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Consider the following multi-phase project management problem. Each
project is divided into several phases. All projects enter the next phase at the
same point chosen by the decision maker based on observations up to that
point. Within each phase, one can pursue the projects in any order. When
pursuing the project with one unit of resource, the project state changes ac-
cording to a Markov chain. The probability distribution of the Markov chain
is known up to an unknown parameter. When pursued, the project generates
a random reward depending on the phase and the state of the project and the
unknown parameter. The decision maker faces two problems: (a) how to al-
locate resources to projects within each phase, and (b) when to enter the next
phase, so that the total expected reward is as large as possible. In this paper we
formulate the preceding problem as a stochastic scheduling problem and pro-
pose asymptotic optimal strategies, which minimize the shortfall from perfect
information payoff. Concrete examples are given to illustrate our method.

1. Introduction. We first formulate the multi-phase project management
problem as that of optimally scheduling a number of jobs. Suppose that a sin-
gle machine is available to process U jobs. Each job belongs to one job group and
there are I job groups all together. Within each group, the job can be processed
in any order. However, there exists a predetermined order among job groups. That
is, after leaving the current job group, there is no return to it in the future. The
state of a job under processing evolves as a Markov chain and earns rewards as
it is processed, not otherwise. The time-varying reward distribution depends on
an unknown parameter θ . The objective is to minimize the shortfall from per-
fect information payoff, which is the difference between the optimal reward when
the parameter is known and that when it is unknown. We establish an asymp-
totic lower bound on this difference and construct policies which attain the lower
bound. Clearly the preceding stochastic scheduling problem is the same as the
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multi-phase project management problem when we identify jobs in the same group
with projects in the same phase.

To solve the proposed stochastic scheduling problem, we need to resolve two is-
sues. First, our solution must prescribe how to process jobs within the same group.
Secondly, the solution needs to stipulate the timing of leaving the current job group
and entering the next one. All existing methods address only one of the two issues.
As one shall see, to address these two issues simultaneously requires new ideas as
well as nontrivial combination of existing methods.

The advantages of efficient strategies constructed in Section 4 are three-fold.

• They address the two crucial issues described in the previous paragraph simul-
taneously.

• They are still optimal, if we consider constant switching cost from one project
to another.

• When the bad set (see Section 2.4 for definition) is empty the strategy is super-
efficient in the sense of attaining o(logN) regret (see Section 2.2 for definition).

If the parameter θ were known, the best policy would be to process only the
job with greatest one-step expected reward. In ignorance of θ , an optimal policy
needs to trade off a reduced reward in exchange for information on θ . The key to
the optimal trade-off is the construction of a strategy that achieves the asymptotic
lower bound for the shortfall from the complete information payoff, which we
shall refer to as regret hereafter. Although dynamic programming and the Gittins
index rule (cf. [8]) have been developed to solve a general class of adaptive control
problems, to which the proposed problem belongs, computational difficulty makes
them less applicable. One reason for adopting the approach described here is to
obtain an explicit solution which is easy to implement.

This approach was first introduced by Lai and Robbins [16] and generalized by
Anantharam, Varaiya and Walrand [3] and Lai [15]. When there is only one job
group and the rewards from each job are independent and identically distributed
(i.i.d.), the preceding control problem is the classical multi-armed bandit problem;
see [4, 8, 21]. When there is only one job in each group and rewards are i.i.d., it
is the irreversible multi-arm bandit problem studied by Hu and Wei [13], whereas
Hu and Lee [12] considered the same problem under a Bayesian setting. Fuh and
Hu [7] investigated the irreversible multi-armed bandit problem with Markovian
rewarding. Agrawal, Teneketzis and Anantharam [1, 2] studied controlled i.i.d.
processes and Markov chains in finite parameter and state spaces. They introduced
the concept of bad sets and showed that it plays an important role in the solution
of the adaptive control problem. Other related work can be found in [8–11, 14, 17,
20] and references therein.

The rest of the paper is organized as follows. In Section 2 we describe the com-
ponents of a statistical model for the proposed problem. The asymptotic lower
bound for the regret is derived in Section 3. In Section 4 we propose a class of
strategies making use of an adjusted MLE θ̂a . This adjustment is necessary for
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consistent estimation of the bad sets of θ when the parameter space is continuous.
The efficiency of our procedure relies on an initial experimentation stage based on
the adjusted MLE estimate to maximize the information content and also on a sub-
sequent testing stage via sequential likelihood ratio tests to reject suboptimal jobs
or a whole group of jobs. Unequal allocation of processing time on jobs may oc-
cur in the testing stage so that there is more frequent processing of superior jobs.
In Section 5 we discuss how our method can be applied to multi-phase project
management examples. Most of the technical proofs are deferred to the Appendix.

2. Preliminaries.

2.1. The scheduling problem. Let U = J1 + · · · + JI indicate that there are
I groups and Ji jobs in the ith group for i = 1, . . . , I . One is free to process
any job within the same group, while jobs must be processed following the order
of 1, . . . , I between groups. As processing a job a unit time is equivalent to tak-
ing an observation from a statistical population, we have U statistical populations
�11, . . . ,�IJI

. For each ij , the observations from �ij follow a Markov chain on
a state space D with σ -algebra D . It is assumed that the transition probability
P θ

ij for the Markov chain has a probability density function pij (x, y; θ) with re-
spect to some nondegenerate measure Q, where pij (x, y; ·) is known and θ is an
unknown parameter belonging to a parameter space �. We assume that the station-
ary probability distribution for the Markov chain exists and has probability density
function πij (·; θ) with respect to Q. At each step, we are required to process one
job respecting the partial order ij � i′j ′ ⇔ i ≤ i ′.

An adaptive policy is a rule that dictates, at each step, which job should be
processed based on information from previous observations. We can represent
a policy as a sequence of random variables φ = {φt } taking values in {ij : i =
1, . . . , I ; j = 1, . . . , Ji}, such that the event {φt = ij} (process job ij at step t) be-
longs to the σ -field Ft−1 generated by φ1,X1, . . . , φt−1,Xt−1, where Xn denotes
the state of the job being processed at the nth step. The constraint

φt � φt+1 for 1 ≤ t ≤ N − 1(2.1)

indicates that once a sample has been taken from �ij , one can switch to other jobs
within group i or to the jobs in groups i +1 to I , but no further sampling is allowed
from �11, . . . ,�(i−1)Ji−1 .

2.2. The objective function. Let the initial state of the job ij under processing
be distributed according to νij (·; θ). Throughout this paper we shall use the nota-
tion Eθ (Pθ ) to denote expectation (probability) with respect to the initial distrib-
ution νij (·; θ); similarly, Eπ(θ) will denote expectation with respect to Pθ and the
stationary distribution πij (·; θ). We shall assume that Vij = {x ∈ D :νij (x; θ) > 0}
does not depend on θ and

vij := inf
x∈Vij

inf
θ,θ ′∈�

[νij (x; θ)/νij (x; θ ′)] > 0 for all i, j.(2.2)
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Suppose that
∫
x∈D |g(x)|πij (x; θ)Q(dx) < ∞ for some real-valued function (re-

ward) g. Let

µij (θ) =
∫
x∈D

g(x)πij (x; θ)Q(dx)

be the mean reward under stationary distribution πij if job ij is processed once.
Let N be the total processing time for all jobs, and

TN(ij) =
N∑

t=1

1{φt=ij}(2.3)

be the amount of time that job ij is processed, where 1 denotes the indicator func-
tion. An optimal strategy would be one which maximizes

WN(θ) :=
N∑

t=1

I∑
i=1

Ji∑
j=1

Eθ

{
Eθ

[
g(Xt)1{φt=ij}|Ft−1

]}
.(2.4)

In the case of independent rewards, that is, when pij (x, y, ; θ) = pij (y; θ) for

all i, j, x, y and θ , WN(θ) = ∑I
i=1

∑Ji

j=1 µij (θ)EθTN(ij). We shall show in the
Appendix that for Markovian rewards, under regularity conditions A3 and A4 (see
Section 2.3), there exists a constant C0 < ∞ independent of θ ∈ �, N > 0 and the
strategy φ such that ∣∣∣∣∣WN(θ) −

I∑
i=1

Ji∑
j=1

µij (θ)EθTN(ij)

∣∣∣∣∣≤ C0.(2.5)

When the parameter space � and state space D are both finite, (2.5) also fol-
lows from [3], Lemma 2.1. In light of (2.5), maximizing WN(θ) is asymptotically
equivalent [up to an O(1) term] to minimizing the regret

RN(θ) := Nµ∗(θ) −
I∑

i=1

Ji∑
j=1

µij (θ)EθTN(ij)

(2.6)
= ∑

ij :µij (θ)<µ∗(θ)

[µ∗(θ) − µij (θ)]EθTN(ij),

where µ∗(θ) := max1≤i≤I max1≤j≤Ji
µij (θ).

Because adaptive strategies φ which are optimal for all θ ∈ � and large N in
general do not exist, we consider the class of all (asymptotically) uniformly good
adaptive strategies under the partial order constraint �, with regret satisfying

RN(θ) = o(Nα) for all α > 0 and θ ∈ �.(2.7)

Such strategies have regret that does not increase too rapidly for any θ ∈ �. We
would like to find a strategy that minimizes the increasing rate of the regret within
the class of uniformly good adaptive strategies under the partial order constraint �.
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Due to the irreversibility constraint (2.1), a strategy satisfying (2.7) would in
general be dependent on N when there is more than one group of arms. Consider
for example the case in which the optimal arm is unique and lies in the first group.
Let p > 0 be the probability that a strategy φ bypasses the first group of arms
before a fixed time N0. If the strategy φ is independent of N , then

RN(θ) ≥ p(N − N0)

[
µ∗(θ) − max

2≤i≤I
max

1≤j≤Ji

µij (θ)

]
and (2.7) does not hold. This is unlike the case of a one-group multi-armed bandit
considered by Lai and Robbins [16], Anantharam, Varaiya and Walrand [3] and
Agrawal, Teneketzis and Anantharam [1, 2] whereby optimal strategies φ satisfy-
ing (2.7) and not dependent on N have been constructed.

2.3. The assumptions. Denote the Kullback–Leibler information number by

Iij (θ, θ ′) =
∫
x∈D

∫
y∈D

log
[

pij (x, y; θ)

pij (x, y; θ ′)

]
(2.8)

× pij (x, y; θ)πij (x; θ)Q(dy)Q(dx).

Then 0 ≤ Iij (θ, θ ′) ≤ ∞. We shall assume that Iij (θ, θ ′) < ∞ for all i, j and
θ, θ ′ ∈ �. Let µi(θ) = max1≤j≤Ji

µij (θ) be the largest reward in the ith group of
jobs, and

�i = {θ ∈ � :µi(θ) > µi′(θ) for all i′ < i
(2.9)

and µi(θ) ≥ µi′(θ) for all i′ ≥ i}
be the set of parameter values such that the first optimal job is in group i. Let

�ij = {θ ∈ �i :µij (θ) = µi(θ)}(2.10)

be the parameter set such that job ij is one of the first optimal jobs. Each θ ∈ �

belongs to exactly one �i but may belong to more than one �ij . Let

�∗
i = {θ ∈ � :µi(θ) > µi′(θ) for all i ′ 	= i}(2.11)

be the parameter set in which all the optimal arms lie in group i. Clearly, �∗
i ⊂ �i ,

but the reverse relation is not necessarily true.
We now state a set of assumptions that will be used to prove the optimality

results in Sections 3 and 4. Let � be a compact subset of Rd for some d ≥ 1 and
let Xijt denote the t th observation taken from arm ij .

A1. µij (·) are finite and continuous on � for all i, j . Moreover, no job group is
redundant in the sense that �∗

i 	= ∅ for all i = 1, . . . , I .

A2.
∑J1

j=1 I1j (θ, θ ′) > 0 for all θ ′ 	= θ and infθ ′∈�ij
Iij (θ, θ ′) > 0 for all 1 ≤ i <

I,1 ≤ j ≤ Ji and θ ∈⋃	>i �	.
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A3. For each j = 1, . . . , Ji, i = 1, . . . , I and θ ∈ �, {Xijt , t ≥ 0} is a Markov
chain on a state space D with σ -algebra D , irreducible with respect to a maxi-
mal irreducible measure on (D,D) and aperiodic. Furthermore, Xijt is Harris
recurrent in the sense that there exist a set Gij ∈ D , αij > 0 and probability
measure ϕij such that P θ

ij {Xijt ∈ Gij i.o.|Xij0 = x} = 1 for all x ∈ D and

P θ
ij {Xij1 ∈ A|Xij0 = x} ≥ αijϕij (A) for all x ∈ Gij and A ∈ D .(2.12)

A4. There exist constants 0 < b̄ < 1, b > 0 and drift functions Vij : D → [1,∞)

such that for all i = 1, . . . , I and j = 1, . . . , Ji ,

sup
x∈D

|g(x)|/Vij (x) < ∞,(2.13)

and for all x ∈ D and θ ∈ �,

P θ
ijVij (x) ≤ (1 − b̄)Vij (x) + b1{x∈Gij },(2.14)

where Gij satisfies (2.12) and P θ
ijVij (x) = ∫

D Vij (y)P θ
ij (x, dy). Moreover, we

require that∫
D

Vij (x)νij (x; θ)Q(dx) < ∞ and V ∗
ij := sup

x∈Gij

Vij (x) < ∞.(2.15)

Let 	ij (x, y; θ, θ ′) = log[pij (x, y; θ)/pij (x, y; θ ′)] be the log likelihood ra-
tio between P θ

ij and P θ ′
ij and Nδ(θ) = {θ ′ :‖θ − θ ′‖ < δ} a ball of radius δ

around θ , where ‖ · ‖ denotes the Euclidean norm.
A5. There exists δ > 0 such that for all θ, θ ′ ∈ �,

Kθ,θ ′ := sup
x∈D

Eθ [supθ̃∈Nδ(θ ′) 	
2
ij (Xij0,Xij1; θ, θ̃)|Xij0 = x]

Vij (x)
< ∞(2.16)

for all j = 1, . . . , Ji , i = 1, . . . , I . Moreover,

sup
θ̃∈Nδ′ (θ ′)

|	ij (x, y; θ ′, θ̃)| → 0 as δ′ → 0(2.17)

for all x, y ∈ D and θ ′ ∈ �.

Assumption A1 is for excluding some unrealistic models in which efficient but
impractical strategies may exist. A2 is a positive information criterion: the first
inequality makes sure that information is available in the first job group to esti-
mate θ ; the second inequality allows us to gather information in the ith job group
for moving to the next group when θ ∈ �	 for some 	 > i. Assumption A3 is a
recurrence condition and A4 is a drift condition. These two conditions are used to
guarantee the stability of the Markov chain so that the strong law of large numbers
and Wald’s equation hold. A5 is a finite second moment condition that allows us
to bound the probability that the MLE of θ lies outside a small neighborhood of θ .
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This bound is important for us to determine the level of unequal allocation of ob-
servations that can be permitted in the testing stage of our procedure. The proof
of the asymptotic lower bound in Theorem 1 requires only A1–A3; the additional
assumptions A4 and A5 are required for the construction of efficient strategies
attaining the lower bound.

We now demonstrate an immediate consequence of A3–A5, that for any θ ∈ �

and ε > 0, there exists 0 < δ′ < δ such that

Eπij (θ)

[
sup

θ̃∈Nδ′ (θ ′)
|	ij (Xij0,Xij1; θ ′, θ̃ )|

]
< ε(2.18)

for all ij and θ ′ ∈ �. Note that the continuity of Iij (θ, ·) follows from (2.18).
Since πij = C′∑∞

k=0(Pij − αijϕij 1Gij
)kϕij , where C′ is a normalizing con-

stant, it follows from (2.14) and (2.15) that
∫
D Vij (x)πij (x; θ)Q(dx) < ∞.

Hence by (2.16) and the relation 	ij (Xij0,Xij1; θ ′, θ̃) = 	ij (Xij0,Xij1; θ, θ̃) −
	ij (Xij0,Xij1; θ, θ ′), we have

Eπij (θ)

[
sup

θ̃∈Nδ(θ ′)
|	ij (Xij0,Xij1; θ ′, θ̃)|

]

≤ Eπij (θ)|	ij (Xij0,Xij1; θ, θ ′)| + Eπij (θ)

[
sup

θ̃∈Nδ(θ ′)
|	ij (Xij0,Xij1; θ, θ̃)|

]
< ∞.

As the convergence in (2.17) is monotone decreasing, it follows from the domi-
nated convergence theorem that (2.18) holds.

2.4. Bad sets. Bad set is a useful concept for understanding the learning re-
quired within the group containing optimal jobs. It is associated with the asymp-
totic lower bound described in Section 3 and is used explicitly in Section 4 to con-
struct the asymptotically efficient strategy. For θ ∈ �	, define J (θ) = {j :µ∗(θ) =
µ	j (θ)} as the set of optimal jobs in group 	. Hence θ ∈ �	j if and only if j ∈ J (θ).
We also define the bad set, the set of “bad” parameter values associated with θ , as
all θ ′ ∈ �	 which cannot be distinguished from θ by processing any of the optimal
jobs 	j . More specifically, the bad set

B	(θ) =
{
θ ′ ∈ �	

∖( ⋃
j∈J (θ)

�	j

)
: I	j (θ, θ ′) = 0 for all j ∈ J (θ)

}
.(2.19)

We note that if I	j (θ, θ ′) = 0, then the transition probabilities of X	jt are identi-
cal under both θ and θ ′. If θ ′ ∈ B	(θ), then by definition, θ ′ /∈ ⋃

j∈J (θ) �	j and
hence J (θ ′) ∩ J (θ) = ∅. Let j ∈ J (θ) and j ′ ∈ J (θ ′). Then µ	j ′(θ ′) > µ	j (θ

′) =
µ	j (θ) > µ	j ′(θ). Thus

I	j ′(θ, θ ′) > 0 for all θ ′ ∈ B	(θ) and j ′ ∈ J (θ ′).(2.20)
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The interpretation of (2.20) is as follows. Although we cannot distinguish θ from
θ ′ ∈ B	(θ) when processing the optimal job for θ , we can distinguish them by
processing the optimal job for θ ′. This fact explains the necessity of processing
nonoptimal jobs to collect information.

Assumption A2 says when sampling from the optimal arm one can distinguish
any θ value whose optimal arm is in a future group. But having a nonempty bad set
says that when sampling from the optimal arm one cannot distinguish some θ value
whose optimal arm is in the current group. These two statements are compatible.
We now provide two examples from the celebrated multi-armed bandit problem to
illustrate the idea of bad sets.

EXAMPLE 1. Independent armed-bandit problem. Let �11, . . . ,�1J denote
J statistical populations specified, respectively, by density functions p(x; θj ) with
respect to some measure Q. For simplicity, assume that x = 0,1 and p(0; θj ) =
1 − θj , p(1; θj ) = θj , where θj are unknown parameters taking values in [0,1].
A multi-armed bandit problem searches for strategies to sample X1,X2, . . . , se-
quentially from these J populations in order to maximize the expected value of the
sum SN =∑N

t=1 Xt as N → ∞.
Let θ = (θ1, . . . , θJ ). If θ = (0.2,0.1), then the set of optimal arms J (θ) = {1}

and the bad set B1(θ) = {(0.2, θ ′
2) : 0.2 < θ ′

2 ≤ 1}. Even though arm 1 is optimal,
experimentation from arm 2 is required to make sure that the true parameter value
does not lie in B1(θ).

The two-armed bandit problem studied by Feldman [6] has � = {(θ1, θ2),
(θ2, θ1)} with θ1 	= θ2. It follows that B1(θ) = ∅ for all θ ∈ �. This leads to re-
markably low regret, RN(θ) = O(1).

EXAMPLE 2. Correlated armed-bandit problem. Consider bivariate normal
populations �11,�12,�13 with respective mean vectors (µ1, λ), (µ2,µ3) and
(µ3,µ2 + λ), where µ1,µ2,µ3, λ are unknown parameters. The problem is to
sample the random vectors sequentially to maximize the expected value of the first
component of the observed sum,

∑N
t=1 Xt , as N → ∞. Let θ = (µ1,µ2,µ3, λ). If

J (θ) = {1}, then

B1(θ) = {θ ′ ∈ � :µ1 = µ′
1, λ = λ′, max(µ′

2,µ
′
3) > µ′

1}.

3. A lower bound for the regret. The following theorem gives an asymptotic
lower bound for the regret (2.6) of uniformly good adaptive strategies under the
partial order constraint �.

THEOREM 1. Assume A1–A3 and let θ ∈ �	. For any uniformly good adap-
tive strategy φ under the partial order constraint �,

lim inf
N→∞ RN(θ)/logN ≥ z(θ, 	),(3.1)
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where z(θ, 	) is a solution of the following minimization problem.

Minimize
∑
i<	

Ji∑
j=1

[µ∗(θ) − µij (θ)]zij (θ) + ∑
j /∈J (θ)

[µ∗(θ) − µ	j (θ)]z	j (θ),(3.2)

subject to zij (θ) ≥ 0, j = 1, . . . , Ji if i < 	; j /∈ J (θ) if i = 	; and

inf
θ ′∈�1

{
J1∑

j=1

I1j (θ, θ ′)z1j (θ)

}
≥ 1,

inf
θ ′∈�2

{
J1∑

j=1

I1j (θ, θ ′)z1j (θ) +
J2∑

j=1

I2j (θ, θ ′)z2j (θ)

}
≥ 1,

...

inf
θ ′∈�	−1

{
J1∑

j=1

I1j (θ, θ ′)z1j (θ) + · · · +
J	−1∑
j=1

I(	−1)j (θ, θ ′)z(	−1)j (θ)

}
≥ 1,

inf
θ ′∈B	(θ)

{∑
i<	

Ji∑
j=1

Iij (θ, θ ′)zij (θ) + ∑
j /∈J (θ)

I	j (θ, θ ′)z	j (θ)

}
≥ 1.

(3.3)

The first 	−1 inequalities in (3.3) are due to the partial order constraints. When
there is no partial order constraint and the jobs are independent, the solution of
Problem A reduces to the lower bound given in Theorem 1 of [16].

Under the assumptions of Theorem 1, the strategies that satisfy, for θ ∈ �	,

lim
N→∞RN(θ)/ logN = z(θ, 	),(3.4)

are said to be asymptotically efficient. If B	(θ) = ∅, then the last inequality of
(3.3) is removed. In particular, when θ ∈ �1, (3.4) implies that

RN(θ) =
{

O(logN), if B1(θ) 	= ∅,
o(logN), if B1(θ) = ∅.

(3.5)

We shall assume that B	(θ) is nonempty for the underlying θ ∈ �	, which is true
for most applications. The case of B	(θ) = ∅ is treated in [5].

The following lemma will be used to prove Theorem 1. The proofs of both
Lemma 1 and Theorem 1 will be given in the Appendix.

LEMMA 1. Assume A2–A3. Let φ be a uniformly good adaptive strategy un-
der the partial order constraint �. If θ ∈ �	, then for every θ ′ ∈ �∗

k , k < 	,

lim inf
N→∞

{
k∑

i=1

Ji∑
j=1

Iij (θ, θ ′)EθTN(ij)

}/
logN ≥ 1,(3.6)
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and for every θ ′ ∈ B	(θ),

lim inf
N→∞

{∑
i<	

Ji∑
j=1

Iij (θ, θ ′)EθTN(ij) + ∑
j /∈J (θ)

I	j (θ, θ ′)EθTN(	j)

}/
logN

(3.7)
≥ 1.

4. Construction of asymptotically efficient strategies.

4.1. Outline of the construction. The goal of any reasonable strategy is to de-
termine whether the job currently under processing is optimal or not based on se-
quential observations. The job under processing, say job ij , is optimal if θ ∈ �ij .
Thus, the problem of constructing an efficient adaptive strategy reduces to that of
finding a procedure to determine whether θ ∈ �ij is true or not based on a sequen-
tial sample. The asymptotic lower bound discussed in Section 3 gives us valuable
information about the size of the sequential sample. In particular, it suggests that
for θ ∈ �	, the amount of processing time for job ij , j = 1, . . . , Ji , i < 	, and
j /∈ J (θ) if i = 	 should be [zij (θ) + o(1)] logN , where zij (θ) solves the mini-
mization problem (3.2).

In view of Theorem 1, the sample size [zij (θ)+ o(1)] logN represents the min-
imum amount of learning about job ij in order for the strategy to be uniformly
good. Because of the partial order constraint �, we also need a sequential test to
ensure that the optimal job is passed over with probability not exceeding N−1.
These two facts are important guidelines for the construction of asymptotically
efficient strategies so that the two crucial issues mentioned in the abstract and Sec-
tion 1 can be addressed.

Let n0, n1 be positive integers that increase to infinity with respect to N such
that n0 = o(logN) and n1 = o(n0). We shall now describe the asymptotically effi-
cient strategy φ∗ by dividing it into three distinct stages; estimation, experimenta-
tion and testing.

In the estimation stage, n0 = o(logN) observations are taken from each job in
group 1 for estimating the parameter θ ∈ �	. If 	 > 1 or 	 = 1 and B1(θ) 	= ∅,
then an order of logN observations are taken in the experimental stage which con-
tribute [z(θ, 	) + o(1)] logN to the regret; see (3.1). Finally, in the testing phase,
o(logN) observations are taken from each of the suboptimal jobs. We first consider
the optimal strategy for the case of finite �, which captures the essential ingredi-
ents without too much technical detail. We then extend the strategy to infinite �

followed by a formal statement of optimality in Theorem 2.

4.2. Optimal strategy for finite �.
1. Estimation. Take an initial sample of n0 observations from each job in

group 1. Let θ̂ be the maximum likelihood estimate (MLE) of θ defined by

L(θ) =
J1∑

j=1

n0∑
t=1

logp1j

(
X1j (t−1),X1j t ; θ), θ̂ = arg max

θ∈�

L(θ).(4.1)
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Let k = 1.
2. Experimentation. Let �·� denote the greatest integer function.
(a) If θ̂ ∈ ⋃

i>k �i : Take �zkj (θ̂) logN� observations from job kj for j =
1, . . . , Jk .

(b) If θ̂ ∈ �k : Take �zkj (θ̂ ) logN� observations from job kj for j /∈ J (θ̂).
(c) If θ̂ ∈⋃i<k �i : Skip the experimentation phase.
3. Testing. Start with a full set {k1, . . . , kJk} of unrejected jobs. Let n =

(n11, . . . , nkJk
), where nij denotes the number of observations taken from arm

ij so far. The rejection of a job is based on the following test statistic. Let Fk ,
1 ≤ k ≤ I , be a probability distribution with positive probability on all open sub-
sets of

⋃I
i=k �i . Define

Uk(n;λ)

(4.2)

=
∫⋃I

i=k �i

∏k
i=1

∏Ji

j=1 νij (Xij0; θ)
∏nij

t=1 pij (Xij (t−1),Xijt ; θ) dFk(θ)∏k
i=1

∏Ji

j=1 νij (Xij0;λ)
∏nij

t=1 pij (Xij (t−1),Xijt ;λ)

for all λ ∈ �k .

(a) If θ̂ ∈⋃
i>k �i : Add one observation from each unrejected job. Reject the

parameter λ if Uk(n;λ) ≥ N . Reject a job kj if all λ ∈ �kj have been rejected at
some point in the testing stage. If there is a job in group k left unrejected and the
total number of observations is less than N , repeat 3(a). Otherwise go to step 4.

(b) If θ̂ ∈ �k : Add n1 observations from each unrejected job kj , j ∈ J (θ̂),
and one observation from each unrejected job kj , j /∈ J (θ̂). Reject a job kj if all
λ ∈ �kj have been rejected at some point in the testing phase. If there is a job in
group k left unrejected and the total number of observations is less than N , repeat
3(b). Otherwise, go to step 4.

(c) If θ̂ ∈⋃i<k �i : Adopt the procedure of 3(a).

4. Moving to the next group and termination. The strategy terminates once N

observations have been collected. Otherwise, if k < I , increment k by 1 and go to
step 2; if k = I , select all remaining observations from a job Ij satisfying µIj (θ̂) =
max1≤h≤JI

µIh(θ̂).
We shall now describe how each feature of the proposed strategy leads to as-

ymptotic optimality in Theorem 2. The positive information assumption in the first
half of A2 allows us to estimate θ consistently and hence enables us to determine
the optimal sample size z1j (θ) in the experimental stage of group 1. The assump-
tion is important because once we move to the next group of jobs, irreversibility
would prevent us from making up any shortfall in the optimal sample size required
from group 1. By selecting n0 → ∞, we ensure the consistency of θ̂ , while by
choosing n0 = o(logN), the estimation of θ incurs negligible contribution to the
regret.

Let k be the current group of jobs under sampling. Consider first θ̂ ∈ �	 for
some 	 ≥ k. We are instructed to select �zkj (θ̂ ) logN� observations from each job
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in the experimental stage. By Theorem 1 and the consistency of θ̂ , this is optimal
for learning. If θ̂ ∈ �	 for some 	 < k, then the estimate θ̂ says that we have
overshot the optimal group, and the estimate θ̂ cannot be trusted. In both cases,
our strategy then is to rely on the testing stage to decide if we should stay within
the current job group.

The testing stage is important in stopping us from moving beyond the first group
of optimal jobs. The rationale is that by irreversibility, the penalty for moving
beyond the first group of optimal jobs can be of order N , which is large compared
to the desired regret of O(logN). The usefulness of the testing stage in this aspect
can be seen from (4.6) below, which guarantees that the regret due to overshooting
the optimal job group is O(1). The positive information assumption in the second
half of A2 is necessary for the testing stage to be successful.

Let us now consider the strategy in 3(b). If θ̂ = θ , then �zkj (θ) logN� obser-
vations from arm kj are taken in the experimental stage and hence by the last
inequality of (3.3), o(logN) observations from jobs with positive information are
needed to reject λ ∈ B	(θ) in the testing stage but we may still need an order of
logN observations to reject λ ∈ �	 \ B	(θ). Since we would like o(logN) obser-
vations from suboptimal jobs in the testing phase, sampling equally from all jobs
would be undesirable here. We consider instead the selection of n1 observations
from job 	j , j ∈ J (θ̂), for each observation from the other jobs, where n1 goes
to infinity with N , so that O(n−1

1 logN) = o(logN) observations are taken from
suboptimal jobs when θ̂ = θ . When θ̂ 	= θ , it might be possible that each job kj ,
j ∈ J (θ̂), would provide no information to reject some λ ∈ �k \⋃j∈J (θ) �kj . Our
procedure would then allocate O(n1 logN) observations from suboptimal jobs in
the testing phase conditional on this happening. By A5 and Chebyshev’s inequal-
ity, the probability of providing an incorrect estimate of θ is O(n−1

0 ) and hence by
specifying n1 = o(n0), we ensure that the average contribution from suboptimal
jobs is O(n−1

0 n1 logN) = o(logN).
The final case θ̂ ∈ ⋃

i<k �i occurs with probability o(1) which together with
the O(logN) observations taken in the nonoptimal jobs in the testing stage when
this happens results in an overall o(logN) contribution to the regret.

The last step is to proceed to the next group of jobs when all parameters in �k

have been rejected. The exception is when k = I . To be at stage 4 when k = I ,
all θ ∈ � have been rejected at some point in time. Clearly, the true parameter has
been rejected as well but this occurs with very small probability and the contribu-
tion to the regret in this case is asymptotically negligible.

4.3. Extension to infinite �. Let θ ∈ �	 be the true underlying parameter.
When � is finite, consistency of θ̂ would imply that θ̂ = θ with probability close
to 1 when N is large. Hence B	(θ̂) and J (θ̂) would be good substitutes for the un-
known B	(θ) and J (θ), respectively. Complications arise when � is infinite. First,
it is possible that B	(θ) is nonempty while B	(θ

′) is empty for all θ ′ arbitrarily
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close to θ . Secondly, by continuity of µij (·), it follows that there exists δ > 0 such
that

J (θ ′) ⊂ J (θ) for all θ ′ ∈ Nδ(θ) ∩ �	,

but the preceding statement with ⊂ replaced by = is not necessarily true. Hence
B	(θ̂) and J (θ̂) are in general poor substitutes for B	(θ) and J (θ) when � is
infinite. Moreover, if θ lies on the boundary of �	, then (

⋃
i>	 �i) ∩ Nδ(θ) can

be nonempty for all small δ > 0. This implies that zkj (θ̂ ) may be inconsistent for
zkj (θ). This would not happen when � is finite.

Our strategy in extending the optimal procedure from finite � to infinite � is
not to select θ̂ during the estimation phase but rather to select some appropriate
adjusted estimate θ̂a ∈ Nδ/2(θ̂) where δ → 0 as N → ∞ at a rate that is specified
in Theorem 2 below. We require first that

θ̂a ∈ Nδ/2(θ̂) ∩ �	 where 	 = min{i :�i ∩ Nδ/2(θ̂) 	= ∅}.(4.3)

This condition ensures that if θ lies in the boundary of �	, then the probability
that θ̂a ∈ �	 tends to 1 as N → ∞. Our next condition would ensure that the
probability that J (θ̂a) = J (θ) tends to 1 as N → ∞. Let | · | denote the number of
elements in a finite set and

J = max{|J (θ ′)| : θ ′ ∈ Nδ/2(θ̂) ∩ �	}.
We require in addition to (4.3), that

θ̂a ∈ H := {θ ∈ Nδ/2(θ̂) ∩ �	 : |J (θ)| = J},
(4.4)

where 	 is defined in (4.3).

If � is finite, then for δ > 0 small enough, Nδ/2(θ̂) = {θ̂} and hence by (4.3) and
(4.4), θ̂a = θ̂ . Therefore the selection of θ̂a for infinite � is consistent with the
selection procedure for finite � when N is large. The final thing left to do is the
estimation of B	(θ). This can be done by taking a union of B	(θ

′) over θ ′ ∈ H . We
thus have the following modification of the optimal strategy for infinite �, which
reduces to the optimal strategy for finite � for δ > 0 small enough.

Optimal strategy for infinite �.
1′. Estimation. Let k = 1 and θ̂a be an adjusted MLE satisfying (4.3) and (4.4).
2′. Experimentation. Let ẑkj be the solution to Problem A with parameter θ̂a

and with the bad set B	(θ) replaced by
⋃

θ ′∈H B	(θ
′).

(a′) If θ̂a ∈⋃i>k �i : Take �̂zkj logN� observations from job kj , j = 1, . . . , Jk .
(b′) If θ̂a ∈ �k : Take �̂zkj logN� observations from job kj for j /∈ J (θ̂a).
(c′) If θ̂a ∈⋃i<k �i : Skip the experimentation phase.
3′. and 4′. Identical to the strategy for finite �, with θ̂a replacing θ̂ .
In view of (4.3) and (4.4), the modified strategy φ∗ described above will lead

to asymptotic efficiency for infinite � as stated in Theorem 2 below. It is also
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convenient, when � is infinite, to decide on the rejection of a job in step 3 based
on the current sample rather than to keep track of which λ have been rejected
previously. Hence for practical use, we can also make the following modification
to the rejection of jobs in step 3′:

Let Ukj (n) = infλ∈�kj
Uk(n;λ). Reject job kj if Ukj (n) ≥ N .

THEOREM 2. Assume A1–A5. The strategy φ∗ has error probabilities from
the estimation stage that satisfy the following property. Let n0 → ∞ with n0 =
o(logN) and n1 → ∞ such that n1 = o(n0). Then there exists δ(= δN) ↓ 0 such
that

Pθ {θ̂a ∈ � \ Nδ(θ)} = o(n−1
1 ) as N → ∞.(4.5)

Let θ ∈ �	. Then the regret of φ∗ due to overshoot in the testing stage is O(1)

because

∑
i>	

Ji∑
j=1

EθTN(ij) ≤ 1.(4.6)

Therefore, the total regret

lim
N→∞RN(θ)/ logN = z(θ, 	).(4.7)

REMARK 1. Theorem 2 extends Fuh and Hu [7] to situations where more
than one job in each group are available for processing. Theorem 2 generalizes the
results of Lai [15] and Agrawal, Teneketzis and Anantharam [1, 2] to the case of
infinite state and parameter spaces and more than one job group.

REMARK 2. If there is a constant switching cost each time we switch from
one job to another, it can be shown that the strategy φ∗ has switching cost of order
o(logN). Hence φ∗ is still efficient considering switching cost. The details are
given in [5].

REMARK 3. We consider a nonempty bad set in this paper. It can be shown
that the proposed strategy φ∗ can achieve o(logN) regret when the bad set is empty
and I = 1. In general, within the optimal group, the contribution to the regret from
jobs optimal for parameter values outside the bad set is o(logN). The essence of
the proof for this fact is contained in Section 6. We provide detailed justification
in [5]. The upshot is that the strategy φ∗ can achieve superefficient results outside
of bad sets.
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5. Examples.

EXAMPLE 3. Multi-phase project management. To illustrate how our method
can be applied, we discuss a few examples. Our purpose here is not to provide an
accurate statistical model for a particular situation, but rather to supply concrete
examples of parameter spaces and probability distributions such that the assump-
tions in Section 2.3 are satisfied.

Consider the management of N research and development (R&D) projects.
When a project is pursued with one unit of resource, the reward is a normal ran-
dom variable X with mean µt(θ) and variance σ 2

t (θ). Given the parameter value θ ,
the mean µt(θ) reflects, at time t , the level of existing technology and knowledge
relevant to the concerned projects as well as the competition in the market. Let
θ = (α,β) and

µt(θ) = f (t, α)

h(t, β)
, σt (θ) = 1

h(t, β)
,(5.1)

where both f (t, α) (reflecting technology and knowledge) and h(t, β) (reflecting
competition) are increasing functions of time t . Observe that under (5.1) the co-
efficient of variation, σt/µt = 1/f (t, α), is a decreasing function of t , which can
be interpreted as follows. Because the products from the project will be gradually
superseded by more advanced ones through competition in the market, therefore
not only does the mean reward become smaller but we are also more certain of it
due to time moving on. If we take f and h to be

f (t, α) = αt2 and h(t, β) = etβ − 1,(5.2)

then the maximal value of µt(θ), for a fixed value of θ , is attained uniquely at t

such that tβ = constant ≈ 1.5936.
Designate I phases indexed by time points 0 < t1 < · · · < tI during which pur-

suit of a project can take place. And there are J different types of projects that can
be pursued at any phase i = 1, . . . , I . To accommodate I phases and J types of
projects, we expand the parameter vector to θ = (α1, . . . , αJ ,β). Given (5.1) and
(5.2), let the rewards Xijk from the pursuit with the kth unit of resource of the type
j project in phase i be i.i.d. normal with means and standard deviations

µij (θ) = αj t
2
i

etiβ − 1
, σi(θ) = 1

etiβ − 1
,(5.3)

respectively.
By selecting � = [α,α]J × [β,β] where 0 < α < α < ∞ and 0 < β < β < ∞,

condition A1 is easily seen to hold. Let θ ′ = (α′
1, . . . , α

′
J , β ′). Then

Iij (θ, θ ′) = log
[
σi(θ

′)
σi(θ)

]
+ σ 2

i (θ) − σ 2
i (θ ′) + [µij (θ) − µij (θ

′)]2

2σ 2
i (θ ′)
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equals zero if and only if µij (θ) = µij (θ
′) and σ 2

i (θ) = σ 2
i (θ ′), or equivalently,

αj = α′
j and β = β ′, the information assumption A2 is also satisfied. It can be

shown that there exist (β =)βI < βI−1 < · · · < β1 < β0(= β) such that

�i =
{ {θ ∈ � :β ∈ [β1, β0]}, for i = 1,

{θ ∈ � :β ∈ [βi, βi−1)}, for 2 ≤ i ≤ I
(5.4)

and

�ij =
{
θ ∈ �i :αj = max

1≤k≤J
αk

}
.(5.5)

Since the observations Xijk are independent, the assumptions A3–A5 are satis-
fied by selecting Gij = R, Vij (x) = |x| + 1 and b > supi,j,θ Eθ |Xij1| + 1. Conse-
quently, the strategies described in Section 4 are efficient in the sense of attaining
the regret lower bound given by Theorem 1.

EXAMPLE 4. Multi-phase project management with Markovian reward. Con-
tinuing from Example 3, instead of i.i.d. rewards, we assume that kth pursuit of a
project of type j at time ti follows an AR(1) process

Xijk = aiXij (k−1) + εijk,

where |ai | < 1 and εijk ∼ N(µij (θ), σ 2
i (θ)) with µij and σi given by (5.3). Let

Gij = [−c, c] for some c > 0. Since εij1 has a positive density on the real line,
A3 is satisfied. Let Vij (x) = |x| + 1. From [18], page 380, {Xijk}k≥0 is geometric
ergodic and A4 holds with 0 < b̄ < 1 − maxi |ai | and b, c large enough.

The stationary distribution is normally distributed with mean and variance given
by (1 − ai)

−1µij (θ) and (1 − a2
i )

−1σ 2
i (θ). It can be checked that (5.4) and (5.5),

which reveal the structure of the parameter space, still hold for AR(1) rewards.
Consequently, A1 is true for AR(1) rewards. To simplify the presentation of the
Kullback–Leibler information number, we drop the indices i, j and use µ′, σ ′ to
denote µ(θ ′), σ (θ ′), respectively,

I (θ, θ ′) = log
(

σ ′

σ

)
+ σ 2 − σ ′2 + (µ − µ′)2

2σ ′2 +

+ (a − a′)2{µ2(1 − a)−2 + σ 2(1 − a2)−1}
2σ ′2

+ 2(a − a′)(µ − µ′)µ(1 − a)−1

2σ ′2 .

It is clear that the Kullback–Leibler number is greater than zero if θ 	= θ ′. From
the preceding equation, we can verify that A2 and A5 hold.
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6. Proof of asymptotic efficiency. We shall demonstrate the asymptotic effi-
ciency of φ∗ by proving (4.5)–(4.7). A change-of-measure argument is first used
to prove (4.6). As the proofs of (4.5) and (4.7) are too involved for one reading, we
prove them in Section 6.1 for the restricted case of finite � and extend the proofs
to infinite � in Section 6.2.

PROOF OF (4.6). Let P̃ be the measure which generates Xn := {Xijt } for j =
1, . . . , Ji and i = 1, . . . , 	, t = 1, . . . , nij in the following manner. First generate
θ ′ randomly from F	. Using the strategy φ∗ to select the jobs to be processed,
generate Xij0 from νij (·; θ ′) and Xijt , t ≥ 1, according to the transition density
pij (Xij (t−1), ·; θ ′) when at job ij . Let θ ∈ �	j . Then

dP̃

dPθ

(Xn) =
∫⋃I

i=	 �i

∏	
i=1

∏Ji

j=1 νij (Xij0; θ ′)∏nij

t=1 pij (Xij (t−1),Xijt ; θ ′)F	(dθ ′)∏	
i=1

∏Ji

j=1 νij (Xij0; θ)
∏nij

t=1 pij (Xij (t−1),Xijt ; θ)

= U	(n; θ).

Let T = (TN(11), . . . , TN(	J	)) and A = {U	(T; θ) ≥ N}. Then Pθ {∑i>	 TN(i) >

0} is bounded by

Pθ(A) = E
P̃

[
dPθ

dP̃
(XT)1A

]
≤ N−1.(6.1)

Hence (4.6) follows from (6.1) and the bound
∑

i>	 TN(i) ≤ N . �

6.1. Finite parameter space. Let � = {θ0, . . . , θh}. Let θ0 ∈ �	j0 be the true
parameter value. For 1 ≤ q ≤ h, define

ξij t (q) = log
[
pij

(
Xij (t−1),Xijt ; θ0

)
/pij

(
Xij (t−1),Xijt ; θq

)]
.(6.2)

Then Eπ(θ0)ξij t (q) = Iij (θ0, θq). To get the essence of the strategy without being
overly involved in cumbersome notation, let us consider the specific case 	 = 2,
J1 = J2 = 2, θ0 ∈ �21 and J (θ0) = {1}.

We first prove (4.5). Let us consider the inequality

Pθ0{θ̂ 	= θ0} =
h∑

q=1

Pθ0{θ̂ = θq} ≤
h∑

q=1

Pθ0

{
n0∑
t=1

ξ11t (q) + ξ12t (q) < 0

}
.

By A5 and Chebyshev’s inequality,

Pθ0

{
n0∑
t=1

ξ11t (q) + ξ12t (q) < 0

}

≤ Varθ0(
∑n0

t=1 ξ11t (q) + ξ12t (q))

[Eθ0(
∑n0

t=1 ξ1j t (q) + ξ11t (q))]2

≤ (
1 + o(1)

)Eπ(θ0)[ξ2
11t (q) + ξ2

12t (q)] + 2I11(θ0, θq)I12(θ0, θq)

n0[I11(θ0, θq) + I12(θ0, θq)] = O(n−1
0 ).
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This completes the proof of (4.5) for the finite parameter case.
We now undertake the proof of (4.7). For q ≥ 1, let θq ∈ �kj ′ where either

(i) k < 	 or (ii) k = 	 and j ′ /∈ J (θ0). Let τkj (q) be the number of observations
selected from job kj in the testing phase of group k before parameter θq is rejected.
To show (4.7), it suffices to prove that

Eθ0

[
Jk∑

j=1

τkj (q)

]
= o(logN) if k < 	 and

(6.3)

Eθ0

[ ∑
j /∈J (θ0)

τ	j (q)

]
= o(logN),

because (6.3) implies that the regret in the testing phase before leaving the optimal
group is o(logN), and the regret due to overshooting the optimal group is also
o(logN) by the established (4.6), thus completing the justification.

Select C > 0 large enough such that ξ ′
ij t (q) = ξij t (q) ∧ C has positive expec-

tation under π(θ0) for all i, j, q satisfying Iij (θ0, θq) > 0. Let n = (n11, n12). We
will first show that the first half of (6.3) is satisfied when θq ∈ �1. By (4.2),

logU1(n; θq) ≥
n11∑
t=1

ξ11t (q) +
n12∑
t=1

ξ12t (q) + logv11

(6.4)
+ logv12 + logF1(θ0),

where vij = infx,θ,λ[νij (x; θ)/νij (x;λ)] > 0 as assumed in (2.2). Hence by (4.2),
rejection of θq has occurred when

m11∑
t=1

ξ11t (q) +
m12∑
t=1

ξ12t (q) +
n11∑

t=m11+1

ξ ′
11t (q) +

n12∑
t=m12+1

ξ ′
12t (q)

(6.5)
> c := logN − logv11 − logv12 − logF1(θ0),

where m = (m11,m12) = (n0 +�z11(θ̂) logN�, n0 +�z12(θ̂) logN�) is the sample
size at the beginning of the testing phase. Since ξ ′

ij t (q) is bounded above by C, it
follows that at n = (n′

11, n
′
12) for which the boundary is first crossed by ξ ′

ij t ’s

Eθ0

[
m11∑
t=1

ξ11t (q) +
m12∑
t=1

ξ12t (q)

]
+ Eθ0

[ n′
11∑

t=m11+1

ξ ′
11t (q) +

n′
12∑

t=m12+1

ξ ′
12t (q)

]
(6.6)

≤ c
(
1 + o(1)

)
.

By (4.5), the condition n0 = o(logN), (6.5) and the constraint I11(θ0, θq) ×
z11(θ0) + I12(θ0, θq) z12(θ0) ≥ 1 from (3.3), it follows that

Eθ0

[
m11∑
t=1

ξ11t (q) +
m12∑
t=1

ξ12t (q)

]
≥ (

1 + o(1)
)
c.(6.7)
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Subtracting (6.7) from (6.6), we have

Eθ0

[
n11∑

t=m11+1

ξ ′
11t (q) +

n12∑
t=m12+1

ξ ′
12t (q)

]
= o(c).(6.8)

By Wald’s equation for Markov processes, the left-hand side of (6.8) equals(
1 + o(1)

)[
Eπ(θ0)ξ

′
11t (q)Eθ0(n11 − m11)

(6.9)
+ Eπ(θ0)ξ

′
12t (q)Eθ0(n12 − m12)

]
.

The proof of Wald’s equation for Markov process is given in the Appendix. By A2
and the choice of C for ξ ′

ij t (q), Eπ(θ0)ξ
′
1j t (q) > 0. In view of the sample size in the

testing stage τ1j (q) ≤ n1j −m1j , it follows from (6.8) and (6.9) that Eθ0[τ11(q)+
τ12(q)] = o(c) for all θq ∈ �1. Hence the rejection of both �11 and �12 involves
only o(logN) observations and the first half of (6.3) holds.

Next we show that the second half of (6.3) holds when θq ∈ �22. We divide
into two cases, θq ∈ B2(θ0) and θq /∈ B2(θ0). Consider the first case. By (2.20),
I22(θ0, θq) > 0. We then follow the arguments above using (4.5) and the last in-
equality of (3.3) to show that Eθ0τ22(q) = o(c).

The second scenario involves θq /∈ B2(θ0). The key observation is I21(θ0, θq) >

0 by (2.19). In other words, information is always collected and no additional
regret is incurred when we sample from job 21. Under unequal sampling,

Eθ0τ22(q) = Eθ0

[
τ22(q)1{J (θ̂)={1}}

]+ Eθ0

[
τ22(q)1{J (θ̂)={1,2}}

]
+ Eθ0

[
τ22(q)1{J (θ̂)={2}}

]
(6.10)

= n−1
1 Eθ0

[
τ21(q)1{J (θ̂)={1}}

]+ Eθ0

[
τ21(q)1{J (θ̂)={1,2}}

]
+ n1Eθ0

[
τ21(q)1{J (θ̂)={2}}

]
.

Since Eθ0[τ21(q)1{J (θ̂)=A}] ≤ (1 + o(1))cPθ0{J (θ̂) = A}/I21(θ0, θq) for A =
{1}, {2} and {1,2} and as n1 → ∞, the first term on the right-hand side of (6.10)
is o(c) while (4.5) ensures the second term is o(c). By (4.5), n1Pθ0{J (θ̂) 	= {1}} ≤
n1Pθ0{θ̂ 	= θ0} = o(1) and thus the third term on the right-hand side of (6.10) is
o(c). We can conclude that Eθ0τ22(q) = o(c) or the second half of (6.3) holds.

6.2. Extension to infinite parameter space. We preface the extension with the
following lemma. The proof of this lemma is given in the Appendix in Section
A.4. We shall let Ā denote the closure of a set A.

LEMMA 2. Let θ0 ∈ �	. Assume A1–A5 and let n0 → ∞, n1 = o(n0).

(a) Let θ ′ 	= θ0 and let θ̂ be the MLE estimate (4.1). Then there exists δ′ > 0
small enough such that

Pθ0{θ̂ ∈ Nδ′(θ ′)} → 0 as N → ∞.(6.11)
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(b) Let θ ′ ∈ �̄k for some k < 	 or θ ′ ∈ ⋃
j /∈J (θ0)

�̄	j . Let δ′ > 0 and let τkj

(τ	j ) be the number of observations selected from job kj (	j ) in the testing phase
of group k (	) before all parameters in the set Nδ′(θ ′) are rejected. Then for δ′ > 0
small enough,

Eθ0

(
Jk∑

j=1

τkj

)
= o(logN) if k < 	 and

(6.12)

Eθ0

( ∑
j /∈J (θ0)

τ	j

)
= o(logN).

We now apply Lemma 2 to extend the proof of Theorem 2. By the compactness
of � \ Nδ/2(θ0), δ > 0, there exist a finite set {θ1, . . . , θh} and constants δq > 0
such that (6.11) holds for θ ′ = θq and δ′ = δq for all 1 ≤ q ≤ h and � \ {θ0} ⊃⋃h

q=1 Nδq (θq) ⊃ �\Nδ/2(θ0). Then by (6.11), Pθ0{θ̂ ∈ �\Nδ/2(θ0)} → 0 as N →
∞ and the result (4.5) follows from (4.3) because ‖θ̂a − θ̂‖ < δ/2.

It remains to show that the number of observations taken from each nonoptimal
job in the testing phase is o(logN). Consider k < 	, j = 1, . . . , Jk or k = 	 with
j /∈ J (θ0). Since �̄kj is compact, there exist a finite set {θ1, . . . , θh} and constants
δq > 0 such that (6.12) is satisfied for θ ′ = θq , δ′ = δq for all 1 ≤ q ≤ h and⋃h

q=1 Nδq (θq) ⊃ �̄kj , and hence by (6.12), the number of times job kj is processed
in the testing phase is o(logN) as required.

APPENDIX

A.1. Proof of (2.5). Let Xijt denotes the t th observation taken from arm ij .
Then ∣∣∣∣∣WN(θ) −

I∑
i=1

Ji∑
j=1

µij (θ)EθTN(ij)

∣∣∣∣∣≤
I∑

i=1

Ji∑
j=1

∞∑
t=1

|Eθg(Xijt ) − µij (θ)|.(A.1)

For any signed measure λ on (D,D), let

‖λ‖Vij
= sup

h:|h|≤Vij

∣∣∣∣∫ h(x)λ(dx)

∣∣∣∣.(A.2)

It follows from [18], page 367 and Theorem 16.0.1, that under A3 and the geomet-
ric drift condition (2.14),

ωij := sup
θ∈�,x∈D

∞∑
t=1

‖P θ
ij t (x, ·) − πij (·; θ)‖Vij

/Vij (x) < ∞,(A.3)

where P θ
ij t (x, ·) denotes the distribution of Xijt conditioned on Xij0 = x and

πij (·; θ) denotes the stationary distribution of Xijt under parameter θ . By (2.13),
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there exists κ > 0 such that κ|g(x)| ≤ Vij (x) for all x ∈ D and hence it follows
from (A.2) and (A.3) that

κ

∞∑
t=1

|Eθ,xg(Xijt ) − µij (θ)| ≤ ωijVij (x),(A.4)

where Eθ,x denotes expectation with respect to Pθ and the initial distribution
Xij0 = x.

In general, for any initial distribution νij (·; θ), it follows from (2.15) and (A.4)
that

∞∑
t=1

|Eθg(Xijt ) − µij (θ)| ≤
∫ ∞∑

t=1

|Eθ,xg(Xijt ) − µij (θ)|νij (x; θ)Q(dx) < ∞

uniformly over θ ∈ � and hence (2.5) follows from (A.1).

A.2. Proof of Lemma 1. To prove (3.6), it suffices to show that for every
θ ′ ∈ �∗

k , k < 	 and for δ > α > 0,

lim
N→∞Pθ

{
k∑

i=1

Ji∑
j=1

Iij (θ, θ ′)TN(ij) < (1 − δ) logN

}
= 0.(A.5)

Because φ is uniformly good and θ ′ ∈ �∗
k , it follows from (2.7) that E

θ
′ [N −∑

j∈J (θ ′) TN(kj)] = o(Nα) for α > 0. By A2, Ikj (θ, θ ′) > 0 for all j ∈ J (θ ′) and
hence I0 := minj∈J (θ ′) Ikj (θ, θ ′) > 0. It then follows from Chebyshev’s inequality
that

Pθ ′

{
k∑

i=1

Ji∑
j=1

Iij (θ, θ ′)TN(ij) < (1 − δ) logN

}

≤ Pθ ′

{
I0

∑
j∈J (θ ′)

TN(kj) < (1 − δ) logN

}
(A.6)

= Pθ ′

{[
N − ∑

j∈J (θ ′)
TN(kj)

]
> N − (1 − δ)(logN)/I0

}

= O(N−1)E
θ

′

[
N − ∑

j∈J (θ ′)
TN(kj)

]
= o(Nα−1).

Let n = (n11, . . . , nkJk
) and TN = (TN(11), . . . , TN(kJk)). Let

Ln =
k∑

i=1

Ji∑
j=1

{
log[νij (Xij0; θ)/νij (Xij0; θ ′)] +

nij∑
t=1

	ij

(
Xij (t−1),Xijt ; θ, θ ′)}
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be the log likelihood ratio of θ with respect to θ ′, and denote

GN =
{

k∑
i=1

Ji∑
j=1

Iij (θ, θ ′)TN(ij) < (1 − δ) logN and LT ≤ (1 − α) logN

}
.

Then by (A.6), P
θ

′ (GN) = o(Nα−1). By Wald’s likelihood ratio identity for
Markov chains,

Pθ ′ {TN = n,Ln ≤ (1 − α) logN} = Eθ

[
exp(−Ln)1{TN=n,Ln≤(1−α) logN}

]
≥ Nα−1Pθ {TN = n,Ln ≤ (1 − α) logN}.

By summing the preceding inequality over all n, we have

Pθ(GN) ≤ N1−αP
θ

′ (GN) = N1−αo(Nα−1) = o(1).(A.7)

By A3 and the strong law of large numbers for Markov chains (cf. Theorem
17.0.1 of [18]),∣∣∣∣∣Ln −

k∑
i=1

Ji∑
j=1

Iij (θ, θ ′)nij

∣∣∣∣∣= o

(
k∑

i=1

Ji∑
j=1

nij

)
Pθ a.s. as

k∑
i=1

Ji∑
j=1

nij → ∞.

Thus,

lim
m→∞

{
max

n:∑k
i=1

∑Ji
j=1 Iij (θ,θ ′)nij≤m

[
Ln −

k∑
i=1

Ji∑
j=1

Iij (θ, θ ′)nij

]/
m

}
→ 0

a.s. under Pθ .

Because 1 − α > 1 − δ, it then follows that as N → ∞,

Pθ

{
Ln > (1 − α) logN, for some n

such that
k∑

i=1

Ji∑
j=1

Iij (θ, θ ′)nij < (1 − δ) logN

}
→ 0.

Therefore, as N → ∞,

Pθ

{
k∑

i=1

Ji∑
j=1

Iij (θ, θ ′)TN(ij) < (1 − δ) logN and LT > (1 − α) logN

}
→ 0.

This combined with (A.7) gives (A.5), from which (3.6) follows by letting δ ↓ 0.
We now consider the case θ ′ ∈ B	(θ). By (2.20), minj∈J (θ ′) I	j (θ, θ ′) > 0. The

proof proceeds as before with k = 	, which leads us to (3.6) with k = 	. Since
I	j (θ, θ ′) = 0 for all j ∈ J (θ) by (2.19), (3.7) follows.
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A.3. Proof of Theorem 1. As we mentioned after (3.5) that B	(θ) 	= ∅, by
A1, �	 = �∗

1 × · · · × �∗
	−1 × B	(θ) is nonempty. For each λ = (λ1, . . . , λ	) ∈ �	

and θ ∈ �	, we define z(θ, 	, λ) to be the minimal value of (3.2) with (3.3) replaced
by 

J1∑
j=1

I1j (θ, λ1)z1j (θ) ≥ 1,

...
	−1∑
i=1

Ji∑
j=1

Iij (θ, λ	−1)zij (θ) ≥ 1,

∑
i<	

Ji∑
j=1

Iij (θ, λ	)zij (θ) + ∑
j /∈J (θ)

I	j (θ, λ	)z	j (θ) ≥ 1.

(A.8)

By Lemma 1, (A.8) is true for all λ ∈ �	. Therefore, lim infN→∞ RN(θ)/ logN ≥
supλ∈�	

z(θ, 	, λ), for all θ ∈ �	. The proof is completed if we can show that

z(θ, 	) = sup
λ∈�	

z(θ, 	, λ).(A.9)

If Z = {zij (θ) : j = 1, . . . , Ji for i < 	, and j /∈ J (θ), i = 	} satisfies (3.3), then Z

also satisfies (A.8). Thus

z(θ, 	) ≥ sup
λ∈�	

z(θ, 	, λ).(A.10)

Because Iij (θ, θ ′) are continuous with respect to θ ′, the infima in (3.3) are
attained for some λ̄ ∈ �̄	, the closure of �	. Choose a sequence of λ(n) =
(λ1(n), . . . , λ	(n)) ∈ �	 such that it converges to λ̄ = (λ̄1, . . . , λ̄	). Note that λ̄

depends on some feasible z satisfying (3.3).
Let zn = (z11(n), . . . , z	J	

(n)) be the solution of (3.2) satisfying (A.8) with λ =
λ(n). Set

cij (n) = max{Iij (θ, λ1(n))/Iij (θ, λ̄1), . . . , Iij (θ, λ	(n))/Iij (θ, λ̄	)}.
By the continuity of Iij , we have

lim
n→∞ cij (n) = 1, for 1 ≤ i ≤ 	.(A.11)

In view of
∑

ij cij (n)zij (n)Iij (θ, λ̄i) =∑
ij zij (n)Iij (θ, λi(n)) for i, j in an ap-

propriate index set, we see that {cij (n)zij (n)} satisfies (3.3). Hence,[
max

1≤i≤	,1≤j≤Ji

cij (n)

]
z(θ, 	, λn) ≥∑

i<	

Ji∑
j=1

[µ∗(θ) − µij (θ)]cij (n)zij (n)

+ ∑
j /∈J (θ)

[µ∗(θ) − µ	j (θ)]c	j (n)z	j (n)

≥ z(θ, 	).
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By (A.11), we have supλ∈�	
z(θ, 	, λ) ≥ z(θ, 	), which combined with (A.10) im-

plies (A.9).

A.4. Proof of Lemma 2. By (2.18), there exists δ′ > 0 such that

Eπij (θ0)

[
sup

θ̃∈Nδ′ (θ ′)
|	ij (Xij0,Xij1; θ ′, θ̃ )|

]
< ε(A.12)

for all i, j and θ ′ ∈ �, ε > 0 to be specified later. Let

ξ̃1j t = inf
λ∈Nδ′ (θ ′)

	1j

(
X1j (t−1),X1j t ; θ0, λ

)
= 	1j

(
X1j (t−1),X1j t ; θ0, θ

′)(A.13)

− sup
λ∈Nδ′ (θ ′)

	1j

(
X1j (t−1),X1j t ; θ ′, λ

)
.

Since η := ∑J1
j=1 I1j (θ0, θ

′) > 0, we can select δ′ > 0 to satisfy (A.12) with ε <

η/J1. Then by (A.12) and (A.13), it follows that

n−1
0 Eπ(θ0)

[
J1∑

j=1

n0∑
t=1

ξ̃1j t

]
≥

J1∑
j=1

I1j (θ0, θ
′) − J1ε ≥ η − J1ε > 0.

By the Harris recurrence condition A3 and the law of large numbers, it follows that

P(A) → 1 as N → ∞, where A =
{

J1∑
j=1

n0∑
t=1

ξ̃1j t > 0

}
.

In the event A, the likelihood at θ0 is larger than all λ ∈ Nδ′(θ ′) and hence (6.11)
holds.

To prove (6.12), we extend (6.2) and define

ξ̆ij t = inf
θ∈Nδ′ (θ0),λ∈Nδ′ (θ ′)

log
[
pij (Xij (t−1),Xijt ; θ)

pij (Xij (t−1),Xijt ;λ)

]
≥ 	ij

(
Xij (t−1),Xijt ; θ0, θ

′)
(A.14)

− sup
θ∈Nδ′ (θ0)

∣∣	ij

(
Xij (t−1),Xijt ; θ0, θ

)∣∣
− sup

λ∈Nδ′ (θ ′)

∣∣	ij

(
Xij (t−1),Xijt ; θ ′, λ

)∣∣.
Let θ ′ ∈ �̄kj0 for some k < 	. By A2, we can select 0 < ε < Ikj0(θ0, θ

′)/2Jk and

hence by (A.12) and (A.14), we have Eπ(θ0)(
∑Jk

j=1 ξ̆kj t ) ≥ Ikj0(θ0, θ
′) − 2Jkε > 0.
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By (4.2) and (A.14), it follows that

inf
λ∈Nδ′ (θ ′)

logUk(n;λ) ≥ logFk(Nδ′(θ0))

(A.15)

+
k∑

i=1

Ji∑
j=1

logvij +
k∑

i=1

Ji∑
j=1

nij∑
t=1

ξ̆ij t ,

where vij = infx,θ,λ[νij (x; θ)/νij (x;λ)]. By (A.15), τkj ≤ nkj − mkj , where n =
(nij ) is the sample size needed for

∑k
i=1

∑Ji

j=1
∑nij

t=1 ξij t to cross the threshold

c := logN − ∑k
i=1

∑Ji

j=1 logvij − logFk(Nδ′(θ0)) and m = (mij ) is the sample
size at the start of the testing phase. Now follow arguments analogous to (6.4)–
(6.9), and we can prove the first half of (6.12).

Next, let us consider k = 	. Let f (θ) = µ	j0(θ) − supj∈J (θ0)
µ	j (θ) for some

j0 /∈ J (θ0). Then f (θ0) < 0. Conversely, f (θ ′) ≥ 0 for any θ ′ ∈ �	j0 . By A1, f is
continuous with respect to θ and hence infθ ′∈�	j0

‖θ0 − θ ′‖ > 0. The proof for the
second half of (6.12) then follows from arguments similar to those in the last two
paragraphs of Section 6.1.

A.5. Extension of Wald’s equation to Markovian rewards. As we will be
focusing on a single job ij and fixed parameters θ0, θq such that µ := Iij (θ0, θq) >

0, we will drop some of the references to i, j , θ0, θq and q in this subsection. This
applies also to the notation in assumptions A3–A5. Moreover, we shall use the
notation E(·) as a short form of Eθ0(·) and Ex(·) as a short form of Eθ0(·|X0 = x).
Let Sn = ξ1 + · · · + ξn, where ξk = log[pij (Xk−1,Xk; θ0)/pij (Xk−1, Xk; θq)] has
stationary mean under Pθ0 and let τ be a stopping time. We shall establish Wald’s
equation

ESτ = [µ + o(1)]Eτ(A.16)

for Markovian rewards.
By (2.12), we can augment the Markov additive process and create a split chain

containing an atom, so that increments in Sn between visits to the atom are in-
dependent. More specifically, we construct stopping times 0 < κ(1) < κ(2) < · · ·
using an auxiliary randomization procedure such that

P {Xn+1 ∈ A,κ(i) = n + 1|Xn = x, κ(i) > n ≥ κ(i − 1)}
(A.17)

=
{

αϕ(A), if x ∈ G,
0, otherwise.

Then by Lemma 3.1 of [19],

(i) {κ(i + 1) − κ(i) : i = 1,2, . . .} are i.i.d. random variables;
(ii) the random blocks {Xκ(i), . . . ,Xκ(i+1)−1}, i = 1,2, . . . , are independent;

and
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(iii) P {Xκ(i) ∈ A|Fκ(i)−1} = ϕ(A), where Fn = the σ -field generated by {X0,

. . . ,Xn}.
Define κ = κ(1). By (ii) and (iii), Eϕ(Sκ − κµ) = 0. We preface the proof of

(A.16) with the following preliminary lemmas, whose proofs are given in [5].

LEMMA A.1. Let γ (x) = Ex(Sκ − κµ). Then Zn = (Sn − nµ) + γ (Xn) is a
martingale with respect to Fn. Hence

ESτ = µ(Eτ) − E[γ (Xτ )] + E[γ (X0)].(A.18)

LEMMA A.2. Under A3–A5,

|γ (x)| ≤ b̄−1[V (x) + b + (V ∗ + b)V ∗(α−1 + 1)](K + 1 + |µ|),
where α satisfies (2.12), V ∗ is defined in (2.15) and K is defined in (2.16).

Let Wi = |γ (Xκ(i))| + · · · + |γ (Xκ(i+1)−1)| for i ≥ 1. Then by A3–A5,
Lemma A.2 and (i)–(iii), W1,W2, . . . are i.i.d. with finite mean while by (2.15),
W0 := |γ (X0)| + · · · + |γ (Xκ(1)−1)| also has finite mean.

LEMMA A.3. Let Mn = max1≤k≤n Wk . Then for any stopping-time τ ,
E(Mτ ) = o(Eτ).

PROOF OF (A.16). By Lemma A.3, E|γ (Xτ )| + E|γ (X0)| = o(Eτ), and
(A.16) follows from (A.18). �
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