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INFERENCE UNDER RIGHT CENSORING FOR
TRANSFORMATION MODELS WITH A CHANGE-POINT

BASED ON A COVARIATE THRESHOLD1

BY MICHAEL R. KOSOROK AND RUI SONG

University of North Carolina

We consider linear transformation models applied to right censored sur-
vival data with a change-point in the regression coefficient based on a co-
variate threshold. We establish consistency and weak convergence of the
nonparametric maximum likelihood estimators. The change-point parame-
ter is shown to be n-consistent, while the remaining parameters are shown to
have the expected root-n consistency. We show that the procedure is adaptive
in the sense that the nonthreshold parameters are estimable with the same
precision as if the true threshold value were known. We also develop Monte
Carlo methods of inference for model parameters and score tests for the ex-
istence of a change-point. A key difficulty here is that some of the model
parameters are not identifiable under the null hypothesis of no change-point.
Simulation studies establish the validity of the proposed score tests for finite
sample sizes.

1. Introduction. The linear transformation model states that a continuous
outcome U , given a d-dimensional covariate vector Z, has the form

H(U) = −β ′Z + ε,(1)

where H is an increasing, unknown transformation function, β ∈ R
d are the un-

known regression parameters of interest, and ε has a known distribution F . This
model is readily applied to a failure time T by letting U = logT and H(u) =
logA(eu), where A is an unspecified integrated baseline hazard. Setting F(s) =
1 − exp(−es) results in the Cox model, while setting F(s) = es/(1 + es) results in
the proportional odds model. More generally, the transformation model for a sur-
vival time T conditional on a time-dependent covariate Z̃(t) = {Z(s),0 ≤ s ≤ t}
takes the form

P[T > t |Z̃(t)] = SZ(t) ≡ �

(∫ t

0
eβ ′Z(s) dA(s)

)
,(2)
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where � is a known decreasing function with �(0) = 1. The model (2) is model (1)
when the covariates are time-independent and F(s) = 1 − �(es).

In data analysis, the assumption of linearity of the regression effect in (2) is
not always satisfied over the whole range of the covariate, and the fit may be im-
proved with a two-phase transformation model having a change-point at an un-
known threshold of a one-dimensional covariate Y . Let Z = (Z1,Z2), where Z1
and Z2 are possibly time-dependent covariates in R

p and R
q , respectively, where

p + q = d and q ≥ 1. The new model is obtained by replacing β ′Z(s) in (2) with

rξ (s;Z,Y ) ≡ β ′Z(s) + [α + η′Z2(s)]1{Y > ζ },(3)

where α is a scalar, η ∈ R
q , 1{B} is the indicator of B , and ξ denotes the collected

parameters (α,β, η, ζ ). We also require Y to be time-independent but allow it to
be one of the covariates in Z(t). The goal of this paper is to develop methods of
inference for this model applied to right censored data.

We note that for the special case when α = 0 and �(t) = e−t , the model (3)
becomes the Cox model considered by [28] under a slightly different parameter-
ization. Permitting a nonzero α allows the possibility of a “bent-line” covariate
effect. Suppose, for example, that Z2 is one-dimensional and time-independent,
while Z1 ∈ R

d−1 may be time-dependent. If we set Y = Z2 and β = (β ′
1, β

′
2)

′,
where β1 ∈ R

d−1 and β2 ∈ R, the model (3) becomes rξ (s;Z,Y ) = β ′
1Z1(s) +

β2Z2 + (α + ηZ2)1{Z2 > ζ }. When α = −ηζ , the covariate effect for Z2 consists
of two connected linear segments. In many biological settings, such a bent-line
effect is realistic and can be much easier to interpret than a quadratic or more
complex nonlinear effect [9]. Hence including the intercept term α is useful for
applications.

Linear transformation models of the form (1) have been widely used and stud-
ied (see, e.g., [3, 4, 7, 8, 10–12, 14, 25]). Efficient methods of estimation in the
uncensored setting were rigorously studied by [6], among others. The model (2)
for right-censored data has also been studied rigorously for a variety of specific
choices of � [23, 26, 29, 30], for general but known � [31] and for certain para-
meterized families of � [17].

Change-point models have also been studied extensively and have proven to
be popular in clinical research. Several researchers have considered a nonregular
Cox model involving a two-phase regression on time-dependent covariates, with a
change-point at an unknown time [19, 21, 22]. As mentioned above, [28] consid-
ered the Cox model with a change-point at an unknown threshold of a covariate.
These authors studied the maximum partial likelihood estimators of the parameters
and the estimator of the baseline hazard function. They showed that the estimator
of the threshold parameter is n-consistent, while the regression parameters are√

n-consistent. This happens because the likelihood function is not differentiable
with respect to the threshold parameter, and hence the usual Taylor expansion is
not available. In this paper, we focus on the covariate threshold setting. While time



CHANGE-POINT TRANSFORMATION MODELS 959

threshold models are also interesting, we will not pursue them further in this paper
because the underlying techniques for estimation and inference are quite distinct
from those for the covariate threshold setting.

The contribution of our paper builds on [28] in three important ways. First, we
extend to general transformation models. This results in a significant increase in
complexity over the Cox model since estimation of the baseline hazard can no
longer be avoided through the use of the partial-profile likelihood. Second, we
study nonparametric maximum likelihood inference for all model parameters. As
part of this, we show that the estimation procedure is adaptive in the sense that
the nonthreshold parameters—including the infinite-dimensional parameter A—
are estimable with the same precision as if the true threshold parameter were
known. Third, we develop hypothesis tests for the existence of a change-point.
This is quite challenging since some of the model parameters are no longer identi-
fiable under the null hypothesis of no change-point. Andrews [1] considers similar
nonstandard testing problems when the model is fully parametric and establishes
asymptotic null and local alternative distributions of a number of likelihood-based
test procedures. Unfortunately, Andrews’ results are not directly applicable to our
setting because of the presence of an infinite dimensional nuisance parameter, the
baseline integrated hazard A, and new methods are required.

The next section, Section 2, presents the data and model assumptions. The non-
parametric maximum log-likelihood estimation (NPMLE) procedure is presented
in Section 3. In Section 4 we establish the consistency of the estimators. Score
and information operators of the regular parameters are given in Section 5. Results
on the convergence rates of the estimators are established in Section 6. Section 7
presents weak convergence results for the estimators, including the asymptotic dis-
tribution of the change-point estimator and the asymptotic normality of the other
parameters. This section also establishes the adaptive semiparametric efficiency
mentioned above. Monte Carlo inference for the parameters is discussed in Sec-
tion 8. Methods for testing the existence of a change-point are then presented in
Section 9. A brief discussion on implementation and a small simulation study eval-
uating the moderate sample size performance of the proposed change-point tests
are given in Section 10. Proofs are given in Section 11. For an expanded version
of this paper, with several additional details and results, please see [18].

2. The data setup and model assumptions. The data Xi = (Vi, δi, Zi, Yi),
i = 1, . . . , n, consists of n i.i.d. realizations of X = (V, δ,Z,Y ), where V = T ∧ C,
δ = 1(T ≤ C), and C is a right censoring time. The analysis is restricted to the
interval [0, τ ], where τ < ∞. The covariate Y ∈ R and Z ≡ {Z(t), t ∈ [0, τ ]}
is assumed to be a caglad (left-continuous with right-hand limits) process with
Z(t) = (Z′

1(t),Z
′
2(t))

′ ∈ R
p × R

q , for all t ∈ [0, τ ], where q ≥ 1 but p = 0 is
allowed.

We assume that conditionally on Z and Y , the survival function is

t 	→ SZ,Y (t) ≡ �

(∫ t

0
erξ (u;Z,Y ) dA(u)

)
,(4)
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where � is known, thrice differentiable and decreasing, with �(0) = 1, rξ (s;Z,Y )

is as in (3), and A is unknown, increasing and restricted to [0, τ ].
Let G ≡ − log�, and define the derivatives �̇ ≡ ∂�(t)/(∂t), �̈ ≡ ∂�̇(t)/(∂t),

Ġ ≡ ∂G(t)/(∂t), G̈ ≡ ∂Ġ(t)/(∂t) and
...
G ≡ ∂G̈/(∂t). We also define the collected

parameters γ ≡ (α, η,β), ψ ≡ (γ,A) and θ ≡ (ψ, ζ ). We use P to denote the
true probability measure, while the true parameter values are indicated with a sub-
script 0.

We now make the following additional assumptions:

A1: P [C = 0] = 0, P [C ≥ τ |Z,Y ] = P [C = τ |Z,Y ] > 0 almost surely, and cen-
soring is independent of T given (Z,Y ) and uninformative.

A2: The total variation of Z(·) on [0, τ ] is ≤ m0 < ∞ almost surely.
B1: ζ0 ∈ (a, b), for some known −∞ < a < b < ∞ with P [Y < a] > 0 and

P [Y > b] > 0.
B2: For some neighborhood Ṽ (ζ0) of ζ0:

(i) the density of Y , h̃, exists and is strictly positive, bounded and continuous
for all y ∈ Ṽ (ζ0); and

(ii) the conditional law of (C,Z) given Y = y, Ly is left-continuous with
right-hand limits over Ṽ (ζ0).

B3: For some t1, t2 ∈ (0, τ ], both var[Z(t1)|Y = ζ0] and var[Z(t2)|Y = ζ0+] are
positive definite.

B4: For some t3, t4 ∈ (0, τ ], both var[Z(t3)|Y < a] and var[Z(t4)|Y > b] are pos-
itive definite.

C1: α0 ∈ ϒ ⊂ R, β0 ∈ B1 ⊂ R
d , η0 ∈ B2 ⊂ R

q , where d ≥ q ≥ 1, and ϒ , B1 and
B2 are open, convex, bounded and known.

C2: Either α0 �= 0 or η0 �= 0.
C3: A0 ∈ A, where A is the set of all increasing functions A : [0, τ ] 	→ [0,∞)

with A(0) = 0 and A(τ) < ∞; and A0 has derivative a0 satisfying 0 <

a0(t) < ∞ for all t ∈ [0, τ ].
D1: G : [0,∞) 	→ [0,∞) is thrice continuously differentiable, G(0) = 0, and, for

all u ∈ [0,∞), 0 < Ġ(u), �̈(u) < ∞ and sups∈[0,u] |
...
G(s)| < ∞.

D2: For some c0 > 0, supu≥0 |uc0�(u)| < ∞ and supu≥0 |u1+c0�̇(u)| < ∞.

Conditions A1, A2, C1 and C3 are commonly used for NPMLE consistency
and identifiability in right-censored transformation models, while conditions B1,
B2, B3 and C2 are needed for change-point identifiability. As pointed out by a
referee, the use of a time-dependent covariate will require that Zi(Vj ) be observed
for each individual i and for every j such that δ1 = 1 and Vj ≤ Vi . While this is
often assumed in theoretical contexts, it can be unrealistic in practice, where miss-
ing values of Zi(t) are not unusual (see [20]). Frequently, data analysts will simply
carry the last observation of Zi(t) forward to avoid the missingness problem. Un-
fortunately, this simple solution is not necessarily valid. However, addressing this
issue thoroughly is beyond the scope of this paper, and we will only mention it
again briefly in Section 9, where we develop a test of the null hypothesis that
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there is no change-point (H0 :α0 = 0 and η0 = 0). Also, in Section 9 we will re-
lax condition C2 to allow for a sequence of contiguous alternative hypotheses that
includes H0. Condition B2(ii) is also needed to obtain weak convergence for the
NPMLE of ζ0. The continuity requirements at each point y can be restated in the
following way: Lζ converges weakly to Ly , as ζ ↑ y; and Lζ converges weakly to
Ly+, as ζ ↓ y, for some law Ly+. It would require a fairly pathological relation-
ship among the variables (C,Z,Y ) for this not to hold. Condition B4 is needed for
the change-point test developed in Section 9.

Conditions D1 and D2 are also needed for asymptotic normality. Condi-
tion D1 is quite similar to conditions (G.1) through (G.4) in [31], who use the
condition for developing asymptotic theory for transformation models without a
change-point. Condition D2 is slightly weaker than conditions D2 and D3 of [17],
who use the condition to obtain asymptotic theory for frailty regression models
without a change-point. The following are several instances that satisfy condi-
tions D1 and D2:

1. �(u) = e−u corresponds to the Cox model.
2. �(u) = (1 + cu)−1/c, for any c ∈ (0,∞), corresponds to the family of log-

Pareto distributions and results in the odds-rate family.
3. �(u) = E[e−Wu], where W is a positive frailty with E[W−c] < ∞, for some

c > 0, and E[W 4] < ∞, corresponds to the family of frailty transformations.
In addition to the odds-rate family, these conditions are satisfied by the inverse
Gaussian and log-normal families (see [17]).

4. �(u) = [1+2cu+u2]−1, where c ∈ (1/2,1). Because this is the Laplace trans-
form of t 	→ e−ct × sin(t

√
1 − c2 )/

√
1 − c2, it is not the Laplace transform of

a density and is thus not a member of the frailty family.

Verification of these conditions is routine for examples 1, 2 and 4 above, but
verification for example 3 is slightly more involved:

LEMMA 1. Conditions D1 and D2 are satisfied for example 3 above.

3. Nonparametric maximum log-likelihood estimation. The nonparamet-
ric log-likelihood has the form

Ln(ψ, ζ )
(5)

≡ Pn

{
δ log(a(V )) + l

ψ
1 (V , δ,Z)1{Y ≤ ζ } + l

ψ
2 (V , δ,Z)1{Y > ζ }},

where

l
ψ
1 (V , δ,Z) ≡

∫ τ

0
[log Ġ(H

ψ
1 (s)) + β ′Z(s)]dN(s) − G(H

ψ
1 (V )),

l
ψ
2 (V , δ,Z) ≡

∫ τ

0
[log Ġ(H

ψ
2 (s)) + β ′Z(s) + α + η′Z2(s)]dN(s)

− G(H
ψ
2 (V )),
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where N(t) ≡ 1{V ≤ t}δ, Ỹ (s) ≡ 1{V ≥ s}, a ≡ dA/dt , H
ψ
1 (t) ≡ ∫ t

0 Ỹ (s) ×
eβ ′Z(s) dA(s), H

ψ
2 (t) ≡ ∫ t

0 Ỹ (s)eβ ′Z(s)+α+η′Z2(s) dA(s), and Pn is the empirical
probability measure.

As discussed by [23], the maximum likelihood estimator for a does not exist,
since any unrestricted maximizer of (5) puts mass only at observed failure times
and is thus not a continuous hazard. We replace a(u) in Ln(ψ, ζ ) with n�A(u)

as suggested in [24], who remarked that this form of the empirical log-likelihood
function is asymptotically equal to the true log-likelihood function in certain in-
stances. Let L̃n(ψ, ζ ) be this modified log-likelihood. Note that the maximum
likelihood estimator for ζ is not unique, since the likelihood is constant in ζ over
the intervals [Y(r), Y(r+1)), where Y(1) < · · · < Y(r) < · · · < Y(n) are the order sta-
tistics of Y . For this reason, we only need to consider ζ at the values of the Y order
statistics.

The estimators are obtained in the following way: For fixed ζ , we maximize
the fully nonparametric log-likelihood over ψ , to obtain the profile log-likelihood
pLn(ζ ) ≡ supψ L̃n(ψ, ζ ). We then maximize pLn(ζ ) over ζ , to obtain ζ̂n; and

then compute ψ̂n = arg maxψ L̃n(ψ, ζ̂n). This yields the NPMLE θ̂n = (ψ̂n, ζ̂n).
Hence we obtain an estimator for A0 but not for a0.

4. Consistency. To study consistency, we first characterize the NPMLE θ̂n.
Consider the following one-dimensional submodels for A:

t 	→ At ≡
∫ (·)

0

(
1 + tg(s)

)
dA(s),

where g is an arbitrary nonnegative bounded function. A score function for A,
defined as the derivative of L̃n(ξ,At) with respect to t at t = 0, is

Pn

{
δg(X) −

[
Ġ(Hθ(V )) − δ

G̈(Hθ(V ))

Ġ(Hθ(V ))

]∫ τ

0
Ỹ (s)erξ (s;Z,Y )g(s) dA(s)

}
,(6)

where Hθ(t) ≡ ∫ t
0 Ỹ (s)erξ (s;Z,Y ) dA(s). For any fixed ξ , let Âξ denote the maxi-

mizer of A 	→ L̃n(ξ,A), and let θ̂ξ ≡ (ξ, Âξ ). Then the score function (6) is equal
to zero when evaluated at θ̂ξ . We select g(u) = 1{u ≤ t}, insert this into (6) and
equate the resulting expression to zero. Hence

Âξ (u) =
∫ u

0

(
Pn

[
Ỹ (s)erξ (s;Z,Y )

(
Ġ{Hθ̂ξ (V )} − δ

G̈{Hθ̂ξ (V )}
Ġ{Hθ̂ξ (V )}

)])−1

× Pn{dN(s)}(7)

≡
∫ u

0
{PnW(s; θ̂ξ )}−1

Pn{dN(s)}.

Now the profile likelihood has the form pLn(ζ ) = arg maxγ L̃n((γ, Â(γ,ζ )), ζ ).
The above characterization facilitates the following consistency results:
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LEMMA 2. Under the regularity conditions of Section 2, the transformation
model with a covariate threshold change-point is identifiable.

LEMMA 3. Under the regularity conditions of Section 2, Ân is asymptotically
bounded, and thus the NPMLE θ̂n exists.

Using these results, we can establish the uniform consistency of θ̂n:

THEOREM 1. Under the regularity conditions of Section 2, θ̂n converges outer
almost surely to θ0 in the uniform norm.

5. Score and information operators for regular parameters. In this sec-
tion, we derive the score and information operators for the collected parameters ψ .
We refer to these parameters as the regular parameters because, as we will see in
Section 6, these parameters converge at the

√
n rate. On the other hand, ζ̂n con-

verges at the n rate and thus the parameter ζ is not regular. The score and informa-
tion operators for ψ are needed for the convergence rate and weak limit results of
Sections 6 and 7.

Let H denote the space of the elements h = (h1, h2, h3, h4) such that h1 ∈ R,
h2 ∈ R

q , h3 ∈ R
d and h4 ∈ D[0, τ ], where D[0, τ ] is the space of cadlag functions

(right-continuous with left-hand limits) on [0, τ ]. We denote by BV the subspace
of D[0, τ ] consisting of functions that are of bounded variation over the interval
[0, τ ]. Define, for future use, the following linear functional for each θ = (ψ, ζ )

and each t ∈ [0, τ ]:
Rt

ζ,ψ(f ) ≡
∫ t

0
f (u)Ỹ (u)erξ (u;Z,Y ) dA(u),(8)

where f is an element or vector of elements in BV . Also let ρ1(h) ≡ (|h1|2 +
‖h2‖2 +‖h3‖2 +‖h4‖2

v)
1/2 and Hr ≡ {h ∈ H :ρ1(h) ≤ r}, where ‖ · ‖v is the total

variation norm on BV and r ∈ (0,∞).
The parameter ψ ∈ � ≡ ϒ ×B2 ×B1 ×A can be considered a linear functional

on Hr by defining ψ(h) ≡ h1α + h′
2η + h′

3β + ∫ τ
0 h4(u) dA(u), h ∈ Hr . Viewed

this way, � is a subset of �∞(Hr) with uniform norm ‖ψ‖(r) ≡ suph∈Hr
|ψ(h)|,

where �∞(B) is the space of bounded functionals on B . Note that H1 is rich
enough to extract all components of ψ . This is easy to see for the Euclidean com-
ponents; and, for the A component, it works by using the elements {h :h1 = 0,

h2 = 0, h3 = 0, h4(u) = 1{u ≤ t}, t ∈ [0, τ ]} ⊂ H1.
In Section 5.1, we derive the score operator; in Section 5.2 we derive the infor-

mation operator and establish its continuous invertibility.

5.1. The score operator. Using the one-dimensional submodel

t → ψt ≡ ψ + t

(
h1, h2, h3,

∫ (·)

0
h4(u) dA(u)

)
, h ∈ Hr ,



964 M. R. KOSOROK AND R. SONG

the score operator takes the form

Uτ
nζ (ψ)(h) ≡ ∂

∂t
Ln(ψt , ζ )

∣∣∣∣
t=0

= PnU
τ
ζ (ψ)(h),

where

Uτ
ζ (ψ)(h) ≡ Uτ

ζ,1(ψ)(h1) + Uτ
ζ,2(ψ)(h2) + Uτ

ζ,3(ψ)(h3) + Uτ
ζ,4(ψ)(h4),

Uτ
ζ,1(ψ)(h1) ≡ 1{Y > ζ }

{∫ τ

0
h1 dN(u) − �̂

(0)
θ (τ )Rτ

ζ,ψ(h1)

}
,

Uτ
ζ,2(ψ)(h2) ≡ 1(Y > ζ)

{∫ τ

0
Z′

2(u)h2 dN(u) − �̂
(0)
θ (τ )Rτ

ζ,ψ(Z′
2h2)

}
,

Uτ
ζ,3(ψ)(h3) ≡

∫ τ

0
Z′(u)h3 dN(u) − �̂

(0)
θ (τ )Rτ

ζ,ψ(Z′h3),

Uτ
ζ,4(ψ)(h4) ≡

∫ τ

0
h4(u) dN(u) − �̂

(0)
θ (τ )Rτ

ζ,ψ(h4),

�̂
(0)
θ (τ ) ≡ 1{Y ≤ ζ }�̂(0)

ψ,1(τ ) + 1{Y > ζ }�̂(0)
ψ,2(τ ),

and where, for j = 1,2,

�̂
(0)
ψ,j (τ ) ≡

[
Ġ

(
H

ψ
j (V ∧ τ)

) − δ
G̈(H

ψ
j (V ∧ τ))

Ġ(H
ψ
j (V ∧ τ))

]
.

The dependence in the notation on τ will prove useful in later developments.

5.2. The information operator. To obtain the information operator, we can dif-
ferentiate the expectation of the score operator using the map t → ψ + tψ1, where
ψ,ψ1 ∈ � . The information operator, σθ :H∞ → H∞, where H∞ ≡ {h :h ∈
Hr for some r < ∞}, satisfies

ψ1(σθ (h)) = − ∂

∂t
PUτ

ζ (ψ + tψ1)(h)

∣∣∣∣
t=0

,(9)

for every h ∈ H∞. Taking the Gâteaux derivative in (9), we obtain

σθ (h) =




σ 11
θ σ 12

θ σ 13
θ σ 14

θ

σ 21
θ σ 22

θ σ 23
θ σ 24

θ

σ 31
θ σ 32

θ σ 33
θ σ 34

θ

σ 41
θ σ 42

θ σ 43
θ σ 44

θ







h1
h2
h3
h4




≡ P




σ̂ 11
θ σ̂ 12

θ σ̂ 13
θ σ̂ 14

θ

σ̂ 21
θ σ̂ 22

θ σ̂ 23
θ σ̂ 24

θ

σ̂ 31
θ σ̂ 32

θ σ̂ 33
θ σ̂ 34

θ

σ̂ 41
θ σ̂ 42

θ σ̂ 43
θ σ̂ 44

θ







h1
h2
h3
h4


(10)

≡ P σ̂θ (h),
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where

σ̂ 11
θ (h1) ≡ 1{Y > ζ }{�̂(0)

θ (τ ) + �̂
(1)
θ (τ )H

ψ
2 (V ∧ τ)

}
Rτ

ζ,ψ(h1),

σ̂ 12
θ (h2) ≡ 1{Y > ζ }{�̂(0)

θ (τ ) + �̂
(1)
θ (τ )H

ψ
2 (V ∧ τ)

}
Rτ

ζ,ψ(Z′
2h2),

σ̂ 13
θ (h3) ≡ 1{Y > ζ }{�̂(0)

θ (τ ) + �̂
(1)
θ (τ )H

ψ
2 (V ∧ τ)

}
Rτ

ζ,ψ(Z′h3),

σ̂ 14
θ (h4) ≡ 1{Y > ζ }{�̂(0)

θ (τ ) + �̂
(1)
θ (τ )H

ψ
2 (V ∧ τ)

}
Rτ

ζ,ψ(h4),

σ̂ 21
θ (h1) ≡ 1{Y > ζ }{�̂(0)

θ (τ )Rτ
ζ,ψ(Z2h1) + �̂

(1)
θ (τ )Rτ

ζ,ψ(Z2)R
τ
ζ,ψ(h1)

}
,

σ̂ 22
θ (h2) ≡ 1{Y > ζ }{�̂(0)

θ (τ )Rτ
ζ,ψ(Z2Z

′
2h2) + �̂

(1)
θ (τ )Rτ

ζ,ψ(Z2)R
τ
ζ,ψ(Z′

2h2)
}
,

σ̂ 23
θ (h3) ≡ �̂

(0)
θ (τ )Rτ

ζ,ψ(Z2Z
′h3) + �̂

(1)
θ (τ )Rτ

ζ,ψ(Z2)R
τ
ζ,ψ(Z′h3),

σ̂ 24
θ (h4) ≡ �̂

(0)
θ (τ )Rτ

ζ,ψ(Z2h4) + �̂
(1)
θ (τ )Rτ

ζ,ψ(Z2)R
τ
ζ,ψ(h4),

σ̂ 31
θ (h1) ≡ 1{Y > ζ }{�̂(0)

θ (τ )Rτ
ζ,ψ(Zh1) + �̂

(1)
θ (τ )Rτ

ζ,ψ(Z)Rτ
ζ,ψ(h1)

}
,

σ̂ 32
θ (h2) ≡ 1{Y > ζ }{�̂(0)

θ (τ )Rτ
ζ,ψ(ZZ′

2h2) + �̂
(1)
θ (τ )Rτ

ζ,ψ(Z)Rτ
ζ,ψ(Z′

2h2)
}
,

σ̂ 33
θ (h3) ≡ �̂

(0)
θ (τ )Rτ

ζ,ψ(ZZ′h3) + �̂
(1)
θ (τ )Rτ

ζ,ψ(Z)Rτ
ζ,ψ(Z′h3),

σ̂ 34
θ (h4) ≡ �̂

(0)
θ (τ )Rτ

ζ,ψ(Zh4) + �̂
(1)
θ (τ )Rτ

ζ,ψ(Z)Rτ
ζ,ψ(h4),

σ̂ 41
θ (h1)(u) ≡ 1{Y > ζ }Ỹ (u)erξ (u;Z,Y ){�̂(0)

θ (τ )h1 + �̂
(1)
θ (τ )Rτ

ζ,ψ(h1)
}
,

σ̂ 42
θ (h2)(u) ≡ 1{Y > ζ }Ỹ (u)erξ (u;Z,Y ){�̂(0)

θ (τ )Z′
2(u)h2 + �̂

(1)
θ (τ )Rτ

ζ,ψ(Z′
2h2)

}
,

σ̂ 43
θ (h3)(u) ≡ Ỹ (u)erξ (u;Z,Y ){�̂(0)

θ (τ )Z′(u)h3 + �̂
(1)
θ (τ )Rτ

ζ,ψ(Z′h3)
}
,

σ̂ 44
θ (h4)(u) ≡ Ỹ (u)erξ (u;Z,Y ){�̂(0)

θ (τ )h4(u) + �̂
(1)
θ (τ )Rτ

ζ,ψ(h4)
}
,

and where

�̂
(1)
θ (τ ) ≡ G̈

(
Hθ(V ∧ τ)

) − δ

[ ...
G(Hθ(V ∧ τ))

Ġ(Hθ(V ∧ τ))
−

{
G̈(Hθ(V ∧ τ))

Ġ(Hθ(V ∧ τ))

}2]
.

Note that all the above operators are bounded whenever θ is bounded.
The following lemma strengthens the above Gâteaux derivative to a Fréchet

derivative. We will need this strong differentiability to obtain weak convergence
of our estimators.

LEMMA 4. Under the regularity conditions of Section 2 and for any ζ ∈ [a, b]
and ψ1 ∈ � , the operator ψ 	→ PUτ

ζ (ψ) is Fréchet differentiable at ψ1, with



966 M. R. KOSOROK AND R. SONG

derivative −ψ(σψ1(h)), where h ranges over Hr and is the index for P τ
ζ (ψ)(·),

ψ ranges over the linear span lin� of � and 0 < r < ∞.

The following lemma gives us the desired continuous invertibility of both σθ0

and the operator ψ 	→ ψ(σθ0(·)). This last operator will be needed for weak con-
vergence of regular parameters.

LEMMA 5. Under the regularity conditions of Section 2, the linear operator
σθ0 :H∞ → H∞ is continuously invertible and onto, with inverse σ−1

θ0
. Moreover,

the linear operator ψ 	→ ψ(σθ0(·)), as a map from and to lin� , is also continu-
ously invertible and onto, with inverse ψ 	→ ψ(σ−1

θ0
(·)).

6. The convergence rates of the estimators. To determine the convergence
rates of the estimators, we need to study closely the log-likelihood process L̃n(θ)

near its maximizer. In the parametric setting, this process can be approximated by
its expectation, which can be shown to be locally concave. For the Cox model, as in
[28], this same procedure can be applied to the partial likelihood, which shares the
local concavity features of a parametric likelihood. Unfortunately, in our present
setup, studying the expectation of L̃n(θ) will lead to problems since A0 has a
density and thus �A0(t) = 0 for all t ∈ [0, τ ]. Hence L̃n(θ0) = −∞, and a new
approach is needed. The approach we take involves a careful reparameterization
of Ân.

From Section 4, we know that the maximizer Ân(t) = ∫ t
0 {PnW(s;

θ̂n)}−1 dG̃n(s), where G̃n(t) ≡ PnN(t) and W(·; ·) is as defined in (7). It is easy
to see that for all n large enough and all θ sufficiently close to θ0, t 	→ PnW(t; θ)

is bounded below and above and in total variation, with large probability. Thus,
if we use the reparameterization �(·) 	→ A

(�)
n (·) ≡ ∫ (·)

0 exp{−�(s)}dG̃n(s), and

maximize L̃n(ξ,A
(�)
n ) over ξ and �, where � ∈ BV , we will achieve the same

NPMLE as before. Note that the � component of the maximizer of L̃(ξ,A
(�)
n ) is

therefore just �̂n(·) ≡ − log PnW(·; θ̂n).
Define �0(·) ≡ − log(PW(·; θ0)) and θn(ζ, γ,�) ≡ (ζ, γ,A

(�)
n ), and note that

the reparameterized NPMLE (ζ̂n, γ̂n, �̂n) is the maximizer of the process

(ζ, γ,�) 	→ X̃n(ζ, γ,�)

≡ L̃n

(
ζ, γ,A(�)

n

) − L̃n

(
ζ0, γ0,A

(�0)
n

)
= Pn

{∫ τ

0

[
−�(t) + �0(t)

+ log
Ġ(Hθn(ζ,γ,�)(t))

Ġ(Hθn(ζ0,γ0,�0)(t))
+ (rξ − rξ0)(t;Z,Y )

]
dN(t)

− (
G

(
Hθn(ζ,γ,�)(V )

) − G
(
Hθn(ζ0,γ0,�0)(V )

))}
.
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We will argue shortly that X̃n is uniformly consistent for the function

(ζ, γ,�) 	→ X̃(ζ, γ,�)

≡ P

{∫ τ

0

[
−�(t) + �0(t)

+ log
Ġ(Hθ0(ζ,γ,�)(t))

Ġ(Hθ0(t))
+ (rξ − rξ0)(t;Z,Y )

]
dN(t)

− (
G

(
Hθ0(ζ,γ,�)(V )

) − G(Hθ0(V ))
)}

,

where θ0(ζ, γ,�) ≡ (ζ, γ,A
(�)
0 ), A

(�)
0 (·) ≡ ∫ (·)

0 exp{−�(s)}dG̃0(s) and G̃0(t) ≡
PN(t). It will occasionally be useful to use the shorthand λ ≡ (γ,�), λ̂n ≡
(γ̂n, �̂n) and λ0 ≡ (γ0,�0).

Define the modified parameter space �∗ ≡ (a, b) × ϒ × B2 × B1 × BV ; and,
for each h = (h1, h2, h3, h4, h5) ∈ R × H∞, define the metric ρ2(h) ≡ (|h1| +
|h2|2 + ‖h3‖2 + ‖h4‖2 + ‖h5‖2∞)1/2, where ‖ · ‖∞ is the uniform norm. Note that
|h1| is deliberately not squared. For each ε > 0 and k < ∞, define B∗k

ε ≡ {(ζ, λ) ∈
�∗ :ρ2((ζ, λ) − (ζ0, λ0)) < ε,‖�‖v ≤ k}. Note that for some k0 < ∞ and any
ε > 0, (ζ̂n, λ̂n) is eventually in B

∗k0
ε for all n large enough by Theorem 1 above

combined with Lemma 6 below.

LEMMA 6. There exists a k0 < ∞ such that lim supn→∞ ‖�̂n‖v ≤ k0 and
limn→∞ ‖�̂n − �0‖∞ = 0 outer almost surely.

Now we study the local behavior of X̃. First fix ζ ∈ (a, b). Since, for
any g ∈ BV , ∂A

(�+tg)
0 (·)/(∂t)|t=0 = − ∫ (·)

0 g(s) dA
(�)
0 (s), we obtain that the

first derivative of (γ,�) 	→ X̃(ζ, γ,�) in the direction h ∈ H∞ is precisely
−PUτ

ζ (γ,A
(�)
0 )(h). Moreover, by definition of the score and information oper-

ators, the second derivative in the same direction is −ψh
�(σ

(ζ,γ,A
(�)
0 )

(h)), where

ψh
� ≡ (h1, h2, h3,

∫ (·)
0 h4(s) dA

(�)
0 (s)). At the point (ζ, γ,�) = (ζ0, γ0,�0), the

first derivative is 0, while the second derivative is < 0, by Lemma 5. By
the smoothness of the score and information operators ensured by conditions
D1 and D2, and by the arbitrariness of h, we now have that the function (γ,�) 	→
X̃(ζ, γ,�) is concave for all (ζ, γ,�) ∈ B

∗k0
ε , for small enough ε.

Now note that X̃(ζ, γ,�) = P l∗(ζ, γ,�) − P l∗(ζ0, γ0,�0), where

l∗(ζ, γ,�) ≡ −
∫ τ

0
�(t) dN(t) + l

ψ(γ,�)
1 (V , δ,Z)1{Y ≤ ζ }

(11)
+ l

ψ(γ,�)
2 (V , δ,Z)1{Y > ζ },
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and where l
ψ
j , j = 1,2, are as defined in Section 3, and ψ(γ,�) ≡ (γ,A

(�)
0 ). By

condition B2, we now have that for small enough ε > 0, ζ 	→ X̃(ζ, γ,�) is right
and left continuously differentiable for all (ζ, γ,�) ∈ B

∗k0
ε , with left partial deriv-

ative Ẋ−
ζ (γ,�) ≡ P {lψ(γ,�)

1 (V , δ,Z) − l
ψ(γ,�)
2 (V , δ,Z)|Y = ζ } and right partial

Ẋ+
ζ (γ,�) ≡ P {lψ(γ,�)

1 (V , δ,Z) − l
ψ(γ,�)
2 (V , δ,Z)|Y = ζ+}.

We now have the following lemmas on the local behavior of X̃ over ζ :

LEMMA 7. We have Ẋ−
ζ0

(γ0,�0) > 0 and Ẋ+
ζ0

(γ0,�0) < 0.

LEMMA 8. There exists ε1, k1 > 0 such that X̃(ζ, γ,�) ≤ −k1|ζ − ζ0| for all
(ζ, γ,�) ∈ B

∗k0
ε1 .

To these lemmas we add Lemma 9 below to obtain
√

n consistency.

LEMMA 9. There exists an ε2 > 0 such that Dn ≡ √
n(X̃n − X̃) converges

weakly to a tight mean zero Gaussian process D0, in �∞(B
∗k0
ε2 ), for which

D0(ζ, γ,�) → 0 in probability, as ρ2((ζ, γ,�) − (ζ0, γ0,�0)) → 0.

THEOREM 2. We have
√

n|ζ̂n − ζ0| = OP (1),
√

n‖ψ̂n − ψ0‖∞ = OP (1) and√
n‖�̂n − �0‖∞ = OP (1).

To refine the rate for ζ̂n, we need two additional lemmas, Lemmas 10 and 11
below.

LEMMA 10. 0 ≤ X̃n(ζ̂n, λ̂n) − X̃∗
n(ζ̂n) ≤ OP (n−1), where

ζ 	→ X̃∗
n(ζ ) ≡ Pn

{∫ τ

0

[
log

Ġ(Hθ0(ζ,γ0,�0)(t))

Ġ(Hθ0(t))
+ (

r(ζ,γ0) − rξ0

)
(t;Z,Y )

]
dN(t)

− (
G

(
Hθ0(ζ,γ0,�0)(V )

) − G(Hθ0(V ))
)}

.

LEMMA 11. There exist an ε3 > 0 and k2 < ∞ such that, for all 0 ≤
ε ≤ ε3 and n ≥ 1, E[sup|ζ−ζ0|≤ε |D̃n(ζ )|] ≤ k2

√
ε, where D̃n(ζ ) ≡ √

n(X̃∗
n(ζ ) −

X̃(ζ, λ0)).

THEOREM 3. n|ζ̂n − ζ0| = OP (1).

PROOF. The method of proof involves a “peeling device” (see, e.g., the proof
of Theorem 5.1 of [15], or the proof of Theorem 2 of [28]). Fix ε > 0. By
consistency and Lemma 6, P((ζ̂n, λ̂n) ∈ B

∗k0
ε4 ) ≥ 1 − ε for all n large enough,



CHANGE-POINT TRANSFORMATION MODELS 969

where ε4 = ε1 ∧ ε2 ∧ ε3. By Lemma 10, there exists an M∗
1 < ∞ such that

P(X̃n(ζ̂n, λ̂n) − X̃∗
n(ζ̂n) > M∗

1 /n) ≤ ε. For integers k ≥ 1, let mk ≡ k4. We now
have, for any integer k ≥ 1, that

lim sup
n→∞

P(n|ζ̂n − ζ0| > mk)

≤ lim sup
n→∞

P

(
n|ζ̂n − ζ0| > mk, (ζ̂n, λ̂n) ∈ B∗k0

ε4
,

X̃n(ζ̂n, λ̂n) − X̃∗
n(ζ̂n) ≤ M∗

1

n

)
+ 2ε

(12)

≤ lim sup
n→∞

P

(
sup

ζ :mk/n<|ζ−ζ0|≤ε4

X̃∗
n(ζ ) ≥ −M∗

1

n

)
+ 2ε

≤ lim sup
n→∞

kε4∑
j=k

P

(
sup

ζ :mj/n<|ζ−ζ0|≤(mj+1/n)∧ε4

D̃n(ζ )

≥ √
n

(
k1mj

n
− M∗

1

n

))
+ 2ε,

by Lemma 8, where kε4 = min{k : mk+1 ≥ nε4}. But, by Lemma 11,

(12) ≤ lim sup
n→∞

kε4∑
j=k

k2
√

mj+1

k1mj − M∗
1

+ 2ε ≤
∞∑

j=k

k2(j + 1)2

k1j4 − M∗
1

+ 2ε.

We can now choose k < ∞ large enough so that this last term ≤ 3ε. Since ε > 0
was arbitrary, we now have that limm→∞ lim supn→∞ P(n|ζ̂n − ζ0| > m) = 0, and
the desired conclusion follows. �

7. Weak convergence of the estimators.

7.1. The asymptotic distribution of the change-point estimator. Denote
Un,M ≡ {u = n(ζ − ζ0) : ζ ∈ [a, b], |u| ≤ M} and ζn,u ≡ ζ0 + u/n. The limiting
distribution of n(ζ̂n − ζ0) will be deduced from the behavior of the restriction of
the process u → n[L̃n(ψ̂n, ζn,u) − L̃n(ψ̂n, ζ0)] to the compact set Un,M , for M

sufficiently large.

THEOREM 4. The following holds for all M > 0, as n → ∞: u 	→ n[L̃n(ψ̂n,

ζn,u) − L̃n(ψ̂n, ζ0)] = Qn(u) + o
Un,M

P (1), where oB
P (1) denotes a term going to

zero in probability uniformly over the set B and Qn(u) ≡ nPn{(1{ζn,u < Y ≤ ζ0}−
1{ζ0 < Y ≤ ζn,u})[lψ0

2 (V , δ,Z) − l
ψ0
1 (V , δ,Z)]}.

Let Qn(u) = Q+
n (u)1{u > 0} − Q−

n (u)1{u < 0}. We now study the weak con-
vergence of Qn as a random variable on the space of cadlag functions D with the
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Skorohod topology, and on its restriction to the space DM of cadlag functions on
[−M,M], for any M > 0, similar to the approach taken in [28]. In order to de-
scribe the asymptotic distribution of Qn, let ν+ and ν− be two independent jump
processes on R such that ν+(s) is a Poisson variable with parameter s+h̃(ζ0) and
ν−(s) is a Poisson variable with parameter (−s)+h̃(ζ0). Here, u+ denotes u ∨ 0.
Let (V̌ +

k )k≥1 and (V̌ −
k )k≥1 be independent sequences of i.i.d. random variables

with characteristic functions φ+(t) = P [eitV̌ +
k ] = P [eit{lψ0

1 (V ,δ,Z)−l
ψ0
2 (V ,δ,Z)}|Y =

ζ0+] and φ−(t) = P [eitV̌ −
k ] = P [eit{lψ0

1 (V ,δ,Z)−l
ψ0
2 (V ,δ,Z)}|Y = ζ0], respectively,

where (V̌ +
k )k≥1 and (V̌ −

k )k≥1 are independent of ν+ and ν−.
Let Q(s) = Q+(s)1{s > 0} − Q−(s)1{s < 0} be a right-continuous jump

process with Q+(s) = ∑
0≤k≤ν+(s) V̌

+
k and Q−(s) = ∑

0≤k≤ν−(s+) V̌
−
k , where

V̌ +
0 = V̌ −

0 = 0. Using a modification of the arguments in [28], we obtain:

THEOREM 5. Under the regularity conditions of Section 2, the process Qn

converges weakly to Q in DM , for every M > 0; n(ζ̂n − ζ0) = arg maxu Qn(u) +
op(1), which converges weakly to v̂Q ≡ arg min{|v| : Q(v) = arg maxQ}; and
n(ζ̂n − ζ0) and

√
nPnU

τ
ζ0

(ψ0)(h) are asymptotically independent for all h ∈ H∞.

7.2. Asymptotic normality of the regular parameters. We use Hoffmann–
Jørgensen weak convergence as described in [33]. We have the following result.

THEOREM 6. Under the conditions of Theorem 1,
√

n(ψ̂n − ψ0) is asymptot-
ically linear, with influence function l̃(h) = Uτ

ζ0
(ψ0)(σ

−1
θ0

(h)), h ∈ H1, converging
weakly in the uniform norm to a tight, mean zero Gaussian process Z with co-
variance E[l̃(g)l̃(h)], for all g,h ∈ H1. Thus n(ζ̂n − ζ0) and

√
n(ψ̂n − ψ0) are

asymptotically independent.

REMARK 1. Since
√

n(ψ̂n −ψ0) is asymptotically linear, with influence func-
tion contained in the closed linear span of the tangent space (since σθ0 is contin-
uously invertible), ψ̂n is regular and hence as efficient as if ζ0 were known, by
Theorem 5.2.3 and Theorem 5.2.1 of [5].

8. Inference when α0 �= 0 or η0 �= 0. In this section we develop Monte Carlo
methods for inference for the parameter estimators when it is known that either
α0 �= 0 or η0 �= 0, that is, it is known that condition C2 is satisfied. In Section 9, we
develop a hypothesis testing procedure to assess whether H0 :α0 = 0 = η0 holds
(i.e., that C2 does not hold). When it is known that H0 holds, the model reduces to
the usual transformation model (see [31]), and thus validity of the bootstrap will
follow from arguments similar to those used in the proof of Corollary 1 of [17].
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8.1. Inference for the change-point. One possibility for inference for ζ is to
use the subsampling bootstrap [27], which is guaranteed to work provided the sub-
sample sizes �n satisfy �n → ∞ and �n/n → 0. However, this approach is very
computationally intense since, for each subsample, the likelihood must be max-
imized over the entire parameter space. To ameliorate the computational strain,
we propose as an alternative the following specialized parametric bootstrap. Let
F̃+ and F̃− be the distribution functions corresponding to the moment generat-
ing functions φ+ and φ−, respectively. We need to make the following additional
assumption:

B5: Both F̃+ and F̃− are continuous.

Now let m̃n be the minimum of the number of Y observations in the sample > ζ̂n

and the number of Y observations < ζ̂n. Now choose sequences of possibly data
dependent integers 1 ≤ C1,n < C2,n ≤ m̃n such that C1,n → ∞, C2,n −C1,n → ∞,
and C2,n/n → 0, in probability, as n → ∞. Note that if one chooses C1,n to be
the closest integer to m̃

1/4
n and C2,n to be the closest integer to m̃

3/4
n , the given

requirements will be satisfied since m̃n → ∞, in probability, by assumption B1.
Let X(1), . . . ,X(n) be the complete data observations corresponding to the order
statistics Y(1), . . . , Y(n) of the Y observations. Also let k̃n ≡ C2,n − C1,n + 1, and
define l̃n to be the integer satisfying ζ̂n = Y

(l̃n)
, whose existence follows from the

form of the MLE.
Now, for j = 1, . . . , k̃n, and any ψ ∈ � , define

V̌ +
j,ψ ≡ l

ψ
1

(
V

(l̃n+C1,n+j−1)
, δ

(l̃n+C1,n+j−1)
,Z

(l̃n+C1,n+j−1)

)
− l

ψ
2

(
V

(l̃n+C1,n+j−1)
, δ

(l̃n+C1,n+j−1)
,Z

(l̃n+C1,n+j−1)

)
,

V̌ −
j,ψ ≡ l

ψ
1

(
V

(l̃n−C1,n−j)
, δ

(l̃n−C1,n−j)
,Z

(l̃n−C1,n−j)

)
− l

ψ
2

(
V

(l̃n−C1,n−j)
, δ

(l̃n−C1,n−j)
,Z

(l̃n−C1,n−j)

)
,

Y+
j ≡ Y

(l̃n+C1,n+j−1)
and Y−

j ≡ Y
(l̃n−C1,n−j)

. Also let F̂ n+ be the data-dependent

distribution function for a random variable drawn with replacement from
{V̌ +

1,ψ̂n
, . . . , V̌ +

k̃n,ψ̂n
}, and let F̂ n− be the data-dependent distribution function for a

random variable drawn with replacement from {V̌ −
1,ψ̂n

, . . . , V̌ −
k̃n,ψ̂n

}. By the smooth-

ness of the terms involved, it is easy to verify that both sup1≤j≤k̃n
|V̌ +

j,ψ̂n
− V̌ +

j,ψ0
| =

oP (1) and sup1≤j≤k̃n
|V̌ −

j,ψ̂n
− V̌ −

j,ψ0
| = oP (1). Moreover, by assumption B2(i),

the fact that n(ζ̂n − ζ0) = OP (1) and the conditions on C1,n and C2,n, we have
that both P(Y−

1 < ζ0 < Y+
1 ) → 1 and Y+

k̃n
− Y−

k̃n
= oP (1). Thus, by assump-

tion B2(ii), the collection {V̌ +
1,ψ0

, . . . , V̌ +
k̃n,ψ0

} converges in distribution to an i.i.d.

sample of random variables with characteristic function φ+, while the collection
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{V̌ −
1,ψ0

, . . . , V̌ −
k̃n,ψ0

} is independent of the first collection and converges in distrib-

ution to an i.i.d. sample of random variables with characteristic function φ−. By
assumption B5 and the fact that k̃n → ∞ in probability, we now have that both
supv∈R |F̂ n+(v) − F̃+(v)| = oP (1) and supv∈R |F̂ n−(v) − F̃−(v)| = oP (1).

Now let ĥn be a consistent estimator of h̃(ζ0). Such an estimator can be ob-
tained from a kernel density estimator of h̃ based on the Y observations and eval-
uated at ζ̂n. The basic idea of our parametric bootstrap is to create a stochastic
process Q̂n defined similarly to the process Q described in Section 7.1. To this
end, let ν̂+ and ν̂− be two independent jump processes defined on the interval
B̃n ≡ [−n(ζ̂n − a), n(b − ζ̂n)] such that ν̂+(s) is Poisson with parameter s+ĥn and
ν̂−(s) is Poisson with parameter (−s)+ĥn. Also let (V̌ +

∗,k)k≥1 and (V̌ −
∗,k)k≥1 be

two independent sequences of i.i.d. random variables drawn from F̂ n+ and F̂ n− and
independent of the Poisson processes. Now construct u 	→ Q̂n(u) ≡ Q̂+

n (u)1{u >

0} − Q̂−
n (u)1{u < 0} on the interval B̃n, where Q̂+

n (u) ≡ ∑
0≤k≤ν̂+(u) V̌

+
∗,k and

Q̂−
n (u) ≡ ∑

0≤k≤ν̂−(u+) V̌
−
∗,k . Finally, we compute v̂∗ ≡ arg min

B̃n
{|v| : Q̂n(v) =

arg max
B̃n

Q̂n}. The next proposition follows since P(K ∈ B̃n) → 1 for all com-
pact K ⊂ R.

PROPOSITION 1. The conditional distribution of v̂∗ given the data is asymp-
totically equal to the distribution of v̂Q defined in Theorem 5.

8.2. Inference for regular parameters. Because ζ̂n is n-consistent for ζ0, ζ0
can be treated as known in constructing inference for the regular parameters. Ac-
cordingly, we propose bootstrapping the likelihood and maximizing over ψ while
holding ζ fixed at ζ̂n. This will significantly reduce the computational demands
of the bootstrap. Also, to avoid the occurrence of ties during resampling, we
suggest the following weighted bootstrap alternative to the usual nonparametric
bootstrap. First generate n i.i.d. positive random variables κ1, . . . , κn, with mean
0 < µκ < ∞, variance 0 < σ 2

κ < ∞, and with
∫ ∞

0
√

P(κ1 > u)du < ∞. Divide
each weight by the sample average of the weights κ̄ , to obtain “standardized
weights” κ◦

1 , . . . , κ◦
n which sum to n. For a real, measurable function f , define

the weighted empirical measure P
◦
nf ≡ n−1 ∑n

i=1 κ◦
i f (Xi). Recall that the non-

parametric bootstrap empirical measure P
•
nf ≡ n−1 ∑n

i=1 κ•
i f (Xi) uses multino-

mial weights κ•
1 , . . . , κ•

n , where E[κ•
i ] = 1, i = 1, . . . , n, and

∑n
i=1 κ•

i = n almost
surely.

The proposed weighted bootstrap estimate ψ̂◦
n is obtained by maximizing

L̃◦
n(ψ, ζ̂n) over ψ ∈ � , where L̃◦

n is obtained by replacing Pn with P
◦
n in the de-

finition of L̃n from Section 3. We can similarly define a modified nonparametric
bootstrap ψ̂•

n as the arg max of ψ 	→ L̃•
n(ψ, ζ̂n), where L̃•

n is obtained by replacing
Pn with P

•
n in the definition of L̃n. The following corollary establishes the validity

of both kinds of bootstraps.
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COROLLARY 1. Under the conditions of Theorem 6, the conditional bootstrap
of ψ̂n, based on either ψ̂•

n or ψ̂◦
n , is asymptotically consistent for the limiting dis-

tribution Z in the following sense: Both
√

n(ψ̂•
n − ψ̂n) and

√
n(µκ/σκ)(ψ̂◦

n − ψ̂n)

are asymptotically measurable, and both

(i) supg∈BL1
|E•g(

√
n(ψ̂•

n − ψ̂n)) − Eg(Z)| → 0 and

(ii) supg∈BL1
|E◦g(

√
n(µκ/σκ)(ψ̂◦

n − ψ̂n)) − Eg(Z)| → 0,

in outer probability, where BL1 is the space of functions mapping R
d+q+1 ×

�∞[0, τ ] 	→ R which are bounded in absolute value by 1 and have Lipschitz norm
≤ 1. Here, E• and E◦ are expectations that are taken over the multinomial and
standardized weights, respectively, conditional on the data.

9. Test for the presence of a change-point. Constructing a valid test of the
null hypothesis that there is no change-point, H0 :α0 = 0 = η0, poses an inter-
esting challenge. Since the location of the change-point is no longer identifi-
able under H0, this is an example of the issue studied in [1]. The test statis-
tic we propose is a functional of the α and η components of the score process,
ζ 	→ Ŝ1(ζ ) ≡ √

nPn(U
τ
ζ,1(ψ̂0),U

τ
ζ,2(ψ̂0)

′)′, where ζ ∈ [a, b], ψ̂0 ≡ (0,0, β̂0, Â0),

and where (β̂0, Â0) is the restricted MLE of (β0,A0) under the assumption that
α = 0 and η = 0. This MLE is relatively easy to compute since estimation of ζ is
not needed. Specifically, we have from Section 3 that ψ̂0 is the maximizer of

ψ 	→ Pn{δ log(n�A(V )) + l
ψ
1 (V , δ,Z)}.(13)

We also define for future use h 	→ Ŝ2(h) ≡ √
nPn(U

τ
ζ,3(ψ̂0)(h3),U

τ
ζ,4(ψ̂0)(h4))

′,
where h ∈ H1. The statistic we propose using is T̂n ≡ supζ∈[a,b]{Ŝ′

1(ζ )V̂ −1
n (ζ ) ×

Ŝ1(ζ )}, where V̂n(ζ ) is a consistent estimator of the covariance of Ŝ1(ζ ).
There are several reasons for us to consider the sup functional of score statis-

tics instead of Wald or likelihood ratio statistics. First, the score statistic is much
less computationally intense, which makes the bootstrap implementation feasible.
Second, we choose the sup functional because of its guarantee to have some power
under local alternatives, as argued in [13] and which we prove below. We note,
however, that [2] argues that certain weighted averages of score statistics are op-
timal tests in some settings. A careful analysis of the relative merits of the two
approaches in our setting is beyond the scope of the current paper but is an in-
teresting topic for future research. However, as a step in this direction, we will
compare T̂n with the integrated statistic T̃n ≡ ∫

[a,b]{Ŝ′
1(ζ )V̂ −1

n (ζ )Ŝ1(ζ )}dζ .
In this section, we first discuss a Monte Carlo technique which enables compu-

tation of V̂n(ζ ), so that T̂n and T̃n can be calculated in the first place, as well as
computation of critical values for hypothesis testing. We then discuss the asymp-
totic properties of the statistics under a sequence of contiguous alternatives so that
power can be verified. Specifically, we assume that all the conditions of Section 2
hold except for C2, which we replace with
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C2′: For each n ≥ 1, α0 = α∗/
√

n and η0 = η∗/
√

n, for some fixed α∗ ∈ R, η∗ ∈
R

q . The joint distribution of (C,Z,Y ) does not change with n.

Note that when α∗ �= 0 or η∗ �= 0, condition C2′ will cause the distribution of the
failure time T , given the covariates (Z,Y ), to change with n, and the value of ζ0
will affect this distribution.

9.1. Monte Carlo computation and inference. While the nonparametric boot-
strap may be a reasonable approach, it is unclear how to verify its theoretical
properties in this context. We will use instead the weighted bootstrap, based on
the multipliers κ◦

1 , . . . , κ◦
n defined in Section 8.2. Let P

◦
n be the corresponding

weighted empirical measure, and define ψ̂◦
0 to be the maximizer of (13) after

replacing Pn with P
◦
n. Also let Ŝ◦

1(ζ ) ≡ √
nP

◦
n(U

τ
ζ,1(ψ̂

◦
0 ),Uτ

ζ,2(ψ̂
◦
0 )′)′. Note that

the same sample of weights κ◦
1 , . . . , κ◦

n is used for computing both ψ̂◦
0 and the

process {Ŝ◦
1(ζ ), ζ ∈ [a, b]}, so that the proper dependence between the score sta-

tistic and ψ̂0 will be captured. The structure of the setup only requires consid-
ering values of ζ in the set {Y(1), . . . , Y(n)} ∩ [a, b], since ζ 	→ Ŝ◦

1(ζ ) does not
change over the intervals [Y(j), Y(j+1)), 1 ≤ j ≤ n − 1. Now repeat the boot-
strap procedure a large number of times M̃n, to obtain the bootstrapped score
processes Ŝ◦

1,1, . . . , Ŝ
◦
1,M̃n

. Note that we are allowing the number of bootstraps
to depend on n. Define ζ 	→ µ̂n(ζ ) ≡ M̃−1

n

∑M̃n

k=1 Ŝ◦
1,k(ζ ) and let ζ 	→ V̂n(ζ ) ≡

M̃−1
n

∑M̃n

k=1{Ŝ◦
1,k(ζ ) − µ̂n(ζ )}{Ŝ◦

1,k(ζ ) − µ̂n(ζ )}′. Now we can compute the test

statistics T̂n and T̃n with this choice for V̂n.
To estimate critical values, we compute the standardized bootstrap test statis-

tics T̂ ◦
n,k ≡ supζ∈[a,b]{[Ŝ◦

1,k(ζ ) − µ̂n(ζ )]′V̂ −1
n (ζ )[Ŝ◦

1,k(ζ ) − µ̂n(ζ )]} and T̃ ◦
n,k ≡∫

[a,b]{[Ŝ◦
1,k(ζ ) − µ̂n(ζ )]′V̂ −1

n (ζ )[Ŝ◦
1,k(ζ ) − µ̂n(ζ )]}dζ , for 1 ≤ k ≤ M̃n. For a test

of size π , we compare the test statistics with the (1 − π)th quantile of the cor-
responding M̃n standardized bootstrap statistics. The reason we subtract off the
sample mean when computing the bootstrapped test statistics is to make sure that
we are approximating the null distribution even when the null hypothesis may not
be true. What is a little unusual about this procedure is that the bootstrap must be
performed before the statistics T̂n and T̃n can be calculated in the first place. We
also reiterate again that we are assuming the covariates Zi(·) are observed at all
time points Vj ≤ Vi for which δj = 1. As noted in Section 2, we are aware that this
is not necessarily valid in practice. As pointed out by a referee this is an important
issue and it would be worth investigating whether the bootstrap weighting scheme
could be modified to perform and account for imputation of the missing covariate
values. Nevertheless, this issue is beyond the scope of this paper and we do not
pursue it further here.

9.2. Asymptotic properties. In this section we establish the asymptotic valid-
ity of the proposed test procedure. Let P denote the fixed probability distribution
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under the null hypothesis H0, and let Pn be the sequence of probability distribu-
tions under the contiguous sequence of alternatives Hn

1 defined in C2′. Note that
P and Pn can be equal if α∗ = 0 = η∗. We need to study the proposed procedure
under general Pn to determine both its size under the null and its power under the

alternative. We will use the notation
Pn� to denote weak convergence under Pn. We

need the following lemmas and theorem, where we let ψ∗
0 ≡ (0,0, β0,A0).

LEMMA 12. The sequence of probability measures Pn satisfies∫ [√
n(dP 1/2

n − dP 1/2)

(14)
− 1

2

(
Uτ

ζ0,1(ψ
∗
0 )(α∗) + Uτ

ζ0,2(ψ
∗
0 )(η∗)

)
dP 1/2]2 → 0.

LEMMA 13. ‖ψ̂0 − ψ∗
0 ‖∞ → 0 in probability under Pn.

THEOREM 7. Under the conditions of Section 2, with condition C2 replaced
by C2′, Ŝ1 converges under Pn in distribution in l∞([a, b]q+1) to the (q + 1)-
vector process ζ 	→ Z∗(ζ ) + ν∗(ζ ), where Z∗ is a tight, mean zero Gaussian
(q + 1)-vector process with cov[Z∗(ζ1),Z∗(ζ2)] = �∗(ζ1, ζ2) ≡ σ 11∗ (ζ1 ∨ ζ2) −
σ 12∗ (ζ1)[σ 22∗ ]−1σ 21∗ (ζ2), for all ζ1, ζ2 ∈ [a, b], where

ν∗(ζ ) ≡ {σ 11∗ (ζ ∨ ζ0) − σ 12∗ (ζ )[σ 22∗ ]−1σ 21∗ (ζ0)}
(

α∗
η∗

)
,

σ 11∗ (ζ ) ≡
(

σ 11
ψ∗

0 ,ζ
σ 12

ψ∗
0 ,ζ

σ 21
ψ∗

0 ,ζ
σ 22

ψ∗
0 ,ζ

)
, σ 12∗ (ζ ) ≡

(
σ 13

ψ∗
0 ,ζ

σ 14
ψ∗

0 ,ζ

σ 23
ψ∗

0 ,ζ
σ 24

ψ∗
0 ,ζ

)
,

σ 21∗ (ζ ) ≡
(

σ 31
ψ∗

0 ,ζ
σ 32

ψ∗
0 ,ζ

σ 41
ψ∗

0 ,ζ
σ 42

ψ∗
0 ,ζ

)
, σ 22∗ ≡

(
σ 33

ψ∗
0 ,ζ0

σ 34
ψ∗

0 ,ζ0

σ 43
ψ∗

0 ,ζ0
σ 44

ψ∗
0 ,ζ0

)
,

for ζ ∈ [a, b], and where σ
jk
θ , for 1 ≤ j, k ≤ 4, is as defined in Section 5.2.

The following is the main result on the limiting distribution of the test statistics.
For the remainder of this section, we require condition B4 to hold. As will be
shown in the proof of Corollary 2, condition B4 implies that V∗(ζ ) ≡ �∗(ζ, ζ ) is
positive definite for all ζ ∈ [a, b]. Note that we will establish consistency of V̂n

after we verify bootstrap validity.

COROLLARY 2. Assume B4 holds and V̂n(ζ ) → V∗(ζ ) in probability un-

der Pn, uniformly over ζ ∈ [a, b]. Then T̂n
Pn� supζ∈[a,b]{[Z∗(ζ )+ν∗(ζ )]′V −1∗ (ζ )×

[Z∗(ζ ) + ν∗(ζ )]} and T̃n
Pn�

∫
[a,b]{[Z∗(ζ ) + ν∗(ζ )]′V −1∗ (ζ )[Z∗(ζ ) + ν∗(ζ )]}. Thus
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the limiting null distributions of T̂n and T̃n are T̂∗ ≡ supζ∈[a,b]{Z′∗(ζ )V −1∗ (ζ ) ×
Z∗(ζ )} and T̃∗ ≡ ∫

[a,b]{Z′∗(ζ )V −1∗ (ζ )Z∗(ζ )}dζ , respectively.

REMARK 2. Note that ν∗(ζ0) equals the matrix �∗(ζ0, ζ0) times (α∗, η′∗)′. By
arguments in the proof of Lemma 5, we know that �∗(ζ0, ζ0) is positive definite.
Thus ν∗(ζ0) will be strictly nonzero whenever (α∗, η′∗)′ �= 0. Thus both T̂n and T̃n

will have power to reject H0 under strictly nonnull contiguous alternatives Hn
1 .

The following theorem and corollary establish the validity of the bootstrap un-

der the conditions of Theorem 7. For brevity, we will use the notation
Pn�◦ to

denote conditional convergence of the bootstrap, either weakly in the sense of
Corollary 1 or in probability, but under Pn rather than P . Also let F̂(u) ≡ M̃−1

n ×∑M̃n

k=1 1{T̂ ◦
n,k ≤ u} and F̃(u) ≡ M̃−1

n

∑M̃n

k=1 1{T̃ ◦
n,k ≤ u}.

THEOREM 8. Ŝ◦
1 − Ŝ1

Pn�◦ Z∗ in �∞([a, b]q+1).

COROLLARY 3. There exists a sequence M̃n → ∞, as n → ∞, such that

V̂n
Pn� �∗, V̂n

Pn�◦ �∗, and both supu∈R |F̂(u)−P {T̂∗ ≤ u}| Pn�◦ 0 and supu∈R |F̃(u)−
P {T̃∗ ≤ u}| Pn�◦ 0.

10. Implementation and simulation study. We have implemented the pro-
posed estimation and inference procedures for both the proportional hazards and
proportional odds models. The maximum likelihood estimates were computed us-
ing the profile likelihood pLn(ζ ) defined in Section 4. A line search over the order
statistics of Y is used to maximize over ζ , while Newton’s method is used to max-
imize over ψ . The stationary point equation (7) can be used to profile over A for
each value of ζ and γ . In our experience, the computational time of the entire pro-
cedure is reasonable. A thorough simulation study to validate the moderate sample
size performance of this procedure and the proposed bootstrap procedures of Sec-
tion 8 is under way and will be presented elsewhere.

Because of the unusual form of the statistical tests proposed in Section 9, we
feel it is worthwhile at this point to present a small simulation study evaluating
their moderate sample size performance. Both the proportional hazards and pro-
portional odds models were considered. A single time-independent covariate Z

with a standard normal distribution was used, so that d = q = 1, and the change-
point Y ⊥ Z also had a standard normal distribution. The parameter values were
set at ζ0 = 0, α0 = 0, β0 = 1, η0 ∈ {0,−0.5,−1,−2,−3} and A0(t) = t . The range
of η0 values includes the null hypothesis H0 (when η0 = 0) and several alternative
hypotheses. The censoring time was exponentially distributed with rate 0.1 and
truncated at 10. This resulted in a censoring rate of about 25%. The sample size
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for each simulated data set was 300. For each simulated data set, 250 bootstraps
were generated with standard exponential weights truncated at 5, to compute V̂n

and the critical values for the two test statistics, T̂n (the “sup score test”) and T̃n

(the “mean score test”). The range for ζ was restricted to the inner 80% of the Y

values. Each scenario was replicated 250 times.
The results of the simulation study are presented in Table 1. The type I error (the

η0 = 0 column) is quite close to the targeted 0.05 level, and the power increases
with the magnitude of η0. Also, the sup test is notably more powerful than the mean
test for all alternatives. We also tried the nonparametric bootstrap and found that it
did not work nearly as well. While it is difficult to make sweeping generalizations
with this small a numerical study, it appears as if the proposed test statistics match
the theoretical predictions and have reasonable power. More simulation studies
into the properties of these statistics are needed, including studies of the impact of
time-dependent covariates.

TABLE 1
Results from the simulation study of the sup and mean score test statistics in the proportional

hazards and proportional odds models. The sample size is 300, the level of censoring
approximately 25%, and the nominal type I error is 0.05. 250 replicates were generated for

each configuration. The parameters were set at ζ0 = 0, α0 = 0, β0 = 1 and A0(t) = t , with the
value of η0 varying. The worst case Monte Carlo standard error for the power estimates

is 0.03 = 0.50/
√

250

Proportional hazards model

Sup score test statistic Null η0 = 0 η0 = −0.5 η0 = −1 η0 = −2 η0 = −3
mean 5.078 5.590 7.874 13.524 35.507
standard deviation 2.728 2.859 3.919 6.992 11.337
power 0.044 0.076 0.180 0.536 0.980

Mean score test statistic Null η0 = 0 η0 = −0.5 η0 = −1 η0 = −2 η0 = −3
mean 1.403 1.694 2.560 5.412 5.529
standard deviation 1.206 1.104 1.597 2.492 2.683
power 0.040 0.050 0.120 0.236 0.304

Proportional odds model

Sup score test statistic Null η0 = 0 η0 = −0.5 η0 = −1 η0 = −2 η0 = −3
mean 3.950 4.762 5.693 8.327 13.956
standard deviation 2.390 1.610 1.255 2.901 4.244
power 0.043 0.068 0.112 0.364 0.660

Mean score test statistic Null η0 = 0 η0 = −0.5 η0 = −1 η0 = −2 η0 = −3
mean 1.177 1.912 2.848 3.265 4.349
standard deviation 0.946 1.078 1.360 1.498 1.718
power 0.048 0.056 0.116 0.167 0.285
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11. Proofs.

PROOF OF LEMMA 1. Verification of D1 is straightforward. For D2, we have
for all u ≥ 0, |�̈(u)/�̇(u)| = E[W 2e−uW ]/E[We−uW ] ≤ E[W 2]/E[W ] < ∞. The
second-to-last inequality requires some justification (see [18]). This proves the
first part. For the second part, take c0 = c, and note that |uc�(u)| = E[uce−uW ] =
E[W−c(uW)ce−uW ] ≤ kE[W−c], where k = supx≥0 xce−x = cce−c < ∞. Also,
|u1+c�̇(u)| = E[u1+cWe−uW ] = E[W−c(uW)1+ce−uW ] ≤ k′E[W−c], where k′ =
supx≥0 x1+ce−x < ∞. �

PROOF OF LEMMA 2. Suppose that

G

(∫ t

0
Ỹ (s)erξ (u;Z,Y ) dA(u)

)
= G

(∫ t

0
Ỹ (s)erξ0 (u;Z,Y ) dA0(u)

)
(15)

for all t ∈ [0, τ ] almost surely under P . The target is to show that (15) implies that
ξ = ξ0 and A = A0 on [0, τ ]. By condition A1, (15) implies

∫ t
0 erξ (u;Z,Y ) dA(u) =∫ t

0 erξ0 (u:Z,Y ) dA0(u) for all t ∈ [0, τ ] almost surely. Taking the Radon–Nikodym
derivative of both sides with respect to A0, taking logarithms, and letting ã ≡
dA/dA0, we obtain that almost surely

β ′Z(t) + (
α + η′Z2(t)

)
1{Y > ζ } − β ′

0Z(t)
(16)

− (
α0 + η′

0Z2(t)
)
1{Y > ζ0} + log(ã(t)) = 0.

Assume that ζ > ζ0. Now choose y < ζ0 such that y ∈ Ṽ (ζ0) and var[Z(t1)|Y =
y] is positive definite, where t1 is as defined in B3. Note that this is possible by
assumptions B2 and B3. Conditioning the left-hand side of (16) on Y = y and
evaluating at t = t1 yields that β = β0. Now choose ζ0 < y < ζ such that y ∈ Ṽ (ζ0)

and var[Z(t2)|Y = y] is positive definite. Conditioning the left-hand side of (16)
on Y = y, and evaluating at t = t2 yields that η0 = 0. Because the density of Y is
positive in Ṽ (ζ0), we also see that α0 = 0. But this is not possible by condition C2.
A similar argument can be used to show that ζ < ζ0 is impossible. Thus ζ = ζ0.
Now it is not hard to argue that condition B3 forces β = β0, η = η0 and α = α0.
Hence log(ã(t)) = 0 for all t ∈ [0, τ ], and the proof is complete. �

PROOF OF LEMMA 3. Note that for each n, maximizing the log-likelihood
over A is equivalent to maximizing over a fixed number of parameters since the
number of jumps K ≤ n. Thus maximizing over θ involves maximizing an em-
pirical average of functions that are smooth over ψ and cadlag over ζ . Also note
‖Ân − A0‖[0,τ ] = max1≤j≤K(|Ân(Tj−) − A0(Tj )| ∨ |Ân(Tj ) − A0(Tj )|), where
‖ · ‖B is the uniform norm over the set B , and thus ‖Ân − A0‖[0,τ ] is measurable.
Hence the uniform distance between θ̂n and θ0 is also measurable. Thus almost
sure convergence of θ̂n is equivalent to outer almost sure convergence. Now we
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return to the proof. Assume lim supn→∞ Ân(τ ) = ∞, with probability > 0. Us-
ing arguments similar to those used in the proof of Proposition 2 of [17], we can
show that this leads to a contradiction. The details can be found in [18]. Thus,
lim supn→∞ Ân(τ ) < ∞ almost surely. �

PROOF OF THEOREM 1. By the opening arguments in the proof of Lemma 3,
we have that outer almost sure convergence is equivalent to the usual almost
sure convergence in this instance. Note that {Ân(τ )} is bounded almost surely,
G̃n → G̃0 almost surely, and the class F(k) ≡ {W(t; θ) : t ∈ [0, τ ], ξ ∈ X,A ∈
A(k)}, where A(k) ≡ {A ∈ A : A(τ) ≤ k}, is Donsker (and hence also Glivenko–
Cantelli) for every k < ∞ by Lemma 14 below. By similar arguments to those
used in Lemma 14, we have that the class {G(Hθ(V )) : ξ ∈ X,A ∈ A(k)} is
also Glivenko–Cantelli for all k < ∞. We therefore have the following with
probability 1: {Ân(τ )} is bounded asymptotically, G̃n → G̃0 uniformly, (Pn −
P)W(·; θ̂n) → 0 uniformly and (Pn − P)[G(H θ̂n(V )) − G(Hθn(V ))] → 0. Now,
using somewhat standard arguments, we can use the Helly selection theorem and
the identifiability of the model to obtain that all convergent subsequences of θ̂n, on
a set of probability 1, converge to θ0 (see [18]). The desired result now follows.

�

LEMMA 14. ∀k < ∞, the class F(k) ≡ {W(t; θ) : t ∈ [0, τ ], ξ ∈ X,A ∈ A(k)}
is P -Donsker.

PROOF. The somewhat routine details can be found in [18]. �

PROOF OF LEMMA 4. The results follow from the smoothness assumed in D1
of the involved derivatives. Additional details can be found in [18]. �

PROOF OF LEMMA 5. First note that for any h = (h1, h2, h3, h4) ∈ H∞,
σθ0(h) = A(h) + B(h), where A(h) = (h1, h2, h3, g0h4), B(h) = σθn(h) − A(h)

and g0(u) = P [Ỹ (u)erξ0 (u;Z,Y )�̂
(0)
θ0

(τ )]. It is not hard to verify that since g0 is
bounded below, A is one-to-one and onto with continuous inverse defined
by A

−1(h) = (h1, h2, h3, h4/g0). It is also not hard to verify that the opera-
tor B is compact as an operator on Hr for any 0 < r < ∞. Thus the first
part of the theorem is proved by Lemma 25.93 of [32], if we can show
that σθ0 is one-to-one. This will then imply that for each r > 0, there is an
s > 0 with σ−1

θ0
(Hs) ⊂ Hr . Now we have infψ∈lin�(‖ψ(σθ0(·))‖(r)/‖ψ‖(r)) ≥

infψ∈lin�(sup
h∈σ−1

θ0
(Hs )

|ψ(σθ0(h))|/‖ψ‖(r)) = infψ∈lin�(‖ψ‖(s)/‖ψ‖(r)) ≥ s/

(4r), since ‖ψ‖(r) ≤ 4(r/s)‖ψ‖(s). Thus ψ 	→ ψ(σ0(·)) is continuously invert-
ible on its range by Proposition A.1.7 of [5]. That it is also onto with inverse
ψ 	→ ψ(σ−1

θ0
) follows from σθ0 being onto.
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Let h ∈ H∞ such that σθ0(h) = 0. For the one-dimensional submodel defined

by the map s → ψ0s ≡ ψ0 + s(h1, h2, h3,
∫ (·)

0 h4(u) dA0(u)), we have

P

{
∂

∂s
L1(ψ0s, ζ0)

∣∣∣∣
s=0

}2

= P {Uτ
ζ0

(ψ0)(h)}2 = 0.(17)

Define the random set S(n, ỹ, t) ≡ {(N, Ỹ ) :N(u) = n(u), Ỹ (u) = ỹ(u), u ∈
[t, τ ]}. The equality (17) implies that P {Uτ

ζ0
(ψ0)(h)|S(n, y, t)}2 = 0 for all S

such that P {S(n, y, t)} > 0, which implies that Ut
ζ0

(ψ0)(h) = 0 almost surely for
all t ∈ [0, τ ]. Consider the set on which the observation (X, δ,Z,Y ) is censored at
a time t ∈ [0, τ ]. From (17) and the preceding argument,

Rt
ζ0,ψ0

(
h11(Y > ζ0) + h′

2Z2(t)1(Y > ζ0) + h′
3Z(t) + h4

) = 0.(18)

Taking the Radon–Nikodym derivative of (18) with respect to A0 and dividing
throughout by erξ0 (t;Z,Y ) yields

Ỹ (t)
(
h11(Y > ζ0) + h′

2Z2(t)1(Y > ζ0) + h′
3Z(t) + h4(t)

) = 0.(19)

Arguments quite similar to those used in the proof of Lemma 2 can now be used
to verify that (19) forces h = 0, and thus σθ0 is one-to-one. �

PROOF OF LEMMA 6. For the first part, note that t 	→ Ỹ (t) has total variation
bounded by 1; and, by the model assumptions, the total variation of t 	→ erξ (t;Z,Y )

is bounded by a universal constant that does not depend on θ . Thus there exists
a universal constant k∗ such that ‖PnW(·; θ̂n)‖v ≤ k∗Pn|�̂(0)

θ̂n
|. By the smooth-

ness of the functions involved, and the fact that u 	→ log(u) is Lipschitz on com-
pacts bounded above zero, we obtain the first result of the lemma. The consis-
tency part follows from Lemma 14 combined with Theorem 1, the continuity of
θ 	→ PW(·; θ) and reapplication of the Lipschitz continuity of u 	→ log(u). �

PROOF OF LEMMA 7. The right-hand derivative of P(L1(ψ, ζ )) with respect
to ζ at ζ = ζ0 is

(∂+/(∂ζ ))P (L1(ψ, ζ ))|ζ=ζ0

=
∫

{P [lψ1 (V , δ,Z)|Y = y+] − P [lψ2 (V , δ,Z)|Y = y+]}δ̃ζ0(y)h̃(y) dy

= (
P [lψ1 (V , δ,Z)|Y = ζ0+] − P [lψ2 (V , δ,Z)|Y = ζ0+])h̃(ζ0),

where the superscript + denotes differentiating from the right and δ̃ζ0(y) is
the Dirac delta function assigning measure 1 to the event {y = ζ0}. Now,
P [lψ1 (V , δ,Z)|Y = ζ0+] − P [lψ2 (V , δ,Z)|Y = ζ0+] = ∫ [lψ1 (v, d, z) −
l
ψ
2 (v, d, z)]�2(v, d, z)�+

0 (v, d, z) dµ(v, d, z) ≡ R̃+(ψ), where �j (v, d, z) ≡
exp{lψ0

j (v, d, z)}, for j = 1,2; µ(v, d, z) is the dominating measure; and
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�+
0 (v, d, z) consists of the remaining components of the conditional distribution

of (V , δ,Z) given Y = ζ0+. Note that under the model, �+
0 does not depend on

the parameters. Thus R̃+(ψ0) = ∫ [lψ0
1 (v, d, z) − l

ψ0
2 (v, d, z)]�2(v, d, z)�+

0 (v, d,

z) dµ(v, d, z) = ∫
log[�1�

+
0 /(�2�

+
0 )]�2�

+
0 dµ < log

∫ [�1�
+
0 /(�2�

+
0 )]�2�

+
0 dµ =

log
∫
�1(v, d, z)�+

0 (v, d, z) dµ(v, d, z) = 0, since the integral of a density is 1. Thus
Ẋ+

ζ0
(γ0,�0) < 0. A similar argument [18] is used to conclude Ẋ−

ζ0
(γ0,�0) > 0. �

PROOF OF LEMMA 8. This follows from Lemma 7, the local concavity of X̃,
and the smoothness of the derivatives involved. �

PROOF OF LEMMA 9. Note that

X̃n(ζ, η,�)

= Pn

[
−

∫ τ

0
{�(t) − �0(t)}dN(t) + W̃

(
ζ, η,A(�)

n

) − W̃
(
ζ0, η0,A

(�0)
n

)]
,

where W̃ (ζ, γ,A) ≡ l
ψ
1 (V , δ,Z)1{Y ≤ ζ } + l

ψ
2 (V , δ,Z)1{Y > ζ }. The classes

{∫ τ
0 {�(t) − �0(t)}dN(t) :‖� − �0‖∞ ≤ ε,‖�‖v ≤ k0}, for any ε > 0, and

{W̃ (ζ, λ) : (ζ, λ) ∈ B
∗k0
ε2 }, for some ε2 > 0, can be shown to be Donsker. The argu-

ments for this are somewhat standard and can be found in [18]. Since we also have
that

√
n(G̃n − G̃0) converges to a Gaussian process,

√
n(Pn − P)

[
−

∫ τ

0
{�(t) − �0(t)}dN(t) + W̃

(
ζ, η,A(�)

n

) − W̃
(
ζ0, η0,A

(�0)
n

)]

converges weakly in �∞(B
∗k0
ε2 ) to the tight Gaussian process

G

[
−

∫ τ

0
{�(t) − �0(t)}dN(t) + W̃

(
ζ, η,A

(�)
0

) − W̃
(
ζ0, η0,A

(�0)
0

)]
,

where G is the Brownian bridge measure.
By the smoothness of the functions and derivatives involved, we also have

√
n

{
P

[
−

∫ τ

0
{�(t) − �0(t)}dN(t) + W̃

(
ζ, η,A(�)

n

) − W̃
(
ζ0, η0,A

(�0)
n

)]

− X̃(ζ, η,�)

}

= √
nP

[
W̃

(
ζ, η,A(�)

n

) − W̃
(
ζ0, η0,A

(�0)
n

)
− W̃

(
ζ, η,A

(�)
0

) + W̃
(
ζ0, η0,A0

)]
= −√

n

∫ τ

0

{
P [W(t; θ0(ζ, λ))]e−�(t)

− P [W(t; θ0)]e−�0(t)
}[dG̃n(t) − dG̃0(t)] + εn(ζ, λ)

≡ −
∫ τ

0
C̃(t; ζ, λ) dZn(t) + εn(ζ, λ),
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where ‖εn‖∞ = oP (1). The fact that the class of functions {C̃(·; ζ, λ) : (ζ, λ) ∈
B

∗k0
ε2 } has uniformly bounded total variation yields asymptotic linearity and nor-

mality of {∫ τ
0 C̃(t; ζ, λ) dZn(t) : (ζ, λ) ∈ B

∗k0
ε2 }, and the desired result follows. �

PROOF OF THEOREM 2. By Lemma 9, −X̃(ζ̂n, γ̂n, �̂n) = (X̃n − X̃)(ζ̂n, γ̂n,

�̂n) − X̃n(ζ̂n, γ̂n, �̂n) ≤ OP (n−1/2). Combining this with Lemma 8, we obtain√
n|ζ̂n − ζ0| = √

n|ζ̂n − ζ0|1{(ζ̂n, γ̂n, �̂n) ∈ B
∗k0
ε1 } + √

n|ζ̂n − ζ0|1{(ζ̂n, γ̂n, �̂n) /∈
B

∗k0
ε1 } ≤ −√

nk−1
1 X̃(ζ̂n, γ̂n, �̂n) + oP (1) ≤ OP (1). The first part is proved.

For the second part, denote Uτ
0ζ (ψ) ≡ PUτ

ζ (ψ). By arguments similar to those
used in the proof of Lemma 14, we can verify that for some e1 > 0, F ≡
{Uτ

ζ (ψ)(h) :‖θ − θ0‖∞ ≤ e1, h ∈ H1} is Donsker. Moreover, the continuity of the
functions involved also yields that, as ‖θ − θ0‖∞ → 0, suph∈H1

P(Uτ
ζ (ψ)(h) −

Uτ
ζ0

(ψ0)(h))2 → 0. Thus
√

n
(
Uτ

nζ̂n
(ψ̂n) − Uτ

0ζ̂n
(ψ̂n) − Uτ

nζ0
(ψ0) + Uτ

0ζ0
(ψ0)

) = o
H1
P (1).(20)

Note also that
√

n|ζ̂n − ζ0| = OP (1) implies that
√

n(Uτ

0ζ̂n
(ψ̂n) − Uτ

0ζ0
(ψ̂n)) =

o
H1
P (1). Thus, since Uτ

nζ̂n
(ψ̂n) = 0, (20) implies

√
nUτ

0ζ0
(ψ̂n) = √

nUτ

0ζ̂n
(ψ̂n) +

o
H1
P (1) = −√

n(Uτ
nζ0

(ψ0)−Uτ
0ζ0

(ψ0))+o
H1
P (1) = O

H1
P (1), where OB

P (1) denotes
a term bounded in probability uniformly over the set B . By Lemma 5, there exists
a constant e2 > 0 such that ‖Uτ

0ζ0
(ψ) − Uτ

0ζ0
(ψ0)‖H1 ≥ e2‖ψ − ψ0‖∞ + o(‖ψ −

ψ0‖∞), as ‖ψ − ψ0‖∞ → 0. Hence
√

n‖ψ̂n − ψ0‖∞(e2 − oP (1)) ≤ OP (1), and
we obtain the second conclusion.

For the third part, we have
√

n supt∈[0,τ ] |PnW(t; θ̂n) − PW(t; θ̂n)| = √
n ×

supt∈[0,τ ] |(Pn − P)W(t; θ0)| + oP (1) = OP (1) and
√

n supt∈[0,τ ] |PW(t; θ̂n) −
PW(t; θ0)| = OP (1) by the first two parts of this lemma. Hence√

n supt∈[0,τ ] |PnW(t; θ̂n) − PW(t; θ0)| = OP (1). The result now follows by the
Lipschitz continuity of log(u) over strictly positive compact intervals. �

PROOF OF LEMMA 10. The first inequality follows from the definitions.
For the second inequality, we use a Taylor expansion around (ζ̂n, γ̂n, �̂n) to ob-
tain

X̃n(ζ̂n, λ̂n) − X̃n(ζ̂n, λ0)

= −PnU
τ

ζ̂n

(
γ̂n,A

(�̂n)
n

)
(λ0 − λ̂n) − ψ

(λ0−λ̂n)
n,t

(
Pnσ̂

(ζ̂n,γ̂n,t ,A
(�̂n,t )
n )

)
(λ0 − λ̂n),

for some t ∈ [0,1], where λ̂n,t ≡ (γ̂n,t , �̂n,t ); γ̂n,t ≡ t γ̂n + (1 − t)γ0; �̂n,t ≡
t �̂n + (1 − t)�0; and, for any h ∈ H∞, ψ

(h)
n,t ≡ (h1, h2, h3,

∫ (·)
0 h4(s) dA

(�̂n,t )
n (s)).

The score term is zero by definition of the NPMLE, and the second term has ab-
solute value bounded by K̂n‖λ̂n − λ0‖2∞, where K̂n is bounded in probability by
the consistency of λ̂n and the form of the terms in Section 5.2.
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Now, letting ψn(γ,�) ≡ (γ,A
(�)
n ), we have

X̃n(ζ̂n, λ0) − X̃∗
n(ζ̂n)

= Pn

{
(1{Y ≤ ζ̂n} − 1{Y ≤ ζ0})
× [

l
ψn(γ0,�0)
1 (V , δ,Z) − l

ψn(γ0,�0)
2 (V , δ,Z)

(21)
− l

ψ0
1 (V , δ,Z) + l

ψ0
2 (V , δ,Z)

]}
=

∫ τ

0
Pn

{
(1{Y ≤ ζ̂n} − 1{Y ≤ ζ0})Ỹ (s)K̃n(s)

}
× e−�0(s)[dG̃n(s) − dG̃0(s)],

where

K̃n(s) = [Ġ(H
ψn,t

1 (V )) − δG̈(H
ψn,t

1 (V ))/Ġ(H
ψn,t

1 (V ))]eβ ′
0Z(s)

− [Ġ(H
ψn,t

2 (V )) − δG̈(H
ψn,t

2 (V ))/Ġ(H
ψn,t

2 (V ))]eβ ′
0Z(s)+α0+η′

0Z2(s)

and ψn,t ≡ (γ,
∫ (·)

0 �0(u)[tdG̃n(u) + (1 − t) dG̃0(u)]), for some t ∈ [0,1], by the
mean value theorem. By the conditions given in Section 2, we have that there is a
constant k∗ < ∞ such that ‖K̃n(s)�0(s)‖v ≤ k∗ with probability 1 for all n ≥ 1.
Thus the absolute value of (21) is bounded above by k∗‖G̃n − G̃0‖∞ × Pn|1{Y ≤
ζ̂n}− 1{Y ≤ ζ0}| = OP (n−1). This last statement follows because ‖G̃n − G̃0‖∞ =
OP (n−1/2), (Pn − P)|1{Y ≤ ζ̂n} − 1{Y ≤ ζ0}| = oP (n−1/2) and P |1{Y ≤ ζ̂n} −
1{Y ≤ ζ0}| = OP (n−1/2) by Theorem 2. Now the desired result follows. �

PROOF OF LEMMA 11. Note first that

D̃n(ζ ) = √
n(Pn − P)

{[1{Y ≤ ζ } − 1{Y ≤ ζ0}] × [lψ0
1 − l

ψ0
2 ](V , δ,Z)

}
.

Denote H̃ ≡ [lψ0
1 − l

ψ0
2 ](V , δ,Z), and note that |H̃ | ≤ c∗ almost surely for a

fixed constant c∗ < ∞. Thus Fε ≡ 1{ζ0 − ε ≤ Y ≤ ζ0 + ε}c∗ serves as an enve-
lope for the class of functions Fε ≡ {[1{Y ≤ ζ } − 1{Y ≤ ζ0}]H̃ : |ζ − ζ0| ≤ ε},
for each ε > 0. Note that by the assumptions on the density h̃ in a neighbor-
hood of ζ0, we have for some ε3 > 0 that there exist 0 < k∗, k∗∗ < ∞ such that
k∗ε ≤ p̃(ε) ≡ P [ζ0 − ε ≤ Y ≤ ζ0 + ε] ≤ k∗∗ε for all 0 ≤ ε ≤ ε3. Thus the bracket-
ing entropy N[·](u‖Fε‖P,2,Fε,L2(P )) ≤ O(ε/(u2p̃(ε))) ≤ O(1/(c∗u2)), for all
u > 0 and 0 ≤ ε ≤ ε3; and thus, by Theorem 2.14.2 of [33], there exists a c∗∗ < ∞
such that E[sup|ζ−ζ0|≤ε |D̃(ζ )|] ≤ c∗∗‖Fε‖P,2 ≤ c∗∗c∗

√
k∗∗ε, for all 0 ≤ ε ≤ ε3.

The result now follows for k2 = c∗∗c∗
√

k∗∗. �

PROOF OF THEOREM 4. From Section 3 we deduce

L̃n(ψ̂n, ζn,u) − L̃n(ψ̂n, ζ0)

= Pn

{
(1{ζn,u < Y ≤ ζ0} − 1{ζ0 < Y ≤ ζn,u})[lψ̂n

2 − l
ψ̂n

1

]
(V , δ,Z)

}
= n−1Qn(u) + Ên(u),
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where Ên(u) ≡ Pn{(1{Y ≤ ζ0}−1{Y ≤ ζn,u})[lψ̂n

2 − l
ψ0
2 − l

ψ̂n

1 + l
ψ0
1 ](V , δ,Z)}. By

arguments similar to those used in the proof of Lemma 10, we can obtain constants
0 < F1,F2 < ∞ such that |lψ̂n

j (V , δ,Z) − l
ψ0
j (V , δ,Z)| ≤ Fj‖ψ̂n − ψ0‖∞ almost

surely, for j = 1,2. Hence |Ên(u)| ≤ Pn|1{Y ≤ ζ0} − 1{Y ≤ ζn,u}|OP (n−1/2). By
arguments given in the proof of Lemma 11, we know (Pn −P)|1{Y ≤ ζ0}−1{Y ≤
ζn,u}| = O

Un,M

P (n−1). Since also supu∈Un,M
P |1{Y ≤ ζ0}− 1{Y ≤ ζn,u}| = O(n−1)

by condition B2(i), we now have that Ên = O
Un,M

P (n−3/2). The desired result fol-
lows. �

PROOF OF THEOREM 5. Fix h ∈ H∞. We first establish that (Q+
n ,Zn(h) ≡√

nPnU
τ
ζ0

(ψ0)(h)) converges weakly to (Q+,Z(h)), on DM × R, where Q+ and
Z(h) are independent, for each fixed M < ∞, and Z(h) is mean zero Gaussian
with variance σ̃ 2

h ≡ var[Uτ
ζ0

(ψ0)(h)]. Accordingly, fix M , and let 0 = u0 < u1 <

u2 < · · · < uJ ≤ M be a finite collection of points and q1, . . . , qJ , q̃ be ar-
bitrary real numbers. We first need to show that the characteristic function of
(Q+

n (u1), . . . ,Q
+
n (uJ ),Zn(h)) converges to that of (Q+(u1), . . . ,Q

+(uJ )) times
that of Z(h). Since u1, . . . , uJ are arbitrary, we will have convergence of all finite-
dimensional distributions. We then show that Q+

n is asymptotically tight to obtain
the desired weak convergence.

Let y 	→ Inj (y) ≡ 1{ζ0 + uj−1/n < y ≤ ζ0 + uj/n}, j = 1, . . . , J ; and Fi ≡
[lψ0

1 − l
ψ
2 ](Vi, δi,Zi) and Zi ≡ Uτ

ζ0
(ψ0)(h)(Xi), i = 1, . . . , n. In other words, Zi

is the score contribution from the ith observation. Thus

P exp

[
i

{
J∑

j=1

qj [Q+
n (uj ) − Q+

n (uj−1)] + q̃Zn(h)

}]

(22)

=
n∏

k=1

P

[
exp

{
J∑

j=1

iqj Inj (Yk)Fk

}
eiq̃Zk/

√
n

]
.

However, using the facts that e
∑

j wj − 1 = ∑
j (e

wj − 1) when only one of the
wj ’s differs from zero and euv − 1 = u(ev − 1) when u is dichotomous, we have
exp{∑J

j=1 iqj Inj (Yk)Fk} = 1 + ∑J
j=1(e

iqj Inj (Yk)Fk − 1) = 1 + ∑J
j=1 Inj (Yk) ×

(eiqjFk −1). Combining this with condition B2 and the boundedness of Fk and Zk ,
we have

P

[
exp

{
J∑

j=1

iqj Inj (Yk)Fk

}
eiq̃Zk/

√
n

]

= Peiq̃Zk/
√

n

+
J∑

j=1

(uj − uj−1)h̃(ζ0)

n
P [(eiqjFk − 1)eiq̃Zk/

√
n|Y = ζ0+] + o(n−1)
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= 1 + n−1

[
−q̃2σ̃ 2

h/2 + h̃(ζ0)

J∑
j=1

(uj − uj−1){φ+(qj ) − 1}
]

+ o(n−1),

where o(1) is a quantity going to zero uniformly over k = 1, . . . , n. Thus the right
side of (22) → exp[−q̃2σ̃ 2

h/2 + h̃(ζ0)
∑J

j=1(uj − uj−1){φ+(qj ) − 1}], which is

precisely P exp[iq̃Z(h) + i
∑j

j=1 qj {Q+(uj ) − Q+(uj1)}] as desired.
We next need to verify that Q+

n is asymptotically tight on [0,M]. Since there
exists a constant c∗ < ∞ such that max1≤i≤n |Fi | ≤ c∗ < ∞ almost surely, we
have that |Q+

n (u2) − Q+
n (u1)| ≤ c∗nPn1{ζ0 + u1/n < Y ≤ ζ0 + u2/n}, for all 0 ≤

u1 < u2 ≤ M . Thus we are done if we can show that u 	→ R̃n(u) ≡ nPn1{ζ0 < Y ≤
ζ0 + u/n} is tight on [0,M]. To this end, fix 0 ≤ u1 < u2 ≤ M . Now, the expecta-
tion of |R̃n(u2) − R̃n(u1)| is nP {ζ0 + u1/n < Y ≤ ζ0 + u2/n} → |u2 − u1|h̃(ζ0),
as n → ∞. This implies the desired tightness since u 	→ R̃n(u) is monotone.
We have now established that (Q+

n ,Zn(h)) converges weakly to (Q+,Z(h)) on
DM × R, where Q+ and Z(h) are independent, for each fixed M < ∞. Simi-
lar arguments also yield the weak convergence of (Q−

n ,Zn(h)) to (Q−,Z(h)) on
DM × R, where Q− and Z(h) are again independent, for each fixed M < ∞.
Thus also (Qn,Z

n(h)) converges weakly to (Q,Z(h)) on DM × R, where Q

and Z(h) are independent, for each fixed M < ∞. Since n(ζ̂n − ζ0) = OP (1),
the arg max continuous mapping theorem (Theorem 3.2.2 of [33]) now yields that
(n(ζ̂n − ζ0),Z

n(h)) converges weakly to (arg maxQ,Z(h)), with the desired as-
ymptotic independence. The remaining results follow. �

PROOF OF THEOREM 6. We have 0 = √
nPnU

τ

ζ̂n
(ψ̂n) = √

nPnU
τ
ζ0

(ψ̂n) +
√

n(Pn−P)(Uτ

ζ̂n
(ψ̂n)−Uτ

ζ0
(ψ̂n))+√

nP (Uτ

ζ̂n
(ψ̂n)−Uτ

ζ0
(ψ̂n)) ≡ √

nPnU
τ
ζ0

(ψ̂n)+
B1,n + B2,n, where the index set for the score terms is H1. By arguments
similar to those used in the proof of Theorem 2, combined with the fact that
n(ζ̂n − ζ0) = OP (1), we have that both B1,n = o

H1
P (1) and B2,n = o

H1
P (1). Thus√

nPnUζ0(ψ̂n) = o
H1
P (1). We also have that

√
n(Pn − P)Uτ

ζ0
(ψ̂n) − √

n(Pn −
P)Uτ

ζ0
(ψ0) = o

H1
P (1). Combining this with Lemma 5, the Z-estimator master the-

orem (Theorem 3.3.1 of [33]) now yields the desired results. �

PROOF OF COROLLARY 1. We first derive the unconditional limiting distri-
bution of

√
n(ψ̂◦

n − ψ0). If a class of measurable functions F is P -Glivenko–
Cantelli with ‖P‖F < ∞, then the class κ · F = {κf :f ∈ F }, where κ denotes
a generic version of one of the weights κi , is also P -Glivenko–Cantelli, by The-
orem 3 of [34]. Thus we can apply the results of Theorem 1 with only minor
modification, combined with the simple fact that κ̄ → µκ almost surely, to yield
that ψ̂◦

n → ψ0 outer almost surely. Note that the proof is made somewhat easier
than before since we already know ζ̂n → ζ0 almost surely. Furthermore, if a class
of measurable functions F is P -Donsker with ‖P‖F < ∞, then the multiplier
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central limit theorem (Theorem 2.9.2 of [33]) yields that the class κ · F is also
P -Donsker. Hence we can apply the results of Theorem 5 with only minor modifi-
cation, to yield that

√
n(ψ̂◦

n − ψ0) is asymptotically linear with influence function
l̃◦(h) = (κ/µκ)Uτ

ζ0
(σ−1

θ0
(h)), h ∈ H1. The factor µ−1

κ occurs because the informa-
tion operator for the weighted version of the likelihood is µκσθ0 . We now have that√

n(ψ̂◦
n − ψ̂n) = √

nPn(κ/µκ − 1)Uτ
ζ0

(σ−1
θ0

(·))+o
H1
P (1), unconditionally. Finally,

the conditional multiplier central limit theorem (Theorem 2.9.6 of [33]) yields
part (ii) of the theorem. The factor (µκ/σκ) arises since var(κ/µκ) = σ 2

κ /µ2
κ . Sim-

ilar arguments establish part (i) (see [18]). �

PROOF OF LEMMA 12. Standard arguments reveal that the given score func-
tion satisfies (14) by the smoothness of the log-likelihood (see [18]). �

PROOF OF LEMMA 13. Note that a consequence of the Donsker theorem
for contiguous alternatives (Theorem 3.10.12 of [33]) is that for any bounded
P -Donsker class F , ‖Pn − P‖F

Pn� 0. Thus the proof of Lemma 3 can be re-
constituted to yield boundedness in probability of ‖Â0‖[0,τ ] under Pn, since all of
the function classes involved are bounded P -Donsker classes. We can similarly

modify the proof of Theorem 1 (see [18]) to yield ‖ψ̂0 − ψ∗
0 ‖∞

Pn� 0. �

PROOF OF THEOREM 7. The basic idea of the proof is to use the Donsker the-
orem for contiguous alternatives in combination with key arguments in the proof of
Theorem 6 and the form of the score and information operators under model C2′.
Pursuing this course, we obtain for any (h1, h2) ∈ R

q+1,

(h1, h
′
2)Ŝ1(ζ )

= √
nPn(1,1)

[(
Uτ

ζ,1

Uτ
ζ,2

)
(ψ∗

0 )

(
h1
h2

)(
Uτ

ζ0,3

Uτ
ζ0,4

)
(ψ∗

0 )

(
[σ 22∗ ]−1σ 21∗ (ζ )

(
h1
h2

))]

+ o
[a,b]
Pn

(1)

≡ √
nPnH∗(ζ ) + o

[a,b]
Pn

(1),

where oB
Pn

(1) denotes a quantity going to zero in probability under Pn, uni-
formly over the set B . Now the Donsker theorem for contiguous alternatives
yields that the right-hand side converges to a tight, Gaussian process with covari-
ance P [H∗(ζ1)H∗(ζ2)], for all ζ1, ζ2 ∈ [a, b], and mean P [H∗{Uτ

ζ0,1
(ψ∗

0 )(α∗) +
Uτ

ζ0,2
(ψ∗

0 )(η∗)}]. Note that we only need to compute the moments under the null
distribution P . Careful calculations verify that this yields the desired results. �

PROOF OF COROLLARY 2. The limiting results under Pn follow from Theo-
rem 7 and the continuous mapping theorem, provided we can show that

inf
ζ∈[a,b],v∈Rq+1:‖v‖=1

v′V∗(ζ )v > 0.(23)
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The limiting null distribution results will similarly follow from the fact that under
the null distribution P , ν∗(ζ ) = 0 for all ζ ∈ [a, b]. Note that in both the null
and alternative settings, V∗(ζ ) depends only on the null limiting distribution. It
is sufficient to verify that σψ∗

0 ,ζn
is one-to-one for all sequences ζn ∈ [a, b] and

hn ∈ H∞. Note that we can ignore any differences between ζ0 and ζ in calculating
ζ 	→ σ 22

ψ∗
0 ,ζ

because of the nonidentifiability of ζ under the null hypothesis, that

is, ζ 	→ σ 22
ψ∗

0 ,ζ
is constant. Assume now that there exist sequences ζn ∈ [a, b] and

hn ∈ H∞ such that σψ∗
0 ,ζn

hn → 0. We will now show that this forces hn → 0.
Without loss of generality, we can assume ζn → ζ∗ and hn → h. Since the map
h 	→ σψ∗

0 ,ζ h is continuous and since ζ 	→ σψ∗
0 ,ζ h is cadlag, we can further assume

without loss of generality that either σψ∗
0 ,ζ∗h = 0 or that σψ∗

0 ,ζ−∗ h = 0 (the ζ−∗
denotes that we are converging to ζ∗ from below). The arguments for either case
are the same, so for brevity we will only give the proof for the first case.

By the arguments surrounding expressions (17), (18) and (19), combined with
the nonidentifiability of ζ under the null model, we obtain that expression (19)
must now hold for all t ∈ (0, τ ] but with ζ∗ replacing ζ0. In other words,
Ỹ (t)(h11(Y > ζ∗) + h′

2Z2(t)1(Y > ζ∗) + h′
3Z + h4(t)) = 0, almost surely, for all

t ∈ (0, τ ]. Since var[Z(t4)|Y > ζ∗] ≥ var[Z(t4)|Y > b] × P[Y > b]/P[Y > ζ∗] is
positive definite by condition B4, we have h3 = 0. We can similarly use B4 to
verify that var[Z(t3)|Y ≤ ζ∗] is positive definite and thus h2 = 0. Now h1 = 0
and h4 = 0 easily follow. Hence h 	→ σψ∗

0 ,ζ h is uniformly one-to-one in a manner
which yields the conclusion (23). �

PROOF OF THEOREM 8. The results follow from arguments similar to those
used in the proof of Theorem 7, but based on the conditional multiplier central
limit theorem for contiguous alternatives, Theorem 9 below. �

THEOREM 9 (Conditional multiplier central limit theorem for contiguous alter-
natives). Let F be a P -Donsker class of measurable functions, and let Pn satisfy∫ [√

n(dP 1/2
n − dP 1/2) − 1

2hdP 1/2]1/2 → 0

as n → ∞, for some real valued, measurable function h. Also assume
limM→∞ lim supn→∞ Pn(f − Pf )21{|f − Pf | > M} = 0 for all f ∈ F , and
that the multipliers in the weighted bootstrap, κ1, . . . , κn, are i.i.d. and indepen-
dent of the data, with mean 0 < µκ < ∞ and variance 0 < σ 2

κ < ∞, and with∫ ∞
0

√
P(κ1 > u)du < ∞. Then (µκ/σκ)(P◦

n − Pn)
Pn�◦ G in �∞(F ), where G is a

tight, mean zero Brownian bridge process.

PROOF. The proof is in Chapter 11 of [16] (see also [18]). �

PROOF OF COROLLARY 3. Assume at first that M̃n is a fixed number M̃ < ∞.
Theorem 8 now yields that the collection {Ŝ◦

1,1 − Ŝ1, . . . , Ŝ
◦
1,M̃n

− Ŝ1} converges
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jointly, conditionally on the data, to M̃ i.i.d. copies of Z∗. Thus V̂n converges
weakly to the sample covariance process (divided by M̃n instead of M̃n − 1) of
an i.i.d. sample of M̃n copies of Z∗. The same result holds true if M̃n goes to ∞
slowly enough. Since the Gaussian processes involved are tight, V̂n is consistent
for �∗, uniformly over ζ ∈ [a, b]. Similar arguments yield pointwise consistency
of F̂ and F̃ at continuity points of T̂∗ and T̃∗. Since T̂∗ and T̃∗ are continuous, the
consistency extends to uniform consistency. �
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