criterion may be too strong to admit any
rejections.

Our approach to control the k-FWER is based on knowing or estimating the
sampling distribution of a suitable k- max statistic, that is, the kth largest of the
s individual (possibly standardized) test statistics. A hypothesis is rejected if its
corresponding test statistic is large (relative to the estimated quantiles of the sam-
pling distribution of the k- max statistic), unlike the augmentation approach where
a hypothesis can be rejected even if its corresponding test statistic is not deemed
large by any measure.

To appreciate how the two approaches differ, first consider augmentation based
on the Holm procedure, given by (6) with k = 1. Other than the additional k − 1
hypotheses that are rejected after applying Holm, the procedure can only reject a
nontrivial number (k or more) if and only if the smallest p-value is ≤ α/s. On
the other hand, the generalized Holm procedure starts out with a great advantage;
the smallest p-value is compared with kα/s, a k-fold increase. While it is possible
for augmentation to reject more hypotheses, it can only reject k − 1 more than
the Holm procedure (and these additional rejections may be suspect because they
can correspond to large p-values), but the generalized Holm procedure can reject
many, many more.

Similar comparisons can be made with augmentation applied to a FWER con-
trolling procedure that attempts to account for the dependence structure (like the
ones in this paper with k = 1). Augmentation might reject k − 1 more hypotheses
than the ones we propose here, but our methods can easily reject many more. Note
that, if the test statistics or p-values are independent, then augmentation of a boot-
strap method that controls the FWER still cannot produce anything much better
than the Holm method.

http://cran.r-project.org
www.bioconductor.org
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The comparison is similar for the procedures controlling the FDP. Our approach
is to sequentially apply a k-FWER procedure for k = 1,2, . . . until a stopping rule
indicates termination. On the other hand, [34] again augment the rejection set of an
initial 1-FWER procedure. The idea now is as follows. Let R denote the number
of rejections by the 1-FWER procedure. Then reject in addition the D next most
significant hypotheses where D is the largest integer which satisfies

D

D + R
≤ γ.

Again, if the 1-FWER procedure succeeds in (asymptotically) controlling the
1-FWER, then the augmented procedure provides (asymptotic) control of the FDP.
But also again, this approach seems pessimistic in that it makes the worst case
assumption that, having achieved 1-FWER control, the D next most significant
hypotheses are all true hypotheses.

The next section compares the finite sample performance of the two approaches.

6. Simulation study. This section presents a small simulation study in the
context of testing population means. We generate random vectors X1, . . . ,Xn

from an s-dimensional multivariate normal distribution with mean vector θ =
(θ1, . . . , θs), where n = 100 and s = 50 or s = 400. The null hypotheses are
Hi : θi ≤ 0 and the alternative hypotheses are Hi : θi > 0. The test statistics are
Tn,i = √

nX̄i,·/Si , where

X̄i,· = 1

n

n∑
j=1

Xi,j

and

S2
i = 1

n − 1

n∑
j=1

(Xi,j − X̄i,·)2.

The individual means θi are equal to either 0 or 0.25. The number of means
equal to 0.25 is 0, 10, 25 or 50 when s = 50 and 0, 100, 200 or 400 when s = 400.
The covariance matrix is of the common correlation structure σi,i = 1 and σi,j = ρ

for i 
= j . We consider the three values ρ = 0.0, 0.5 and 0.8. Other specifications of
the covariance matrix do not lead to results that are qualitatively different; see [27].

We include the following multiple testing procedures in the study. The value of
k is k = 3 when s = 50 and k = 10 when s = 400. The nominal level is α = 0.05,
unless indicated otherwise.

• (1-Boot) The bootstrap 1-FWER construction of Section 3.1. (This construction
is equivalent to the FWER maxT procedure of [9].)

• (k-Aug) The k-FWER augmentation procedure of [34].
• (k-gH) The k-FWER generalized Holm procedure described by (6).
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• (k-Boot) The bootstrap k-FWER construction of Section 3.1.
• (Aug0.1) The FDP augmentation procedure of [34] with γ = 0.1.
• (EB0.1) The empirical Bayes FDP procedure of [33] with γ = 0.1.
• (LR0.1) The FDP procedure of [17] with γ = 0.1; see (7).
• (Boot0.1) The bootstrap FDP construction of Section 4 with γ = 0.1.
• (BootMed

0.1 ) The bootstrap FDP construction of Section 4 with γ = 0.1 but nomi-
nal level α = 0.5. Therefore, this procedure asymptotically controls the median
FDP to be bounded above by γ = 0.1.

The augmentation procedures k-Aug and Aug0.1 are both based on the step-down
1-Boot construction as the initial 1-FWER controlling procedure. The k-Boot pro-
cedure is based on the operative method with Nmax = 50; see Remark 3.3. The
estimate Q̂n employed in the bootstrap is the empirical distribution of the ob-
served data; and for each simulated data set, the same set of B = 500 resamples
is shared by all bootstrap procedures. The individual p-values for k-gH and LR0.1
are derived from the relation Tn,i ∼ tn−1 under Hi .

The performance criteria are (i) the empirical k-FWERs and FDPs, compared
to the nominal level α = 0.05 (or α = 0.5 for the method controlling the median
FDP); and (ii) the average number of false hypotheses rejected. Since the k-Aug
procedure rejects the k − 1 most significant hypotheses regardless of the data, we
also follow this route for the k-gH and k-Boot procedures to ensure a fair compar-
ison as far as (ii) is concerned (though the differences are really negligible if this
route is not followed for the k-gH and k-Boot procedures). The results are pre-
sented in Table 1 for s = 50 and in Table 2 for s = 400. They can be summarized
as follows.

• Almost all methods provide satisfactory finite sample control of their respective
k-FWER or FDP criteria. In particular, the finite sample control does not appear
to deteriorate when the number of hypotheses is increased from s = 50 to s =
400, while the sample size is kept fixed at n = 100.

• The exception is EB0.1, which can be quite liberal, in particular when s = 50 and
all null hypotheses are true. As acknowledged to us by the authors of [33], this
method is not consistent when all null hypotheses are true and they advocate its
use only in settings when false null hypotheses can be anticipated. We provide
a brief explanation in Appendix A.

• The relative power of the conservative methods k-gH and LR0.1 compared to the
procedures based on the bootstrap k-Aug and k-Boot decreases as the common
correlation ρ increases.

• Depending on context, k-Boot can detect many more false alternatives compared
to 1-Boot. The same is not true for k-Aug, since, by design, it detects at most
k − 1 more false hypotheses compared to 1-Boot. So especially when s is large,
this approach appears suboptimal. Even the conservative k-gH method can be
more powerful than the augmentation method for large s.
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TABLE 1
Empirical FWEs and FDPs expressed as percentages (in the rows “Control”) and average number
of false hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50.

The nominal level is α = 5%, apart from the last column where it is α = 50%. The number of
repetitions is 5,000 per scenario and the number of bootstrap resamples is B = 500

1-Boot 3-Aug 3-gH 3-Boot Aug0.1 EB0.1 LR0.1 Boot0.1 BootMed
0.1

Common correlation: ρ = 0

All θi = 0
Control 5.0 5.0 0.0 4.6 5.0 29.5 4.9 5.0 52.3
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θi = 0.25
Control 4.8 0.1 0.0 3.1 4.8 24.1 4.4 4.8 47.6
Rejected 2.6 4.5 3.9 6.3 2.6 5.0 2.6 2.6 6.3

Twenty-five θi = 0.25
Control 3.3 0.0 0.0 2.2 1.9 4.5 2.1 3.0 39.1
Rejected 6.9 8.9 9.5 16.7 7.2 15.5 7.2 7.8 21.3

All θi = 0.25
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 14.9 16.9 19.2 42.3 16.2 46.8 21.3 45.3 50.0

Common correlation: ρ = 0.5

All θi = 0
Control 5.3 5.3 1.6 5.3 5.3 13.1 3.0 5.3 50.7
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θi = 0.25
Control 5.0 2.9 1.4 4.5 4.1 9.2 2.6 4.7 49.0
Rejected 3.4 5.2 4.3 5.6 3.4 5.0 2.7 3.4 8.3

Twenty-five θi = 0.25
Control 4.3 2.0 0.1 4.4 2.8 8.4 1.6 4.5 47.2
Rejected 8.7 10.6 9.6 14.2 9.2 13.9 7.8 10.4 22.8

All θi = 0.25
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 20.2 22.0 19.2 33.0 21.5 39.3 22.5 30.6 48.9

Common correlation: ρ = 0.8

All θi = 0
Control 4.9 4.9 1.3 5.2 4.9 6.6 1.4 4.9 50.0
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θi = 0.25
Control 5.1 5.1 1.4 4.9 4.1 6.6 1.6 4.9 49.2
Rejected 4.8 6.3 4.6 6.4 4.9 5.1 2.7 4.9 9.3

Twenty-five θi = 0.25
Control 4.6 4.6 0.1 4.5 4.5 7.4 1.6 4.5 48.0
Rejected 12.2 13.8 9.9 15.5 12.8 14.7 7.8 13.5 23.9

All θi = 0.25
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 27.1 28.4 19.5 33.7 27.9 38.0 21.4 33.1 49.0
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TABLE 2
Empirical FWEs and FDPs expressed as percentages (in the rows “Control”) and average number

of false hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and
s = 400. The nominal level is α = 5%, apart from the last column where it is α = 50%. The number

of repetitions is 5,000 when all θi = 0 and 2,000 for all other scenarios; and the number of
bootstrap resamples is B = 500

1-Boot 10-Aug 10-gH 10-Boot Aug0.1 EB0.1 LR0.1 Boot0.1 BootMed
0.1

Common correlation: ρ = 0

All θi = 0
Control 5.0 5.0 0.0 1.6 4.9 4.4 4.8 4.9 54.4
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

One hundred θi = 0.25
Control 4.3 0.0 0.0 0.5 1.0 1.7 1.5 1.7 41.0
Rejected 10.9 19.8 28.2 59.4 11.7 44.9 14.2 29.7 68.7

Two hundred θi = 0.25
Control 2.7 0.0 0.0 0.4 0.0 0.1 0.0 0.4 29.9
Rejected 22.0 31.1 56.1 126.0 24.2 155.0 43.8 146.1 173.0

All θi = 0.25
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 45.4 54.4 112.4 341.1 50.5 390.0 153.7 400.0 400.0

Common correlation: ρ = 0.5

All θi = 0
Control 5.5 5.5 0.1 5.5 5.5 5.5 2.2 5.5 51.4
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

One hundred θi = 0.25
Control 4.9 0.4 0.5 4.4 0.5 8.0 0.7 4.2 50.5
Rejected 18.3 27.2 29.8 48.2 20.0 37.7 17.9 34.0 86.3

Two hundred θi = 0.25
Control 5.0 0.4 0.5 5.1 0.3 7.8 1.1 5.0 50.2
Rejected 38.3 47.2 57.1 99.3 42.4 106.3 51.1 92.7 183.7

All θi = 0.25
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 84.3 93.3 114.0 237.7 93.0 314.9 169.8 282.7 395.5

Common correlation: ρ = 0.8

All θi = 0
Control 5.3 5.3 0.1 5.2 5.3 5.3 0.7 5.3 51.3
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

One hundred θi = 0.25
Control 4.9 4.1 0.5 4.5 4.9 6.2 0.7 4.5 50.8
Rejected 36.2 44.3 31.6 57.7 39.0 47.8 19.2 49.2 95.0

Two hundred θi = 0.25
Control 5.4 4.2 0.1 5.4 5.4 6.6 1.2 5.4 50.5
Rejected 74.3 82.5 59.3 116.3 80.3 115.4 52.4 112.6 192.9

All θi = 0.25
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 165.7 172.8 117.0 255.1 174.4 301.9 149.5 275.3 392.8
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• The comparison is similar for the various FDP procedures. Of all the procedures
that provide satisfactory finite sample control, Boot0.1 is the most powerful one.
Aug0.1 becomes uncompetitive when s is large and can even be outperformed
by the conservative LR0.1 method. Note that EB0.1 is often more powerful than
Boot0.1, but given that its overall finite sample control is not satisfactory, one
should be cautious in using this method.

• The power advantage of k-Boot and Boot0.1 over 1-Boot diminishes as the com-
mon correlation ρ increases. (As a result, the same is true for the power ad-
vantages of k-Boot over k-Aug and of Boot0.1 over Aug0.1, resp.) This is not
surprising. Take the extreme case of ρ = 1 in our simulation set-up where all
nonzero means are equal. In this case 1-Boot rejects either no false hypotheses
or all false hypotheses. On the other hand, k-Boot rejects either at most k − 1
false hypotheses (when the k − 1 most significant hypotheses are rejected re-
gardless) or also all false hypotheses. (Note that the 1-max of the “alternative”
test statistics will be equal to the k-max of the “alternative” test statistics and
analogously for the “null” test statistics.) This implies a minimal power gain of
k-Boot over 1-Boot compared to the case of ρ = 0 where the additional number
of rejected false hypotheses can far exceed k − 1.

The procedure controlling the median FDP (last column) is always the most
powerful one. However, it should be understood that it is philosophically different
from the other FDP controlling procedures. If P {FDP > 0.1} ≤ 0.05 is achieved,
then, in a given application, one can be 95% confident that the realized FDP is at
most 0.1. On the other hand, if P {FDP > 0.1} ≤ 0.5 is achieved (i.e., control of
the median FDP), then, in a given application, one can only be 50% confident that
the realized FDP is at most 0.1. So, loosely speaking, there is a good chance that
the realized FDP ends up greater than 0.1, and perhaps by quite a bit. Romano and
Wolf [27] examine this issue in more detail by looking at the sampling distribu-
tion of the FDP in various scenarios when the median FDP is controlled; see their
Figure 1. Depending on the underlying dependence structure, this sampling distri-
bution can exhibit significant variation. As a result, the realized FDP may well be
quite above γ = 0.1.

A similar problem arises in controlling the false discovery rate (FDR), as pro-
posed by [1]. The FDR is the expected value of the FDP. Like the median FDP, it
is also a measure of central tendency of the sampling distribution of the FDP. In a
given application, the realized FDP can be quite far away from its expected value,
the FDR, as made clear in [15].

Finally, some further simulations comparing the augmentation procedures of
[34] and the procedures of [17] can be found in [8].

7. Concluding remarks. We have shown how computationally feasible step-
down methods can be constructed to control generalized error rates in multiple
testing. On the one hand, we have considered the k-FWER, which is defined as the
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probability of making k or more false rejections. This concept would be appropri-
ate when a given number of false rejections can be tolerated. On the other hand, we
have also considered the FDP, which is the ratio of false rejections out of the total
number of rejections (and defined to be zero when there are no rejections). This
concept would be appropriate when a certain proportion of false rejections can be
tolerated. Some simulations have shown that these less strict methods can reject
many more false hypotheses compared to the traditional FWER control, especially
when the number of hypotheses under test is large.

Our step-down methods (asymptotically) account for the dependence structure
across test statistics. As a result, they are more powerful than the generalized Holm
step-down methods of [14] and [17], which are based on individual p-values and
designed to handle a “worst case” dependence structure. An alternative approach
that also accounts for the dependence structure across test statistics is the augmen-
tation approach of [34]. However, simulations show their methods are noticeably
less powerful, especially when the number of hypotheses under test is large. The
empirical Bayes method of [33] can sometimes be more powerful than our boot-
strap approach for FDP control. However, it also can be quite liberal and it does
not offer asymptotic control of the FDP when all null hypotheses are true. Over-
all, our methods for control of the k-FWER and FDP appear competitive with or
outperform currently available methods.

APPENDIX A: PROOFS

PROOF OF THEOREM 2.1. Assume |I (P )| ≥ k, or there is nothing to prove.
Consider the event that at least k true null hypotheses are rejected. Let ĵ

be the (random) smallest index j in the algorithm where this occurs, so that
k- max(Tn,i : i ∈ I (P )) > d̂n,A

ĵ
(1 − α, k). By definition of ĵ (now fixed), I (P ) ⊂

A
ĵ

∪ I0, where I0 is some set of indices satisfying I0 ⊂ R
ĵ

and |I0| = k − 1. Let
L be any set of indices of false null hypotheses (not necessarily uniquely defined)
which satisfy A

ĵ
∪ I0 = I (P ) ∪ L. Since d̂n,A

ĵ
(1 − α, k) is defined by taking the

maximum over sets I of ĉn,K(1 − α, k) with K = A
ĵ
∪ I as I varies over indices

satisfying I ⊂ R
ĵ

and |I | = k − 1, it follows that d̂n,A
ĵ
(1 − α, k) ≥ ĉn,I (P )∪L(1 −

α, k). By the monotonicity assumption, ĉn,I (P )∪L(1−α, k) ≥ ĉn,I (P )(1−α, k). To
summarize, the event that at least k true null hypotheses are rejected implies that

k- max
(
Tn,i : i ∈ I (P )

)
> ĉn,I (P )(1 − α, k)

and so (i) follows. Part (ii) follows immediately from (i). �

LEMMA A.1. Let k ≤ s. (i) The k-max function is continuous; that is, if yn =
(yn,1, . . . , yn,s) ∈ R

s and yn → y ∈ R
s , then, as n → ∞, k- max(yn,1, . . . , yn,s) →

k- max(y1, . . . , ys).
(ii) If Yn ∈ R

s and Yn
L→ Y , then k- max(Yn,1, . . . , Yn,s)

L→ k- max(Y1, . . . , Ys).
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(iii) Furthermore, if each Yi in (ii) has a continuous marginal distribution, then
the distribution of k- max(Y1, . . . , Ys) is continuous.

PROOF. Part (i) is trivial, and the continuous mapping theorem then implies
(ii). To prove (iii), P {k- max(Y1, . . . , Ys) = x} ≤ ∑s

i=1 P {Yi = x}. �

PROOF OF THEOREM 3.1. To prove (i), by Corollary 3.1 it is sufficient to
show that

lim sup
n

P
{
k- max

(
Tn,i : i ∈ I (P )

)
> bn,I (P )(1 − α, k, Q̂n)

} ≤ α.(28)

Since θi(P ) ≤ 0 for i ∈ I (P ), it follows that

k- max
(
Tn,i : i ∈ I (P )

) = k- max
(
τnθ̂n,i : i ∈ I (P )

)
≤ k- max

(
τn[θ̂n,i − θi(P )] : i ∈ I (P )

)
.

Therefore, the left-hand side of (28) is bounded above by

lim
n

P
{
k- max

(
τn[θ̂n,i − θi(P )] : i ∈ I (P )

)
> b̂n,I (P )(1 − α, k, Q̂n)

}
.(29)

Assumptions B1 and B2 together with the continuous mapping theorem imply that

ρ
(
Ln,I (P )(k,P ),Ln,I (P )(k, Q̂n)

) P→ 0,

for any metric ρ metrizing weak convergence on R. Hence, it follows that (29) is
equal to α, by an argument very similar to the proof of Theorem 1 of [3].

To prove (ii), assume θi(P ) > 0. Assumptions B1 and B2 together imply
that bn,A1(1 − α, k, Q̂n) is stochastically bounded, where A1 = {1, . . . , s}. Fur-
thermore, by the continuous mapping theorem, τn[θ̂i,n − θi(P )] has a limiting

distribution, so Tn,i = τnθ̂i,n
P→ ∞. Therefore, with probability tending to one,

Tn,i > bn,A1(1 − α, k, Q̂n), resulting in the rejection of Hi in the first step of Al-
gorithm 2.1. �

PROOF OF THEOREM 3.2. The proof is completely analogous to the proof of
Theorem 3.1. The only additional fact needed to prove (iii) is that, when θi(P ) > 0,
τnθ̂n,i > 0 with probability tending to one, and similarly for θi(P ) < 0. Indeed, As-
sumption B1(i) implies τn[θ̂n,i − θi(P )] has a limiting distribution, which implies

τnθ̂n,i
P→ ∞ when θi(P ) > 0, and τnθ̂n,i

P→ −∞ when θi(P ) < 0. �

PROOF OF THEOREM 3.3. To prove (i), note that by reasoning similar to

before, min(Tn,i : i /∈ I (P ))
P→ ∞. On the other hand, max(Tn,i : i ∈ I (P )) is

either bounded in probability, in case θi(P ) = 0 for at least one i ∈ I (P ), or
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max(Tn,i : i ∈ I (P ))
P→ −∞, in case θi(P ) < 0 for all i ∈ I (P ). Therefore, the

event

min
(
Tn,i : i /∈ I (P )

)
> max

(
Tn,i : i ∈ I (P )

)
(30)

has probability tending to 1. But if the event (30) happens, then the rejected true
hypotheses (if such exist) will always be the least significant hypotheses among the
rejected hypotheses at any stage. This together with the monotonicity of the critical
values bn,K(1 − α, k, Q̂n) allows us to follow asymptotic control of the k-FWER
from (28) even when Algorithm 2.2 is used. But (28) was already established in
the proof of Theorem 3.1.

The proof of (ii) is identical to the proof of (ii) of Theorem 3.1. �

PROOF OF THEOREM 3.4. The proof of (i) is the essential subsampling ar-
gument, which derives from (24) being a U-statistic; see Theorem 2.6.1 of [21]
where one statistic is treated, but the argument is extendable to the simultaneous
estimation of the joint distribution. The result (ii) follows as well. To prove (iii),
note that by Corollary 3.2 it is sufficient to show that

lim sup
n

P
{
k- max

(
Tn,i : i ∈ I (P )

)
> ĉn,I (P )(1 − α, k)

} ≤ α.(31)

But part (ii) of the theorem implies, for any ε > 0,

ĉn,I (P )(1 − α, k) ≥ cI (P )(1 − α, k) − ε with probability → 1.

Therefore, using Assumption S, the limit superior of the probability of violation of
the k-FWER criterion is bounded above, for any ε > 0, by

lim sup
n

k-FWERP ≤ P
{
k- max

(
Ti, i ∈ I (P )

)
> cI (P )(1 − α) − ε

}
,

where (Ti, i ∈ I (P )) denote variables whose joint distribution is GI(P )(P ). But
letting ε → 0, the right-hand side of the last expression becomes

1 − HI(P )

(
cI (P )(1 − α),P

) = 1 − (1 − α) = α. �

PROOF OF THEOREM 4.1. To prove (i), note that by reasoning similar to the
proof of part (i) of Theorem 3.3, with probability tending to one, all false hypothe-
ses are rejected before any true hypothesis comes under scrutiny. Therefore, with
probability tending to 1, a violation of the FDP criterion occurs if and only if the
event

F >
γ

1 − γ

(
s − |I (P )|)(32)

occurs, where F is the number of true hypotheses rejected by Algorithm 4.1.
Let F(k) denote the number of true hypotheses rejected by the bootstrap
k-FWER procedure. Furthermore, let k∗ denote the smallest integer greater than
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(γ /(1 − γ ))(s − |I (P )|). Assume |I (P )| ≥ k∗ or there is nothing to prove. By the
above argument, we therefore have

lim sup
n

P {FDP > γ } = lim sup
n

P {F ≥ k∗}
≤ lim sup

n
P {F(k∗) ≥ k∗}(33)

≤ α [by part (ii) of Theorem 3.1].

To see that (33) holds true, note the following two facts. First, the bootstrap
k-FWER procedure is monotone in k: any hypothesis rejected by the k1-FWER
procedure will also be rejected by the k2-FWER procedure as long as k1 < k2.
Second, according to step 3(a) of Algorithm 4.1, the algorithm terminates with the
application of the k∗-FWER procedure, or even before then, if

Nk∗ <
k∗

γ
− 1.(34)

In case all false hypotheses are rejected first, the event (34) happens if and only if

k∗ >
γ

1 − γ

(
s − I (P ) − [F(k∗) − (k∗ − 1)]).(35)

By the definition of k∗, the inequality (35) will hold as long as F(k∗) ≤ k∗ − 1.
Therefore, the event F(k∗) ≤ k∗ − 1 implies that (1) F(k) ≤ k∗ − 1 for any k <

k∗; and that (2) Algorithm 4.1 terminates with the application of the k∗-FWER
procedure, or even before then, if all false hypotheses are rejected first (which
happens with probability tending to 1). These two facts together demonstrate the
validity of (33).

The proof of (i) follows immediately from part (ii) of Theorem 3.1. �

APPENDIX B

We briefly argue why the method in [33] does not provide even asymptotic
control of the FDP when all null hypotheses are true. For this, assume there is
one null hypothesis, so s = 1 (or m = 1 in the notation of [33]); the argument
generalizes to arbitrary s. Control of the FDP when s = 1 reduces to control of
the FWER, so the probability of rejecting a true null hypothesis must be bounded
above by α.

Suppose X1, . . . ,Xn are i.i.d. N(θ,1). Consider testing the null hypothesis H :
θ = 0 against θ > 0. Let Tn = Tn,1 = n−1/2 ∑n

i=1 Xi . Let �(·) denote the c.d.f. of
the standard normal distribution and φ(·) its density.

Under H , Tn ∼ N(0,1) and so f0 (in the notation of [33]) is φ. The algorithm
of [33] simplifies to the following:

1. If Tn ≤ 0, let π = 1; otherwise, let π = φ(Tn)/φ(0).
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2. Determine c as the solution to π(1 − �(c)) = α. That is, c = �−1(1 − α/π),
with �−1(λ) defined as −∞ for λ ≤ 0.

3. Reject H if Tn > c.

Now assume θ = 0. Since �−1(1 − α/π) < �−1(1 − α) with positive proba-
bility, H is rejected with probability greater than α. Moreover, π does not even
converge to 1 in probability [since Tn has a nondegenerate N(0,1) distribution
for every n, and asymptotically in typical nonparametric problems]. As an exam-
ple, for α = 0.05, a numerical simulation based on 100,000 repetitions results in a
rejection probability of 0.107.
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