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We derive an asymptotic theory of nonparametric estimation for a time
series regression model Z; = f(X;) + W;, where {X;} and {Z;} are observed
nonstationary processes and {W;} is an unobserved stationary process. In
econometrics, this can be interpreted as a nonlinear cointegration type rela-
tionship, but we believe that our results are of wider interest. The class of non-
stationary processes allowed for {X;} is a subclass of the class of null recur-
rent Markov chains. This subclass contains random walk, unit root processes
and nonlinear processes. We derive the asymptotics of a nonparametric esti-
mate of f(x) under the assumption that {W;} is a Markov chain satisfying
some mixing conditions. The finite-sample properties of f(x) are studied by
means of simulation experiments.

1. Introduction. Two time series {X;} and {Z,} are said to be linearly coin-
tegrated if they are both nonstationary and of unit root type and if there exists a
linear combination a X; + bZ; = W; such that {W,} is stationary. This means that
the series {X;, Z;} move together when considered over a long period of time. The
concept of cointegration was introduced by Granger [10] and further developed by
Engle and Granger [6]. Since its introduction, there have been numerous papers in
econometrics exploring its various aspects. Some of the main results are given in
Johansen [19].

The long term relationships between two economic time series may not nec-
essarily be linear, however, and the processes {X;} and {Z;} may not be linearly
generated unit root processes. This has led to a search for nonlinear cointegration
type relationships such as Z;, = f(X;) + W;, for some nonlinear function f and
some possibly nonlinearly generated input process {X;}. Indeed, functional rela-
tionships of this type have been fitted to economic data (see, e.g., [8, 12]), but to our
knowledge, the properties of the resulting nonparametric estimates have not been
established (see [27] for a consistency property in a simplified situation, though).
A brief discussion of the relationship between our work and recent contributions
to the theory of nonlinear cointegration occurs in Section 6.
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There are at least two difficulties (cf. [11] and others): which class of processes
should be chosen as a basic class of nonstationary processes and how should an
estimation theory for an estimate of f be constructed? The main goal of this paper
is to try to answer these questions, that is, we wish to establish a nonparametric
estimation theory of the kernel estimator

ry Z?:o Zth,h(Xz)
1.1 =
( ) f(X) Z?:o Kx,h(Xt)

for the function f in the nonlinear regression model

(1.2) Z; = f(X) + Wi,

where K is a kernel function whose definition and properties are given in Sec-
tion 2.1, & is the bandwidth, {W;} is an unobserved stationary process and {X;}
and {Z;} are observed processes which are nonstationary in a sense to be made
precise later. At first, {X,} and {W;} will be assumed to be independent processes,
which is quite a natural assumption in a nonlinear regression context. However, in
a cointegration framework, this independence assumption is rather restrictive and
is generally not fulfilled for linear cointegration models. In Section 4, dependence
is the main subject. It turns out that dependence between {X;} and {W;} for fixed
¢t may disappear asymptotically. The reason for this phenomenon is related to re-
strictions on the type of dependence which is possible between a stationary and a
nonstationary process. A stationary process cannot follow a nonstationary process
too closely as this will violate the stationarity.

Although the connection between (1.2) and the nonlinear cointegration problem
is obvious, we would like to point out that the estimation of the function f in the
general context we are considering should also be of interest in other areas of
application. In a traditional time series regression problem, some sort of mixing
condition is often assumed for {X;} in order to obtain a central limit theorem for
f(x). However, mixing assumptions on {X,} are ruled out in the general situation
we consider. A minimal condition for undertaking asymptotic analysis on f(x)
is that as the number of observations on {X;} increases, there must be infinitely
many observations in any neighborhood of x. This means that {X;} must return to
aneighborhood of x infinitely often, which, in turn, implies that the framework of a
recurrent Markov chain is especially convenient. Since {X,} may be nonstationary,
null recurrent processes have to be included. It should be noted that the class of null
recurrent processes contains unit root processes (cf. [23]). Unlike the parametric
situation, where a unit root speeds up the convergence of (global) estimates due to
the large spread of the observations, in the nonparametric case, which is concerned
with local estimates, the nonstationarity slows down the convergence because the
time until the process returns to the local neighborhood around x increases, the
expected time being infinite in the null recurrent case.
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In [21, 22] (hereafter, the Karlsen and Tjgstheim paper [22] is referred to as KT),
an asymptotic theory was developed for nonparametric estimation for a nonsta-
tionary univariate nonlinear model in the framework of so-called S-null recurrent
processes. The latter constitute a subclass of the null recurrent processes which
contains the random walk. For an alternative theoretical approach in the random
walk case, we refer to [26]. For a relationship between the two approaches, see [2].

We will rely on central parts of the theory of KT in our derivations in this paper.
But, a host of new problems emerges in the regression case, as will be made clear
in the following.

2. Notation and some basic conditions. We will follow the notation of KT
since our proofs and results will be closely based on that paper. Thus, we denote
by {X;,t > 0} a ¢-irreducible Markov chain on a general state space (E, &) with
transition probability P. This means that there exists a nontrivial measure ¢ on
& such that each ¢-positive set A is communicating with the whole state space,
that is, ), P"(x, A) > O for all x € E whenever ¢(A) > 0, A € &. In this pa-
per, we take £ C R and we denote the class of nonnegative measurable functions
with ¢-positive support by €. For a set A € &, we write A € &7 if the indicator
function 14 € . The process {X;, t > 0} will be assumed to be Harris recurrent.
This implies that given a neighborhood N of x with ¢ (N,) > 0, {X,} will return
to N, with probability one, this being what makes asymptotics for a nonparamet-
ric estimation possible. The chain is positive recurrent if there exists an invariant
probability measure such that {X;, ¢ > 0} is strictly stationary and is null recurrent
otherwise. In this paper, we are primarily interested in the null recurrent situation,
in which case there exists a (unique up to a constant, nonprobability) invariant
measure, which will be denoted by 7.

If n is a nonnegative measurable function and A is a measure, then the kernel
n ® A is defined by

nAx,A) =nx)r(A), (x,A) e (E,&).

If H is a general kernel, the function Hn, the measure AH and the number AH7
are defined, respectively, by

Hn<x>=/H<x,dy>n<y>, AH(A>=/de>H(x,A>,

AH7 =//\H(dy)n(y)-

The convolution of two kernels, H; and H», gives another kernel, defined by

Hle(x,A)=/H1(x,dy>Hz(y,A>.

Due to associative laws, the number A H| H>7 is uniquely defined. If A € § and 14
is the corresponding indicator variable, then H14(x) = H(x, A). The kernel I, is
defined by I,(x, A) = g(x)14(x) and the special case g = 1¢ is denoted Ic.
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We define n € €T to be small if there exist a measure A, a positive constant b
and an integer m > 1 such that

@2.1) P">bn@® A

A set A is said to be small if 1,4 is small. Under quite broad conditions (cf. [9]),
a compact set will be small. In this case, it follows from (2.1) that a ¢-positive
subset of a compact set will be small. If X satisfies (2.1) for some 7, b and m, then
A is a small measure.

A fundamental fact for ¢-irreducible Markov chains is the existence of a mi-
norization inequality ([24], Theorem 2.1 and Proposition 2.6, pages 16—19): there
exist a small function s, a probability measure v and an integer mg > 1 such that

P> s Q.

Some technical difficulties arise if mo > 1 because this necessitates the mg-step
chain; it is not a severe restriction to assume that mq = 1. Therefore, unless other-
wise stated, in the sequel we will assume that the minorization inequality

(2.2) P>s®v

holds, where s and v are small and v(E) = 1. In particular, this implies that 0 <
s(x) <1,x € E.If (2.2) holds, then the pair (s, v) is called an atom (for P). A wide
class of nonlinear AR(1) processes satisfying (2.2) is given in KT.

From (2.2), we obtain the identity

P(x, A) — A
P(x,A):(l—s(x)){( x 1)_;3)”( )>l(s(x)<1)

(2.3) 1A (s(x) = 1)} +5(x)V(A)

E (1 —50)0(x, A) +s(x)v(A),

so that the transition probability P can be thought of as a mixture of the transition
probability Q and the small measure v. Since v is independent of x, this means
that the chain regenerates each time v is chosen. This occurs with probability s (x).
The reasoning can be formalized by introducing the split chain {(X;, ¥;)}, where
the auxiliary chain {Y;} can only take values 0 and 1. Given that X; = x and ¥;_| =
Yi—1, Y; takes the value 1 with probability s (x) so that « = E x {1} is a proper atom
(cf. [24], page 51) for the split chain. We denote by

Se =min{t >1:Y, =1}

the corresponding recurrence time. We will also make use of the consecutive se-
quence of recurrence times starting at time ¢ = 0,

2.8) T =min{t > t3_1:Y, =1}, L]déf—l fork > 0,7 =14 = 10,
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and the number of regenerations in the time interval [0, n], that is,

T(n)= m]?x{k 1T <n}vO.

An invariant measure 7ty can be defined in terms of the atom (s, v) of (2.2). In
fact (KT, Section 3.2),
o0
(2.9) 7GsG, EY (P -sev).
=0
If the measure 7 is absolutely continuous with respect to Lebesgue measure, we
denote by p; the corresponding density so that p(x) dx = my (dx). Similarly, for

C € &7, we define the density pc(x) = ps(x)/ms1c. For a m-integrable function
g on R, we use the notation w3 g for

Tyg = 75(g) = / ()7, (dx).

Corresponding to T (n), for a set C € &*, the number of times {X,} visits C up
to time 7 is denoted by

Te(n) =) 1c(X)).
t=0

From KT (Remark 3.5) we have that T¢(n)/ T (n) i wslc.

The kernel Gy, of (2.9) plays an important role in Section 3 and it easily fol-
lows from the above that for a mg-integrable g defined on E, with E, being the
expectation conditional on X (0) = x,

T
(2.10) Ex Y g(X)) =Gy pg(x).
=0
The minorization condition and the accompanying split chain permit the decom-
position of the chain into separate and identical parts defined by the regeneration
points. We have, for a function g,

n T (n)
def
2.11) Si(@ =D gX)=Uo+ Y Ux+Up).
=0 k=1

where

)
Z g(Xy), when k > 0,

t=1p_1+1

Ui = n

Y eXy, when k = (n).
t=tr(n)+1
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The sequence {(Uy, (tx — Tk—1)), k > 1} consists of independent identically dis-
tributed (i.i.d.) random variables. This partition of the chain is of basic importance
for the subsequent asymptotic analysis. In the following, we will sometimes use
the symbol U = U (g) to denote a random variable representing the common mar-
ginal distribution of {Uy, k > 1}.

We must introduce a restriction on the way the process regenerates: the chain
{X;} is B-null recurrent if there exist a small nonnegative function f, an initial
measure A, a constant 8 € (0, 1) and a slowly varying function L ¢ such that

n 1
2.12 E X)~—nfPL,
(2.12) Atgof( ) risp" £(n)

as n — oo. This condition is equivalent to (cf. KT, Theorem 3.1) a restriction on
the tail distribution of the recurrence time S, in that

(2.13) Py (Sqy >n) =

14+ 0(1)),
=gy W)
where Ly is a slowly varying function depending on s and where P, means that
the initial distribution is equal to &4 (x, y), that is, Yo = 1, X¢ = x arbitrary. In the
sequel, (2.13) will be referred to as the fail condition.

A random walk process is B-null recurrent with 8 = 1/2.

2.1. Basic conditions. We denote by h = h,, the bandwidth used in the non-
parametric estimation. It is assumed to satisfy 4, — O and, with no loss of gen-
erality, we also assume that 4, < 1. Let K:R — R be a kernel function and
for a fixed x, let Ky ,(y) = h_lK((y —x)/h), Nx(h) ={y : Kx n(y) # 0} and
Ny = Ny (1). In our context, a locally bounded function will be taken to mean a
function bounded in a neighborhood of x and a locally continuous function is a
function continuous at the point x. Without loss of generality, we may assume that
this neighborhood equals -V, and that local continuity implies local boundedness.
This follows since N, (h) = x ® hNy.

We will consider the problem of evaluating the properties of the kernel esti-
mator (1.1) of the function f of (1.2) under the assumption that {W;} is Markov.
In Section 3, {X;} and {W;} are assumed to be independent. The independence
assumption is removed in Section 4, and the compound process {(X;, W;)} is as-
sumed to be Markov.

The following set of conditions is always assumed:

Bo (i) the kernel K is nonnegative, [ K (1) du < oo and
IK 115 = K*(u)du < o0
(i1) the {X,} process is a Harris recurrent Markov chain;
(iii) the transfer function f is continuous at the point x.

We will also make heavy use of the following conditions B1—B4 of KT. For ease
of reference, these conditions are restated here:
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B () [Ku)du=1;
(i) [uKu)du=0;
B; (i) the support Ny of the kernel is contained in a compact set;
(i1) the kernel is bounded and -V, is a small set;
B3 the invariant measure 75 has a locally continuous density ps which is locally
strictly positive, that is, ps(x) > 0;
By forall {A} € & such that A, | &, limy o Eyﬂ P(y, Ap) =0.

In all of the proofs, we use ci, ¢z, ... as a sequence of generic constants and
if {a,} and {b,} are two real-valued strictly positive sequences, then we write
an L by, if a, = 0(by,). The associated o -algebra, }le’ for a stochastic process
{X;, t > 0} is defined in the usual way: thX =o{X;,j<t}and FX= vV, J"ftX.

3. Nonparametric estimation of f. At the outset, we assume that {W,} is
a ¢-irreducible ergodic Markov chain which satisfies (2.2). Additional assump-
tions will be introduced as needed. Actually, we also allow a slight generalization
of (1.2), in that we include an instantaneous transformation of Wy, resulting in

(3.1 Zi = f(X) +gw(Wy).

This is an extension of (1.2) since even if {W;} is Markov, {W/} = {gw (W;)} does
not have to be Markov. We assume that Egw (Wy) = 0. Because we do not gen-
erally restrict gw to be a small function (consider, e.g., gw(w) = w), Lemma 5.1
and Lemma 5.2 of KT cannot be used, which complicates matters considerably.

Throughout this section, we make the assumption that {X,} and {W;} are inde-
pendent and, using this assumption, we are able to obtain results which are of inter-
est in the general context of nonparametric estimation of nonstationary processes.
In Section 4, we allow for dependence, but put restrictions on gy, and some parts
of the results obtained in this section are extended. Moreover, our findings in Sec-
tion 4 highlight the fact that the actual dependence occurring in cointegration mod-
els disappears asymptotically. In this way, results in this section are also relevant
to cointegration models. Furthermore, they may serve as a starting point for deriv-
ing asymptotic results for the dependent case without the restrictions on gw which
are imposed in Section 4. We believe that letting W, = gw (X;, ..., X;—p,, W;) for
some fixed p, where {W;} is a Markov process, independent of {X,} and such that
{W/} is stationary, may be a possible way to proceed.

We start by expressing f(x) — f(x) in the S, -notation of (2.11), and this is done
by rewriting the numerator of f(x) of (1.1) as

Zi=gwW) + (f(X) — f(0) + f(x),
Zi Ky n(X1) = gn(Xe, W) + Y (X)) K 5 (Xy) + f(0) Ky 0 (Xy),

vlhere gn(z,u) =gwu) - Ky n(z) and ¥, (y) = f(y) — f(x). By the definition of
f(x), this gives

FO) = () =S, (Ke ) {Sn(gn) + Su(Wx - Kn))-
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The last term on the right-hand side represents the bias. It is a stochastic quantity
and we want to replace it by a deterministic bias term. Let

def T IKx,h Wx

def
, by=1 —ap).
ik, 1 n = Ik, ,(Yx —an)

Then
) = f) —an =S, (Ke){Su(gn) + Su (W - Kan) — anSu(K.p)}
= S, (K1) {Su(gn) + Su(bn)}.
It follows that
(3.2) RSV K F ) — f(x) —any = AL, + A2,
where

AL =SV (K )2 S, (gn),
A2, = (e 2T P yn 2, (b,

Pex) =T: () Sy (K p)

and where C is a purely auxiliary small set. Replacing P& with f in the proof
of Theorem 5.4 in KT, then using B;—B3 and condition (2.13), we have A%’ h, =
0p(1) and by KT (the second part of Theorem 5.3 and also the proof of Theo-
rem 5.4), pc(x) = pc(x) + 0 p(1) since mgby, = 0.

By (3.2), the above arguments show that a central limit theorem for f(x) follows
from a central limit theorem for A}L n,- We continue the proof of the asymptotic

properties of fby formulating a general nonparametric CLT.

3.1. A nonparametric CLT for null recurrent processes. Assume that {X;}
is a general Markov chain [e.g., it could be identified with the compound chain
{(X;, W)} or with just one of the components] which satisfies the minorization
condition (2.2) and the tail condition (2.13). Let (assuming first- and second-order
moments exist)

70
Uo=Uo(gn) =Y _gn(X1),  m(gn) =EU(gn),
t=0
o?(gn) = EU(gn) — n* (),

where gj, is a real-valued function defined on E for all 2 > 0 and 7 = 1 is de-
fined as in (2.8). Note that with the function g5 used in this paper, the random
variables U1(gn), U2(gn), - .. in the decomposition (2.11) are independent so that
in the notation of equation (4.4) of KT, 3%(g5) = o>(gp,). Consider the following
conditions, where —o0o0 < u, ' <00, 0 < 0,0’ <oo,ve[0,1],m>2,¢>0,
0 <dp,d), < oo, B is defined in (2.13), A is an initial measure and 4 |, 0.
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Cl: p(gn) =p+0), u(lgn) =pn' + o).
C2: ho*(gn) =0%+0(1).

C3: ho?(Ignl) = 0" + 0(1).

C4: E|U(gn) — p(gn)|*™ < dph ™21,

Cs: EIU(IghI) — u(lgn)*™ <dj,h=2m+.
C6: h;! < nfon—c 5, =mn=1

CT: 330 hignl < go and PA(UO(gO) <o0)=1.

The following theorem is essentially a translation of a CLT result in KT. It will
be used to prove the main CLT results of the present paper.

THEOREM 3.1. Let C be a small set. Assume that the tail condition (2.13)
and C1-C6 hold with u = 0 for an m > 2 and a v € [0, 1]. Then for any initial
measure A for Xo such that C7 holds,

T 2 )(Su(en,) — Temm (Coplen)} —> N (0, 02771 (O)).

PROOF. The proof is essentially based on KT (Theorem 4.2). Since gj is a
function of one variable, the conditions in that theorem simplify. Clearly, condi-
tions Ag—A, of Theorem 4.2 of KT follow directly from C1-C3. In conditions C4
and C5 the quantity v is allowed to vary everywhere in [0, 1], whereas in condi-
tions Az and A4 of KT, v can only take the values 0 and 1. However, this extension
is allowed by a trivial modification of the first part of the proof of Theorem 4.1
of KT. Condition As of Theorem 4.2 of KT follows straightforwardly from C7 by
reasoning as in the proof of Theorems 5.1 and 5.3 of KT. U

Before we can employ Theorem 3.1, we need to analyze the regeneration struc-
ture of {(X;, W;)} more carefully. This is done in a series of lemmas in Sec-
tions 3.2-3.8. We believe that these results are of independent interest and that they
are potentially useful in other situations. Our main result is stated in Section 3.9.

3.2. Decomposition of S,(g). We assume that the compound chain {(X;, W;)}
satisfies (2.2) so that it can be extended by the split chain method, with
{(X;, Wy, Y1)} being a split chain. Note that if {X;} and {W;} separately satisfy the
minorization inequality (2.2), it is not obvious that the compound chain {(X;, W;)}
will. However, if {X,} and {W;} are independent, then it is trivial to verify (2.2), as
is shown at the beginning of Section 3.3. Let

T =inf{t > 1p_1:Y; =1}, k>0,7_;=—1.

Then the sequence {t;} represents the regeneration times for the compound
process. The basic decomposition, (2.11), with g = gj defined at the beginning
of this section, gives

T (n)

(3:3)  Su(®) =Uo() + Y Ur(g) + Ui (2), T'(n) =suplk:tx =n} VO,
k=1
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where
17"
Z g( X, W), for k >0,

t=1r_1+1

Uk(g)z n

Y g(Xe, W),  fork=(n).
IZTT(,,)—I—]

According to the general theory, the variables {(Ux(g), (tx — Tk—1)), k >
1} are i.i.d. We denote by U = U(g) a random variable having the common
marginal distribution of the Uj’s and write u(g) = EU = E, Uy(g), oz(g) =
Var(U) = Var, (Up(g)) = E, Ug (g)— uz(g), where v refers to the compound chain
{(X:, Wi}

Our first problem is to find conditions which ensure that 1« (|g|) and az(g) are fi-
nite. Again, by reference to the general theory [cf. Appendix A, (A.11) and (A.12)],
we have that, with s referring to the compound chain,

(3.4) n@) =mg, 029 =mg +2mH Gy g — g,
where H = P —s @ v and Gy, is defined as in (2.9).

The conditions ensuring az(g) < oo are not evident from (3.4) if we want to
avoid the relatively strong restriction that gw is a small function. If gw(w) = w,
then requiring gw to be small is roughly equivalent to ¢-mixing, which is not
satisfied for, say, an autoregressive process. The problem is linked to the term

G . In fact, we also need to demonstrate the existence of higher moments and to
verify conditions connected to the bandwidth as seen in C1-C7.

3.3. B-null recurrence for the compound process. Let P denote the transition
probability for the Markov process {(X;, W;)}. We label quantities associated with
{X;} by 1 and with {W;} by 2. The transition probability P satisfies (2.2) when P
and P, do since

(3.5) P=PIQP,>(s1®5)Q@ WV ®1)=5sQv.
Condition (3.5) will be assumed to hold in the following.

LEMMA 3.1. Assume that {X;} and {W;} are independent, that the tail con-
dition (2.13) holds for {X;} and that {W;} is ergodic. Then the compound process
{(Xy, W)} is B-null recurrent, that is, the tail condition holds for the compound
process.

PROOF. Let C; and C; be small sets and let v = v{ ® v,. Then

Eu1 D 1o (XDle,(Wo) p =Y (i P{lc)(mPilc,)

(3.6) =0 t=0

n n
= (m2lc,) Y viP{le, + Y (i P{1c)by,
t=0 t=0



262 H. A. KARLSEN, T. MYKLEBUST AND D. TJJSTHEIM

where b; = v2P2’1C2 — molc, and where m, is the stationary measure for {W;}.
Since {W;} is ergodic, b; = 0(1). Since {X;} is B-null [cf. KT, Lemma 3.1 and
formulas (3.12) and (3.13)], we have that

Y wiPlc, =@ le)vim A +ay), Y1) =nPLg (), ay=o0(1).
t=0

By (2.12), the conclusion of the lemma follows if we can show that the second
term of (3.6) is 0(Y¥1(n)). Let Yy = sup, <y ¥1(2), A = sup, |as|, c1 = 75, 1y,
B = sup;, |b;| and BM) — sup;- ps 16¢|. Then for all M > 0,

" oW1 P 1c)|b] - CI{BWM(I + A)
Y1(n) Yi(n)

Letting n tend to infinity and then letting M tend to infinity, we find that the left-
hand side of (3.7) is ©(1) with respect ton. [

(3.7) +BM 1 + Ianl)}.

3.4. Refinement of the decomposition structure. We extend both chains with
the split chain method and write {(X;, Ytl)} and {(W;, Y,Z)}. Due to independence,
{(X;, W;, Yy)} is the split chain for the compound process {(X;, W;)}, where Y; =
Y'Y? (cf. [24], (4.17), page 62). Thus,

(3.8) n=inf{t > g_;: ¥ =v> =1}, k>0,7_1=—1.

We shall now look more closely at the decomposition structure and try, to some
extent, to reduce it to the marginal decomposition of the {X,}-process, that is, the
regenerations defined by {1:k1 1,

(3.9) il =inf{r >l v} =1), k>0,tl, =—1,

which defines the X -partition. Let

1
i

(3.10) Vi=Vie= Y, gX.W),  s=0.

t:r}_l—i-l

Although the V;’s are neither unconditionally nor conditionally independent, they
will be useful. By (3.8), we see that the regeneration times for the compound chain
are also regeneration times for { X, }. Hence, following the regeneration times (3.9)
for the X-process, we recover all of the simultaneous regeneration times given
by (3.8). The gaps between successive simultaneous regeneration times define a
subdivision of each Uy into V;’s and this refines the decomposition given by (3.3).
Let

o

(jdk:ll’lf{‘]>frkf]erl:]} fOI‘kZO,T,]:—]’T éf‘:]'o
J
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_ 1 . .
Then 7 = 74 , which gives

N
H._‘

Jk (J‘}( J (J‘}c
U= Y. gXoWo= Y Y gXo,Wo= Y
t:rglk_l+1 J=T—1+1 1:1}71-1-1 J=T—1+1
and in particular for k =0,
-
(3.11) UO:ZVj.
j=0

The number of subblocks inside a large block is distributed as the recurrence
time for the ergodic process { W.[kl }. Comparing this distribution with 7 and ¢!, it
is evident that a block which is quite large is partitioned into relatively few sub-
blocks. The advantage of this construction is that the subblocks are defined by the
regeneration times for the X-process and the X-part of g, is marginally a small
function.

3.5. The embedded process. The following lemma proves that embedding the
{X;}-regeneration times into {W;} and extending to a split chain are essentially
commutative operations.

LEMMA 3.2. The process {erl ,k > 0} is a Markov process with transition
probability P = Py®,,, where ®,, = > 72 {vi(P1 — 51 ® vl)gsl}Pze. Moreover,
(3.12) P>5Qv,
with (s, V) = (s2, v2Py,). Let L = A1 @ A2 be the initial measure for {(X;, W;)}.
Let {W, } ={(W,. Y, )} be the split chain generated by P and (s, v) and let {er1} =

2
{(erl, Yrk‘)}' Then

o~ o~

(3.13) (W} (W)

Tk

Lo . =~ def .
when the initial measure for W, is A=A = A ®; \- In particular, let T denote the
rst regeneration time for {W, }. Then the occupation time formula is given
t reg tion t W.}. Then th ppation t lais g by

T T ng JLa, in general,
G4 B Y W) =Bz Y 1aWp=1{mG 1a.  ifra=m,
k=0 k=0 s, L A, ifr=v,

where G =372 (P —s®)'.
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The proof is given in Appendix B.

Intuitively, changing the time parameter from {k} to {‘L’kl} in the ergodic process
{W;} should decrease the amount of dependence, and this is the content of our next
result. More specifically, we obtain that the rate of convergence of the transition
probability toward the stationary measure is at least as good for the {W, }-process
as for the { W;}-process.

LEMMA 3.3. Suppose that {W;} is geometric ergodic. Then this is also true
Jor {W,}. If {W;} is strongly mixing with mixing rate defined by o = {a;}, then
{W,} is strongly mixing with mixing rate o, which is equal to or faster than «. In
particular, for an integer p > 0,

o8}
(3.15) Y lPap<oo = En,T" <oo.
=1

The proof is given in Appendix B.

3.6. Moment bounds. Our nonparametric CLT requires bounds for the mo-
ments of U(g) given by C4 and C5. We first need to find upper bounds for mo-
ments of U (g) corresponding to (3.11) and related quantities. We assume that

(3.16) gx, w) = (gx ® gw)(x, w) = gx (x)gw (w).

Our method is to use a representation of U (g) as a partial sum of Vs, these vari-
ables being defined by the regeneration of {X,}.

In the following, H; = P; —s; ® vj for j = 1,2 and as before, H = P —s Q@ v.
Also, recall that I, is defined by I (x, A) = g(x)14(x).

THEOREM 3.2. Let m > 1 and V; be defined by (3.10) and (3.16). Then
T
(3.17) Ey ) 1VjI" < 7, lgwI"EU™ (|gx ).
j=0

Forall p > 0andéd € (0, 00),

<

(3.18) E|U(g)|? < E})/U-*—&{Z |Vj|p(1+8)}Ei/(l+8)|T + 1|p(1+5’1).
=0

The proof will be based on two lemmas. We use the notation §; =t ]1 -7 }_1

for j >0 and #; = F v ?’51 v FW v £ Then V; is measurable #;, and
Y J

{To=j}={T =jled;_1.By(3.11),Up = (]?';0 V;I(T = j) and form > 1,

Ex{V*' 1T = DY =E{1(T = HEV" | Hj-11}
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The following technical result, which is the first step in the proof of Theo-
rem 3.2, uses the independence of {X;} and {W;}, together with the regeneration
property of {X;}.

LEMMA 3.4 [Decoupling]. Let A =A; @ Ap. Let j > 0 be fixed and let {X}
be an independent copy of {X;} so that {X}} is independent of both {X,} and {W,}.
Let &w be a real-valued function defined on R x {0, 1} and for fixed j, let

J 2 2
az = SW(WT}71+K+17 YT}71)7 E Z 09 Yfll = y

and let Vg j be an extension of (3.10), given by

1
i

(3.19) Vej= D ex(Xogw(WeY} ). j=0.
1 I
j-1t1

t=t

Then for m > 1,

Ey, Ul (a, gx), for j =0,

m . _ 1¥0 \=

EalVe. 1 91} = {Evl Ula.gx).  forj=1,
1

where Up(a, gx) = ¥, ex (X})ag and a = {a¢} = {a]}.

PROOF. Let j > 1. By (3.19),

1

1 1
Y Tt
Vej= Y ex(Xp&w (Wi, Y} )= ax(Xor L Ew(Wor 4, Y B
t=t!_ +1 - =1 ”
Jj—1

so that with S} = minf{r > 1: Y =1},

8]' m
2
E{ Ve | #Hj1} = EA{ LX; ex (X Ew(Wor Yr}_l)} j.}ejl}

Solt m
= Ea{ZgﬁX@ae_l}

=1

'L'(} m
—E,, [ng<xz)az]

£=0
= Evl U(')n(ga gX)’
where we have used the fact that

Li(Xp g 1SES8)) = LolX), 1L S,) =Ly (X}, 0= =1},
J=
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with /£, denoting the simultaneous distribution with initial measure A.
If j =0, then

1

) m
Ep{VE!; | - 1}—EA{[28X(Xt)§W(Wz,y):| (}*vasy }
=0

=K, Uy (a, 8x)- O

Using the previous lemma, the factorization of g given by (3.16) and a general
moment formula given in Corollary A.1 in Appendix A, we obtain a useful exact
formula. The notation is in accordance with Theorem A.l in Appendix A. We
use the index set A} = {a € N} : Z?:l aj = m}, where N is the r-Cartesian

product of all strictly positive integers, the multinomial coefficient (7)) = O”,L'a,,

NGy =N x N and joy =G, ... Jr) € NI

LEMMA 3.5. Let Vi be defined by (3.10). Let m > 1. Then

620 E, zvk T (M) T Al

r=lacA" j(z)ee/vl_l
where
— J2 Jr X
fj(Z),a —I OtlHl I 012 Hl Ig(;(r 1,
Jr
o =L PP Lo o PY L 1.

More generally, we have for A = A1 ® Ao, with fj}fa = Hljlfj(z) o and fj‘j‘; =
Ji
P2 fj(z) o’
Exzvk =3 ¥ (2) £ e-nule
(3.21) r=1lacA" je,j\/(;‘Jr

+ o XVEG Pt

~5,0

REMARK 3.1. If A =v, then

J1 J+1 7w a4
)\'QS va y <s P fJ(z) a 7'[;2P Joy.a — =Ts, J@).a’
o0
11 _ X
Zvlfja_vle 1(2)06 7Ts1fj(2)a
J1=0 J1=0

Thus, (3.21) reduces to (3.20) when A = v.
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PROOF OF LEMMA 3.5. We rewrite the first term on the left-hand side of
(3.20) using the fact that 1(5 > k) =1(T =k — 1)1(Y21 =0), so that
Tk—1

T oo
Ey ) VI =E,(V§")+ D E{1(T =k - 1)1EU(V,;"1(Y§k1 =0)| )},
k=0 k=1 -

Let V¢ i be defined by (3.19), where éw (w, y) = gw(w)(1 — y). By Lemma 3.4
and its proof, it is seen that the conditional mean given #€;_; only involves the
regeneration of {X;} and we can therefore use Appendix A (and more specifically
Corollary A.1) to obtain for k > 1,

EU[V;/[I(YS](I,I :O) | ]fk_l]
=B, [V | Hi-1]
" r
= Z Z (ZZ) Z {V] ]{(Ol}|:l_[g%(wfk_l-Fti-Fl)}l(Yé 1 =0)’
M i=1 -

— m 7 r
r=lacA’ JENy 4

where t; = ji 4+ -+ ji. Let Gy = i—'j v 5@‘51 v }‘jV v f'f . Then by conditioning
k k k k—1
with respect to §x_1, we find that

]EVKI(T >k — 1)[1_[ gi‘vi(Wr;1+zi+l)}1(Yr2,3_l :0)}

i=1

=E{1(T =k = DH /[, (W, ).

T o0
E, ) V"= "EfUT =k —DE[V"1(YZ =0)| Hi1]}

k—1

e =Y ¥ (2) % {Vlf]{(a}Ev{Zl(TZk—I)Hzfj%(wtkl_l)}
k=1

r=1lacAl" jeﬂ&+
m
_ m X H, £V
— Z o Z {vlfj,a}{nsz 2fj,o[}'
r=1aeAl JENg o+

Similarly, we find that

(3.23) 2= % (%) X tirfaerl

r=lacAl JENS 4
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and by combining (3.22) and (3.23) and using 7y, Hy = 7y, — v, we get

E, ka =X X (1) X o

r=lacAn J\f()’+

Now, g, £V o =T f oy

o0 o0

X _ J1 J2 gl _ X
ZOUI fia= Zolel Loy H{* Lo - H{" Loy L =75, 5,
1= J1=

and thus (3.20) is proved.
The proof of (3.21) is similar. Instead of (3.22), we obtain

m

EAZVk => 2 ( ) > {Vlf]a}EAZHija(Wl)
r= I(XEA;" jEe/\/0+
(3.24)
m ~
=3 X (%) ¥ sl tarl
r=lacAm JEMNS 4
and (3.23) is changed to
m
(3.25) B =Y ¥ (1) X tusfvari
r=lacA JENg +
Combining (3.24) and (3.25) and using XGY H, = G Pz — vy, we obtain
(3.21). O
REMARK 3.2. If m = 1, then by (3.20), u(g) = Z = {m,,8x}

{5, 8w}, which, using (3.11), is consistent with (3.4).

REMARK 3.3. If m =2, then

T e
Ey Y V7= {ms gx Hrs g} + 2D (g Tgx Hi Igx 1}{7ts, gy Py, 1)
j=0 =1

REMARK 3.4. By (3.11) and (3.21), we find that for general A = 1| ® A»,
g=gx ® gw, we have

[e.¢] o0
j j j 1
EvUo(8) = Y_ (k= )(Pgx ® P{gw) + Y_(niHgx}(AG, P gw).
j=0 j=0
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If gx is small, A = 7> and sup ﬂzgs UP2j+1|gW| < 00, then E; Up(g) is finite.

More generally, taking p =1+94, f = sz+1 |gw|and A = Ay = mp in Lemma A.2,
we have that

i+1 -~ 8/(14né
nzgs(llj—a)/(l-l—na)sz E]lré(l-i-nﬁ){ 1+25{ﬂ£; /(147 )IgWI(HB)/("‘S)},

lgwl <2
with n € (0,1) and § > O arbitrary. The result can now be combined with
Lemma 3.3, which ensures the existence of moments of 7 under appropriate mix-
ing conditions.

PROOF OF THEOREM 3.2. We first prove (3.17). Assume that gy > 0. By
Cauchy-Schwarz, recalling that 2321 aj =m, we have

rw — J1 .. Jr—1
72 fig) ol = |7121go‘;/1 Py L - Py Ly 1]

(3.26) mo .
y/m ri&y
<[ 1gw|"/ ¥ < magw|™.
r=1

Inserting (3.26) into (3.20), we obtain

T m
m j Ar
E, Y VI <mglgwl™ > Y. <a ) > mala H Lao - H{ L]
k=0 r=lacAm j(z)eNi_l
=15, |gw|"EU™ (gx),

from which (3.17) follows trivially.
To prove (3.18), let r =1 + 68 and ¢ = 1 + 87, Then E,|Uy(g)|? =
EU|Z;’;0 V;i|? and

T p
| < NPT P <wl/r Prrl/a g rq
EU];)V, <Ey max |V;IIT + 117 <E)/" max |V |7"E,/7|T + 1]
T
<EY" S VIPEYT + 1174 0
Jj=0

3.7. Moment bounds of U(gy) expressed in terms of bandwidth. The follow-
ing results describe how higher-order moments of U behave as functions of the
bandwidth. This is what is needed to apply C4 and C5 in Theorem 3.1.

THEOREM 3.3. Let gx = gx.n = Kx i and assume that conditions B, B3 and
(3.16) hold. Then for all integers k,m > 1,

(3.27) E|U (gn)|*™ < dy gh~ 2T/ EFD,
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where
def 2m (k+1 - 1/(k+1
Ay def {j_[slz/(k+1)gu;n( + )}Ellj/(k+1)|1 +1|2m(k+1/k){d£n{( )}

and the sequence of constants {d),} is only dependent on Ny and sup, K (u).

PROOF. By (3.18), with p =2m and § = k, we have

2 1/(k+1 k/(k+1) 4 2m((k+1)/k
(3.28) EU*(g) <EL/*+D B/ (4D g g 2D/ B,

T
Z |V] |2m(k+l)
j=0

From (3.17), we have

-
(329) E, Y V"D < lgw PEDED P EED (g ),

j=0
and by KT [Lemma 5.2 with £y = 1 and §, replaced by 41 = {f:(E, §) —
(R, B8(R))}, where B(R) is the class of all Borel sets on R],

(3.30) EU2 D (1gy 1)) < dj, b2 EFEDHT

In the proof of that lemma, it is also shown that the sequence of constants {d,, } is
only dependent on Ny and sup, K (u).
Inserting (3.29) and (3.30) into (3.28), we get (3.27). U

3.8. Asymptotic variance. Exact information about the first order properties
of the asymptotic variance is important (cf. C2 and C3). Such information is con-
tained in the next result, which is the analogue of Lemma 5.1 of KT. Our method
of proof uses a truncation technique based on the notion of a generalized autoco-
variance function. We believe the latter concept to be of some independent interest.

THEOREM 3.4. Assume that the process {W;} is an irreducible, ergodic,
strongly o-mixing process which satisfies (2.2) and has mixing rate satisfying
S PV gy < 00, magw = 0 and ma|gw 2KtV < oo for some integer k > 1.

Assume, in addition, that gx = K j and that conditions Bo—By hold. Then if
u(gw) =0, we have, as h |, 0,

(i) ha’(gx.n ® gw) = ps, OIIK 375,83 + o(1),
(ii) ho(lgx.n ® gw|) =ho(gx.n ® gw) + o (1).

In the proof of Theorem 3.4, we need some results of a more general nature con-
cerning generalized autocovariances. These are formulated in Lemmas 3.6 and 3.7
below, for a general ¢-irreducible, aperiodic, Harris recurrent Markov chain {X;}
with transition function P satisfying (2.2) and with the S, (g)-decomposition, as
in (2.11). The next step is Lemma 3.8, where we apply Lemmas 3.6 and 3.7 to our
Markov chain {(X;, W;)} [with a slight conflict of notation, taking X; = (X;, W;)].

We begin by extending the notion of a cross-covariance function, as defined for
ergodic processes.
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DEFINITION 3.1. Let g, f € L'(7s) N L2 (7). The generalized covariance
and cross-covariance function is defined by

s lgy fo+ g s(l —ﬂssz), when £ =0,
(3D Ve.r () = (/’gPZ_lfO, when £ > 1,
Yrg(—0), when £ < 0,

where ¢, &ef wslg P — gy and y, dof Yg,¢- Mean centering a function f with su ¢

produces a function denoted by fp, that is, fy def f—sur.

Note that when g = u = 0, the generalized cross-covariance function is equal
to the ordinary one, apart from the constant ¢, = ms, that is, y, r = ¢ 1787 £
where y,  denotes the stationary covariance function.

LEMMA 3.6. Assume that |g| is small. Then o(g) = 302 _ Yo (0).

PROOF. We have, by (A.12) in Appendix A and by (3.4), that
o2(8) = 74(0) + 20, G, v 80.
Iterating G5, =1+ (P —s ® )Gy, we get G, = G™ 4+ P'Gg ., — GMs @ g
with G = ZZ;& P*. Pre- and post-multiplying this equation by @g and go, re-

spectively, gives oG ,80 = Y j_; Yo (£) + @4 P" 1, where ¥ &ef Gs.v80. By Num-
melin ([24], Theorem 6.7, page 109), and since [l¢g|l < 2/t|g|, |go| is small and v
is bounded, we find that ¢, P"y = ©(1), from which the result follows. [

REMARK 3.5. The formula in Lemma 3.6 can be viewed as a generalization
of the formula Var(n—1/2 ?:0 Xj) =272 _ Cov(X;, X;—¢) + 0(1) in the case
where {X,} is a stationary process with an absolutely summable covariance func-
tion.

It is necessary to weaken the assumption of smallness in Lemma 3.6.

LEMMA 3.7. Assume that
() ge Ll(ns) N Lz(ﬂs)’ 7Ts1|g|PGs,v|g| < Q.

If there is an approximating sequence {g,}, in the sense that |g,| is a small func-
tion, |gn| < |g| and g, —>gas. [7t5], then for each £,

(iD) g, (€) —> y(0);
(i) 02(g) =limy Y02 _ o Ve, (©).
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Suppose that

(IV) Vgn (Z) = nnbﬁ + dn,ﬁ’
where Y72 | sup,, |dy ¢| < 00, n, =1+ 0(1) and Y32 by < 00. Then

v) o%(g) = Y te oo Ye(), and if n = 0, the convergence is absolute.

PROOF. Let {g,} be an approximating sequence which satisfies the conditions
in the lemma. First, we prove that

(3.32) lignnslgnPGs,vgn =m3l, PGy 8.

Let &, = PGy,v8n, § = PGy 8 and &y = PGy ,|g| so that |§,] < &. We must
show that &, 7).5,“- = PGy, g as. [ng]. Let D be the set of points where g,
fails to converge toward g. Then n{Glp > 0} =0 with G = ZZX:)O P! since
g 1s a maximal irreducible measure. Hence, ns{PG; ,1p > 0} = 0. The rest
of the proof of (3.32) follows directly from the dominated convergence theo-
rem since 75l PGy v8n = 7slg,§n = 5(gnén), Where g, - x| < {|g] - £} and
(8n &) — (g-§) as. [7s].

By Lemma 3.6 and (3.32), statement (iii) holds. It is obvious that (ii) holds and
if (iv) is true, then Y 2, Ve, (£) — > Yg(£), by the dominated convergence
theorem. Together with (iii), we can conclude that (v) is true. [J

In the next lemma, we return to the Markov chain {(X;, W;)} and let it play the
role of the general Markov chain in Lemmas 3.6 and 3.7.

LEMMA 3.8. Assume that g(x, w) = g1(x)g2(w), g1 is small and that {W;}
satisfies the conditions stated in Theorem 3.4. Then az(g) =Yr - gX V(o).

PROOF. Our proof is based on Lemma 3.7. We must show that Lemma 3.7(i)
and Lemma 3.7(iv) are satisfied. We do not assume that j1,, = 0.
By (3.28), (3.29) with m = 1 and the smallness of g;, we have

m5(g%) + 27, I, PGy vg <EU?(|g)

(3.33) 1/(k+1)
2

< com |g2|2(k+1)E/‘6)/(k+1)T(2k+2)/k‘

The quantity 75|g2|>* D is finite by assumption. We have that E, 5 ?k+2/k —
E, T @k+2/k thus the right-hand side of (3.33) is finite if E,, 7 ®*2/% < oo
(cf. [4, 5]). By Lemma 3.3, this is true if ;2 E[z/k]VIQzZ < o0 and is thus sat-
isfied by the mixing assumption on {W;}. Hence, Lemma 3.7(i) holds.
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We begin the next step by establishing an approximating sequence for g =
g1 ® g2. By Nummelin ([24], Corollary 2.1, page 24), there exists an increasing
sequence of small sets C;, such that | J;>; C, = E5, where E = E| x E». Define
Cp,= (g2l <n)NCj.Let

(3.34) =808, &=l
Then |g,| is small for all » and |g,| 1 |g]| a.s. [7,].
We express yg, @gn in terms of g1 and g5 using Definition 3.1. At the same time,

we insert Ag = (v Pf — ), Cx = T2, Ver =CnVes and gy = Crllg,- This gives,
for £ > 0,

Veu (€) = {7y, Iy P g1 {75, Ig, Py 850} + 1hgn {06, P{ ' @1 HAS ' 850}
(3.35) + g {775y Ty Py @10HY g1 (6) — TEgn A5 s2)
+ gy Ve (D(AF 52 + m252).

By the mixing property of {W;}, we find that ¥, is absolutely summable
(cf. [14], Corollary A.2, page 278). Moreover, since the recurrence time for {W;}
has a finite second-order moment, {W;} is ergodic of degree 3 as a Markov chain
(cf. [24], page 84) and that implies the finiteness of Y ;2 K||Ag|| (cf. [24], Theo-
rem 6.13, page 118). By Lemma 3.6, y,, is summable. It is now easy to verify that
each of the four terms of y,, (£) given by (3.35) satisfies Lemma 3.7(iv). Hence,
by Lemma 3.7(v), the proof is finished. [

PROOF OF THEOREM 3.4. By Lemma 3.8 and Definition 3.1, since pg,, =0,
we have

o (gx.n @ gw) = I {75 Ik, ), P Kn} Yy (0).
Y4

For ¢ > 0, hﬂslle,hPfo,h = ¢(1), by B4 [cf. KT, proof of part (b) of
Lemma 5.1]. Since

75, Ik, Pi Kl < / ps(x + hu)K @) P (x + hu, Ny (b)) du < co
and ) |yg,, (£)| is finite, we can apply the dominated convergence theorem, that is,

limho™(gx.n ® gw) =3 _limih s, Ik, , P Kenbyew (O
(3.36) ‘ X o
= lim{h 75, K} ew (0) = poy (O IK 157585y

The proof of Theorem 3.4(ii) follows in a similar way, using Lemma 3.8 and
(3.35) with g5 = gw. For £ = 0, Definition 3.1 must be used. [J
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3.9. Main result.

THEOREM 3.5. Assume that {X;} and {W;} are independent, recurrent
Markov chains in (3.1) and that {W;} is an irreducible, ergodic, strongly o-mixing
process which satisfies (2.2) and has a mixing rate satisfying ), RV, < o0,
mgw = 0 and nzlgW|2m(k+1) < 00 for some integers k > 1 and m > 2, m> being
the invariant probability measure of {W;}. Moreover, assume that B1—Bg4 hold and
that (2.2) and the tail condition (2.13) hold for {X,}.

Finally, assume that for some € > 0,

—1
hol Bom—e 5 — m '
no K " =1k + 1)
Then for all . = A ® 2, we have
n‘vIKx_hnWX

Y 12
{hn ZKx,h,l(Xt)} {f(x) - f(X) -

d
|4 wo.ohixid.
t=0

nst,hn

If the density ps and the function f possess continuous derivatives of second order,
then the bias term w5l , Vx/7sKx p, is negligible when hil > nbloTe,

PROOF. We use Theorem 3.1 on the compound chain {(X;, W;)}. As noted at
the beginning of Section 3, it is enough to prove that

— d
Aty = Sy 2K * Sy (Ko, © gw) —> N O, [ K I37287)-

Recall that for C =C| x C»,C; € &;,i =1,2,

Te() =Y lc, (X1, (W)
t=0

represents the number of visits of {(X;, W;)} to C up to time n. We choose C; and

(> so that both sets are small. Then by KT (the second part of Theorem 5.3), using
B,—B4 and the tail condition (2.13), we have

det Sn(Kx pn,)

po,(x) = —-=pc,(x) +0p(1),
! TC1><E2(n) 1
with E = E; x E; and where pc, (x) = ps, (x) /75, 1¢,. By KT (Remark 3.5),
Tc(n)  mwle

= +0(1) =m(Cr) + 0(1) a.s.
TC]XEQ(”) 7TS1C1><E2

We can write

A—l/z(x){ Tc(n)

12
_ —1/2 172
Ay p= 1 h''~S

nh = Pc, Te,x, (1) } { c (n) n(gn)}
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say, where g;(z,w) = Ky n(z)gw(w) and A, p, = {pEII(X)Hzlcz} + op(D).
Hence, it is enough to prove that

2
d 28
(3.37) Ao = N(o, pe, K 3= )
mlc,

By B3 and Bochner’s theorem, Cl1 is satisfied. From Theorem 3.3 and Theo-
rem 3.4, conditions C2-C5 are satisfied with v =1/(k 4+ 1).

It only remains to verify C7. Let go = col., |gw|, where ¢¢ is an appropri-
ate constant. Then |hgy| < go. We must prove that P, (Ug(go) < o0) = 1, with
[cf. B.11)] U(go) = ;J;O V;(go). But, this is satisfied if £, Up(go) < 00. By Re-
mark 3.4, this is true if
(3.38) En,|T 2 |malgw| /0 < o0
for some § > 0 and n € (0,1). Let £k > 1 be fixed and n2|gW|2(k+1) < 00. By
Lemma 3.3, (3.38) is satisfied if

146 2
LLI P 1428 <2+-.
né k
This is true if
1 146
<é<l+4 -, ;§n<l.
2k+1 k 52k +1)
Thus, (3.38) holds.
Hence, by Theorem 3.1, Ag,hn % N (0, ag) and by Theorem 3.4,

0 = {5, 1o, My 1y} ps) (OIIK 1375,8% -
It follows that (3.37) holds. [

REMARK 3.6. If k =1, then we require that the residual {W;}-process have
a finite eighth-order moment, together with a mixing rate which satisfies 3", £2a
< oo. If, on the other hand, all moments of the residual process are finite, then it
is enough for there to exist a § > 0 such that

Zal}_a < 0.
[/

4. Some extensions to the dependent case. In linear cointegration theory,
the stationary process {W;} resulting from a linear cointegration relationship
W; =Z, —aX,, say, will generally be dependent on {X;}. From this point of view,
it is of interest to extend the theory of Section 3. We will do this by assuming
that {(X;, W;)} is a Markov chain in (3.1) and specifying a dependence relation
between them for which the asymptotic theory holds. In this situation, we will
prove that the compound process {(X;, W;)} is B-null recurrent, as was done in
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the previous section. But, unlike Section 3, we essentially assume that the function
(u, w) —= Ky p(u)gw(u, w) is small. In this way, it is guaranteed that the necessary
moment requirements are satisfied. In addition, we need existence and smoothness
of an invariant measure for the compound chain, together with additional condi-
tions which control the bias.

4.1. Conditional expectation. The restriction on the type of dependence al-
lowed between {X;} and {W,} will be formulated in terms of the conditional ex-
pectation of W; with respect to X;. Let {(X;, W;)} be Harris null recurrent with
state space (E, &) = (E; x E3, §1 ® &), invariant measure 7y and maximal irre-
ducibility measure ¢. Assume that

sle xE, <00 for some C| € &

and let
@.1) def s lc) < E,
‘ nS1C1><E2’

so that Q is a probability measure on (E’, &) = (E| x E2, ] ® &) with E| = C|
and 8{ = & NCy. Here, Ic, xE, is defined as in Section 2. A generic point in E’ is
denoted by (y, w). In this setting, we specialize further, assuming that

(4.2) E=E xE,CRxR and &C B(R?

and that Q is a bivariate distribution on B(R?) which can be identified by a sto-
chastic vector (X, W). The generalized conditional expectation puwx[g] is the
conditional expectation of g(X, W) given X =y, that is,

(4.3) wwixlgl € Eolg(X, W) | X=y], geL'(E,€,0Q).

The following definition of a generalized conditional variance is an immediate
consequence of (4.3):

(4.4) o2 € uwix[g210) — 1y x (€10

From (4.1), it follows that Q is independent of the specific normalization which
identifies a particular 7ty as a function of s. Hence, pw)x is independent of a spe-
cific atom and also of the assumption that mo = 1, which is important in appli-
cations to real data. Suppose that C| is an alternative to C; and let M/Wl x be the
alternative conditional expectation. Then

nwixlgllcne; = IL/W|X[8]1C10C§ :

If 7, is absolutely continuous with respect to two-dimensional Lebesgue measure
and has density p;, then with

pX(y) déf/ps(y,w) dw
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and

det Ps(y, w)

pwix(w|y) = Wl(pf(y) >0), (y,w)eCx Ey,

we have

nwx[gl(y) = /g(y, w)pwix (w | y)dw.

In the remainder of this section, we assume that the state space is given as in

(4.2). By x, we denote a fixed point in £; and by Coy, the support of gw. Let

M () B Ne(h) x Co, 0<h <1, ME Mo(D), My & Mi(1) and M{x} E

M, (0), N, being defined at the beginning of Section 2.1. If A is the initial mea-
sure for the compound chain, then Aw x (- | xo) is the conditional distribution of
Wo, conditional on Xo = xg, and Ax = A(- x E3) is the marginal initial measure
for X.

4.2. Conditions and dependence. In order to extend our asymptotic result to
the dependent case, we will apply the conditions stated below.

The first set of conditions is related to the Markovian structure of the compound
chain. Basically, we assume that the { X, }-process also determines the 8-null struc-
ture for the compound process. This holds in the independent case (cf. Lemma 3.1).

D; (i) The process {(X;, W;)} is a ¢p-irreducible, Harris recurrent Markov chain
with state space given by (4.2) and transition probability function P.
(ii)) The minorization inequality (2.2) with (s, v) is satisfied with a corre-
sponding invariant measure .
D, (i) The marginal process {X;} is a ¢;-irreducible, Harris recurrent Markov
chain on (E1, &) with transition probability function P;.
(i) The minorization inequality (2.2) is satisfied with (sq, vy).
(ii1) The Markov chain {X,} is 8-null recurrent.
(iv) There exists a set Cy € 81+ such that & def le xe, €€ T is m,-integrable.
D3 (i) The invariant measure 7 has a density, ps, with respect to the two-
dimensional Lebesgue measure.
() [ ps(x,w)dw > 0.
(iii) limsyo [ |ps(x + 8, w) — ps(x, w)|dw =0.
(iv) The marginal transition probability function P; is independent of any
initial distribution A.
Ds (i) gw isbounded and 0 < [ |gw (w)|dw < o0.
(i1) The set Ny ® Cp is small.
(iii) pwix[gwl(x) =0. o
Ds Y{Ap} € & :limy 0 An | @ :limy o limy_, [ P((y,w), Ap)|gw|(w)dw =0.

Conditions D;—D3 and Ds are essentially rephrased versions of the conditions
used in Theorem 3.5. Condition D4 introduces stronger restrictions on gw . In Sec-
tion 3, the boundedness and smallness were avoided by means of a truncation
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technique which fit that situation. It is not obvious how to find a similar truncation
procedure in the dependent situation. Possibly, the concept of asymptotic indepen-
dence (to be introduced in Definition 4.1) could be of use. In a simulation experi-
ment in Section 5 with an unbounded gw having noncompact support, we obtain
results indicative of the asymptotics being valid under the more general conditions
on gw used in Section 3.

Condition D4(iii), which contains the restriction on the dependence relation-
ship between {X;} and {W;}, at first sight seems very stringent, but it will now be
shown that it is, in fact, a natural extension of the type of dependence that is used
in standard linear cointegration theory. Since this is important in an econometric
interpretation of our results, we will consider it in some detail.

We begin by defining the concept of asymptotic independence in this context.

DEFINITION 4.1. Suppose that {(X;, W;)} is a null recurrent Markov chain.
The two marginal processes {X;} and {W;} are asymptotically independent if the
invariant measure 7 factors into a product of two measures which correspond to
the X-component and the W-component.

If {X;} and {W;} are asymptotically independent, then the conditional expec-
tation given by (4.3) reduces to a constant whenever g(y, w) = g(w) and Dq(iii)
follows if this constant is zero.

It may seem that asymptotic independence is tantamount to requiring indepen-
dence, but this is not the case because having {X;} nonstationary (and null re-
current) and {W;} stationary is a special situation, where, intuitively, the “small”
process { W;} has little influence on the “big” process { X;} in the long term, but al-
lows for dependence for fixed ¢, as is the case for linear cointegration models. This
phenomenon is handled more formally in the following example, which extends
well-known results in linear cointegration theory (see, e.g., [15], pages 586-589).

EXAMPLE 4.1 (Asymptotic independence). In this example, we prove as-
ymptotic independence between a random walk and a stationary autoregressive
process, despite the fact that they are linked for each 7. Moreover, we prove that
conditions D;—-Dj5 are satisfied. This means that the common invariant measure for
these two processes factors as if the processes were independent. The processes
are given by

Xi=Xi—1te,
4.5)

W,=aWt_1+be,+u;, |Cl| <1,
where {e;} and {u,} are independent i.i.d. processes with finite third order moments
and distribution functions F, and F,, respectively. Moreover, we assume that these
distribution functions have densities f, and f,, respectively, with respect to the
Lebesgue measure in R'. In addition, we assume that both densities are bounded
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away from zero on some interval [—c, c] with ¢ > 0. Let 7wy denote the stationary

measure for {W;} and pw the corresponding density. Likewise, let wx (dy) = dy.
First, we find the density of the transition probability function for (4.5):
Fy,w(x, w | x0, wp) € P(X1 < x, Wi <w | Xo = x0, Wo = wp)

= P(xo+e1 <x,awp+be; +u; <w)

= /P(xo +e1 <x,awg+be+u; <w|e =e)F,(de)
= / I(e <x —xg)F,(w—awy — be)F,(de)
and

fx.wx, wlxg, wp) = ——Fx w(x,w|xo, wo)
ox ow

= fe(x = x0) fu(w — awo — b(x — x9)).
The function fx w(x, w | xo, wo) is the density of the compound transition proba-
bility and from the assumption on f, and f,, it follows that

(4.6) inf Sx.w(, w|xg, wy) >0
(x,w,x0,wp)eC*

for some Lebesgue-positive compact set C in R. By (4.6), we can choose an atom
s ® v which is equal to a constant times 1¢ ® £1e, where £1c is the restriction
of the Lebesgue measure to the set C. In a similar way, we use the definitions of
{X:} and {W;} to get marginal minorization inequalities, P; > s; ® v;, where P
corresponds to the X-process and P, corresponds to the W-process.

If ps is an invariant density, then p; satisfies

@.7) palx, w) = / ps (o, wo) fx, w (%, w | o, wo) dxo duw.

On the other hand, if we can find a function ps; which satisfies (4.7) such that

def . . . . . . . . .
T = [ ps is an invariant measure with rgs = 1, then this pj is the unique invariant
density satisfying wgs = 1. We will show that

@8  pew el )., c= / $(y, W) py (w) dy dw

satisfies (4.7), where the constant ¢ is defined so that w;(s) = 1. The measure
defined by (4.8) satisfies (4.7) iff p; = p), where

4.9) P, w) / / cpa(wo) fx.w (x, w | xo, wo) dxo dw.
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From (4.9), we get

pé(x,w):/cpsz(wo) /fX,W(x,w Ixo,wo)dxoidwo

Z/Cpsz(wo) /fe(x—xo)fu(w—awo—b(x —Xo))dxo}dwo

= [ patwor] [ 1) futw — awo — bt de } dwo

- / cps, (o) firwo (w | wo) dwo

:cpsz(w)
= pS('x’ w)?

where we have used the fact that the transition probability density function for
{W;} is given by

o (w | w) = [ fulw — awo — be) f.(e) de.

Since py, is constant, this means that pg(x, w) = c| ps, (x) ps, (w), where ¢ is a
constant, hence the two marginal processes are asymptotically independent.

Let gw be any bounded, real, measurable function defined on R with compact
support. By definition of the model, we have that Dy is satisfied. Since {X;} is
a random walk with a smooth noise process possessing a finite third order mo-
ment, the random walk is B-null recurrent. Since we have established asymptotic
independence, condition D, (iv) becomes trivial and, likewise, condition D3. From
(4.6), and since gy is assumed to be small, we infer that D4 holds. The last condi-
tion, Ds, holds since the transition probability function is smooth. Thus, conditions
D;-Ds are satisfied.

REMARK 4.1. The assumption on the { W;}-process can be relaxed in this ex-
ample. It is sufficient that {W,} is a stationary, nonlinear, autoregressive process.
In (4.5), we may also replace the constant » with a measurable function i, with
Evy4(e) and sup [ finite. On the other hand, the calculations made in the
example are based on the linearity of the { X, }-process, with one interesting excep-
tion. Let {X,} be given by (4.5). Suppose that

X; = ®(X,),
where @ is a bijective measurable map between E; and E{. Then the processes
{X/} and {W,}are asymptotically independent.

Suppose that e} def be; + u; is bounded. Then {W;} is uniformly recurrent (cf.
[24], Example 5.6, page 93) and we can use the fact that gw (w) = w. Imposing
appropriate conditions, the uniform recurrence still holds in the nonlinear case.
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The specialization in the next example makes the connection to linear cointe-
gration even more explicit.

EXAMPLE 4.2. Iftheresiduals in (4.5) are Gaussian, then we can calculate the
conditional expectation for fixed ¢, and the rate at which we approach asymptotic
independence and the fulfillment of D4(iii) for Example 4.1.

E(W, X,)
E(W; | X)) = ———"X,
E(X7?)
and
1— t+1 b 2
6 L EW,x)=bo2—— L = 2% | o).
1—a l1—a
Hence,

E(W, | X)=[6t"'X,]=0(1) as.

by the strong law of large numbers. Likewise, it follows that the instantaneous
correlation between X; and W, decreases toward zero,

corr(X;, W) = O (1~ 1/?).
However, {(X;, W/)} is not Gaussian, where W, = gw (W,).

4.3. Asymptotic results. After clarifying the relationship between various -
measures in Lemma 4.1, the main result is stated in Theorem 4.1. We denote by
7y, the invariant measure for {X,} implicitly defined by D, and we write 7% for
the X-marginal invariant measure of the compound chain defined by Ds.

LEMMA 4.1. Assume that D1 and Dy are satisfied. Then the compound
process is B-null recurrent and

PROOF. Let 1¢,xE, be mg-integrable according to D;(iv). Let C; € Cy such
that C is a small set for the {X,} -chain and § = 1¢,x £, € €. Since v is a small
measure and £ is mg-integrable, the conditions in the ratio limit theorem (cf. [24],
page 130) are satisfied and we get

Z?:OUPTS _ g€
t_oVPls s

+0(1) =& + o(l).

By D3 (i), we have that
vx P{(dx) =P,(X; € dx, W, € E3) =vP'(dx x E»)
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so that
vP'E =vXP1’1c2.
Then
"y Pl
(4.10) ZizoVxPile,  mE L o0y e o),

St vPls  mgs
On the other hand, since C, is small for the {X,}-chain, we have

Dr—o VX Plt le,  751c,
= - +o()=m, e + o).
Y oviPls T, 81 ST

Combining these two asymptotic relations gives

t
Yi—oViP{s1  mile,xE,
Y ogVPls 75, le,

Since the left-hand side does not depend on the actual C, it follows that

+ o).

—1
7Ts11C=C() 7TlexE2, Ce&

for a fixed constant cg. The constant can be expressed as co = rrsX s1. The denomi-
nator of the fraction on the left-hand side of (4.10) has exactly the same asymptotic
rate as the numerator. Hence, the compound chain is 8-null recurrent since {X,} is
B-null recurrent (cf. KT). [

The following result is a modification of Theorem 3.5, which allows dependence
between processes {W;} and {X,} in (3.1).

THEOREM 4.1. Assume D1—Ds. Moreover, assume that the kernel K satisfies
B1-B; and that for some € > 0, the bandwidth satisfies h,; V'« nP=<. Then for all
initial measures A,

Sn(s) _ HSXIKx,hn 1;%c}

h,g/zs;ﬂ(zg,hn){ﬂx)—f(x)—u(ghn> SR AXK

(4.11)
d 2 2
—> N (0,0, (OIKII),

where ngw (x) is given by (4.4).
If the density st and the function f possess continuous derivatives of sec-
ond order, then the second bias term wX1 Koy Vx /XKy p, is negligible when

52 _
h;l > nPlte If p_ﬁz’o) = % exists and satisfies [limy_, |p§2’0)(y,w)| X

lgw |(w) dw < o0, then the first bias term is negligible when h;l > nP/ote,
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PROOF. The proof of this result can be seen as a modification of the proof of
Theorem 3.5. That proof was built on Theorem 3.1, which, in turn, was based on
C1-C7. By D; and Lemma 4.1, the {(X;, W;)} -process is f-null recurrent.

Let g = Ko ® 8w 80 = 11(gn)s, O = Ky i - [V, 00 = Ky - [Wr — anl,
¥y =f—fx)and @) = 7TsXIKx,hWx/ﬁsXKx,h- Then

N S,(gn —g¥ S, (g9 S, (6
Foo) = ) + n(&h — &) n(8p) n(05) .
Sn(Kx,h) Sn(Kx,h) Sn(Kx,h)
In this notation, the left-hand side of (4.11) equals
Su(gn— g0 | Su®) }
Sn(Kx,h) Sn(Kx,h) ‘

As noted in the proof of Theorem 3.5, it is enough to prove that

(4.12) {hsn<1<x,h)}1/2{

_ d
S V(K n > Su(gn, — 81,) —> N (0,05, (DK 3),

since the second term of (4.12) is o p(1).
By D4(i)—(ii), |gn| is a small function and

w(gn) =msgn
= ns(Kx,h ® gw)

(4.13) =//ps(x—i—hu,w)K(u)gW(w)dwdu

:_/.Psx(x + hu) K (u) ew x[gw1(x + hu) du
=o(l),

where we have used the fact that D3 implies both pg‘ and pw x[gw] are con-
tinuous at the point x and Dq4(iii), which ensures that the generalized conditional
expectation is zero at x.

We also find that

wllgnDh = Py pwixllgwll() +o(D).
Let g, = g — gy Then since 11(g),) =0,
@414) o2(gy) =78 +2h A (gj hgh),  A@ns i) S Tl PGy i
using (A.12). By (4.13) and (4.14),
hitsg? + 20 (gh, hgh) = hsgh + 20 (gn, han) + 0(1).
Hence, an asymptotic variance, o> déflimh 10 haz(g;l), if it exists, is given by

(4.15) o = lim{h,gj, +24" (gn. hgn)).



284 H. A. KARLSEN, T. MYKLEBUST AND D. TJJSTHEIM

In order to verify (4.15), we begin by showing that the first term on the right-hand
side of (4.15) satisfies

hs (8i) = K 504, () pd (x) + o (1),

where the conditional variance is given by (4.4).
Indeed, by the definition of g, we find that

(7)) = 7y (K2, ® g3)

_ / ps(y, K2, (0 gty (w) dy dw

=p! fps(x + hu, w)Kz(u)g%V(w) dudw

=h—1[||1<||%fps(x,w)g%v(w)dww(l)]

=n"" pX®UIK 1307, (x) + o (D],
The next task is to show that A*(gy, hgp) is asymptotically negligible. Let
Fiyow) Z K n () = L K (O)]gw (w)
= [1pwye - K ® gw](y, w)
so that
hgn = fu+ KO)[1(x) ® gw] = fu + bn,

say.
By Ds(i), we find that 7z4|8;,| = 0 and thus 73 PGy 6, = 0. Hence,

A*(gn, hgn) = A*(gn. fn)
= [ oG+ hu ) K @gw () PG ix + hit, w) dud,

where we have inserted the invariant density and made a standard substitution.
Let

Mh = 1K llooGs,v{lixje - Ne(h)} @ |gw]
so that

|A*(gh, fo)l

4.16
( ) 5/ Ps(x + hu, w)K (w)|gw (w)| Pnp(x + hu, w) dudw.

By D4(i)—(ii) and Nummelin ([24], Proposition 5.13, page 80), the function 7, is
bounded. Since {l{x}c - Ny (h)} ® lgwl § 0 pointwise, limy o nx (y, w) | 0.
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Lete > 0and Ay, &ef {nn > €}. Then {A,} satisfies Ds. Inserting nj, = IAZ nn +
I4,mn into (4.16), we get

|A*(gn, fa)| <€ // Ps(x + hu, w)K (u)|gw (w)|du dw

+ ||nh||ooff ps (x4 hu, w)K @) gw (W)

X P((x + hu,w), Ap)dudw.

The main part of the last term of the above expression is bounded by

@ | ps<x+hu,w>1<(u){ sup P<<y,w>,Ah>|gw<w>|dw}du

[x—yl<e€n

for all €, = hsup{|u|:u € My} and limy, g€y | O.
Using Dy, it follows that (4.17) is ©(1) with respect to /4. Putting all of this
together, it is clear that

1€iﬁ)1%|A*(gh, fwl=0.
Thus, we have so far proved that
ho®(gn) = hmy(gp) + 0(1) = | K 307, () pf (x) + o(1).
We must also check ho (| g, 1). This quantity is given by
ho®(1g41) = hs 841> + 28" (1) | ki) — hd gy | = 2hms|ghl (s - 184D,

by (A.12) of Appendix A. Since ns|g;l| < 7slgnl + litg,| = 7slgn| + ©(1) and
wslgn| = 0(1), we have

ho(1g}) = hrylgh|? +2A% (1gnl. hlgal) + 0(1).
By the same arguments as those given above, we find that
ho(1gj1) = hrslgy)” + o (1)
= hrtslgnl® +o(1).
Since g, is small, we easily find that (cf. Theorem A.1 in Appendix A)
E|U(gn) — n(gm)l®" <duh™" 1, m=1
and
ENU(gnl = n(gnD P <dpyh 2"+, m=1.
Moreover, we have h|gn| < go, go def coly, and Py (Up(go) < 00) =1.
Thus, the assumptions in Theorem 3.1 are satisfied and (4.11) holds. It is

straightforward to verify that the bias terms are negligible under the given con-
ditions (cf. KT). O
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REMARK 4.2. If [ ps(y, w)gw(w)dw = 0, then u(gy) = 0, by Ds(iii). If
this assumption holds, then the stochastic bias correcting term in (4.11) is zero.
If Dy4(iii) is strengthened so as to also require asymptotic independence, then
ow(x) =of, =Egh, (Wy).

5. Simulations and finite sample behavior. Estimates similar to that in (1.1)
have appeared in the cointegration literature. Our contribution, which we believe to
be new, is that we have singled out classes of processes and assumptions for which
an asymptotic theory of these estimates can be constructed, such that it should be
possible to work out confidence intervals and bands (and possibly rigorous tests of
nonlinear cointegration, in the sense discussed in this paper).

The purpose of this section is to illustrate the small-sample properties of the
estimator f(x) defined by (1.1), using simulations,

A problem not encountered in the stationary case is that the simulated realiza-
tions may cover very different x-regions. Hence, for a fixed x = x’, close to the
starting value Xo = 0, say, of each realization, some realizations may have many
observations in the neighborhood of x’, whereas other realizations may have none
in the vicinity of x’ for the sample size we are considering. This kind of behavior
does not occur in the stationary case, where the expected time until the process
reaches x’ is always finite and, in practice, small when |x’| is small. This means
that in a finite-sample approximation of the asymptotics, we can either keep x fixed
and wait until we have sufficiently many observations close to x or we can choose
a central realization-dependent value of x (e.g., the modal value of the sample) for
studying the normalized ratio (3.2) of Theorems 3.5 and 4.1. We have chosen to
adopt both procedures, although, clearly, we introduce some extraneous stochas-
tics into the problem in the latter case.

A difficult and largely unresolved problem is that of choosing a proper band-
width. Theorem 3.5 and Theorem 4.4 of KT only give the allowable rate as n tends
to infinity. It should be noted that these rates are different from those in the station-
ary case, n effectively being replaced by n?. In practice, we have found it useful to
use cross-validation and to let the bandwidth # depend on x. In fact, we have typ-
ically let /,, be proportional to {Tc (n)pc(x)}~'/3, where pc(x) could be thought
of as the locally estimated density and where it is known from KT (Lemma 3.4)
that 7 (n) essentially behaves as nb.

The approximation to normality as a function of sample size, for the quantity

hnZKx,hn 172 -~
5.1) [W] [Fx) — ]

derived from the simple cointegrated system
X =Xi—1 +ey, Z; =X+ Wy, e; and W; independent ~ N (0, 1)

at the point x = 7.5, is shown in Figure 1(a). 1000 realizations have been used and a
particular realization is admitted into the evaluation as, respectively, 100, 200, 300,
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0.4 0.4

0.35 -1 0.35
0.3 — 0.3
0.25 - 0.25
0.2 - 0.2
0.15

0.1

0.05

F1G. 1. (a) Thick line: The standard normal pdf. Thin lines: The estimated pdfs for the quantity
(hn ZKx,h,,/sz(“) du)l/z[f(x) — f(x)], at the point x = 1.5, derived from the cointegrated
system (X¢, Zs;t > 1), where Xy = X1 + e, Zt = f(Xt) + €, e; and & are independent i.i.d.
N (0, 1) variables and f(x) = x for all real x. The quantity is estimated by 1000 realizations and
a particular realization is admitted into the evaluation as, respectively, 100, 200, 300, 500 and 800
observations are accumulated in the interval (5, 10). (b) Thick line: The standard normal pdf. Thin
lines: The estimated pdfs for the same quantity as in (a), but where a particular realization is ad-
mitted into the evaluation at the modal value. The length of the time series is 500, 1000 and 3000,
respectively.

500 and 800 observations are accumulated in the interval (5, 10). For Figure 1(b),
on the other hand, a fixed point x has not been used; rather, x has been taken to be
the modal value and is thus varying from one realization to another. In this case,
the length of the time series is 500, 1000 and 3000, respectively.

In Figures 2(a) and 2(b), we have considered (5.1) for the system

X[:X[_1+€t, Zt:X;+W[, W[:VO.5€;+’VO.581,
& and e; independent ~ N (0, 1)

5.2)

to test the asymptotics in the case of dependence between {X;} and {W;}, as de-
scribed in Section 4. As in Figure 1(b), x is taken to be the modal value in Fig-
ure 2(b). For both Figure 1 and Figure 2, it is seen that the finite sample distribution
gets reasonably close to the asymptotic normal distribution.

Note that {X,} and {W;}in (5.2) are asymptotically independent with pew x[gw]
(x) =0 and oy, (x) = 1. Actually, in (5.2), gw(W;) = W; and the assumptions
D4(i) and Dy4(ii) are not satisfied, this being something we wanted to test by means
of this simulation experiment. On the other hand, with the exception of the inde-
pendence assumption, the other assumptions in Theorem 3.5 are satisfied. We also
carried out an experiment with

W = %et + %et—l + %81‘—1-
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f(=@)
15

0.5 T T T T T T T

0.45 -
10 - 04 a
0.35 -
0.3 -
0.25 —
0.2 —
0.15 —

0.1 -

0.05 -

(a) (b)

F1G. 2. (a) Thick line: The true transfer function f(x) =x — 5. Dots are z; plotted against x;,
t > 1. We have 500 observations. Thin line: Estimated transfer function f, built on 500 observa-
tions from the cointegrated system (X;, Zs;t > 1), where Xy = X;_1 + e and Z; = f(X;) + Wy,
where Wy = +/0.5¢; + +/0.5¢; for t > 1. (es, &) are ii.d. N(0, 1) vectors for t > 1 and I is the
identity matrix. Finally, f(x) =x — 5 for x real. (b) Thick line: The standard normal pdf. Thin
lines: The estimated pdfs for the quantity (hy YKy ./ [ K2(u) du)l/z[f(x) — f(x)], derived from
the cointegrated system (X;, Zs;t > 1), where Xy — X1 + e; and Z; = f(X:) + Wi, where
Wy = \/ﬁe; + \/ﬁs, for t > 1. (e;, &) are iid. N(0,1) vectors for t > 1 and I is the iden-
tity matrix. Finally, f(x) =x — 5 for x real. The quantity is estimated by 1000 realizations and a
particular realization is admitted into the evaluation at the modal value. The length of the time series
is 500, 1000 and 3000, respectively.

In this case, {(X;, W;)} is not Markov. On the other hand, {(X;, W;, ¢;)} is Markov
and {X,} is asymptotically independent of the Markov process {(W;, e;)}. The dis-
tributional results were similar to those of Figure 2(b). More simulation experi-
ments and a real data example are given in [20].

6. Some final remarks on nonlinear cointegration. This paper can be
looked at in two ways: (i) it is an attempt to establish a statistical theory for non-
parametric regression with a nonstationary regressor and (ii) in addition, it is seek-
ing to relate this framework to the problem of nonlinear cointegration. There are a
host of open problems for both. For (ii), it is of particular interest to weaken condi-
tions Dy(ii) and D4(iii) on gw, alternatively, letting W/ = gw (X;, ..., Xi—p, Wp),
as indicated in the second paragraph of Section 3. But, there are also concep-
tual issues involved concerning the function f. In a nonparametric approach like
ours, f is determined by the data and if {Z;} and {X;} are close to being lin-
early cointegrated, one expects the nonparametric estimate fto be close to a lin-
ear function and might think that the difference between f and a linear function
could be used to test for linearity of the cointegration. One could also test for
appropriate parametric functions for f. For the estimation of nonlinear paramet-
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ric regression functions using local time arguments, see [25]. Clearly, not every
parametric f makes sense from a cointegration framework. As an extreme case,
consider f(x) = constant. Then {Z;} will be stationary and unrelated to {X;}. In
a cointegration framework, {Z;} should be nonstationary and the question arises
as to whether it is possible to construct nontrivial functions f such that {Z;} is
stationary, even though {X;} is nonstationary. Another question is whether all such
functions f (e.g., the sine function) will be economically meaningful.

One of the referees has pointed out that the function f may include a constant
term. But, a deterministic term depending on the time parameter (e.g., a linear
trend) is not included in the model. An extension of the model in this direction
introduces challenging problems concerning properties of estimates for both f
and the trend. It seems to be quite clear that additional assumptions on {X;} are
required since null recurrence itself is not related to the growth rate of a linear
trend. The situation is much more specific in the random walk case, where the
variance of {X,} increases linearly and f is linear.

Still another issue is whether f should be required to be one-to-one for it to be
meaningful in a cointegration framework. Requiring f to be one-to-one has the
advantage of allowing the possibility of expressing {X;} in terms of {Z;}, making
for a more symmetric relationship. To estimate such an inverse relationship would
be nontrivial since it would require an extension of the theory to the case where
the regressor is a function of a Markov chain.

In the linear cointegration case, the concept of cointegration is intimately con-
nected with the so-called error correction representation (cf. [18]). Nonlinear ex-
tensions have centered on both nonlinear error correction and nonlinear cointegra-
tion (see, e.g., [7, 8, 13, 17]). It remains to explore possible connections between
these models and the approach presented in this paper.

Nonlinear cointegration extensions are more demanding and are at the core of
the present paper. Only a few attempts of such an extension can be found in the
literature. Specific nonlinear cointegration relationships in terms of threshold mod-
els have been studied by Hansen and Seo [16] and Bec and Rahbek [3]. Escribano
and Mira [8] suggest definitions of 7 (0) and 7 (1) which are useful in a parametric
nonlinear context and study several large- and small-sample properties of non-
linear least squares estimation. Related work in nonlinear parametric regression
theory has appeared in Park and Phillips [25]. Nonparametric estimates of non-
linear cointegration have been computed from data by Granger and Hallman [12]
and Aparicio and Escribano [1]. However, no attempt has been made to study the
asymptotic properties of nonparametric estimators either for nonlinear error cor-
rection or cointegration models.

APPENDIX A

In this appendix, we assume that {X,} is an aperiodic, ¢-irreducible Markov
chain with state space (E, &), where & is countably generated. We also assume
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that the transition probability P satisfies the minorization inequality, (2.2), that

is, P > s ® v, and that {X,;} is Harris recurrent. Recall the t.aboo transition

probability H = P — s ® v, the taboo kernel G; ), = ?OZO H/, the index set
i1 ,m—'ar, and

the moment function

(A.1) Vra= H“Ig;zll co HI L 1.

Jiir

Al ={a € N[ :)"_;a; = m}, the multinomial coefficient (’Z) =

JENG 4
The r-Cartesian product of the set of integers where all but the first coordinate are
strictly positive is denoted by A _ .

A.1. Higher-order moments. An expression for the moments of a U-block
is derived from a moment formula for a real sequence (cf. [21]):

LEMMA A.1. Let{a;} be areal sequence and m > 1 an integer. Then
n m m m
[Tal =3 = (1) T 16 =maar
k=0 r=lacAl JENS 4

where sp = j1+---+ je, £=1,...,r.

THEOREM A.1. Let g ={g:} be a sequence of real-valued measurable func-
tions defined on E. Let Uy = Up(g) def > 5—08k(Xk). Then

=3 T (1) drato)

r=1lacAl

REMARK A.1. If gy =g, then

Vra= D H' g H o | =[Gy Igea H] - [G gt H] Gy Lgar 1.
JeENT

PROOF OF THEOREM A.l. The main ingredient in this proof is the lemma
formulated above, together with the Markov property.
Let B, =FX v FY |, A= (1Y), Bos ={r = s} =[}Zg A and Br 4, =

]_[,t:;}t’_1 Ay. From Lemma A.1, the definition of A" and ax = g(Xx)1(r > k) with
n =00, we get

m
U(;n:Z Z (’;l)-]r,ou Jr,a: Z Zj,ot’

r=laeAn JENS 4+
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with

def
(A2) Zia = g8 (Xg) 82 (X,)Boys,

Let r and « be fixed and f (x) défg,‘fk(x) fork=1,...,r.Then

Jr:-]r,a: Z Zj’ Zj:fsl(Xsl)"'fsr(Xsr)BO,sr-
JENG. 4+

It is enough to prove that

(A3) Eddr= 3 HIp o HP g 10)
JeN
for arbitrary r and { fi}. We will prove this by induction on r. When r =1,
oo o
Ji=Y fi(XjDBoj, = > fi(Xj)l = j1)
J1=0 J1=0
and
0.¢] o0 .
EoJi=) Eofjy (Xj)l = jiy= ) H'p 1(x),
J1=0 J1=0

which shows that (A.3) is true for » = 1.
Assume that (A.3) is true for » — 1. Corresponding to the induction hypothesis,
let 7= (j1,..., jr—1) and s = 5,_1. Then

A4 Zj=faXs) - [5. (X5 ) Bos, = Z7As fstjp (X)) Bs+1,5+ o

where Z7A; is measurable 8B, . Taking conditional expectation with respect to
By 41 in the last part of (A.4) gives

Efst)r Xs4j,) Bt 1,5+, | Bt} = Bl fotj, (X ) Byt 1,54, | Bs+1)
=Ex, . {fs+), (Xj,—DBo,j,—1}
=H'" 7 i) (Xep),

so that
def

o
¢2(X£+1) = Z E{fﬁjr (X£+jr)B£+1,£+jr | c(Bﬁl}
Jr=1

= { > Hf"lfw,}(xw.

jrzl

(AS)
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Combining (A.4)—(A.5), we obtain
ExJr =Ey Z ZfAQ‘pg(Xg—l—l)

FeNy!
(A.6) =E: Y. Z;E[A$)(Xs41) | Byl
' FeAy !
=E: ) Z7hs(Xy),
TN
where
95 (X0) L EIA,60(X,11) | By) = Ex, (62(X1)(1 — Yo)) = HX(X,).

The conditional step above reduces the dimension of j and it remains to verify that
(A.3) is correct when we apply the induction hypothesis. We look at fs(x) = f5, |

defined in (A.4). Let f)(x) = fy(x) H${ (x). Then

0
(A7) Ipol(0) = £ () =1y, [Z Hr fs+j,}(x).
s =
By (A.6), the product (A.2) is reduced from r to » — 1 since, using the fact that
s =s,_1, we have

(A8) Ecdr=Ex Y fu(Xs) o fo(Xg ) fy (X, )

TENG L
Hence, by (A.8), we can evaluate the expectation of J, by the induction hypothesis,
which, together with (A.7), gives (A.3). O

COROLLARY A.1. Let Up(a, g) =Y j_oar8(Xx). Then

BVl @)=Y 3 (’;“)wr,au),

r=lacAn

— . oy o A%
VYra = Z dj,()l(x){ajl aiti ajl+"'+jr}’
JENG 4

(A9)

where dj o = H IPORE -Hr Igor 1. In particular, for m = 1, 2, we have that
m .
E.Uo(a, ) =) dj(x)aj,  dj=H'I],
j=0

(A.10) ad S
E.Us(a.g) = djo)a; +2> > dje(x){ajaje),
j=0 j=0¢=1

djg=H/I;H I, 1.
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PROOF. We obtain (A.9) from (A.1) with g; =a;g. With m =2, we have
2 2 2
EUd@g) =Y (o )@+ Y (o) ¥ra®
aeA% aeA%
=VY1,2(x) + 22,11y (%)

= [Z Hfllg]z_l}l(X) +2[Z Hjl[gn} [Z szlgj1+j2:|1(x)

J1=0 J1=0 J2=1
o0 . X 0 )
= Z HJgJZ-(x) + 22 Z H' I H gjs(x).
j=0 j=0s=1

Hence,

o0 X 0
E Ug(a. g) =Y aj{vH/g*}+2) Y aja;4 (vH I, H'g). O
Jj=0 j=0s=1

REMARK A.2. In particular, if a; = 1, we write

Uo=Uo(g) =) _ g(Xy)
k=0

and (A.10) gives the formulas E, Uy(g) = myg and
N E,Uj () = msg” + 27, I, HGy 08

= nsgz +2m31, PGy 8 — 2mglsgmsg.
Let pu(g) = EyUo(g) and 0*(g) = Var(U (g)). Then

(A12) wu(g) =mg,  0%(g) =n,8* —nlg+2m,04 PGy g — 2msIsgmyg.
A.2. Moment inequality.

LEMMA A.2. Assume that (2.2) holds. Let p > 1 and n € (0, 1) and let f be a
real-valued measurable function defined on E. Then for any probability measure A,

AG! I fI < By P {1 T2 DY supt/a ply e,
j=0

t=p/(1+n(p—1), g=p/n(p—1),

where c; is a universal constant dependent only on p and 7.
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PROOF. Letqg'=p/(p—1),r=q¢'/0—n),w=1/q,v=1/q andu=2/q’.
Thenu=v4+w, p'+g ' +r1=1,1/t=1/p+1/q, pu=2(p — 1) and
— 1
qu=n .
From the right-hand side of (2.10) and by the Holder inequality, we obtain

- t
Gyl F1) = | Y Eufl(z > j)|f|(Xj)}:|

= J

IA

r t
Y PYP(r > j)E}C/‘fufW(XJ-)}}

- J

IA

_ t
Y PYP(r> j){Pf|f|q<x>}‘/q}

L J

_ t
= Z(j“l@i“’(rzj))(j—“{Pf|f|Q(x)}1/Q>(j—W>]
L J
t/r

A

t/p 1/q
(Zj"%(rzj)) (Zj‘”‘IPﬂfrf(x)) (Zj‘“”)
J J J
= VI/PZI/CI’
say. We apply the Holder inequality again with p; = p/¢ and g1 = ¢ /t. This gives

AGL | fl < ciaviirz!/a
<alPViaiz)

r oo 1P oo _ t/q
= Zj“pm(rzj)} Zj‘”qu-’Iflq}

Lj=0 Lj=0

r oo —t/p 00 . ) I/‘]
=ci| Y PP (x> ) [Zr" kP’Ifl‘f}

Lj=0 . j=0

M oo t/p _
<c| Y PP (x> j)|  supAaplyfid

Lj=0 4 j=z0

= el PT D supi 19 (P 1)
J=



NONLINEAR COINTEGRATION 295

and

o0
— [Z j—wr
Jj=0
APPENDIX B

PROOF OF LEMMA 3.2. Let H; = P; —s; ® v; for j =1,2. We begin by
showing that

(B.1) (Wl S(W,)  when2=1,
where
- 0
(B.2) A=0®, Dy =) (MHsi}PS,  P=Pd,.
£=0

In order to prove (B.1), it is enough to show that for all integers r > 0 and for all
A; € 82+ ,

(B.3) IP’A(Wr(} EA(),...,Wrrl €Ay) =Pr(W, € Ao,..., W € A)).
Letko=joand ky = jo+ j1 + - -+ jefor £ =0, ..., r. We have
]P))‘(W‘Eol EAO"'Wrr' €A

P, (Wi, € Ao - -- Wi, € AP, (0 = Jos - -» T, = Jji)

r

I
M2
Mg
Mg

~
[=}
I
=}
~.
=
I
—_
~
S
I
—_

Mo PfLay--- Py I, (M H{s1)bj, - b )

I
1 02
E 10
Mg

=0 1

Is 1,

r

Z".U II.

Jo=
= )"IAO

r

where by = lef_lsl, £ > 0. Hence, (B.3) holds.
From

P>(s00)P,, =50 wmnd,,
we obtain the minorization inequality (3.12). Let H = P — s ® v. Then
H=Po, —55Q0nd, =(P,—5501), =H5,, 0= 020,

where Q5 (in terms of H», s2) and Q (in terms of H, s) are defined by (2.3). The
next task is to prove (3.13), that is,

(W} S(W,)  wheni=1,
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where {I/)[jk} denotes the split chain generated by P and (s, v). Let 1:5 denote the
transition probability function for this split chain and let 1:5 " denote the transition
probability for {WI | }. We must prove that

/

z"m
""U)

First, we recall the structure of a split chain. Suppose that P is a transition prob-
ability which satisfies P > s ® v. Then the corresponding split chain has transition
probability P, which satisfies, forn > 1,

P"(x0 x yo, dx x y) = yov P"~(dx) {ys (x) + (1 = y)(1 = 5(x))}
+ (1= y0) QP" N (xo, dx){ys(x) + (1 — y)(1 — s(x))}.
In our case, this gives, forn =1,
P (wo x yo, dw x y) = yov(dw){ys(w) + (1 — y)(1 — s (w))}
(B.4) + (1 = y0) Q(wo, dw)
x {ys(w) + (1 = y)(1 = s(w))}.

We more carefully consider 1:5 ', which by (B.2) satisfies
—~ oo —~~
P'=>"bP;.
(=1

We replace 13\26 by the right-hand side of the expression

PY (wo x yo, dw x y) = yova Py (dw){ysa(w) + (1 — y)(1 — s2(w))}
+ (1= y0) Q2 Pf ™ (wo, dw)
x {ys2(w) + (1 — y)(1 — s2(w))},

where
0 o0

(B.5) Zbgvaf_l =10, =, Zbe Qzl"ze_1 =020, =0
=1 =1

We then obtain (3.13) from (B.4)—(B.5). The first equality in (3.14) follows from
(3.13) and the second is the occupation formula given by (2.10). Actually, when
A= A1 X w2, We get
- o0
A=m®;, =Y {MH{s1}m Pt =m(Mi Gy, 51} = .
£=0

Finally, if A = v =v| X vy, then n= vand v = 1) since T, = Ts,. O

~g. R



NONLINEAR COINTEGRATION 297

PROOF OF LEMMA 3.3. The waiting times {§;, j > 0} are given by §; =
‘E/-l — tjl_l. Letb, y=P(51+---+ 8, =k) for k > n and by y = by. Then

lelk_lsl, forn=1andk > 1,

bn,k = b]:n, forn>1land k > 1,

where “xn” denotes n-times convolution. The n-step transition probability P is
given by

o0

(B.6) = by, nzl
j=0

Since {W;} is geometric ergodic ([24], Theorem 6.14, page 120), there exist a
nonnegative function M such that m>(M) < oo and a constant p € (0, 1) such that

| Py (x, ) —mall < M(x)p", xeE, n>0.
Thus, by (B.6),

o0

1P () =7l <Y by 1Py (2, ) — 7l
j=0
o0

=< Z bn,n—%—jM(x)pn_H
(B.7) =0

o0
<M"Y bynyjp’
j=0

<M(x)p".

Hence, by (B.7), {W,} is geometric ergodic.
For the ergodic {W;}, we have

ar= sup 6p(A,B),  6i(A,B)=mlsPilgl —mlamslp.
A,B€eE

Here,

m .
6,(A. B) =malaPIgl —mylamalp =) by j{IaP) Ip — w2l amalp)

j=t
o0
=Y b j0j(A, B).
j=t
That is,
(B.8) <Zbgj Sup_ 0 (A, B)_Zbgjaj <ay.

j=t A,BeE j=t
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By [5], in general,

o0
Zﬁk(xg <00 = Enzr(])“rl < 00.
=1

By (B.8) it follows that

o0 (0,0)
Zﬁkag <00 == Zﬂkge < 0.
=1 =1

Hence, (3.15) is true. [

REMARK B.1. We see that ¢, < E[a (81 + --- + ¢)]. A sharper inequality
would be @, < ay1/p + (1), and if this inequality is correct, then

o o0
Zfﬁkag <0 ng‘l‘e < 0.
=1 =1
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