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MARGINAL ASYMPTOTICS FOR THE “LARGE P, SMALL N”
PARADIGM: WITH APPLICATIONS TO MICROARRAY DATA1

BY MICHAEL R. KOSOROK AND SHUANGGE MA

University of North Carolina and Yale University

The “large p, small n” paradigm arises in microarray studies, image
analysis, high throughput molecular screening, astronomy, and in many other
high dimensional applications. False discovery rate (FDR) methods are use-
ful for resolving the accompanying multiple testing problems. In cDNA mi-
croarray studies, for example, p-values may be computed for each of p genes
using data from n arrays, where typically p is in the thousands and n is less
than 30. For FDR methods to be valid in identifying differentially expressed
genes, the p-values for the nondifferentially expressed genes must simultane-
ously have uniform distributions marginally. While feasible for permutation
p-values, this uniformity is problematic for asymptotic based p-values since
the number of p-values involved goes to infinity and intuition suggests that
at least some of the p-values should behave erratically. We examine this ne-
glected issue when n is moderately large but p is almost exponentially large
relative to n. We show the somewhat surprising result that, under very general
dependence structures and for both mean and median tests, the p-values are
simultaneously valid. A small simulation study and data analysis are used for
illustration.

1. Introduction. The “large p, small n” paradigm [27] arises in microarray
studies, image analysis, high throughput molecular screening, astronomy, and in
many other high-dimensional applications. Microarrays, in particular, are capable
of monitoring the gene expression of thousands of genes and have become routine
in biomedical research. Microarray studies of phenotypic variation can lead to a
better treatment assignment and so there has been an increasing demand for novel
statistical tools analyzing such data. Representative recent developments utilize
both semiparametric methods [8, 13, 14, 29] and penalized methods [11, 12].

Although statistical analysis with microarray data has been one of the most
investigated areas, theoretical studies of the relevant asymptotic properties remain
rare (for important exceptions to this, see [8, 14, 25]). The paucity of such research
is partly caused by the abnormality of the microarray data structure. For example,
with cDNA microarrays, the dimension of the covariate p (number of genes) is
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usually much larger than the sample size n (number of arrays). Typically, data is
aggregated across the n arrays to form test statistics for each of p genes, resulting
in large scale multiple testing. False discovery rate (FDR) methods (see [1]) are
used to account for this multiplicity in order to successfully identify which among
thousands of monitored genes are significantly differentially expressed.

For FDR methods to be valid for identifying differentially expressed genes,
the p-values for the nondifferentially expressed genes must simultaneously have
uniform distributions marginally. While this is feasible for permutation based
p-values, it is unclear whether such uniformity holds for p-values based on as-
ymptotic approximations. For instance, suppose that we wish to use t-tests for
each of the p genes and to compute approximate p-values based on the normal ap-
proximation for simplicity. If the data is not normally distributed, we would have
to rely on the central limit theorem. Unfortunately, it is unclear whether this will
work for all of the tests simultaneously. The issue is that the number of p-values
involved goes to infinity and intuition suggests that at least some of the p-values
should behave erratically. In this paper, we examine this neglected issue when n

is allowed to be moderately large but p is almost exponentially larger than n. We
show the somewhat surprising result that, under arbitrary dependence structures
for both mean and median tests, the p-values are simultaneously valid.

To further clarify ideas, consider a simple one-sample cDNA microarray study.
Note that this data setting and the following discussions can be easily extended to
incorporate loop designs as in [29]. Studies using Affymetrix genechip data can
be included in the same framework after some modification. Denote Yij and Zij

as the background-corrected log-ratios and log-intensities (as in [14]), for array
i = 1, . . . , n and gene j = 1, . . . , p. Consider the following simplified partial linear
model:

Yij = µj + hi(Zij ) + εij ,(1)

where µj are the fixed gene effects, hi(Zij ) are the smooth array-specific normal-
ization effects (constrained to be mean zero within array) and εij are mean zero
random errors. The constraints are for model identifiability. For simplicity of ex-
position, we have omitted other potentially important terms in our model, such as
possible print-tip effects. We note, however, that the theory we present in this paper
can extend readily to these richer models.

Models similar to (1) have been investigated by [8, 14]. In [14], asymptotic
properties based on least squares estimation are established assuming fixed p and
n → ∞. It is shown that µj and hi can both be consistently estimated with op-
timal convergence rates. In [8], partial consistency type asymptotics are estab-
lished. It is proved that when n is fixed and p → ∞, hi can be consistently es-
timated by an estimator ĥi , although µj cannot be consistently estimated. If we
let Xij = µi + εij and X̃ij = Yij − ĥi(Zij ), the results of [8] can be restated as
max1≤i≤n max1≤j≤p |X̃ij − Xij | = oP (1). This process of removing the hi effects
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is referred to as “normalization,” and the fact that the uniform difference between
X̃ij and Xij goes to zero means that the normalization process is consistent. This
permits the use of the normalized array-specific gene effects X̃ij for inference in
place of the true array-specific gene effects Xij . However, because n is fixed, the
permissible inference tools at the gene level are restricted to exact methods, such
as permutation tests.

The goal of our paper is to study normalization and inference when the number
of arrays n → ∞ slowly while the number of genes p � n. This is essentially the
asymptotic framework considered in van der Laan and Bryan [25], who show that
provided the range of expression levels is bounded, the sample means consistently
estimate the mean gene effects uniformly across genes whenever logp = o(n). We
extend the results of [8, 14, 25] in three important ways. First, uniform consis-
tency results are extended to general empirical distribution functions and sample
medians. Second, a precise Brownian bridge approximation to the empirical distri-
bution function is developed and utilized to establish uniform validity of marginal
p-values based on the normal approximation. In other words, we develop a cen-
tral limit theorem for the large p small n setting. Third, these results are further
extended to allow for incorporating the normalization process. We find that the
rate requirement ranges from logp = o(n1/2) to logp = o(n1/5), depending on
the choice of test statistic and the data assumptions.

An important consequence of these results is that approximate p-values based
on normalized gene expression data can be validly applied to FDR methods for
identifying differentially expressed genes. We refer to this kind of asymptotic
regime as “marginal asymptotics” (see also [18]) because the focus of the infer-
ence is at the marginal (gene) level, even though the results are uniformly valid
over all genes. The main conclusion of our paper is that the marginal asymptotic
regime is valid even if the number of genes increases almost exponentially relative
to the number of arrays, that is, logp = o(nγ ) for some γ > 0. Qualitatively, this
seems to be the correct order of asymptotics for microarray experiments with a
moderate number, say approximately 30, of replications. The main technical tools
we use include maximal inequalities, a specialized Hungarian construction for the
empirical distribution function, and a precise bound on the modulus of continuity
of Brownian motion.

In this article, we mainly focus on the simplified “one-sample” design. Most
microarray studies have in fact more complicated designs. However, they can usu-
ally be decomposed and analyzed in the one-sample and/or two-sample design
framework. Consider for example the Apo A1 data in [5]. For each chip, the red
and green channels are the same genes from different samples/conditions. Thus
loosely speaking, we have a one-sample study in the normalization stage, where
the outcome is the log-ratio of red over green intensities. After normalization,
genes from two subpopulations are compared. We then have a two-sample com-
parison. For more complicated cDNA study designs, for example the loop design,



ASYMPTOTICS FOR MICROARRAYS 1459

similar decompositions can be carried out. For the Affymetrix studies, normal-
ization and statistical models may differ significantly from those used for cDNA
studies. However, if the gene effects are of greatest interest, then after normaliza-
tion, the Affymetrix studies are reasonably close to cDNA studies. Extending the
theoretical results to the two-sample setting is straightforward (see [19]), and we
include a two-sample study of estrogen data in Section 5.2 below.

The article is organized as follows. In Section 2 we present two discrepancy
measures for assessing p-value accuracy. In Section 3 we present the main re-
sults on asymptotic consistency of estimates and p-values for both mean and me-
dian based tests. The impact of normalization is studied in Section 4. In Section 5
a small simulation study and data analysis are presented. A discussion is given in
Section 6, while proofs are presented in Section 7.

2. Assessing p-value consistency. Suppose we have p hypothesis tests
with p-values q(p) ≡ {q1, . . . , qp} but only know the estimated p-values q̂(p) ≡
{q̂1, . . . , q̂p}. An important question is how accurate must q̂(p) be in order for in-
ference based on q̂(p) to be asymptotically equivalent to inference based on q(p)?
For this paper, the chief hypothesis testing issue is controlling the FDR asymp-
totically in p. To fix ideas, suppose the indices Jn = {1, . . . , p} for the hypothe-
sis tests are divided into two groups, J0p and J1p , where some null hypotheses
hold for all j ∈ J0p and some alternatives hold for all j ∈ J1p . We will assume
that qj is uniformly distributed for all j ∈ J0p and that qj has distribution F1
for all j ∈ J1p , where F1(t) ≥ t for all t ∈ [0,1] and F1 is strictly concave with
limt↓0 F1(t)/t = ∞. Let λp ≡ #J0p/p be the proportion of true null hypotheses,
and assume λp → λ0 ∈ (0,1] as p → ∞. Also let F̃p(t) ≡ p−1 ∑p

j=1 1{qj ≤ t},
where 1{A} is the indicator of A, and assume F̃p(t) converges uniformly in t to
F0(t) ≡ λ0t + (1 − λ0)F1(t).

The estimate of FDR proposed by [23] (see also [10]) for a p-value threshold of
t ∈ [0,1] is F̃DRl(t) ≡ λ̃(l)t/(F̃p(t)∨ (1/p)), where λ̃(l) ≡ (1 − F̃p(l))/(1 − l) is
a conservative estimate of λ0, in that λ̃(l) → λ∗ in probability, where λ0 ≤ λ∗ ≤ 1,
and where a ∨ b denotes the maximum of a and b. The quantity l is the tuning
parameter and is constrained to be in (0,1) with decreasing bias as l gets closer to
zero. Because of the upward bias in λ̃(l), if λ̃(l) is distinctly < 1, then one can be
fairly confident that λ0 < 1.

We first consider λ0 < 1. The asymptotic FDR for the procedure rejecting
all hypotheses corresponding to indices with pj ≤ t is r0(t) ≡ λ0t/(λ0t + (1 −
λ0)F1(t)). [24] demonstrates that under fairly general dependencies among the
p-values q(p), F̃p(t) converges to F0(t), and thus F̂DRl(t) converges in probabil-
ity to r∗(t) ≡ (λ∗/λ0)r0(t). Our assumptions on F1 ensure that r0(t) is monotone
increasing with derivative ṙ0(t) bounded over t ∈ (δ,1] by (4δ)−1. Thus, for each
ρ ∈ [0, λ∗], there exists a t ∈ [0,1] with r∗(t) = ρ and r0(t) ≤ ρ. Thus using
F̃DRl(t) to control FDR is asymptotically valid, albeit conservative.
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Suppose all we have available is q̂(p). Now we estimate F0 with F̂p(t) =
p−1 ∑p

j=1 1{q̂j ≤ t} and λ∗ with λ̂l(t) ≡ (1 − F̂p(l))/(1 − l). The previous re-

sults will all hold for F̂DRl(t) ≡ λ̂(l)t/(F̂p(t) ∨ (1/p)), provided F̂p is uni-
formly consistent for F0. We now show that a sufficient condition for this is
E1p(q̂(p), q(p)) ≡ max1≤j≤p |q̂j − qj | → 0 in probability. Under this condition,
there exists a positive sequence εp ↓ 0 such that P(E1p(q̂(p), q(p)) > εp) → 0
in probability. Accordingly, we have with probability tending to 1 that for any
t ∈ [εp,1 − εp], F̃p(t − εp) ≤ F̂p(t) ≤ F̃p(t + εp). Thus, by continuity of F0,
uniform consistency of F̂p follows from uniform consistency of F̃p . In summary,
the above procedure for controlling FDR is asymptotically valid when λ0 < 1,
provided E1p(q̂(p), q(p)) goes to zero in probability.

The above result does not hold when λ0 = 1. Since this forces λ∗ = 1, we will
have warning whenever λ̂(l) or λ̃(l) is close to 1. The main difficulty is that r0(t) =
1 for all t ∈ (0,1], and thus the previous asymptotic arguments will not hold. This
issue is confronted in Fan, Hall and Yao [7], who utilize large deviation results to
build on an earlier version of the present paper [19] for controlling FDR using t-
tests and bootstrap calibration. They show that controlling the error in the p-value
ratios, max1≤j≤p |q̂j /qj −1|, is needed. An additional advantage of controlling the
p-value ratios, is that the relative order of significantly small p-values can be bet-
ter determined. This is useful, for example, for prioritizing genes for follow-up
studies.

The ratio-error measure we propose is

E
(α)
2p

(
q̂(p), q(p)

)
≡ max

1≤j≤p

(
1{qj > α/(2p)}

∣∣∣∣ q̂j

qj

− 1
∣∣∣∣ + 1{qj ≤ α/(2p), q̂j > α/p}

)
.

We require E
(α)
2p (q̂(p), q(p)) → 0, in probability, for all α ∈ (0,1]. This error is not

quite as stringent as the uniform ratio error given in the previous paragraph, but it
is nearly so, as seen in the following simple lemma.

LEMMA 1. Suppose E
(α)
2p (q̂(p), q(p)) → 0 in probability, as p → ∞, for every

α ∈ (0,1]. Then maxj∈J0p
|q̂j /qj − 1| → 0 in probability, as p → ∞.

The proof easily follows from the marginal uniformity of qj when j ∈ J0n, since
this implies P(minj∈J0p

qj ≤ α/(2p)) ≤ ∑
j∈J0p

P(qj ≤ α/(2p)) ≤ α/2 and since
α can be chosen arbitrarily close to 0.

The E
(α)
2p error measure also requires that when qj ≤ α/(2p), q̂j must sat-

isfy the most stringent Bonferroni correction at level α. We now argue that
E

(α)
2p (q̂(p), q(p)) → 0 in probability for every α ∈ (0,1] ensures that controlling

FDR using F̂DRl(t) is asymptotically valid.
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We need to modify our previous conditions to assume that λp → 1; that
t−δF1(t) → ∞, as t → 0, for some δ ∈ (0,1); and that (1 − λp)−1 = o(p1−δ).
Define FDR(p)(t) to be the sequence of true FDRs at significance level t , G̃p(t) to
be the observed empirical distribution of the pλp p-values from null hypotheses,
and let r(p)(t) ≡ λpt/(λpt + (1 − λp)F1(t)). The second assumption strengthens
the degree of concavity of F1 in the left tail, while the third assumption prevents
r(p) from converging to 1 too rapidly. As we did previously, we will control FDR at
the level ρ by finding a t ∈ (0,1) such that F̂DRl(t) ≤ ρ and rejecting hypotheses
corresponding to estimated p-values q̂j for which q̂j ≤ t . The following lemma
tells us when this procedure will be asymptotically valid for controlling FDR.

LEMMA 2. Fix ρ, l ∈ (0,1). In addition to the given conditions, assume that
E

(α)
2p (q̂(p), q(p)) → 0 in probability for every α ∈ (0,1], and that

sup
t∈[tp,1]

∣∣F̃DRl(t) − (λ∗/λ0)r(p)(t)
∣∣ → 0 and sup

t∈[tp,1]
|t−1G̃p(t) − 1| → 0,(2)

in probability, where tp = (1 − λp)1/(1−δ). Let t̂p = sup{t : F̂DRl(t̂p) ≤ ρ} for all
p ≥ 1. Then FDR(p)(t̂p) ∨ ρ → ρ, in probability.

The following lemma provides a sufficient condition for (2).

LEMMA 3. Condition (2) holds when q1, . . . , qp are independent.

REMARK 1. We now demonstrate that when λ0 = 1, E1p(q̂(p), q(p)) → 0 in
probability does not in general guarantee asymptotic control of FDR using F̂DRl .
First note that since F̃DRl(t), r(p)(t) and λ̃(l) are uniformly bounded almost surely,
we have that (2) implies supt∈[tp,1] |FDR(p)(t) − r(p)(t)| → 0 by bounded conver-

gence. Assume for illustration that F1(t) = t1/2 and λp = 1 − p−1/3, and note
these satisfy the required assumptions for Lemma 2. Fix ρ ∈ (0,1), and note that

tp =
√

ρ/((1 − ρ)(p1/2 − 1)) solves r(p)(tp) = ρ for all p large enough. Now
ptp → ∞ but tp → 0. Thus uniform estimation of tp will not be enough to control
FDR at the level ρ since r(p)(t) → 1, as p → ∞, for all t ∈ (0,1]. In particular,
we need E1p(q̂(p), q(p)) = oP (p−1/4).

In summary, using F̂DRl(t) to control FDR is asymptotically valid under rea-
sonable regularity conditions, provided E1p(q̂(p), q(p)) → 0 in probability when

λ0 < 1, or E
(α)
2p (q̂(p), q(p)) → 0 in probability, for every α ∈ (0,1], when λ0 = 1.

For the remainder of the paper, we will drop the assumptions on the distributions of
the p-values q(p), except that p-values corresponding to null hypotheses will still
be uniform. Our focus hereafter is on conditions under which estimated p-values
are uniformly consistent via E1p and E

(α)
2p .
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3. Marginal asymptotics. The results of this section are based on the true
data (without normalization error). For each n ≥ 1, let X1(n), . . . , Xn(n) be a sam-
ple of i.i.d. vectors (e.g., microarrays) of length pn, where the dependence within
vectors is allowed to be arbitrary. Denote the j th component (e.g., gene) of the ith
vector Xij (n), that is, Xi(n) = (Xi1(n), . . . ,Xipn(n))

′. Also let the marginal distribu-
tion of X1j (n) be denoted Fj(n), and let F̂j (n)(t) = n−1 ∑n

i=1 1{Xij (n) ≤ t}, for all
t ∈ R and each j = 1, . . . , pn.

We first establish, in Section 3.1, uniform consistency of the marginal empirical
distribution function estimator and also uniformity of a Brownian bridge approx-
imation to the standardized empirical distribution. These results are used in Sec-
tions 3.2 and 3.3 to study inferential properties of the marginal means and medians.
Note that both the mean and median are functionals of the empirical distribution
function.

3.1. Consistency of marginal empirical distribution functions. This section,
consisting of Theorems 1 and 2 below, is the basis for the results of Sections 3.2
and 3.3. The two theorems are somewhat surprising, high-dimensional extensions
of two classical univariate results for empirical distribution functions: the cele-
brated Dvoretzky, Kiefer and Wolfowitz inequality [6] as refined by Massart [20],
and the celebrated Komlós, Major and Tusnády Hungarian construction [15] as re-
fined by Bretagnolle and Massart [3]. The extensions utilize maximal inequalities
based on Orlicz norms (see Chapter 2.2 of [26]). For any real random variable Y

and any d ≥ 1, let ‖Y‖ψd
denote the Orlicz norm for ψd(x) = exd − 1, that is,

‖Y‖ψd
= inf{C > 0 : E[e|Y |d/Cd − 1] ≤ 1}. Note that ‖ · ‖ψd

increases with d (up
to a constant depending on d) and that ‖ · ‖ψ1 dominates all Lp norms (up to a
constant depending on p). We denote the uniform norm ‖ · ‖∞.

The first theorem yields simultaneous consistency of all F̂j (n)’s.

THEOREM 1. For a universal constant 0 < c0 < ∞ and all n,pn ≥ 2,∥∥∥∥ max
1≤j≤pn

∥∥F̂j (n) − Fj(n)

∥∥∞
∥∥∥∥
ψ2

≤ c0

√
logpn

n
.(3)

In particular, if n → ∞ and logpn = o(n), then the left-hand side of (3) → 0.

REMARK 2. The rate on the right-hand side of (3) is sharp, in the sense
that there exist sequences of datasets, where (logpn/n)−1/2 max1≤j≤pn ‖F̂j (n) −
Fj(n)‖∞ → c > 0, in probability, as n → ∞. In particular, this is true if the genes
are all independent, n,pn → ∞ with logpn = o(n), and c = 1/2.

The second theorem shows that the standardized empirical processes√
n(F̂j (n) − Fj(n)) can be simultaneously approximated by Brownian bridges in
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a manner which preserves the original dependence structure in the data. For ex-
ample, if the original data has weak dependence, as defined in [24], then so will
the approximating Brownian bridges. To this end, let Fj (n) be the smallest σ -
field making all of X1j (n), . . . ,Xnj (n) measurable, 1 ≤ j ≤ pn, and let Fn be the
smallest σ -field making all of F1(n), . . . ,Fpn(n) measurable.

THEOREM 2. For universal constants 0 < c1, c2 < ∞ and all n,pn ≥ 2,∥∥∥∥ max
1≤j≤pn

∥∥√n
(
F̂j (n) − Fj(n)

) − Bj(n)

(
Fj(n)

)∥∥∞
∥∥∥∥
ψ1

(4)

≤ c1 logn + c2 logpn√
n

,

for some stochastic processes B1(n), . . . ,Bpn(n) which are conditionally indepen-
dent given Fn and for which each Bj(n) is a standard Brownian bridge with con-
ditional distribution given Fn depending only on Fj (n), 1 ≤ j ≤ pn.

3.2. Inference for marginal sample means. For each 1 ≤ j ≤ pn, assume for
this section that Fj(n) has finite mean µj(n) and standard deviation σj(n) > 0. Let
X̄j (n) be the sample mean of X1j (n), . . . ,Xnj (n). The following corollary yields
simultaneous consistency of the marginal sample means.

COROLLARY 1. Assume the closure of the support of Fj(n) is a compact inter-
val [aj (n), bj (n)] with aj (n) �= bj (n). Under the conditions of Theorem 1 and with
the same constant c0, we have for all n,pn ≥ 2,∥∥∥∥ max

1≤j≤pn

∣∣X̄j (n) − µj(n)

∣∣∥∥∥∥
ψ2

≤ c0

√
logpn

n
max

1≤j≤pn

∣∣bj (n) − aj (n)

∣∣.(5)

REMARK 3. Note that Corollary 1 slightly extends the large p small n con-
sistency results of [25] by allowing the range of the support to increase with n

provided it does not increase too rapidly.

The following corollary relaxes the somewhat restrictive bounded support as-
sumption at the expense of decreasing the rate of convergence.

COROLLARY 2. Assume that there exist constants 0 < k1, k2 < ∞ and r ≥ 1
such that P(|X1j (n) − µj(n)| > u) ≤ k1e

−k2u
r
, for all u > 0 and all 1 ≤ j ≤ pn.

Then, provided n → ∞ and pn ≥ 2, we have

max
1≤j≤∞

∣∣X̄j (n) − µj(n)

∣∣ = OP

(√
logpn

n
(logpn + logn)1/r + (npn)

−k2

)
.(6)

In particular, the right-hand-side goes to zero provided logpn = o(nr/(2+r)).
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Now suppose we wish to test the marginal null hypothesis H
j(n)
0 :µj(n) =

µ0,j (n) with Tj(n) = √
n(X̄j (n) −µ0,j (n))/σ̂j (n), where σ̂j (n) is a location-invariant

and consistent estimator of σj(n). To use FDR, we need uniformly consistent
estimates of the p-values of these tests. Permutation methods can be used.
An easier way is to use π̂j (n) = 2
(−|Tj(n)|), where 
 is the standard nor-
mal distribution function, but we need to show this is valid. For the estimator
σ̂j (n), we require σ̂j (n)/σj (n) to be uniformly consistent for 1, that is, E0n ≡
max1≤j≤pn |σ̂ 2

j (n)/σ
2
j (n) − 1| = oP (1). One choice for σ̂ 2

j (n) that satisfies this re-

quirement is the sample variance S2
j (n) for X1j (n), . . . ,Xnj (n):

COROLLARY 3. Assume n → ∞, with pn ≥ 2 and logpn = o(nγ ) for some
γ ∈ (0,1]. The following are true under the given assumptions.

(i) Assume the closure of the support of Fj(n) is compact as in Corol-
lary 1, and let dn ≡ max1≤j≤pn σ−1

j (n)|bj (n) − aj (n)|. Then E0n = O(n−1) +
oP (d2

nnγ/2−1/2). In particular, if dn = O(1), then E0n = oP (1).
(ii) Assume there exist constants 0 < k1, k2 < ∞ such that P(σ−1

j (n)|X1j (n) −
µj(n)| > x) ≤ k1e

−k2x
2

for all x > 0, 1 ≤ j ≤ pn, and all n ≥ 1. Then E0n =
O(n−1) + OP ((npn)

−k2) + oP (n3γ /2−1/2). In particular, if γ ∈ (0,1/3], then
E0n = oP (1).

This approach leads to uniformly consistent p-values:

COROLLARY 4. Assume as n → ∞ that pn ≥ 2, logpn = o(nγ ), for some
γ ∈ (0,1/2], and E0n = oP (1). Then there exist standard normal random vari-
ables Z1(n), . . . ,Zpn(n) which are conditionally independent given Fn, with each
Zj(n) having conditional distribution given Fn depending only on Fj (n), 1 ≤
j ≤ pn, such that the following hold for π(n) ≡ π1(n), . . . , πpn(n) and π̂(n) ≡
π̂1(n), . . . , π̂pn(n), where

πj(n) ≡ 2


(
−

∣∣∣∣Zj(n) +
√

n(µj(n) − µ0,j (n))

σj (n)

∣∣∣∣), 1 ≤ j ≤ pn :(7)

(a) Provided the support of Fj(n) is bounded as in part (i) of Corollary 3:

(i) E1pn(π̂(n), π(n)) = OP (E
1/2
0n ) + oP (nγ−1/2dn). In particular, the error

goes to zero if σ̂ 2
j (n) = S2

j (n) and dn = O(1).

(ii) If, in addition, E0n = OP (n−γ ) and dn = O(n−3γ /2+1/2), then E
(α)
2pn

(π̂(n),

π(n)) = oP (1), for all α ∈ (0,1]. In particular, the conditions hold for σ̂ 2
j (n) =

S2
j (n), dn = O(1) and γ ∈ (0,1/3].

(b) Provided the Fj(n) have sub-Gaussian tails as in part (ii) of Corollary 3:
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(i) E1pn(π̂(n), π(n)) = OP (E
1/2
0n ) + oP (n3γ /2−1/2). In particular, the error

goes to zero if σ̂ 2
j (n) = S2

j (n) and γ ∈ (0,1/3].
(ii) If, in addition, E0n = OP (n−γ ) and γ ∈ (0,1/4], then E

(α)
2pn

(π̂(n), π(n)) =
oP (1), for all α ∈ (0,1]. In particular, the conditions hold for σ̂ 2

j (n) = S2
j (n) and

γ ∈ (0,1/5].
REMARK 4. Corollary 4 tells us that if we assume bounded ranges of the

distributions and if uniform convergence of p-values is sufficient, then the ap-
proximate p-values are asymptotically valid, provided we use the sample stan-
dard deviation for t-tests and logpn = o(n1/2). If we also need the ratios of the
p-values to be valid, then we need logpn = o(n1/3). If we weaken our bounded
range assumption to only requiring uniformly sub-Gaussian tails, then the rate re-
quirements for uniform convergence and ratio convergence of the p-values become
logpn = o(n1/3) and logpn = o(n1/5), respectively.

It has been shown that performance of gene-level p-values can be improved
through assuming homogeneity of variance across genes [9]. If we are willing to
make this assumption, that is, that σ 2

j (n) = σ 2 for all 1 ≤ j ≤ pn, then Corollary 4

can be strengthened if we estimate σ 2 with σ̂ 2 ≡ p−1
n

∑pn

i=1 S2
j (n):

COROLLARY 5. Assume the conditions of part (b)(ii) of Corollary 4 are
strengthened to require 0 < σ 2

j (n) = σ 2 < ∞ and σ̂ 2
j (n) = σ̂ 2, 1 ≤ j ≤ pn. Then

E0n = OP (n−1/2) and E
(α)
2pn

(π̂(n), π(n)) = oP (1) for all α ∈ (0,1], provided γ ∈
(0,1/4].

REMARK 5. This yields a relaxation from requiring logpn = o(n1/5) to only
requiring logpn = o(n1/4). The other error rates in Corollary 4 do not appear to
benefit from faster convergence of E0n.

3.3. Inference for marginal sample medians. Assume each Fj(n) has median
ξj (n) and is continuous in a neighborhood of ξj (n) with density fj(n). In this sec-
tion, we do not require the support of Fj(n) to be compact, but we do assume there
exist η, τ > 0 such that

min
1≤j≤pn

inf
x : |x−ξj (n)|≤η

fj (n)(x) ≥ τ.(8)

Denote the sample median for X1j (n), . . . ,Xnj (n) as ξ̂j (n), that is, let ξ̂j (n) = inf{x :
F̂j (n)(x) ≥ 1/2}. The following gives uniform consistency of ξ̂j (n).

COROLLARY 6. Under condition (8) ( for some η, τ > 0) and the conditions
of Theorem 1, we have that

max
1≤j≤pn

∣∣ξ̂j (n) − ξj (n)

∣∣ = OP

(
log(n ∨ pn)

n
+

√
logpn

n

)
.(9)
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Now assume we wish to test the marginal null hypotheses H
j(n)
0 : ξj (n) = ξ0,j (n)

with Uj(n) = 2
√

nf̂j (n)(ξ̂j (n) − ξ0,j (n)), where f̂j (n) is a consistent estimator of
fj(n)(ξj (n)). As discussed in [16], this is a good choice of median test because it
converges rapidly to its limiting Gaussian distribution and appears to have better
moderate sample size performance compared to other median tests. As with the
marginal mean test, we need consistent estimates of the p-values of these tests.
We now study the consistency of the p-value estimates π̂ ′

j (n) = 2
(−|Uj(n)|). We
need additional conditions. Assume there exist η, τ > 0 and M < ∞ such that (8)
holds and, moreover, that

max
1≤j≤pn

sup
x : |x−ξj (n)|≤η

fj (n)(x) ≤ M(10)

and

max
1≤j≤pn

sup
ε≤η

sup
u : |u|≤ε

|fj(n)(ξj (n) + u) − fj(n)(ξj (n))|
ε1/2 ≤ M.(11)

Let E′
0n ≡ max1≤j≤pn |f̂j (n) − fj(n)(ξj (n))|. One simple choice for f̂j (n) is

f̃j (n) = F̂j (n)(ξ̂j (n) + hn) − F̂j (n)(ξ̂j (n) − hn)

2hn

,(12)

where the window width hn goes to zero in probability, as n → ∞. The following
corollary shows that this estimator is uniformly consistent.

COROLLARY 7. Assume condition (10) holds and that logpn = o(nγ ) for
some γ ∈ (0,1], as n → ∞. Suppose also that f̂j (n) = f̃j (n) for all 1 ≤ j ≤
pn, hn = oP (1) and h−1

n = OP (n(1−γ )/2). Then E′
0n = oP (h−1

n n−(1−γ )/2) +
OP (h

1/2
n ) = oP (1). In particular, the selection hn = OP (n−(1−γ )/4) and

h−1
n = OP (n5(1−γ )/24) yields E′

0n = OP (n−(1−γ )/8), while the choice hn =
OP (n−(1−γ )/3) and h−1

n = OP (n(1−γ )/3) yields a further improvement to E′
0n =

OP (n−(1−γ )/6).

There are many other possible kernel estimators with other choices of window
widths that will also work, but we will not pursue them here.

We are now ready for the following corollary about p-value consistency.

COROLLARY 8. Assume as n → ∞ that pn ≥ 2, logpn = o(nγ ), for some
γ ∈ (0,1/3], and E′

0n = oP (1). Assume also that conditions (8), (10) and (11), for
some η, τ > 0 and M < ∞, hold. Then

E1pn

(
π̂ ′

j (n), π
′
j (n)

) = oP (1),(13)

where

π ′
j (n) = 2


(−∣∣Zj(n) + 2
√

nfj(n)

(
ξj (n)

)(
ξj (n) − ξ0,j (n)

)∣∣),(14)
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and, for each n ≥ 1, Z1(n), . . . ,Zpn(n) are standard normals conditionally inde-
pendent given Fn and for which each Zj(n) has conditional distribution given
Fn depending only on Fj (n), 1 ≤ j ≤ pn. In particular, (13) holds if f̂j (n) =
f̃j (n) for all 1 ≤ j ≤ pn, hn = oP (1) and h−1

n = OP (n(1−γ )/2). If, moreover,
we require γ ∈ (0,1/5], hn = OP (n−(1−γ )/4) and h−1

n = OP (n5(1−γ )/24), then

E
(α)
2pn

(π̂ ′
(n), π

′
(n)) = oP (1), for every α ∈ (0,1].

REMARK 6. It is unclear if any improvements in the choice of γ are possible
through combining information across genes (1 ≤ j ≤ pn), as was done in Corol-
lary 5 for the mean inference setting.

4. Impact of microarray normalization. In this section, we consider the af-
fect of normalization on the theory presented in Sections 2–3. For the simple nor-
malization model (1), this may require the ĥi ’s to be uniformly consistent at the
rate OP (nβ logn), for some β ∈ [1/2,1). This requirement seems reasonable for
certain estimation methods, including the method described in [8], which benefits
from the so-called “blessing of dimensionality.” In these methods, data across all
genes within each array are utilized for estimating the hi’s. Since the number of
genes pn usually increases nearly exponentially relative to the number of microar-
rays, the number of observations available for estimating the hi’s is many orders
of magnitude higher than n, even after taking into account dependencies within
arrays and the fact that the number of arrays is increasing in n. For this particu-
lar facet of our problem, the large number of genes actually works in our favor.
A variant of this argument can also be found in [18].

Let X̃i(n) = (X̃i1(n), . . . , X̃ipn(n))
′ be an approximation of the “true data” Xi(n),

1 ≤ i ≤ n, and define ε̂n ≡ max1≤j≤pn;1≤i≤n |X̃ij (n) − Xij (n)|. With proper, par-
tially consistent normalization, the true gene effects {Xij (n),1 ≤ j ≤ pn,1 ≤ i ≤
n} should be uniformly consistently estimated by the residuals from the normal-
ization {X̃ij (n),1 ≤ j ≤ pn,1 ≤ i ≤ n}. We now examine conditions under which
the results of Sections 3.2 and 3.3 carry through after normalization, that is, after
ε̂n = oP (1).

4.1. Inference for marginal sample means. Let X̌j (n) and Š2
j (n) be the sam-

ple mean and variance for the normalized sample X̃1j (n), . . . , X̃nj (n). Define
Ě0n ≡ max1≤j≤pn |Š2

j (n)/S
2
j (n) − 1| and assume throughout this section that

min1≤j≤pn σj (n) ≥ τ > 0 for all n ≥ 1. We have the following.

LEMMA 4. (a) max1≤j≤pn |X̌j (n) − X̄j (n)| = OP (ε̂n).
(b) Assume n → ∞, with pn ≥ 2 and logpn = o(nγ ) for some γ ∈ (0,1].

(i) If the support of Fj(n) is bounded and dn = O(1), Ě0n = OP (ε̂n).
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(ii) If the sub-Gaussian tail hypothesis of Corollary 3 holds and γ ∈ (0,1/3],
Ě0n = OP (ε̂n).

The above leads to the following result. Define first π̌(n) ≡ π̌1(n), . . . , π̌pn(n),
where π̌j (n) ≡ 2
(−|Ť ′

j (n)|), Ť ′
j (n) ≡ √

n(X̌j (n) − µ0,j (n))/Šj (n), 1 ≤ j ≤ pn.

COROLLARY 9. Assume the conditions of Corollary 4. Then:

(a) Provided the support of Fj(n) is bounded and dn = O(1), we have

(i) E1pn(π̌(n), π(n)) = oP (1) when ε̂n = oP (n−1/2); and (ii) E
(α)
2pn

(π̌(n), π(n)) =
oP (1), for all α ∈ (0,1], when γ ∈ (0,1/3] and ε̂n = OP (n−1/2−γ /2).

(b) Provided Fj(n) has sub-Gaussian tails as in part (b) of Corollary 4, we
have (i) E1pn(π̌(n), π(n)) = oP (1) when γ ∈ (0,1/3] and ε̂n = oP (n−1/2); and

(ii) E
(α)
2pn

(π̌(n), π(n)) = oP (1), for all α ∈ (0,1], when γ ∈ (0,1/5] and ε̂n =
OP (n−1/2−γ /2).

REMARK 7. Provided ε̂n = OP (n−1/2) and utilizing arguments similar to
those used in Corollary 5, Lemma 4 yields that max1≤j≤pn |Š2

j (n)/σ
2
j (n) − 1| =

OP (n−1/2) under the assumption of common variances. This means that the re-
quirement that logpn = o(n1/5) can be relaxed to logpn = o(n1/4) for achieving
uniform consistency of p-value ratios under sub-Gaussian tails, as discussed in
Remark 5, even in the presence of normalization.

4.2. Inference for marginal sample medians. The effect of normalization on
medians is trickier than its effect on means. The essence of our argument in-
volves an assessment of how well F̃j (n)(t) ≡ n−1 ∑n

i=1 1{X̃ij (n) ≤ t} approximates
F̂j (n)(t). We need the following strengthening of (10):

lim sup
n→∞

max
1≤j≤pn

∥∥fj(n)

∥∥∞ ≤ M̃,(15)

for some M̃ < ∞. The result below requires a precise bound on the modulus of
continuity of Brownian motion (see Lemma 10 in Section 7 below).

THEOREM 3. Assume condition (15) holds for some M̃ < ∞ and that
logpn = o(nγ ) for some γ ∈ (0,1]. Then the following are true.

(i) If ε̂n = oP (1), then max1≤j≤pn ‖F̃j (n) − F̂j (n)‖∞ = oP (1).
(ii) If, in addition, γ ∈ (0,1/2] and n1−γ (logn)ε̂n = OP (1), then also

max
1≤j≤pn

∥∥F̃j (n) − F̂j (n)

∥∥∞ = oP

(
n−(1−γ )).
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REMARK 8. Note that the signed rank test Rj(n) studied in [18] can be written
as a normalization of

√
n

∫
R
[F̂j (n)(u) − F̂j (n)(−u)]dF̂j (n)(u), while the sign test

can be written as a normalization of
√

n
∫
R

sign(u) dF̂j (n)(u). Thus part (ii) of
Theorem 3 allows us to replace F̂j (n) with F̃j (n) in both of these statistics, 1 ≤
j ≤ pn, without destroying simultaneous consistency and validity of the normal
p-value approximation assured by Theorems 1 and 2.

We now show that Theorem 3 can also be used to verify that the asymptotic
results for the median tests of Section 3.3 hold for normalized data. For j =
1, . . . , pn, define the approximate sample median ξ̌j (n) = inf{r : F̃j (n)(r) ≥ 1/2}
and f̌j (n) ≡ (F̃j (n)(ξ̌j (n) + hn) − F̃j (n)(ξ̌j (n) − hn))/(2hn). Corollaries 10 and 11
validate the median approach after normalization.

COROLLARY 10. Assume there are no ties in the normalized data {X̃ij (n)}.
(i) Under the conditions of Theorem 3, part (i), max1≤j≤pn |ξ̌j (n) − ξ̂j (n)| =

oP (1).
(ii) Assume the conditions of Theorem 3, part (ii), but with γ ∈ (0,1/3]. Then

max1≤j≤pn |ξ̌j (n) − ξ̂j (n)| = oP (n−3(1−γ )/4).
(iii) Assume in addition the conditions of Corollary 7 with f̌j (n) replacing f̃j (n).

Then max1≤j≤pn |f̌j (n) − f̂j (n)| = oP (h−1
n n−3(1−γ )/4).

COROLLARY 11. Assume the conditions of Corollary 10, part (iii), and the
conditions of Corollary 8, except π̌ ′

j (n) ≡ 2
(−2
√

nf̌j (n)|ξ̌j (n) −ξ0,j (n)|) replaces

π ′
j (n), for all 1 ≤ j ≤ pn. Assume also that n1−γ (logn)ε̂n = OP (1) in all cases.

Then all of the conclusions of Corollary 8 follow with π̌ ′
(n) ≡ π̌ ′

1(n), . . . , π̌
′
pn(n)

replacing π̂ ′
(n).

REMARK 9. Note that we require in some instances that ε̂n converge to zero
faster than OP (n−1/2). This is possible since we can borrow strength across the
pn � n genes to increase the normalization precision. We have thus shown that
the normal approximation for p-values, even after normalization, can yield as-
ymptotically valid FDR control as discussed in Section 2.

5. Numerical studies.

5.1. One-sample simulation study. We used a small simulation study to as-
sess the finite sample performance of the following one-sample methodologies:
(1) the mean-based comparison with unpooled variance estimate; (2) the mean-
based comparison with pooled variance estimate; (3) the median-based compari-
son and (4) the signed rank test approach. We set the number of genes to p = 2000
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and the number of arrays to n = 10, 50 and 100. For simplicity, we assume the
genes are independently distributed and the first 200 genes are differentially ex-
pressed. We consider the following marginal gene expression distributions: Mod-
els 1 and 3: Uniform[−√

3v + 1.5,
√

3v + 1.5] for differentially expressed genes
and Uniform[−√

3v,
√

3v] otherwise. Models 2 and 4: N(1.5, v) for differentially
expressed genes and N(0.0, v) otherwise. In Models 1 and 2, v = 1.0; in Mod-
els 3 and 4, v ∼ Uniform[0.25,1.75] and marginal variances differ as much as
seven-fold. Genes with marginal p-values < 0.001 are classified as differentially
expressed. We compute F̂DR using the method in Section 2. For simplicity, we fix
l = 0.2. We show in Table 1 the medians of the true FDR and F̂DR based on 200
replicates.

As sample size increases, the estimated FDRs become closer to the true FDRs
for Models 1 and 2. For the pooled mean, median and signed rank approaches,
the approach discussed in Section 2 provides a conservative control of the true
FDR. For extremely small sample size (n = 10), the pooled mean approach is
still valid, whereas the signed rank approach cannot identify any differentially
expressed genes (denoted “NA” in Table 1). For the mean test without pooling,
controlling the FDR with the approach given in Section 2 does not work well for
small samples (especially under Models 2 and 3). As expected, pooling does not
work when the variances are homogeneous (Models 3 and 4). With the ongoing

TABLE 1
One-sample simulation study results for the mean, pooled mean, median and signed rank statistics

under Models 1, 2, 3 and 4. n: sample size

Mean Pooled mean Median Signed rank

n FDR F̂DR FDR F̂DR FDR F̂DR FDR F̂DR

Model 1
10 0.113 0.008 0.005 0.010 0.190 0.035 NA NA
50 0.019 0.009 0.009 0.009 0.008 0.009 0.000 0.010

100 0.012 0.009 0.007 0.009 0.009 0.012 0.000 0.010

Model 2
10 0.086 0.009 0.010 0.010 0.048 0.027 NA NA
50 0.016 0.009 0.009 0.009 0.001 0.010 0.000 0.010

100 0.012 0.009 0.009 0.009 0.001 0.010 0.000 0.010

Model 3
10 0.123 0.009 0.016 0.010 0.143 0.027 NA NA
50 0.020 0.009 0.024 0.009 0.005 0.009 0.000 0.010

100 0.015 0.009 0.029 0.009 0.012 0.009 0.000 0.010

Model 4
10 0.090 0.009 0.026 0.010 0.040 0.022 NA NA
50 0.015 0.009 0.024 0.009 0.000 0.010 0.000 0.010

100 0.010 0.009 0.024 0.009 0.000 0.010 0.000 0.010
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FIG. 1. Simulation study: plots of marginal p-values. The solid horizontal line is the true propor-
tion of nondifferentially expressed genes; the dotted line is the estimate.

development of microarray technology, a typical study may have more than 50
arrays. Thus FDR control based on the mean, pooled mean (when pooling is justi-
fied), median and rank approaches will often be valid. Simulations with correlated
expression levels and other marginal distributions yield similar conclusions.

We show in Figure 1 the histogram of the marginal p-values for a single repli-
cation from Model 1 with n = 50. For the mean, pooled mean and median ap-
proaches, the distributions seem to be a mixture of a uniform and a point mass at
zero; the marginal p-value distribution for nondifferentially expressed genes for
the rank approach is also close to uniform. With the rank approach, the proportion
of nondifferentially expressed genes is overestimated. Other diagnostics show that
the FDR approach is well behaved.

5.2. Estrogen data. These datasets were first presented in [28] and [22]. Their
common expression matrix monitors 7129 genes in 49 breast tumor samples. The
data were obtained by applying the Affymetrix gene chip technology. The response
describes the lymph nodal (LN) status, an indicator of disease severity. 25 sam-
ples are positive and 24 samples are negative. The goal is to identify genes dif-
ferentially expressed between positive and negative samples from the 3332 genes
passing the first step of processing described in [5]. A base 2 log transform of
the gene expressions is first applied. We compute marginal p-values based on the
mean (without pooling), pooled mean and median approaches, and the Wilcoxon
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test, which is a two-sample version of the signed rank test. See [19] for additional
details on the two-sample methods. We use l = 0.2 for tuning and genes with
p-values < 0.001 are considered differentially expressed. With the four ap-
proaches, 196 (0.012), 237 (0.011), 68 (0.040) and 156 (0.016) genes are identified,
respectively, with the numbers in parentheses being the estimated FDRs. There are
reasonable overlaps between the genes identified with the different approaches.

6. Discussion. The main results of this paper are that marginal (gene specific)
estimates and asymptotic-based p-values are uniformly consistent in normalized
microarray experiments with n replications—regardless of the dependencies be-
tween genes—provided the number of genes pn satisfies logpn = o(nγ ), for a
suitable γ ∈ (0,1], depending on the setting. In other words, the number of genes
can increase almost exponentially fast relative to the number of arrays. This seems
to be realistic for microarray studies. Note that pn can be even larger for certain
distribution free statistics (see [18]). These results also hold for two-sample com-
parisons (see [19]).

We note that the numerical studies seem to support the theoretical results of the
paper, although some procedures work better than others. For certain statistics, the
required sample sizes are too large to be practical without pooling or some other
method of borrowing strength across genes (see [9]). We acknowledge that a num-
ber of other issues, such as the effects of marginal distributions and normalization,
were not evaluated in Section 5. A more thorough simulation study addressing
these points would be useful. A theoretical limitation is that the asymptotics de-
veloped are not yet accurate enough to provide precise guidelines on sample size.
This pursuit will likely require some assumptions on the dependencies between
genes. Such assumptions are out of place in the present paper since a strength of
the paper is the absence of assumptions on gene interdependence. Because of this
generality, the results of this paper should be a useful point of departure for future,
more refined asymptotic analyses of microarray experiments.

7. Proofs.

PROOF OF LEMMA 2. Since E
(α)
2p (q̂(p), q(p)) → 0 in probability for every

α ∈ (0,1], there exist decreasing sequences 0 < αp, εp ↓ 0 with lim supp→∞
P(E

(αp)

2p (q̂(p), q(p)) > εp) = 0 and lim supp→∞ P(|λ̂(l)/λ̃(l) − 1| > εp) = 0.
Thus 1{qj ≤ t (1 − εp)} ≤ 1{q̂j ≤ t} ≤ 1{qj ≤ t (1 + εp)} for all t ∈ [2tp,1] and
all 1 ≤ j ≤ p, with large probability. Hence also

F̃DRl

(
t
(
1 + ε̃p(t)

)) 1 − εp

1 + ε̃p(t)
≤ F̂DRl(t)

≤ F̃DRl

(
t (1 − εp)

)1 + εp

1 − εp

,
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for all n large enough, where ε̃p(t) ≡ εp ∧ (t−1 − 1). Hence by condition (2),

sup
t∈[2tp,1]

∣∣F̂DRl(t) − r(p)(t)
∣∣

(16)
≤ sup

t∈[2tp,1]
∣∣r(p)

(
t
(
1 + ε̃p(t)

)) − r(p)

(
t (1 − εp)

)∣∣ + oP (1).

Note that for any g : [0,1] �→ [0,1] with derivative ġ, we have for all t ∈ [0,1]
and ε ∈ (−1,1∧(t−1 −1)), that |g(t (1+ε))−g(t)| ≤ ε(1−ε)−1 supt∈[0,1] |t ġ(t)|.
Applying this to t �→ r(p)(t), with derivative ṙ(p), we obtain that the right-hand
side of (16) = oP (1), provided |t ṙ(p)(t)| is uniformly bounded over all t ∈ [0,1]
and p ≥ 1. The provision holds since 0 ≤ F1(t) − tf1(t) ≤ F1(t) by concavity
of F1, where f1 is the derivative of F1, and thus t ṙ(p)(t) = λpt (1 − λp)(F1(t) −
tf1(t))(λpt + (1 − λp)F1(t))

−2 ≤ 1/4.
Now note that for any p > 2, r(p) is strictly increasing, r(p)(1) = 1 and

r(p)(2tp) =
(

1 + (1 − λp)F1(2tp)

λp2tp

)−1

→ 0,(17)

since F1(2p−1)/(2p−1)δ → ∞ by assumption and t
−(1−δ)
p = (1 − λp)−1. Next

note that the sequence of solutions t∗p of r(p)(t
∗
p) = λ0ρ/λ∗ is unique and satis-

fies 2tp ≤ t∗p ≤ 1 for all p large enough. These facts, combined with the fact that
(16) = oP (1), now force both F̂DRl(2tp) = oP (1) and F̂DRl(t

∗
p) = ρ + oP (1).

This now implies, with probability tending to 1, that t̂p ≥ 2tp for all p large
enough. Hence r(p)(t̂p) ∨ (λ0/λ∗)ρ = (λ0/λ∗)ρ + oP (1), and we are done since
supt∈[tp,1] |FDR(p)(t) − r(p)(t)| → 0 via Remark 1. �

PROOF OF LEMMA 3. Let F̃1p be the empirical distribution function of the
p-values associated with alternative hypotheses. Then (2) will follow provided
supt∈[tp,1] |t−1G̃p(t)−1| = oP (1) and supt∈[tp,1] |F̃1p(t)/F1(t)−1| = oP (1). This
holds by Lemma 5 below since ptp → ∞ and pF1(tp) → ∞, as p → ∞. �

LEMMA 5. Let X1, . . . ,Xn be i.i.d. with continuous distribution F with sup-
port on [0,1]. Let F̂n be the empirical distribution, and let {un} ∈ [0,1] satisfy
nF(un) → ∞. Then supu∈[un,1] |F̂n(u)/F (u) − 1| = oP (1).

PROOF. By the continuity of F , we can assume that F(u) = u without loss of
generality since F(X) is uniform. Let sn = nun/2, and note that

P
(
nF̂n(un) ≥ sn

) = P
(

nF̂n(un) − nun√
nun

≥ sn − nun√
nun

)
→ 1,

as n → ∞, since (sn − nun)/
√

nun → ∞ and (nun)
−1/2(nF̂n(un) − nun) =

OP (1). Thus supu∈[un,1] |F̂n(u)/u − 1| ≤ sup
u∈[0,1]:nF̂n(u)≥sn

|F̂n(u)/u −1| +
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oP (1), and the desired result now follows from Theorem 2 of [17] since F̂n is
an uncensored Kaplan–Meier estimator under a reversed time scale. �

PROOF OF THEOREM 1. Define Vj(n) ≡ √
n‖F̂j (n) − Fj(n)‖∞, and note that

by Corollary 1 of [20], P(Vj (n) > x) ≤ 2e−2x2
, for all x ≥ 0 and any distrib-

ution Fj(n). This inequality is a refinement of the celebrated result of Dvoret-
zky, Kiefer and Wolfowitz [6], given in their Lemma 2, and the extension to
distributions with discontinuities is standard. Using Lemma 6 below, we obtain
‖Vj(n)‖ψ2 ≤ √

3/2 for all 1 ≤ j ≤ pn. Now, by Lemma 7 below combined with
the fact that lim supx,y→∞ ψ2(x)ψ2(y)/ψ2(xy) = 0, we have that there exists a
universal constant c∗ < ∞ with ‖max1≤j≤pn Vj (n)‖ψ2 ≤ c∗

√
log(1 + pn)

√
3/2

for all n ≥ 1. The desired result now follows for the constant c0 = √
6c∗, since

log(k + 1) ≤ 2 logk for any k ≥ 2. �

LEMMA 6. Let X be a random variable with P(|X| > x) ≤ Ke−Cxp
for every

x > 0 and constants K,C and p ≥ 1. Then ‖X‖ψp ≤ ((1 + K)/C)1/p .

LEMMA 7. Let ψ be a convex, nondecreasing, nonzero function with ψ(0) =
0 and lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) < ∞ for a finite constant c. Then,
for any random variables X1, . . . ,Xm, ‖max1≤i≤m Xi‖ψ ≤ Kψ−1(m) ×
max1≤i≤m ‖Xi‖ψ , for a constant K depending only on ψ .

PROOF OF LEMMAS 6 AND 7. These are Lemmas 2.2.1 and 2.2.2, respec-
tively, of [26], and the proofs can be found therein. �

PROOF OF THEOREM 2. Let Uj , j = 1, . . . , pn, be i.i.d. uniform random
variables independent of the data. Then, by Theorem 4 below, we have for each
1 ≤ j ≤ pn that there exists a measurable map gj(n) : Rn × [0,1] �→ C[0,1] where
Bj(n) = gj(n)(X1j (n), . . . ,Xnj (n),Uj ) is a Brownian bridge with

P
(√

n
∥∥√n

(
F̂j (n) − Fj(n)

) − Bj(n)

(
Fj(n)

)∥∥∞ > x + 12 logn
) ≤ 2e−x/6,(18)

for all x ≥ 0. Note that this construction generates an ensemble of Brownian
bridges B1(n), . . . ,Bpn(n) that may be dependent when the components in X1(n) =
(X11(n), . . . ,X1pn(n))

′ are dependent. However, each Bj(n) only depends on the
information contained in Fj (n) and the independent uniform random variable Uj .
Thus Bj(n) depends on Fn only through the information contained in Fj (n), and
the ensemble of Brownian bridges is conditionally independent given Fn. Note
also the validity of (18) for all n ≥ 2.

Define Vj(n) = ((
√

n/(logn))‖√n(F̂j (n) − Fj(n)) − Bj(n)(Fj (n))‖∞ − 12)+,
where u+ is the positive part of u. By Lemma 6, expression (18) implies that
‖Vj(n)‖ψ1 ≤ 18/ logn. Reapplying the result that log(k + 1) ≤ 2 log k for any
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k ≥ 2, we now have, by the fact that lim supx,y→∞ ψ1(x)ψ1(y)/ ψ1(xy) = 0 com-
bined with Lemma 7, that there exists a universal constant 0 < c2 < ∞ for which
‖max1≤j≤pn Vj (n)‖ψ1 ≤ c2 logpn/(logn). Now (4) follows, for c1 = 12, from the
definition of Vj(n). �

THEOREM 4. For n ≥ 2, let Y1, . . . , Yn be i.i.d. real random variables with
distribution G (not necessarily continuous), and let U0 be a uniform random vari-
able independent of Y1, . . . , Yn. Then there exists a measurable map gn : Rn ×
[0,1] �→ C[0,1] such that B = gn(Y1, . . . , Yn,U0) is a standard Brownian bridge
satisfying, for all x ≥ 0,

P
(√

n
∥∥√n(Ĝn − G) − B(G)

∥∥∞ > x + 12 logn
) ≤ 2e−x/6,(19)

where Ĝn is the empirical distribution of Y1, . . . , Yn.

PROOF. By Theorem 20.4 of [2], there exists a measurable h0 : [0,1] �→
[0,1]2 such that (U1,U2) ≡ h0(U0) is a pair of independent uniforms. More-
over, standard arguments yield the existence of a function hn : Rn × [0,1] �→
[0,1]n such that (V1, . . . , Vn) ≡ hn(Y1, . . . , Yn,U1) is a sample of i.i.d. uniforms
and (Y1, . . . , Yn) = (ψ(V1), . . . ,ψ(Vn)), where ψ(u) ≡ inf{x :G(x) ≥ u}. U1 is
needed to handle possible discontinuities in G.

Let Ĥn be the empirical distribution for V1, . . . , Vn, and note that
√

n
(
Ĥn(G(x)) − G(x)

) = √
n
(
Ĝn(x) − G(x)

) ∀x ∈ R(20)

by design. Now by the Hungarian construction (Theorem 1) of Bretagnolle and
Massart [3], there exists a Brownian bridge B depending only on V1, . . . , Vn and
U2 such that P(

√
n supu∈[0,1] |

√
n(Ĥn(u) − u) − B(u)| > x + 12 logn) ≤ 2e−x/6,

for all x ≥ 0, and thus by (20),

P
(√

n
∥∥√n(Ĝn − G) − B(G)

∥∥∞ > x + 12 logn
) ≤ 2e−x/6 ∀x ≥ 0.(21)

By Lemma 8 below, we can take B to be fn(V1, . . . , Vn,U2), where fn : [0,

1]n+1 �→ D[0,1] is measurable and D[0,1] has the Skorohod rather than uniform
metric, since both t �→ √

n(Ĥn(t) − t) and t �→ B(t) are Borel measurable on the
Skorohod space D[0,1]. Since P(B ∈ C[0,1]) = 1, and since the uniform and Sko-
rohod metrics are equivalent on C[0,1], we now have that fn is also measurable
with respect to the uniform topology. Thus the map gn : Rn × [0,1] �→ C[0,1] de-
fined by the composition (Y1, . . . , Yn,U0) �→ (V1, . . . , Vn,U2) �→ B is Borel mea-
surable, and (19) follows. �

LEMMA 8. Given two random elements X and Y in a separable metric space
X, there exist a Borel measurable f : X × [0,1] �→ X and a uniform random vari-
able Z independent of X such that Y = f (X,Z) almost surely.
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PROOF. The result and proof are given in [21]. While Skorohod’s paper does
not specify uniformity of Z, this readily follows without loss of generality. �

PROOF OF COROLLARY 1. Apply Theorem 1 and the identity∫
[aj (n),bj (n)]

x
[
dF̂j (n)(x) − dFj(n)(x)

]
(22)

= −
∫
[aj (n),bj (n)]

[
F̂j (n)(x) − Fj(n)(x)

]
dx. �

PROOF OF COROLLARY 2. Let Uj(n) = (logpn + logn)1/r ∨
max1≤i≤n |Xij (n) − µj(n)|, for 1 ≤ j ≤ pn, and note that the integration by parts
formula yields∣∣X̄j (n) − µj(n)

∣∣ ≤ 2Uj(n)

∥∥F̂j (n) − Fj(n)

∥∥∞

+
∫ ∞
Uj(n)

P
(∣∣X1j (n) − µj(n)

∣∣ > u
)
du

= OP (logn + logpn)
1/p × OP

(√
logpn

n

)
+ OP (npn)

−k2,

by Lemma 7, Theorem 1, and by the definition of Uj(n). �

PROOF OF COROLLARY 3. Let S2
j (n) be the sample variance version with n

in the denominator, and let S̃2
j (n) be the version with denominator n − 1. Then

S̃2
j (n)/σ

2
j (n) − 1 = O(n−1) + (1 + o(1))(S2

j (n)/σ
2
j (n) − 1) and thus we can assume

the denominator is n after adding the term O(n−1). Note that∣∣∣∣S2
j (n)

σ 2
j (n)

− 1
∣∣∣∣ ≤

∣∣∣∣∣n−1
n∑

i=1

(Xij (n) − µj(n))
2

σ 2
j (n)

− 1

∣∣∣∣∣ +
(

X̄j (n) − µj(n)

σj (n)

)2

.

For part (i), we apply Corollary 1 twice, once for the data (Xij (n) − µj(n))
2/σ 2

j (n)

and once for the data (Xij (n) − µj(n))/σj (n). This gives us

max
1≤j≤pn

∣∣∣∣S2
j (n)

σ 2
j (n)

− 1
∣∣∣∣ ≤ OP

(√
logpn

n
d2
n + logpn

n
d2
n

)
= oP (d2

nnγ/2−1/2),

since nγ/2−1/2 = o(1) by assumption. This yields part (i).
For part (ii), we apply Corollary 2 twice instead of Corollary 1, once for the data

(Xij (n) − µj(n))
2/σ 2

j (n) with r = 1, and once for the data (Xij (n) − µj(n))/σj (n)
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with r = 2. This immediately yields

max
1≤j≤pn

∣∣∣∣S2
j (n)

σ 2
j (n)

− 1
∣∣∣∣ ≤ OP

(√
logpn

n
(logpn + logn) + (npn)

−k2

)

+ OP

(√
logpn

n
(logpn + logn)1/2 + (npn)

−k2

)2

= oP (n3γ /2−1/2 + n2γ−1) + OP

(
(npn)

−k2 + (npn)
−2k2

)
,

which yields the desired result since γ ∈ (0,1]. �

PROOF OF COROLLARY 4. We begin by establishing the results for E1pn(π(n),

π̂(n)) [result (i)] for both parts (a) and (b). Note that for any x ∈ R and any y > 0,
|
(xy) − 
(x)| ≤ 0.25 × (|1 − y| ∨ |1 − 1/y|). Thus

max
1≤j≤pn

∣∣π̂j (n) − π̂∗
j (n)

∣∣
≤ 1

2

(
max

1≤j≤n

(
σ̂j (n) ∨ σj(n)

)∣∣∣∣ 1

σ̂j (n)

− 1

σj(n)

∣∣∣∣)(23)

= OP (E
1/2
0n ),

where π̂∗
j (n) ≡ 2
(−|T ∗

j (n)|) and T ∗
j (n) ≡ √

n(X̄j (n) − µ0,j (n))/σj (n).
Now, for part (a) Theorem 2 yields

max
1≤j≤pn

∣∣π̂∗
j (n) − πj(n)

∣∣
= OP

(
c1 logn + c2 logpn√

n
× max

1≤j≤pn

|bj (n) − aj (n)|
σj(n)

)
= oP (nγ−1/2dn),

and thus E1pn(πj (n), π̂j (n)) = OP (E
1/2
0n ) + oP (nγ−1/2dn).

For part (b), let Un ≡ nγ/2 ∨ (max1≤j≤pn,1≤i≤n |Xij (n) − µj(n)|/σj (n)) and
note that Un = nγ/n for large n with high probability, since the maximum
over all |Xij (n) − µj(n)|/σj (n) is OP (

√
logpn + logn) = oP (nγ/2) by the sub-

Gaussian tail assumption. Now let the empirical distribution of the data (Xij (n) −
µj(n))/σj (n), for i = 1, . . . , n, be denoted F̂ 0

j (n), and let F 0
j (n) denote the distribu-

tion of (X1j (n) − µj(n))/σj (n). We now have
√

n(X̄j (n) − µj(n))

σj (n)

= −√
n

∫
R

(
F̂ 0

j (n)(x) − F 0
j (n)(x)

)
dx(24)
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= −√
n

∫ rn

−rn

(
F̂ 0

j (x) − F 0
j (n)(x)

)
dx

+ √
n

∫ ∞
rn

(
F 0

j (n)(−x) − (
1 − F 0

j (n)(x)
))

dx + Rn,

where Rn is only nonzero when Un �= nγ/2, but this latter condition occurs with
probability → 0 as n → ∞. Hence, Rn = oP (n−1) at least. Thus

(24) = −
∫ rn

−rn

B0
j (n)

(
F 0

j (n)(x)
)
dx + oP (logpnn

γ/2−1/2) + O
(√

nk1e
−k2n

γ )
by Theorem 2 applied to

√
n(F̂ 0

j (n) −F 0
j (n)), where B0

j (n) is the associated Brown-
ian bridge approximation and the errors do not depend on j . Hence

(24) = −
∫

R

B0
j (n)

(
F 0

j (n)(x)
)
dx

+
∫
|x|>nγ/2

B0
j (n)

(
F 0

j (n)(x)
)
dx + oP (logpnn

γ/2−1/2).

However,
∫
|x|>nγ/2 B0

j (n)(F
0
j (n)(x)) dx is mean zero normal with variance∫

|x|>nγ/2

∫
|y|>nγ/2

[
F 0

j (n)(x ∧ y) − F 0
j (n)(x)F 0

j (n)(y)
]
dx dy

= 2
∫ −nγ/2

−∞

∫ y

−∞
F 0

j (n)(x) dxF̄ 0
j (n)(x) dy + 2

∫ ∞
nγ/2

∫ ∞
y

F̄ 0
j (n)(x) dxF 0

j (n)(y) dy

+ 2
∫ −nγ/2

−∞
F 0

j (n)(x) dx

∫ ∞
nγ/2

F̄ 0
j (n)(x) dx

≤ 2
∫ ∞
nγ/2

∫ ∞
y

k1e
−k2x

2
dx dy + 2

(∫ ∞
nγ/2

k1e
−k2x

2
dx

)2

= o(e−k2n
γ

),

where F̄ 0
j (n) ≡ 1 − F 0

j (n). We now have
√

n(X̄j (n) − µj(n))

σj (n)

= Zj(n) + oP (logpnn
γ/2−1/2),(25)

where Zj(n) ≡ − ∫
R

B0
j (n)(F

0
j (n)(x)) dx can be easily shown to be standard nor-

mal, and the error term again does not depend on j . Thus E1pn(π(n), π̂(n)) =
OP (E

1/2
0n ) + oP (logpnn

γ/2−1/2) = OP (E
1/2
0n ) + oP (n3γ /2−1/2).

We now establish the results for E
(α)
2pn

(π(n), π̂(n)) [result (ii)] for both parts

(a) and (b). Let 
̄(x) be the standard normal tail probability at x, let T̃j (n) =
Zj(n) + √

n(µj(n) − µ0,j (n))/σj (n), and define D0n ≡ max1≤j≤pn |T ∗
j (n) − T̃j (n)|.
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Then, by Lemma 9 below, we have 
̄(|Tj(n)|)/
̄(|T̃j (n)|) → 1, provided T 2
j (n) −

T̃ 2
j (n) → 0. Note that we only need the ratios of the p-values to converge when

2
̄(|T̃j (n)|) > α/(2pn), implying |T̃j (n)| ≤
√

2 log(4pn/(
√

2πα)), for all n large
enough, since 
̄(z) ≤ φ(z)/z for z > 0. Since, for 1 ≤ j ≤ pn,

∣∣T 2
j (n) − T̃ 2

j (n)

∣∣ ≤ E0nT̃
2
j (n) + σ 2

j (n)

σ̂ 2
j (n)

(
2D0n

∣∣T̃j (n)

∣∣ + D2
0n

)
,(26)

max1≤j≤pn |T 2
j (n) − T̃ 2

j (n)| ≤ oP (nγ E0n + nγ/2D0n) + OP (D2
0n).

For part (a), Theorem 2 yields that D0n = OP (logpnn
−1/2dn), and the right-

hand side of (26) becomes oP (nγ E0n + n3γ /2−1/2dn + n2γ−1d2
n). For part (b), we

use (25) to obtain that the right-hand side of (26) becomes oP (nγ E0n + n2γ−1/2).
We are done if max1≤j≤pn 1{πj(n) ≤ α/(2pn), π̂j (n) > α/pn} = 0 with high prob-
ability as n → ∞. Assume without loss of generality that pn → ∞, since oth-
erwise the proof is trivial. Now, since 
̄(x) ≥ x−1φ(x)(1 − x−2) for x > 0,
we have for large n that 2
̄(|T̃j (n)|) ≤ α/(2pn) implies T̃ 2

j (n)/2 + log |T̃j (n)| ≥
log(4pn/(

√
2πα)) − o(1), where o(1) does not depend on j . Thus by (26),

(logpn) max
1≤j≤pn

∣∣∣∣T 2
j (n)

T̃ 2
j (n)

− 1
∣∣∣∣ ≤ oP (1 + nγ E0n + nγ/2D0n).(27)

This means that

2
̄(|Tj(n)|)
α/pn

≤ exp
(
−T 2

j (n)

2
− log |Tj(n)| + log

(
2pn√
2πα

))

≤ exp
(

log
(

2pn√
2πα

)
(28)

− log
(

4pn√
2πα

)
+ oP (1 + nγ E0n + nγ/2D0n)

)
= exp

(− log 2 + oP (1 + nγ E0n + nγ/2D0n)
)
,

where again the error terms do not depend on j . Now previous results indicate that
for the conditions under either part (a) or (b), the left-hand side of (28) is bounded
uniformly over 1 ≤ j ≤ pn by 1/2 + oP (1), and the desired conclusions follow.

�

LEMMA 9. For xn, yn ≥ 0, 
̄(xn)/
̄(yn) → 1 if and only if x2
n − y2

n → 0.

PROOF. Assume x2
n − y2

n → 0. Without loss of generality, xn → c ∈ [0,∞].
If c < ∞, obviously 
̄(xn)/
̄(yn) → 1. If c = ∞, 
̄(xn)/
̄(yn) − φ(xn)/

φ(yn) → 0 by a standard approximation for 
̄, and 
̄(xn)/
̄(yn) → 1 again.
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Now assume 
̄(xn)/
̄(yn) → 1. Again without loss of generality, xn → c ∈
[0,∞]. If c < ∞, obviously x2

n − y2
n → 0. But c = ∞ implies yn → ∞. Since


̄(xn)/
̄(yn) − ynφ(xn)/(xnφ(yn)) = o(1), the result follows. �

PROOF OF COROLLARY 5. From (26) and (28), we know that the desired re-
sult will follow provided nγ E0n +nγ/2D0n = OP (1). Since D0n = oP (n3γ /2−1/2)

by (25), it suffices to verify that E0n = OP (n−γ ) for any γ ∈ (0,1/4]. This will
certainly hold if E0n = OP (n−1/2). Now,

E|σ̂ 2/σ 2 − 1|

≤ O

[
1

n
+ p−1

n

pn∑
j=1

E

∣∣∣∣∣n−1
n∑

i=1

(Xij (n) − µj(n))
2

σ 2 − 1 −
(

X̄j (n) − µj(n)

σ

)2
∣∣∣∣∣
]

≤ O

[
1

n
+

√√√√√ max
1≤j≤pn

E

(
n−1

n∑
i=1

(Xij (n) − µj(n))2

σ 2 − 1

)2]

= O(n−1/2),

since E[(Xij (n) − µj(n))
2/σ 2 − 1]2 is uniformly bounded. �

PROOF OF COROLLARY 6. That the left-hand side of (9) is oP (1) follows
from condition (8) combined with Theorem 1. By the definition of the sample
median, we have that F̂j (n)(ξ̂j (n)) − Fj(n)(ξj (n)) ≡ Hj(n), where |Hj(n)| ≤ 1/n.
This now implies that F̂j (n)(ξ̂j (n)) − F(ξ̂j (n)) + F(ξ̂j (n)) − F(ξj (n)) = Hj(n). The
result now follows from the mean value theorem and condition (8). �

PROOF OF COROLLARY 7. We have 2
√

nhnE
′
0n ≤ max1≤j≤pn

√
n ×

|Fj(n)(ξ̂j (n) + hn) − Fj(n)(ξj (n) + hn)| + max1≤j≤pn

√
n|Fj(n)(ξ̂j (n) − hn) −

Fj(n)(ξj (n) − hn)t | + max1≤j≤pn

√
n|Fj(n)(ξj (n) + hn) − Fj(n)(ξj (n) − hn) −

2fj(n)(ξj (n))hn| + max1≤j≤pn

√
n|F̂j (n)(ξ̂j (n) + hn) − Fj(n)(ξ̂j (n) + hn) −

F̂j (n)(ξ̂j (n) − hn) + Fj(n)(ξ̂j (n) − hn)| = OP (
√

nmax1≤j≤pn |ξ̂j (n) − ξj (n)| +
h

3/2
n ) + oP (nγ−1/2) + OP (max1≤j≤pn |Bj(n)(Fj (n)(ξ̂j (n) + hn)) −

Bj(n)(Fj (n)(ξ̂j (n) − hn))|) = oP (nγ/2) + OP (h
3/2
n ), via conditions (10) and (11)

and Corollary 6. �

PROOF OF COROLLARY 8. Now, for some ξ∗
j (n) in between ξj (n) and ξ̂j (n), we

have fj(n)(ξ
∗
j (n))(ξ̂j (n) − ξj (n)) = Fj(n)(ξ̂j (n))−Fj(n)(ξj (n)). Using the conditions

of the corollary we are proving, we also have∣∣(fj(n)

(
ξ∗
j (n)

) − fj(n)

(
ξj (n)

))(
ξ̂j (n) − ξj (n)

)∣∣ ≤ M
∣∣ξ̂j (n) − ξj (n)

∣∣3/2
,(29)
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with probability approaching 1, for all n large enough. Hence

U∗
j (n) ≡ 2

√
nfj(n)

(
ξj (n)

)(
ξ̂j (n) − ξ0,j (n)

)
(30)

= √
n
(
Fj(n)

(
ξ̂j (n)

) − Fj(n)

(
ξj (n)

)) + �j(n),

where max1≤j≤pn |�j(n)| = oP (n3γ /4−1/4), by Corollary 6.
Now note that
√

n
(
Fj(n)

(
ξ̂j (n)

) − Fj(n)

(
ξj (n)

))
= −√

n
(
F̂j (n)

(
ξ̂j (n)

) − Fj(n)

(
ξ̂j (n)

) − F̂j (n)

(
ξj (n)

) + Fj(n)

(
ξj (n)

))
− √

n
(
F̂j (n)

(
ξj (n)

) − Fj(n)

(
ξj (n)

)) + √
n
(
F̂j (n)

(
ξ̂j (n)

) − Fj(n)

(
ξj (n)

))
≡ −Aj(n) − Vj(n) + Cj(n),

where Cj(n) = √
nHj(n) and Hj(n) is defined in the proof of Corollary 6 with

|Hj(n)| ≤ 1/n. Hence Cj(n) = OP (n−1/2), uniformly over 1 ≤ j ≤ pn. Theorem 2
tells us that we can, uniformly over 1 ≤ j ≤ pn, replace Aj(n) and Vj(n) with
A′

j (n) = Bj(n)(Fj (n)(ξ̂j (n))) − Bj(n)(Fj (n)(ξj (n))) and V ′
j (n) = Bj(n)(1/2), with

error oP (nγ−1/2). Note that Zj(n) ≡ 2Bj(n)(1/2) are standard normals and that
Bj(n)(t) = Wj(n)(t) − tWj(n)(1) for all t ∈ [0,1], for some standard Brownian
motions Wj(n). Thus, by the symmetry properties of Brownian motion,∣∣A′

j (n)

∣∣ ≤
√

δ̂j (n)

[
sup

0≤t≤1

∣∣W ′
j (n)(t)

∣∣ + sup
0≤t≤1

∣∣W ′′
j (n)(t)

∣∣] + δ̂j (n)

∣∣Wj(n)(1)
∣∣

≡ Ãj (n)

(
δ̂j (n)

)
,

where δ̂j (n) ≡ M|ξ̂j (n) − ξj (n)| and M is as defined in (9), and where Wj(n), W ′
j (n)

and W ′′
j (n) are Brownian motions.

Thus max1≤j≤pn Ãj (n)(knrn) ≤ OP (

√
logpn max1≤j≤pn |ξ̂j (n) − ξj (n)|) =

oP (n3γ /4−1/4) by Corollary 6. Combining this with (30), we obtain

U∗
j (n) = Zj(n) + 2

√
nfj(n)

(
ξj (n)

)(
ξj (n) − ξ0,j (n)

) + oP (n3γ /4−1/4)
(31)

= Ũj (n) + oP (n3γ /4−1/4),

where the errors are uniform in j and Ũj (n) ≡ Zj(n) + 2
√

nfj(n)(ξj (n))(ξj (n) −
ξ0,j (n)), since oP (nγ−1/2) = oP (n3γ /4−1/4) × oP (1).

Since Uj(n) − U∗
j (n) = (f̂j (n)/fj (n)(ξj (n)) − 1)U∗

j (n), the structure of the re-
mainder of the proof parallels the latter part of the proof of Corollary 4, but
with E0n replaced by (E′

0n)
2 and D0n replaced by D′

0n ≡ U∗
j (n) − Ũj (n). Thus

for E1pn(π̂
′
j (n), π

′
j (n)) = oP (1), we need E′

0n = oP (1) and D′
0n = oP (1). Since

D′
0n = oP (n3γ /4−1/4) by (31), the result follows for all γ ∈ (0,1/3]. In order for
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E
(α)
2pn

(π̂ ′
j (n), π

′
j (n)) = oP (1), we need nγ (E′

0n)
2 = OP (1) and nγ/2D′

0n = OP (1).

Assuming γ ∈ (0,1/5], hn = OP (n−(1−γ )/4), h−1
n = OP (n−5(1−γ )/24), we have,

by Corollary 7, E′
0n = OP (n−(1−γ )/6). Combining with (31) yields nγ (E′

0n)
2 +

nγ/2D′
0n = OP (n4γ /3−1/3 + n5γ /4−1/4). The conclusion follows. �

PROOF OF LEMMA 4. Part (a) is obvious. The results for part (b) follow
from Corollary 3, provided we show that Ě∗

0n ≡ max1≤j≤pn σ−2
j (n)|Š2

j (n) − S2
j (n)| =

OP (ε̂n). Without loss of generality, we will assume that the denominators for both
Šj (n) and Sj(n) are n instead of n − 1. Thus∣∣Š2

j (n) − S2
j (n)

∣∣ ≤ σ−2
j (n)

∣∣(X̌j (n) − µj(n)

)2 − (
X̄j (n) − µj(n)

)2∣∣
+

∣∣∣∣∣1

n

n∑
i=1

(
X̃ij (n) − µj(n)

σj (n)

)2

−
(

Xij (n) − µj(n)

σj (n)

)2
∣∣∣∣∣

≤ 2ε̂2
n + 2ε̂n

√√√√1

n

n∑
i=1

(
Xij (n) − µj(n)

σj (n)

)2

.

Part (i) now follows easily. For part (ii), we utilize Corollary 2 and the sub-
Gaussian tail assumption with r = 1 and with X̄j (n) in the corollary replaced by
n−1 ∑n

i=1(Xij (n) −µj(n))
2/σ 2

j (n) and with µj(n) replaced by 1. With these replace-

ments, max1≤j≤pn |X̄j (n) − µj(n)| = oP (1), and we are done. �

PROOF OF COROLLARY 9. This is a consequence of Lemma 4. Let Ď0n ≡√
n(X̌j (n) − X̄j (n))/σj (n), and note that Ď0n = OP (

√
nε̂n). Thus, to ensure nor-

malization does not affect the conclusions of Corollary 4, we need the respective
rates of Ě0n and Ď0n to not exceed the rates of E0n and D0n at the appropriate
points. For part (a)(i) when dn = O(1), we need Ě0n = oP (1) and Ď0n = oP (1),
which holds if ε̂n = oP (n−1/2). For part (b)(i), we need Ě0n = OP (n−γ ) and
Ď0n = OP (n−γ /2), which holds if ε̂n = OP (n−1/2−γ /2), since γ ∈ (0,1/2]. The
remaining arguments are similar. �

PROOF OF THEOREM 3. Define H̃n = max1≤j≤pn ‖F̃j (n) − F̂j (n)‖∞ and, for
each δ ≥ 0, Ĥn(δ) = max1≤j≤pn sup|s−t |≤δ |F̂j (n)(s) − F̂j (n)(t)|. Suppose now
that for some positive, nonincreasing sequences {sn, δn}, with δn → 0, we have
Ĥn(δn) = oP (sn) and P(ε̂n > δn) = o(1). Then, by the definition of ε̂n,

H̃n = H̃n1{ε̂n ≤ δn} + H̃n1{ε̂n > δn} ≤ Ĥn(δn) + oP (sn) = oP (sn).(32)

Now, by Theorem 2 and condition (15), we have for any δn ↓ 0,
√

nĤn(δn) ≤
max1≤j≤pn sup|s−t |≤δn

√
n|F̂j (n)(s)−Fj(n)(s)− F̂j (n)(t)+Fj(n)(t)|+√

nM̃δn ≤
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max1≤j≤pn sup|s−t |≤δn
|Bj(n)(Fj (n)(s))−Bj(n)(Fj (n)(t))|+OP ((logn+ logpn)/√

n+√
nδn). Combining this with a reapplication of condition (15) plus Lemma 10

below (a modulus of continuity bound for Brownian motion),

√
nĤn(δn) ≤ OP

(√
(logpn)δn log(1/δn) + logn + logpn√

n
+ √

nδn

)
.(33)

Using the fact ε̂n = oP (1), we can find a positive, decreasing sequence δn → 0
with ε̂n = oP (δn). Now, by applying (32) with sn = 1, we obtain result (i):
H̃n = oP (1). For result (ii), we use the fact logpn = o(nγ ) to construct a positive,
nondecreasing sequence rn → ∞ with rn logpn = o(nγ ) and rn/ logn = o(1).
Since n1−γ (logn)ε̂n = OP (1), we have

n1−γ ε̂n log(1/ε̂n)

= n1−γ (logn)
ε̂n

logn

(
log

(
1

n1−γ (logn)ε̂n

)
+ log(n1−γ logn)

)
= OP (1).

Thus, if we set δn = rn/(n
1−γ logn), ε̂n = oP (δn). We also have, by (33),

Ĥn(δn) = OP

(√
1

n
× rn logpn

n1−γ
× logn1−γ + log logn − log rn

logn
+ o

(
1

n1−γ

))
= oP

(
n−(1−γ )).

The proof is done after reapplying (32) with sn = n−(1−γ ). �

LEMMA 10. Let W : [0,1] �→ R be a standard Brownian motion. Then there
exists a universal constant k0 < ∞ such that, for all 0 < δ ≤ 1/2,∥∥∥∥ sup

|s−t |≤δ

|W(s) − W(t)|
∥∥∥∥
ψ2

≤ k0

√
δ log(1/δ).

PROOF. Denote Z(δ) ≡ sup|s−t |≤δ |W(s) − W(t)|. Lemma 1.1.1 of [4] yields

that for some C0 < ∞, P(Z(δ) > x
√

δ) ≤ C0δ
−1e−x2/4 for all x > 0 and

δ ∈ (0,1/2]. Letting u = x
√

δ we obtain P(Z(δ) > u) ≤ C0δ
−1e−u2/(4δ). Since

−u2/(4δ) + log(1/δ) is increasing in δ for all u > 2, we obtain for some k∗ < ∞
that P(Z(δ) > u) ≤ k∗e−u2/2 for all u > 0, since δ ≤ 1/2. Now the desired result
follows for some k0 not depending on δ via Lemma 7. �

PROOF OF COROLLARY 10. Result (i) follows directly from part (i) of Theo-
rem 3 and Theorem 1 plus the fact that the absence of ties yields

OP (n−1) = F̃j (n)

(
ξ̌j (n)

) − Fj(n)

(
ξj (n)

)
(34)

= oP (1) + Fj(n)

(
ξ̌j (n)

) − Fj(n)

(
ξj (n)

)
,
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where the errors are uniform in j . To prove result (ii), we first utilize part (ii) of
Theorem 3 and a reapplication of Theorem 1 to reduce the uniform error in (34)
to oP (n−(1−γ )/2), obtaining Cn ≡ max1≤j≤pn |ξ̌j (n) − ξ̂j (n)| = oP (n−(1−γ )/2).
Using an alternative expansion to (34) followed by part (ii) of Theorem 3, we
now obtain OP (n−1) = F̃j (n)(ξ̌j (n))− F̂j (n)(ξ̂j (n)) = F̃j (n)(ξ̌j (n))− F̂j (n)(ξ̌j (n))+
[F̂j (n)(ξ̌j (n)) − Fj(n)(ξ̌j (n)) − F̂j (n)(ξ̂j (n)) + Fj(n)(ξ̂j (n))] + Fj(n)(ξ̌j (n)) −
Fj(n)(ξ̂j (n)) ≡ oP (n−(1−γ )) + [Hj(n)] + (1 + oP (1))fj (n)(ξj (n))(ξ̌j (n) − ξ̂j (n)),
where the errors are uniform in j . Define Ȟn ≡ max1≤j≤pn |Hj(n)|, qn ≡ n−(1−γ )/2

and δn ≡ qn/4. Note that P(Cn > δn) = o(1), P(max1≤j≤pn |ξ̂j (n) − ξj (n)| > qn) =
o(1) and P(max1≤j≤pn |ξ̌j (n) − ξj (n)| > qn) = o(1). Thus

√
nȞn = OP

(
max

1≤j≤pn

sup
|s−t |≤δn:0≤s,t≤qn

∣∣Bj(n)

(
Fj(n)

(
ξj (n) + s

))
− Bj(n)

(
Fj(n)

(
ξj (n) + t

))∣∣)
+ oP

(
n−(1/2−γ ))

= OP

(√
logpnδn log(qn/δn)

) + oP

(
n−(1/2−γ )),

where the last equality follows from Lemma 10 and the rescaling properties of
Brownian motion. Thus Ȟn = oP (n−3(1−γ )/4), and part (ii) follows.

For part (iii), recycling arguments yields H̃n ≡ hn

√
nmax1≤j≤pn |f̌j (n) −

f̂j (n)| ≤ max1≤j≤pn

√
n|F̃j (n)(ξ̌j (n) + hn) − F̂j (n)(ξ̌j (n) + hn) + F̂j (n)(ξ̌j (n) +

hn) − F̂j (n)(ξ̂j (n) + hn)| + max1≤j≤pn

√
n|F̃j (n)(ξ̌j (n) − hn) − F̂j (n)(ξ̌j (n) −

hn) + F̂j (n)(ξ̌j (n) − hn) − F̂j (n)(ξ̂j (n) − hn)| = OP (max1≤j≤pn

√
n‖F̃j (n) −

F̂j (n)‖∞)+oP (n−(1/2−γ ))+oP (n3γ /4−1/4)+OP (max1≤j≤p |Bj(n)(Fj (n)(ξ̌j (n) +
hn)) − Bj(n)(Fj (n)(ξ̂j (n) + hn))|) + OP (max1≤j≤p |Bj(n)(Fj (n)(ξ̌j (n) − hn)) −
Bj(n)(Fj (n)(ξ̂j (n) − hn))|) = oP (n3γ /4−1/4) + OP (max1≤j≤pn sup|s−t |≤δ′

n

|Bj(n)(s) − Bj(n)(t)|) = oP (n3γ /4−1/4) + OP (
√

δ′
n log(1/δ′

n)), where δ′
n =

n−3(1−γ )/4, ensuring that P(Cn > δ′
n) = o(1). Hence H̃n = OP (n−3(1−γ )/8 ×√

logn) = oP (n3γ /4−1/4), and the desired result follows. �

PROOF OF COROLLARY 11. Note that since |f̌j (n) − fj(n)(ξj (n))| ≤
|f̌j (n) − f̂j (n)| + |f̂j (n) − fj(n)(ξj (n))|, max1≤j≤pn |f̌j (n) − fj(n)(ξj (n))| =
oP (h−1

n n−3(1−γ )/4) + oP (h−1
n n−(1−γ )/2) + OP (h

1/2
n ) = oP (h−1

n n−(1−γ )/2) +
OP (h

1/2
n ), where the second-to-last equality comes from Corollary 7. Now by

part (ii) of Corollary 10, 2
√

nfj(n)(ξj (n))(ξ̌j (n) − ξ̂j (n)) = oP (n3γ /4−1/4). Thus,
considering (31) and the lines following, none of the error rates in the proof of
Corollary 8 is altered after replacing ξ̂j (n) and f̂j (n) with ξ̌j (n) and f̌j (n), respec-
tively. �
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