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HAZARD MODELS WITH VARYING COEFFICIENTS FOR
MULTIVARIATE FAILURE TIME DATA1

BY JIANWEN CAI, JIANQING FAN2, HAIBO ZHOU3 AND YONG ZHOU4

University of North Carolina at Chapel Hill, Princeton University,
University of North Carolina at Chapel Hill and Chinese Academy of Science

Statistical estimation and inference for marginal hazard models with
varying coefficients for multivariate failure time data are important subjects in
survival analysis. A local pseudo-partial likelihood procedure is proposed for
estimating the unknown coefficient functions. A weighted average estimator
is also proposed in an attempt to improve the efficiency of the estimator. The
consistency and asymptotic normality of the proposed estimators are estab-
lished and standard error formulas for the estimated coefficients are derived
and empirically tested. To reduce the computational burden of the maximum
local pseudo-partial likelihood estimator, a simple and useful one-step esti-
mator is proposed. Statistical properties of the one-step estimator are estab-
lished and simulation studies are conducted to compare the performance of
the one-step estimator to that of the maximum local pseudo-partial likelihood
estimator. The results show that the one-step estimator can save computa-
tional cost without compromising performance both asymptotically and em-
pirically and that an optimal weighted average estimator is more efficient than
the maximum local pseudo-partial likelihood estimator. A data set from the
Busselton Population Health Surveys is analyzed to illustrate our proposed
methodology.

1. Introduction. Multivariate failure time data are encountered in many bio-
medical studies when related subjects are at risk of a common event or a study
subject is at risk of different types of events or recurrence of the same event. Some
examples are: epidemiological cohort studies in which the ages of disease occur-
rence are recorded for members of families; animal experiments where treatments
are applied to samples of litter mates; clinical trials in which individual study sub-
jects are followed for the occurrence of multiple events; intervention trials involv-
ing group randomization. A common feature of the data in these examples is that
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the failure times might be correlated. For example, in clinical trials where the pa-
tients are followed for repeated recurrent events, the times between recurrences for
a given patient may be correlated.

When there is at most one event for each subject and these subjects are mu-
tually independent, the Cox [11] proportional hazards model has commonly been
used to assess the effects of the covariates on failure times. For multivariate fail-
ure time data, research efforts have been concentrated on marginal hazards mod-
els and frailty models. Related literature includes, but is not limited to, Wei, Lin
and Weissfeld [28], Lin [20], Cai and Prentice [3, 4] and Spiekerman and Lin
[25] for the marginal models and Vaupel, Manton and Stallard [27], Clayton and
Cuzick [10], Anderson and Louis [2], Oakes and Jeong [22] and Fan and Li [16] for
frailty models. The statistical methods developed for dealing with failure time data
typically assume that the covariate effects on the logarithm of the hazard function
are linear and that the regression coefficients are constants. These assumptions,
however, are primarily made for their mathematical convenience. True associa-
tions in practical studies are usually more complex than a simple linear model can
capture.

An important extension of the standard regression model with constant coeffi-
cient is the varying-coefficient model. The varying-coefficient model addresses an
issue frequently encountered by investigators in practical studies. For example, the
effect of an exposure variable on the hazard function may change with the level
of a confounding covariate. This is traditionally modeled by including an interac-
tion term in the model. Such an approach is a simplification of the true underlying
association since a cross product of the exposure and the confounding variable
only allows the effect of the exposure to change linearly with the confounding
variable. In many studies, however, investigators express the belief that the rate of
change is not linear and seek to examine how each level of the exposure interacts
with the confounding variables. For example, in a study of cancer risk in uranium
miners [23], radon exposure was measured for over 23,000 underground miners
in the Czech Republic during 1949–1975. The mining industry’s workplace safety
measures which affect the inhalation of radon gas, such as ventilation conditions,
have changed over the last fifty years. Therefore, the effect of a fixed amount of
exposure in the 1950s should not be treated the same as in the 1970s. How to
handle this issue is of current active research interest in epidemiology. This leads
to a general varying-coefficient model where the coefficient for radon exposure
is a function of the calendar year and where this function can be nonlinear over
time. Parametric models for the varying-coefficient functions are most efficient if
the underlying functions are correctly specified. However, misspecification may
cause serious bias and the model constraints may distort the trend in local areas.
Nonparametric modeling is appealing in these situations.

Varying-coefficient models have been studied in many non-failure time data set-
tings such as multidimensional nonparametric regression, generalized linear mod-
els, analysis of longitudinal data and nonlinear time series. They are particularly



326 J. CAI, J. FAN, H. ZHOU AND Y. ZHOU

appealing in longitudinal studies because they allow one to explore how the effects
of the covariates change over time. Related literature includes Hastie and Tibshi-
rani [17], Carroll, Ruppert and Welsh [9] and Cai, Fan and Li [6]. For univariate
survival time, the time-varying effect has been carefully studied by Murphy [21],
Cai and Sun [7] and Tian, Zuker and Wei [26]. Applications of varying-coefficient
models to survival analysis, particularly in the context of multivariate failure time,
remain to be studied. New technical challenges arise in dealing with within-cluster
dependence and the varying effects of an exposure variable. The local pseudo-
partial likelihood in our setting is more sophisticated than that based on the time-
varying model. In fact, the latter is no longer a proportional hazards model.

In this paper, we study the marginal hazards model with varying coefficients
for multivariate failure time data. The rest of this paper is organized as follows. In
Section 2, we formulate the varying-coefficient model and propose local pseudo-
partial likelihood procedures for coefficient functions. We also establish asymp-
totic properties and propose a variance estimator. Further, we consider a compu-
tationally efficient one-step procedure and show that it is asymptotically equiva-
lent to the local pseudo-partial likelihood estimator. In Section 3, we propose a
weighted average approach to estimate the coefficient functions. We evaluate the
proposed procedures through simulation studies and illustrate the proposed ap-
proach via an application to the Busselton Population Health Surveys data set in
Section 4. Final remarks are made in Section 5. Proofs of theoretical results are
given in Section 6.

2. Marginal hazards model with varying coefficients. Suppose that there
is a random sample of n clusters from an underlying population and that there
are J members in each cluster. Let i indicate cluster and (i, j) denote the j th
member in the ith cluster. Let Tij denote the failure time, Cij the censoring
time and Xij = min(Tij ,Cij ) the observed time for member (i, j ) (i = 1, . . . , n,

j = 1, . . . , J ). Let �ij be an indicator which equals 1 if Xij is a failure time
and is 0 otherwise. Varying cluster sizes can be accommodated by defining
Tij ≡ Cij ≡ 0. Let Fij (t) represent the failure, censoring and covariate infor-
mation up to time t for member (i, j) as well as the covariate information
for the other members in the ith cluster up to time t . The marginal hazard
function is defined as λij (t;Fij (t)) = limh↓0

1
h
P [Tij ≤ t + h|Tij > t,Fij (t)].

The observed data structure is {Xij ,�ij ,Zij (t),Vij (t)} for i = 1, . . . , n, where
Zij (t) = (Zij1(t), . . . ,Zijp(t))T and Vij (t) are two types of covariates, with V

being an exposure variable of interest. We assume that the censoring times are
independent of the failure times conditional on the covariates and that the observa-
tion period is [0, τ ], where τ is a constant denoting the time for end of the study.

To explore how the effect of the exposure variable Z changes with different
levels of a covariate variable V , we consider the varying-coefficient model

λij (t;Fij ) = λ0j (t) exp{β(Vij (t))
T Zij (t) + g(Vij (t))},(1)
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where λ0j (·) is an unspecified baseline hazard function pertaining to the j th
member of each response vector, β(·) is the regression coefficient vector that
may be a function of the covariate Vij , g(·) is a nonlinear effect of Vij and
both β(·) and g(·) are unspecified, continuously differentiable functions. Let
Nij (t) = I (Xij ≤ t,�ij = 1) denote the counting process corresponding to
Tij and let Yij (t) = I (Xij ≥ t) denote the ‘at risk’ indicator process. Set
Mij (t) = Nij (t) − ∫ t

0 Yij (s)λij (s) ds. Note that Mij (t) is a martingale with re-
spect to the marginal filtration Ft,ij = σ {Nij (s

−), Yij (s),Zij (s), 0 ≤ s ≤ t}
as well as the union σ -field

⋃n
i=1 Ft,ij = σ {Nij (s

−), Yij (s),Zij (s), 0 ≤ s ≤
t , i = 1,2, . . . , n}. However, Mij (t) (i = 1,2, . . . , n, j = 1,2, . . . , J ) is no
longer a martingale with respect to the entire union σ -field

⋃n
i=1

⋃J
j=1 Ft,ij =

σ {Nij (s
−), Yij (s),Zij (s),0 ≤ s ≤ t, i = 1,2, . . . , n, j = 1,2, . . . , J } because the

observations within a cluster might be mutually dependent.
For ease of presentation, we drop the dependence of covariates on the time Xij

with the understanding that the methods and proofs in this paper are applicable to
external time-dependent covariates [18]. If all of the observations are independent,
then the partial likelihood for model (1) is

L(β(·), g(·)) =
J∏

j=1

n∏
i=1

{
exp{β(Vij )

T Zij + g(Vij )}∑
l∈Rj (Xij ) exp{β(Vlj )T Zlj + g(Vlj )}

}�ij

,(2)

where Rj (t) = {i : Xij ≥ t} denotes the set of individuals at risk just prior to
time t . Since the observations within a cluster are not independent, we refer to
(2) as the pseudo-partial likelihood. Wei, Lin and Weissfeld [28] considered the
parametric counterpart for (2).

2.1. Local pseudo-partial likelihood estimation. If the unknown functions
β(·) and g(·) are parameterized, the parameters can be estimated by maximizing
(2). For our nonparametric estimation, the forms of the unknown functions are not
available. Directly solving the pseudo-partial likelihood (2) for the unknown func-
tions β(·) and g(·) is hardly possible due to the infinite dimension of the unknown
parameters. We choose to use the local polynomial method for our nonlinear mod-
eling for the following reasons. First, it is relatively easy to program because ex-
isting software on parametric fitting can be modified, via the introduction of a
weighting scheme, to deal with local parametric problems. Second, the sampling
properties of local polynomial fitting can be derived and efficient semiparametric
estimators can be constructed.

Assume that all functions in the components of β(·) and g(·) are smooth so that
they admit Taylor expansions: for each given v and u, where u is close to v,

β(u) ≈ β(v) + β ′(v)(u − v) ≡ δ + η(u − v),

g(u) ≈ g(v) + g′(v)(u − v) ≡ α + γ (u − v),
(3)
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where β ′(u) = dβ(u)/du. Substituting these local models into (2), we obtain the
following logarithm of the local pseudo-partial likelihood:

�(γ, δ,η) =
J∑

j=1

n∑
i=1

Kh(Vij − v)

× �ij

{
δT Zij + ηT Zij (Vij − v) + γ (Vij − v)

− log
( ∑

l∈Rj (Xij )

exp{δT Zlj + ηT Zlj (Vlj − v)(4)

+ γ (Vlj − v)}

×Kh(Vlj − v)

)}
.

Here Kh(·) = K(·/h)/h, K(·) is a probability density called a kernel function,
and h represents the size of the local neighborhood called a bandwidth. The kernel
weight is introduced to reflect the fact that the local model (3) is only applied to
the data around v.

Using counting process notation and letting X∗
ij = (ZT

ij ,ZT
ij (Vij − v),Vij − v)T

and ξ = (δT ,ηT , γ )T , the local pseudo-partial likelihood function (4) can be ex-
pressed as n · �n(ξ ,∞), where

�n(ξ , τ ) = n−1
J∑

j=1

n∑
i=1

∫ τ

0
Kh(Vij − v)

×
[
ξT X∗

ij − log

{
n∑

l=1

Ylj (w) exp(ξT X∗
lj )

×Kh(Vlj − v)

}]
dNij (w).

(5)

Maximizing �(γ, δ,η) in (4) is equivalent to maximizing �n(ξ , τ ) in (5). For a
technical reason, following work in the literature, we maximize (5) for a given
finite τ .

Let ξ̂(v) = (γ̂ (v)T , δ̂(v)T , η̂(v)T )T be the maximizer of (5). Then β̂(v) = δ̂(v)

is a local linear estimator for the coefficient function β(·) at the point v. Simi-
larly, an estimator of g′(·) at the point v is simply the local slope γ̂ (v), that is,
ĝ′(v) = γ̂ (v). The curve ĝ(·) can be estimated by integration of the function ĝ′(v).
Following Hastie and Tibshirani [17], the integration can be approximated by using
the trapezoidal rule. The local pseudo-partial likelihood estimator in (4) is partic-
ularly easy to compute. It can be implemented by using existing software such as
SAS or S-PLUS with the Cox regression procedure. The only difference is that one
needs to incorporate the kernel weights in the Cox regression and must repeatedly
apply the procedure at a grid of points in the range of the variable V .
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2.2. Assumptions and notation. To express explicitly asymptotic bias and
asymptotic variance of the estimator, we introduce some necessary assump-
tions and notation. Let µi = ∫

xiK(x)dx and νi = ∫
xiK2(x) dx for i =

0,1,2. Denote P(w, z, v) = P(X ≥ w|Z = z,V = v) and ρ(w, z, v) = P(w, z, v)

exp{β0(v)T z + g0(v)}. For k = 0,1,2, define ajk(w, v) = fj (v)E{ρ(w,Zj , v) ×
Z⊗k

j |Vj = v}, where fj (·) is the density of Vj , and Z⊗k = 1, Z and ZZT for k = 0,

1 and 2, respectively. Let ajk(v) = ∫ τ
0 ajk(w, v) dw and ak(v) = ∑J

j=1 ajk(v). We
will drop the dependence of ak(w, v), ajk(w, v), ajk(v) and ak(v) on v when there
is no ambiguity. Finally, let

� = �(v) =
{

J∑
j=1

(
aj2 −

∫ τ

0
aj1(w)aj1(w)T aj0(w)−1λ0j (w)dw

)}−1

and

Q =
(

Q−1
1 −(a−1

0 )T Q−1
1 a1

−aT
1 Q−1

1 a−1
0 (a0 − aT

1 a2a1)
−1

)
,

where Q1 = a2 − a1aT
1 a−1

0 .
Let ‖ · ‖ denote the L2-norm and ‖ · ‖� be the sup-norm of a function or process

on a set �. The support of the random variable V is denoted by V . For a compact
subset �V of V and some ε > 0, we define the neighborhood set of �V,ε as �V,ε =
{u : infv∈�V

|u − v| ≤ ε}. For k = 0,1,2, let

sjk(w, ζ , v) = fj (v)

∫
E[P(w,Zj , v)�̃(y, ζ j ,w)R⊗k

j (y,w)|Vj = v]K(y)dy,

where Rj (y,w) = (ZT
j (w),ZT

j (w)y, y)T and �̃(y, ζ j ,w) = exp{ζ T Rj (y,w) +
ξT

0 Rj (0,w)}, where ξ0(·) = (βT
0 (·),β ′

0(·)T , g′
0(·))T .

The following conditions are needed in the proofs of the main results:

(i) The kernel function K(·) ≥ 0 is a bounded, symmetric function with com-
pact support.

(ii) The functions β(·) and g(·) have continuous third derivatives around the
point v.

(iii) fj (·) is continuous at the point v.
(iv) The conditional probability P(w,Zj (w), ·) is equicontinuous at v and

Zj (w) is continuous about w for each j .
(v) (a) nh/ logn → ∞ and nh5 is bounded; (b)

∫ τ
0 λ0j (t) dt < ∞ for each

j ∈ {1,2, . . . , J }.
(vi) sjr (t, θ, v), j = 1,2, . . . , J , r = 0,1,2, is bounded away from 0 on the

product space [0, τ ] × C × �V,ε , that is,

inf
t∈[0,τ ] inf

θ∈C
inf

v∈�V,ε

sjr (t, θ, v) > 0,
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where θ = (βT , g) and

sup
t∈[0,τ ]

sup
θ∈C

E‖Zj (t)‖2 exp
(
βT Zj (t) + g

)
< ∞

for each j ∈ {1,2, . . . , J }. Meanwhile, sj0(t, θ, v), j = 1,2, . . . , J , are continuous
functions for (t, θ, v) ∈ [0, τ ] × C × �V,ε , uniformly in t ∈ [0, τ ], and

sj1(t, θ, v) = ∂

∂θ
sj0(t, θ, v)

and

sj2(t, θ, v) = ∂2

∂θ2 sj0(t, θ, v).

(vii) (Asymptotic variance) The matrix

J∑
j=1

(
aj2 −

∫ τ

0

aj1(w)aj1(w)T

aj0(w)
d�0j (w)

)

is positive definite for any v ∈ �V,ε and the matrix

Q2 =
(

a2 a1

aT
1 a0

)

is nonsingular at v ∈ �V,ε .
(viii) The conditional probability P(u,Zj (u),w) is equicontinuous in the ar-

guments (u,w) on [0, τ ] × �W,ε .
(ix) The compact set �V ⊂ W has the following property: infu∈�W,ε

fj (u) > 0
for each j and some ε > 0 and ‖fj‖�V

< ∞.

(x) The covariate process Zj (t) has a continuous sample path in a subset Z of
the continuous function space and |Zijk(0)| + ∫ τ

0 |dZijk(t)| ≤ Bz a.s. for all i, j, k

and some constant Bz < ∞.

The above conditions will be used for deriving the pointwise convergence prop-
erties of ξ̂ and demonstrating its asymptotic normality. Conditions (i)–(v) are sim-
ilar to those in [15] and conditions (vii)–(viii) are similar to conditions C and D
of [1]. In order to derive the uniform consistency result, conditions (ix)–(x) are
also necessary. From the proofs of the theorems, continuity of Zj (t) in assump-
tion (x) can be weakened to Zj (t) being left continuous with right-hand limits and
E[exp{β(V )T Z(t)}Z(t)⊗k|V = v] and E(Z(t)⊗k|V = v} being continuous func-
tions of t for k = 0,1,2.

2.3. Asymptotic properties. We now establish the asymptotic properties of the
local pseudo-partial likelihood estimator. We summarize the results here and pro-
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vide outlines of the proofs in Section 6. As shown in Section 6, the local pseudo-
partial likelihood function �n(ξ , τ ) is concave in ξ and its maximizer exists with
probability tending to one. Let H be a (2p + 1) × (2p + 1) diagonal matrix with
the first p diagonal elements being 1 and the rest being h, where p is the number
of elements in Z.

THEOREM 1. Under conditions (i)–(viii), we have

H{ξ̂(v) − ξ0(v)} P−→ 0,

where ξ0(v) = (βT
0 (v),β ′

0(v)T , g′
0(v))T is the vector of the true parameter func-

tions. If, in addition, conditions (ix)–(x) are satisfied, then we have the uniform
consistency

sup
u∈�V

∣∣H(
ξ̂(u) − ξ0(u)

)∣∣ P−→ 0,

where �V is any compact subset of the support of the random variable V .

THEOREM 2. Assume that conditions (i)–(viii) are satisfied. Then the ran-
dom vector (nh)−1/2{�′

n(ξ0(u), τ ) − 1
2h2ν2[(�−1(u)β ′′

0(u))T ,0T ,0]T } converges
in distribution to a (2p + 1)-variate normal vector with mean zero and covariance
matrix �, where �′

n(ξ , τ ) = ∂�n(ξ , τ )/∂ξ , 0 is a p-variate column vector with all
entries 0 and � = �0 + D, in which D = blockdiag(�−1ν0,Q2ν2) and

�0 =
J∑

l=1

J∑
j=1,j �=l

lim
n→∞EhBn1j (τ )Bn1l(τ )T ,

the definitions of Bn1j (τ ) and Bn1l(τ ) appearing in the proof of Theorem 2.

THEOREM 3 (Asymptotic normality). Assume that conditions (i)–(viii) are
satisfied. Then

√
nh

{
H
(
ξ̂(v) − ξ0(v)

)− 1

2
h2epξ ′′

0(v)ν2

}
L→ N(0,	(τ, v)),

where ep is a (2p + 1) × (2p + 1) matrix with the first p × p elements being 1
and the rest being 0, and 	 = A−1�(A−1)T .

From the expressions for the asymptotic bias and variance matrix 	 in Sec-
tion 6, it can be shown that they can be consistently estimated by

Â−1
n (τ, v)B̂n(τ, v) and (nh)−1Â−1

n (τ, v)�̂n(τ, v)Â−1
n (τ, v),(6)
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where

Ân(τ, v) = 1

n

n∑
i=1

J∑
j=1

∫ τ

0
Kh(Vij − v)

(
Ŝnj2(w, v)

Ŝnj0(w, v)
− Êj (w, v)⊗2

)
dNij (w),

B̂n(τ, v) = 1

nh

n∑
i=1

J∑
j=1

∫ τ

0
Kh(Vij − v)

(
U∗

ij (w) − Êj (w, v)
)
dNij (w),

�̂n(τ, v) = 1

nh

n∑
i=1

{
J∑

j=1

∫ τ

0
Kh(Vij − v)

(
U∗

ij (w) − Êj (w, v)
)
dM̂ij (w)

}⊗2

with Ŝnjk(w, v) = 1
n

∑n
i=1 Kh(Vij − v)Yij (w) exp(ξ̂

T
(v)X∗

ij (w))(U∗
ij (w))⊗k for

k = 0,1,2, U∗
ij = H−1X∗

ij , Êj (w, v) = Ŝnj1(w, v)/Ŝnj0(w, v) and M̂ij (t) =
Nij (t) − ∫ t

0 λ̂ij (s)ds, in which λ̂ij (s) = λ̂0j (s) exp{β̂(Vij (s))Zij (s) + ĝ(Vij (s))}
and λ̂0j (s) is given in the following section.

2.4. Estimation of the baseline hazard function. With estimators of β(·) and
g(·), we can estimate the baseline hazard function by using a kernel smoothing,

λ̂0j (t) =
∫

Wb(t − x)d�̂0j (x),

where Wb is a given kernel function and b is a given bandwidth. The cumulative
hazard function �0j (·) can be estimated by

�̂0j (t) = 1

n

n∑
i=1

∫ t

0

dNij (w)

n−1 ∑n
l=1 Ylj (w) exp(β̂(Vlj )T Zlj (w) + ĝ(Vlj ))

.

The properties of �̂0j (·) and λ̂0j (·) are summarized in the following theorem and
an outline of the proof is provided in Section 6.

THEOREM 4. Under conditions (i)–(x), we have

�̂0j (t) −→ �0j (t) and λ̂0j (t) −→ λ0j (t),

uniformly on (0, τ ] in probability.

To investigate the asymptotic properties of the estimated cumulative hazard
function, we assume, for simplicity, that g(V ) = 0. The function g(·) needs to
be estimated by integrating its derivative estimator from the partial likelihood;
hence, its asymptotic properties are challenging to obtain. When g(·) = 0 our task
is somewhat simplified. The generalized Breslow estimator for �0j (t) is given by

�̂0j (t) = 1

n

n∑
i=1

∫ t

0

dNij (w)

n−1 ∑n
l=1 Ylj (w) exp{β̂(Vlj )T Zlj (w)} .
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Write Wj(t) = n1/2{�̂0j (t) − �0j (t)}. This is a stochastic process defined
in the metric space � = C[0, τ ] with the norm ρ(f, g) = max1≤j≤J

sup0≤t≤τ |fj (t) − gj (t)|.

THEOREM 5. Assume that conditions (i)–(x) are satisfied and let nh4 → 0.
Then the random process vector W(t) = (W1(t), . . . ,WJ (t)) converges weakly to
a zero-mean Gaussian random field G(t).

REMARK 1. The covariance structure of the Gaussian field G(t) is very com-
plex. It is very difficult to directly calculate this covariance by asymptotic methods.
The wild bootstrap provides a useful method for computing the covariance or ap-
proximating the distribution of G(t) (see [25]).

REMARK 2. Theorem 5 shows that the estimator �̂0j (t) is root-n consistent
if the nonparametric estimators are undersmoothed. This means that in practical
applications, one uses the right amount of smoothing for estimating coefficient
functions and then chooses a smaller amount of smoothing for estimating the cu-
mulative hazard functions. The situation here is very different from the one-step
likelihood estimation of Carroll et al. [8], but similar to their one-step procedure.

2.5. One-step local pseudo-partial likelihood estimator. To estimate the func-
tions β(·) and g(·) over an interval of interest, we usually need to maximize the
local pseudo-partial likelihood (5) at hundreds of points. This can be very compu-
tationally intensive. In addition, for certain given v, the local pseudo-partial like-
lihood estimator might not exist, due to a limited amount of data around v. These
drawbacks make computing the local pseudo-partial likelihood estimator over an
interval less appealing. We consider the following one-step estimator as a feasible
alternative.

To facilitate notation, we drop the dependence of �n(ξ , τ ) on τ . The local
pseudo-partial likelihood estimator ξ̂ satisfies �′

n(ξ) = 0. For a given initial es-
timator ξ̂0, by Taylor expansion, we have

�′
n(ξ̂0) + �′′

n(ξ̂0)(ξ̂ − ξ̂0) ≈ 0.

Thus, the one-step estimator ξ̂os is defined as

ξ̂os = ξ̂0 − {�′′
n(ξ̂0)}−1�′

n(ξ̂0).(7)

In the Newton–Raphson algorithm, the above equation is iterated until conver-
gence is achieved. As shown in Section 6, the function �n(ξ) is concave. Hence,
its maximizer exists and is unique when �n(ξ) is strictly concave. In practice, we
do not have to iterate (7) until convergence is achieved—once, or a few times, will
suffice. Robinson [24] gives results on the distance between the estimators based
on a few iteration steps and the maximum likelihood estimator. A natural question
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arises as to how good the initial estimator ξ̂0 has to be in order for the one-step
estimator to have the same performance as the maximum local pseudo-partial like-
lihood estimator. It is not hard to show that a sufficient condition is

H(ξ̂0 − ξ0) = OP

(
h2 + (nh)−1/2);(8)

see Fan and Chen [13] for a derivation in the local likelihood context. When
condition (8) is not satisfied, a multiple-step estimator is needed. By repeatedly
applying the one-step result k times, as in [24], condition (8) can be relaxed to
H(ξ̂0 − ξ0) = OP {(h2 + (nh)−1/2)1/k}.

Cai, Fan and Li [6] provide a useful strategy on the choice of initial estimators
in the context of generalized linear models and their idea can be adapted to the
current setting. The idea is to exploit the smoothness of nonparametric functions.
The strategy is as follows. Compute the local pseudo-partial likelihood estimates
at a few fixed points. Use these estimates as the initial values of their nearest grid
points and obtain the one-step estimates at these grid points. Use the newly com-
puted one-step estimates as the initial values of their nearest grid points to compute
the one-step estimates and propagate until the one-step estimates at all grid points
are computed. For example, in our simulation studies, we evaluate the functions
at ngrid = 200 grid points and are willing to compute the maximum local pseudo-
partial likelihood at five distinct points. A sensible placement of these points is
w20,w60,w100,w140 and w180. We shall use, for instance, β̂(w60) as an initial
value for calculating the one-step estimates for β̂(w59) and β̂(w61) and then pro-
ceed to use the resulting estimates as the initial values for calculating the one-step
estimates for β̂(w58) and β̂(w62), respectively. We continue this process until all
the one-step estimates at wi for i = 40, . . . ,79 are calculated.

3. Weighted average estimator. An alternative approach is to fit a varying-
coefficient model for each failure type, that is, for event type j , fitting the model

λij (t;Fij ) = λ0j (t) exp{βj (Vij (t))
T Zij (t) + gj (Vij (t))}, for i = 1, . . . , n,

resulting in ξ̂ j (v) for estimating ξ j (v) = (βT
j (v), (β ′

j (v))T , g′
j (v)). Under

model (1), we have ξ1 = ξ2 = · · · = ξJ = ξ . Thus, we can estimate ξ(v) by a
linear combination c1ξ̂1(v) + · · · + cJ ξ̂J (v) with

∑J
j=1 cj = 1. Weights cj can be

chosen to optimize the performance. Note that the weights cj can be generalized
to a matrix Cj to allow for different linear combinations for different components
of ξ(v), that is, the linear combination can be generalized to C1ζ̂ 1 + · · · + CJ ζ̂ J

with C1 + · · · + CJ = diag(1, . . . ,1) being the identity matrix.
In order to establish the asymptotic distribution of the weighted average esti-

mator, we need to derive the asymptotic distribution of �̂(v) = (ξ̂T
1 , . . . , ξ̂T

J )T .

We define �(v) and � ′′(v) similarly to �̂(v), except that the ξ̂ j are replaced by
ξ j and ξ ′′

j , respectively, for j = 1,2, . . . , J . Using arguments similar to those used
for Theorems 2 and 3, it can be shown that the following theorem holds.
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THEOREM 6. Under the conditions of Theorem 2, we have that

√
nh

{
Ip ⊗ H[�̂(v) − �(v)] − h2ν2

2
R� ′′(v)

}
is asymptotically normal with mean 0 and covariance matrix 	∗ = (Gkl(ξ k, ξ l))

for k, l = 1, . . . , J , where R = diag(R1, . . . ,RJ ) and Rj is a (2p + 1) × (2p + 1)

matrix with the first p × p elements being Ip (an identity matrix) and rest equal
to 0. Gkl(ξ k, ξ l) is defined at the end of this section.

The asymptotic normality of the weighted average estimator follows easily from
Theorem 6. For example, suppose that we are interested in estimating the kth entry
of β . Write 1k as a (2p + 1)-variate vector with the kth entry being 1 and the rest
being 0 and let C = diag(1T

k , . . . ,1T
k ) = IJ ⊗ 1T

k . Then it follows from Theorem 6
that

(nh)1/2
{(

β̂w(v) − β0(v)
)− h2ν2

2
CR� ′′(v)

}
L−→ N(0,	w),

where β̂w = (β̂k1, . . . , β̂kJ )T , β0 = (βk1, . . . ,βkJ )T , and 	w = CT 	∗C, β̂kj and

βkj being the kth entry of β̂j and βj , respectively. The optimal weight which mini-

mizes cT 	wc with
∑J

j=1 cj = 1 is ck = (eT 	−1
w e)−1	−1

w e. Since the failure times

for different types of failures are usually mutually dependent, ξ̂ j (j = 1, . . . , J )
are likely to be dependent; hence, the variance 	w is not necessarily diagonal.
This implies that the optimal weight is unlikely to be uniform. In other words,
the weighted average estimator with the optimal weight is generally more efficient
than the estimator with the “working independence” weight. This is supported by
the simulation results displayed in Table 2.

We now give the expressions for the asymptotic variance-covariance ma-
trix from Theorem 6 and its estimate. From Theorem 3, it is easy to show
that the asymptotic covariance matrix between (nh)1/2H(ξ̂ k(v) − ξ k0(v)) and
(nh)1/2H(ξ̂ l(v) − ξ l0(v)) is given by

Gkl(ξ k, ξ l) = A−1
k (ξ k) lim

n→∞E{�1k(ξ k)�1l(ξ l)}A−1
l (ξ l),

where �jk(ξ k) = ∫ τ
0 Kh(Vjk −v)[U∗

jk − sk1(w, ζ , v)/sk0(w, ζ , v)]dMjk(w), ζ =
H(ξ − ξ0) and skd(w, ζ , v), d = 0,1, are defined as in Section 6. From the defini-
tion of �jk(ξ k), it is natural to estimate limn→∞ E{�k1(ξ k)�l1(ξ l)} by

D̂kl(ξ̂ k, ξ̂ l) = n−1
n∑

j=1

Wjk(ξ̂ k)W
T
jl (ξ̂ l),(9)
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where

Wjk(ξ k) = �jk

{
U∗

jk(Xjk) − Ŝnj1(Xjk, v)

Ŝnj0(Xjk, v)

}
Kh(Vjk − v)

−
n∑

m=1

�mkYjk(Xmk) exp{β̂T
k (Vjk(Xmk))Zjk(Xmk) + ĝk(Vmk(Xmk))}∑n

i=1 Yik(Xmk) exp{β̂T
k (Vik(Xmk))Zik(Xmk) + ĝk(Vmk(Xmk))}

(10)

×
{
U∗

jk(Xmk) − Ŝnj1(Xmk, v)

Ŝnj0(Xmk, v)

}
Kh(Vjk − v).

Obviously, Aj (ξ) can be estimated by

Âj (ξ) = 1

n

n∑
i=1

∫ τ

0
Kh(Vij − v)

Ŝnj2(w, v)Ŝnj0(w, v) − Ŝ ⊗2
nj1(w, v)

(Ŝnj0(w, v))
2 dNij (w).

Write

Ĝkl(ξ k, ξ l) = Â−1
k (ξ k)D̂kl(ξ̂ k, ξ̂ l)Â

−1
l (ξ l).

By means of some tedious proofs, we can show that Ĝkl(ξ k, ξ l) is a consistent
estimator of Gkl(ξ k, ξ l). Hence, the covariance matrix of (ξ̂1, . . . , ξ̂J ) can be con-
sistently estimated by 	̂

∗ = (nh)−1(Ĝij (ξ̂ i , ξ̂ j ))
J
i,j=1. These results provide a ba-

sis for simultaneous inferences about the ξ j , j = 1,2, . . . , J, as well as for the

weighted average estimator
∑J

j=1 cj ξ̂ j for ξ .

4. Numerical examples.

4.1. Simulations. We perform a series of simulation studies to evaluate the
performance of the proposed estimation method. Multivariate failure times are
generated from a multivariate extension of the model of Clayton and Cuzick
[10] in which the joint survival function of (T1, . . . , TJ ) given (Z1, . . . ,ZJ ) and
(V1, . . . , VJ ) is

F(t1, . . . , tJ ;Z1, . . . ,ZJ ,V1, . . . , VJ ) =
{

J∑
j=1

Sj (tj )
−θ − (J − 1)

}−1/θ

,(11)

where J takes integer values and Sj (t) is the marginal survival probability for the
j th member, depending on covariates Zj and Vj . Note that θ is a parameter which
represents the degree of dependence of Ti and Tj , i, j = 1,2, . . . , J . The relation-
ship between Kendall’s τ and θ is τ = θ/(2 + θ). Specifically, θ = 0.25 and θ = 4
represent weak and strong positive dependence, respectively, with θ → 0 giving
independence and θ → ∞ giving maximal positive dependence. In our simula-
tion, θ was chosen to be 0.25, 1.5 and 4.0, which correspond to low, moderate and
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high positive dependence, respectively. The Gaussian kernel function is used for
the estimates.

In our first set of simulations, we examine the performance of the local pseudo-
partial likelihood estimators. We consider the marginal distribution of Tij to be
exponential with failure rate

λij (t) = λ0j (t) exp{β(Vij )Zij + g(Vij )}.(12)

We choose the baseline hazard function to depend on time, specifically, λ0j (t) =
4t3λ∗

0j , where j = 1,2,3. We take λ∗
0j to be 0.2, 1.0 and 1.5 for j = 1,2 and 3,

respectively. Failure times (ti1, ti2, ti3), i = 1,2, . . . , n, are generated from the dis-
tribution function (11) with marginal distribution (12). We generate the covariate
vector Zij = (Zij1,Zij2, . . . ,Zijp)T from a multivariate normal distribution with
marginal mean 0, standard deviation 5 and correlation between Zijl and Zijk equal
to ρl−k , where ρ = 1/

√
5. We consider p = 2 and the varying coefficients

β1(V ) = 0.5V (1.5 − V ), β2(V ) = sin(2V )

and

g(V ) = 0.5{eV −1.5 − e−1.5},
where V is generated from a uniform distribution over [0,3]. In our simulation, us-
ing a similar derivation as in [5], with given covariates (Zij , Vij ), j = 1,2,3, the
failure times (ti1, ti2, ti3) are generated from independent uniform random vari-
ables (wi1,wi2,wi3) as follows:

ti1 = [− log(1 − wi1)ϒ(Vi1,Zi1, λ
∗
01)]1/4,

ti2 = [
θ log

{
1 − ai1 + ai1(1 − wi2)

(θ−1+1)−1}
ϒ(Vi2,Zi2, λ

∗
02)

]1/4
,

ti3 = [
θ log{1 − (ai1 + ai2) + (ai1 + ai2 − 1)(1 − wi3)

(θ−1+2)−1}
×ϒ(Vi3,Zi3, λ

∗
03)

]1/4
.

Here ail = (1 − wil)
−θ for l = 1,2 and i = 1,2, . . . , n and ϒ(V,Z, λ∗) =

exp{β(V )Z + g(V )}/λ∗. Censoring times Cij are generated from the uniform dis-
tribution over (0, c), where c is a constant which is set to control the censoring rate.
There is approximately 10% censoring when c = 5 and approximately 30% cen-
soring when c = 2. For each of the configurations studied, 500 simulations were
carried out.

Table 1 summarizes the simulation results for the local pseudo-partial likeli-
hood estimator of β(·) and g′(·) with the number of clusters being 200, θ = 0.25
and c = 2. We present the estimates of the functions evaluated at v = 0.5, 1.0, 1.5,
2.0 and 2.5. The bandwidths we considered were h = 0.075, 0.1, 0.15, 0.2 and
0.4. The averages of the 500 estimates for β1(v), β2(v) and g′(v) subtracting their
true values are given in the “bias” columns and the standard deviations of the 500



338 J. CAI, J. FAN, H. ZHOU AND Y. ZHOU

TABLE 1
Summary of simulation results based on local pseudo-partial likelihood procedures

β̂1(·) β̂2(·) ĝ′(·)
v h bias SE SD bias SE SD bias SE SD

0.5 0.075 −0.071 0.194 0.262 −0.179 0.266 0.370 −0.059 1.931 1.501
0.100 −0.036 0.158 0.177 −0.095 0.215 0.266 −0.011 1.118 0.956
0.150 −0.007 0.121 0.133 −0.004 0.160 0.175 0.003 0.538 0.493
0.200 0.028 0.096 0.101 0.077 0.121 0.125 0.044 0.328 0.295
0.400 0.077 0.076 0.086 0.252 0.087 0.108 0.247 0.167 0.123

1.0 0.075 −0.041 0.187 0.252 −0.173 0.279 0.354 0.085 1.817 1.495
0.100 −0.009 0.153 0.188 −0.094 0.218 0.259 0.079 1.140 0.933
0.150 0.004 0.115 0.118 0.006 0.156 0.164 −0.007 0.456 0.451
0.200 0.027 0.092 0.093 0.101 0.113 0.124 −0.066 0.305 0.257
0.400 0.108 0.063 0.064 0.382 0.066 0.082 −0.055 0.132 0.093

1.5 0.075 −0.004 0.174 0.231 −0.031 0.181 0.236 0.066 1.843 1.527
0.100 0.016 0.142 0.164 −0.015 0.145 0.157 0.032 1.040 0.949
0.150 0.019 0.110 0.114 −0.007 0.116 0.115 0.035 0.533 0.496
0.200 0.023 0.092 0.094 0.010 0.096 0.097 0.035 0.329 0.304
0.400 0.075 0.061 0.060 0.063 0.065 0.068 −0.181 0.131 0.095

2.0 0.075 0.097 0.196 0.277 0.145 0.235 0.326 0.140 1.886 1.503
0.100 0.076 0.167 0.195 0.070 0.192 0.224 0.104 1.075 0.956
0.150 0.047 0.129 0.142 0.004 0.143 0.139 0.078 0.566 0.521
0.200 0.037 0.107 0.112 −0.044 0.114 0.117 0.091 0.355 0.339
0.400 0.049 0.072 0.076 −0.254 0.068 0.076 −0.098 0.138 0.116

2.5 0.075 0.206 0.315 0.413 0.141 0.261 0.329 0.470 1.982 1.635
0.100 0.135 0.260 0.305 0.057 0.206 0.251 0.210 1.160 1.058
0.150 0.074 0.200 0.216 −0.004 0.151 0.166 0.095 0.633 0.570
0.200 0.039 0.166 0.179 −0.074 0.119 0.128 0.005 0.385 0.384
0.400 −0.014 0.125 0.130 −0.222 0.087 0.098 −0.261 0.189 0.181

estimates are given in the corresponding SD columns. The SE columns give the
averages of the estimated standard errors. Figure 1 provides the average estimates
for β1(·), β2(·) and g(·) based on different bandwidths. It gives us an idea of how
large the biases are for different bandwidths. From Table 1, we can also see that as
the bandwidth increases, the variance decreases. As expected, with a large band-
width h = 0.4, the bias is large and the variance is small. Note that the absolute
biases exhibit a U-shape in Table 1. This is unusual, but can happen. The bias de-
pends on function values in a local neighborhood and is continuous in h. If the
bias associated with h = 0.075 is negative and the bias associated with h = 0.4 is
positive, as in this example, then the bias necessarily crosses zero and the U-shape
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FIG. 1. Simulation results for the local pseudo-partial likelihood estimator with 200 clusters and
the dependence parameter of failure time θ = 0.25. (a), (b) and (c) provide the average estimates
of β1(·), β2(·) and g(·) for heavily censored data with c = 2, respectively. Solid curves are true
functions. Three bandwidths are used: dash-dotted curves for bandwidth h = 0.1, dashed curves for
h = 0.2 and dotted curves for h = 0.4.

absolute biases emerge. Table 1 also shows that when the bandwidth is 0.15 and
above, the average SE is close to SD, which indicates good performance of the
variance estimator. We have also examined the situations involving moderate and
high dependence of the failure times, using θ = 1.5 and 4, respectively, as well as
lighter censoring (with c = 5). The conclusions are similar.

We also examined the performance of the weighted average estimator. The
results are presented in Table 2. The rows labeled “W” are those based on the
weighted average estimates for βp with optimal weight cp = (eT 	̂

−1
p e)−1	̂

−1
p e,

where 	̂p is the estimator of the asymptotic variance-covariance matrix of
(β̂p1, β̂p2, β̂p3)

T . The maximum local pseudo-partial likelihood estimates are in-

TABLE 2
Comparison of the local pseudo-partial likelihood estimator (P) and the weighted average

estimator (W)

β̂1(·) β̂2(·)
EST Abias SD SE RASE Abias SD SE RASE

θ = 0.25 P 0.0693 0.1063 0.1045 0.1269 0.0198 0.1068 0.1036 0.1086
W 0.0767 0.0928 0.1222 0.1204 0.0494 0.0898 0.1047 0.1025

θ = 4.00 P 0.0653 0.1065 0.1029 0.0156 0.0215 0.1041 0.1013 0.1063
W 0.0750 0.0915 0.1437 0.0140 0.0477 0.0879 0.1037 0.1000

Note: Abias is the average absolute bias of the estimator β̂j for j = 1,2 and RASE denotes the square

root of average square errors of the estimator β̂j .
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dicated by “P”. The performance of an estimator β̂(·) is assessed via the square
root of average square errors (RASE),

RASE =
(

1

ngrid

ngrid∑
k=1

[β̂(wk) − β(wk)]2

)1/2

,(13)

where {wk, k = 1, . . . , ngrid} are the grid points at which the functions β(·) are
estimated. In our simulations, we take ngrid = 200.

For the local pseudo-partial likelihood estimates, we used bandwidth h = 0.15.
For the weighted average estimates, a bandwidth of h = 0.225 was used since the
amount of data used for estimating the covariate effects for each event type was
significantly less. The censoring parameter c was set to be 5. The weighted average
estimate cannot always be calculated since the data for each event type could be
too sparse to permit an estimate for each type. We only report those estimates
which exist. From Table 2, we can see that the weighted average estimator has
smaller RASE than that for the local pseudo-partial likelihood estimator in most
of the cases when the weighted average estimator can be calculated.

In the second set of simulations, we compare the performance of the one-step
estimator (OS) to that of the maximum local pseudo-partial likelihood estima-
tor (P). We use model (11) with somewhat different configurations. In particular,
V is now generated from the standard uniform distribution over [0, 1], Z is in-
dependently generated from a standard normal distribution, θ = 0.25 and 4 and
(λ∗

01, λ
∗
02, λ

∗
03) = (0.2,1.0,1.5). Censoring times Cij are generated from the uni-

form distribution over (0, c) with c = 2 and 5. We take g(u) = 8u(1 − u) and
β(u) = exp(2u − 1).

Table 3 presents the summary of the average square errors (ASE = RASE2)
for the one-step estimator (OS) and the maximum local pseudo-partial likelihood
estimator (P) under various realizations. From the table, we can see that the per-
formance of the one-step estimator is very close to that of the maximum local
pseudo-partial likelihood estimator. Figure 2, which presents the box plots for the
two methods, also confirms this. We have also conducted simulations using the
parameters considered in the first set of simulations. The results are similar.

4.2. Application to Busselton population health surveys. We illustrate the pro-
posed method by analyzing a data set from the Busselton Population Health Sur-
veys. The Busselton Population Health Surveys are a series of cross-sectional
health surveys conducted in the town of Busselton in Western Australia. Every
three years from 1966 to 1981, general health information for each adult partic-
ipant was collected by means of a questionnaire and a clinical visit. Details of
the study are described in [12, 19]. Data for several cardiovascular risk factors
are available for 2202 persons who make up 619 families. In this analysis, we
investigate the effect of cardiovascular risk factors on the risk of death due to car-
diovascular disease (CVD) based on these family data. Since the death times of
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TABLE 3
Comparison of the average square errors of the local pseudo-partial likelihood estimator (P) with

those of the one-step estimator (OS)

θ = 0.25, c = 2 θ = 4.0, c = 2

h Estimator mean median std mean median std

0.1 P 0.0879 0.0738 0.0602 0.0710 0.0569 0.0550
OS 0.0879 0.0740 0.0603 0.0716 0.0573 0.0551

0.2 P 0.0276 0.0199 0.0239 0.0287 0.0220 0.0273
OS 0.0276 0.0198 0.0239 0.0287 0.0220 0.0272

0.4 P 0.0107 0.0084 0.0020 0.0216 0.0140 0.0214
OS 0.0107 0.0084 0.0020 0.0216 0.0140 0.0214

θ = 0.25, c = 5 θ = 4.0, c = 5

0.1 P 0.0350 0.0279 0.0256 0.0584 0.0499 0.0506
OS 0.0350 0.0278 0.0255 0.0586 0.0500 0.0506

0.2 P 0.0200 0.0137 0.0182 0.0205 0.0148 0.0199
OS 0.0200 0.0137 0.0182 0.0204 0.0148 0.0199

0.4 P 0.0162 0.0113 0.0148 0.0162 0.0117 0.0146
OS 0.0162 0.0113 0.0148 0.0162 0.0117 0.0146

Note: “mean,” “median” and “std” denote the average, median and sample standard derivation of the
average square errors, respectively, based on 300 simulations.

the family members might be correlated due to genetic factors and cohabitation,
we are dealing with multivariate failure time data.

FIG. 2. Simulation results for the comparison of the maximum local pseudo-partial likelihood esti-
mator (P) with the one-step estimator (OS). (a) The box plots are for the distribution of the ASE over
the 300 replications, using three bandwidths h = 0.1,0.2,0.4 ( from left to right). Column numbers
1, 3 and 5 plot the maximum local pseudo-partial likelihood estimator and column numbers 2, 4
and 6 plot the one-step estimator (OS) for heavily censored data with c = 2; (b) the same as (a) for
moderately censored data, c = 5.
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The risk factors we considered included age (in years), body mass index (BMI,
in kg/m2), serum cholesterol level (chol) and smoking status. Serum cholesterol
(in mmol/L) was determined from a blood sample. Participants’ smoking statuses
were classified into three categories: never smoker, ex-smoker and current smoker.
Two indicator variables were created to indicate the three levels of smoking status:
smoke1 is coded as 1 for ex-smoker and 0 otherwise; smoke2 is coded as 1 for
current smoker and 0 otherwise.

If a person took part in more than one of the Busselton surveys, only the record
from the survey at which that person’s age was closest to forty-five years is in-
cluded. Forty-eight percent of the participants were males (gender = 0 for male and
1 for female). The average age in the data analyzed was 41.7 years, ranging from
16.3 to 89.0 years old. The average cholesterol reading was 5.65 mmol/L. The
average body mass index was 24.8 kg/m2. The prevalences of the never-smokers,
ex-smokers and current smokers were 49%, 17% and 34%, respectively. Of the
619 families, there were 154 families with one event, 28 families with two events
and 3 families with more than two events. There were 219 observed events in all.

For this analysis, we are interested in investigating how the effect of the risk
factors changes with age. We consider the model

λij (t |Fij ) = λ0j (t) exp
(
β1(ageij ) ∗ genderij + β2(ageij ) ∗ bmiij

+ β3(ageij ) ∗ cholij + β4(ageij ) ∗ smoke1ij

+ β5(ageij ) ∗ smoke2ij + g(ageij )
)
,

where j = 1 and 2 denote the parents and the children of the family, respectively,
and smoke1 and smoke2 are the indicators for ex-smoker and current smoker,
respectively. We take the bandwidth to be h = 0.15 ∗ (max(age) − min(age)) =
10.905.

Figure 3 presents the estimates for the varying coefficients as functions of age.
From Figure 3(a), we can see that men have a higher risk of dying from CVD
than women with the hazard ratio being 1.96 with 95% confidence interval (CI)
of (1.30,3.03) at age fifty. The effect does not seem to change much with age for
those older than thirty-five. From Figure 3(b), BMI has little effect on the risk be-
cause the coefficient is close to zero over the span of age. From Figure 3(c), higher
cholesterol level is associated with higher risk of dying from CVD and the effect of
cholesterol increases with age. The hazard ratio for 1 mmol/L change in choles-
terol is 1.01 (95% CI: [0.80,1.28]) at age forty and 1.30 (95% CI: [1.12,1.53])
at age sixty-five. From Figures 3(d) and (e), ex-smokers have risk similar to that
of the never smokers, while current smokers have a higher risk of dying from
CVD compared to the never smokers. The effect of current smoking is higher for
younger people with the hazard ratio being 5.60 (95% CI: [2.19,14.34]) at age
forty and 1.07 (95% CI: [0.72,1.60]) at age sixty-five.



MULTIVARIATE HAZARDS REGRESSION 343

FIG. 3. Data analysis for Busselton Population Health Surveys study. The marginal hazard
rate model is λij (t) = λ0j (t) exp(

∑5
k=1 βk(Vij (t))Zij (t) + g(Vij (t))), where V (t) = age and

ZT (t) = (Gender,BMI,CHOL,Smoke1,Smoke2), corresponding to the plots (a)–(e), respectively.
(f) is the plot of ĝ′(·), and (g) is the plot of ĝ(·), where smoke1 is coded as 1 for ex-smoker
and 0 otherwise, smoke2 is coded as 1 for current smoker and 0 otherwise. The dotted curve
is the confidence curve on nominal level α = 0.05. In this setting, the chosen bandwidth is
h = 0.15(max(age) − min(age)) = 10.905. The x-axis is for age.

5. Concluding remarks. The local pseudo-partial likelihood is a powerful
and a straightforward tool for analyzing multivariate failure time data. The estima-
tor asymptotically follows a normal distribution. Simulation results show that the
asymptotic approximation is applicable to finite samples with moderate numbers
of clusters.

The weighted average estimator, when it can be calculated, can be a more effi-
cient alternative to the maximum local pseudo-partial likelihood estimator. A dis-
advantage of the weighted average estimator is that it cannot always be calculated
since it involves estimating the covariate coefficient for each failure type and the
data for each failure type could be too sparse to permit a reliable estimate.
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Use of the one-step estimator is an effective means to reduce the computational
burden of an estimator involving iterations. We showed theoretically and empiri-
cally that the one-step estimator is an excellent approximation of the fully iterated
maximum local pseudo-partial likelihood estimator.

Our proposed methods are sensitive to the choice of bandwidth in constructing
a local smooth estimation. The one-step estimator and maximum local pseudo-
partial likelihood estimator have the same asymptotic distribution and share the
same asymptotic bandwidth. We can use the sophisticated bandwidth selection
rule proposed in [14] for these estimators.

The methods proposed in this paper can easily be extended to the more gen-
eral form of multivariate failure time data. More specifically, suppose that there
are n clusters that in each cluster there are K correlated individuals and for each
individual there are J possible distinct failure types. The marginal hazard function
for the j th type of failure of the kth individual in the ith cluster is related to the
corresponding covariate vector Zijk(t) by

λijk(t,Zijk) = λ0j (t) exp{βT (Wijk)Zijk(t) + g(Wijk)},
where λ0j (t), j = 1,2, . . . , J , are unspecified positive functions and β(·) and g(·)
are defined as in (1). The maximum local pseudo-partial likelihood for the more
general model can be derived similarly and the asymptotic properties can be estab-
lished with a similar, but more tedious, approach.

6. Proofs. Let (�,F ,P(β,g,λ)) be a family of complete probability spaces
provided with a history F = {Ft } for an increasing right-continuous filtration
Ft ⊂ F . Let Yij (t) = I (Xij ≥ t). We assume that Vij is Ftij -measurable and
that Nij (w) and Zij (w) are F -adapted. Let Ft,ij = σ {Nij (w

−),Zij (w),

Vij , Yij (w), 0 ≤ w ≤ t}, i = 1,2, . . . , n, j = 1,2, . . . , J , and Mij (t) = Nij (t) −∫ t
0 Yij (w)λij (w)dw, i = 1,2, . . . , n. Obviously, Mij (t) is a ∪n

i=1Ft,ij martingale.
To facilitate technical arguments, we will reparameterize the local pseudo-

partial likelihood (5) via the transform ζ = H(ξ − ξ0). Hence, the logarithm of the
local pseudo-partial likelihood function has the form �̃n(ζ , t) = �n(H−1ζ + ξ0, t).
By simplification, we have

�̃n(ζ , t) = 1

n

n∑
i=1

J∑
j=1

∫ t

0
Kh(Vij − v)

×[ζ T U∗
ij (w) + ξT

0 X∗
ij (w) − logSnj0(w, ζ , v)]dNij (w),

where U∗
ij (w) = H−1X∗

ij (w) and

Snjk(w, ζ , v) = 1

n

n∑
i=1

Kh(Vij −v)Yij (w) exp{ζ T U∗
ij (w)+ ξT

0 X∗
ij (w)}(U∗

ij (w))⊗k.
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Furthermore, for each w ∈ [0, τ ] and k = 0,1,2, we rewrite �̃n(ζ ) = �̃(ζ , τ ) and
define

S∗
njk(w, θ , v) = 1

n

n∑
i=1

Kh(Vij −v)Yij (w) exp
(
βT(Vij )Zij (w)+g(Vij )

)
(U∗

ij (w))⊗k,

where ξ(·) = (βT (·),β ′(·)T , g(·))T , θ(·) = (βT (·), g(·))T , v ∈ �V .
Recall the notation ρ(w, z, v) introduced in Section 2.2. Define, for v ∈ �V,ε ,

s∗
j0(w, θ , v) = fj (v)E[ρ(w,Zj (w), v)|Vj = v],

s∗
j1(w, θ , v) = fj (v)E[ρ(w,Zj (w), v)(ZT

j (w),0,0)T |Vj = v],
s∗
j2(w, θ , v) = fj (v)E[ρ(w,Zj (w), v)�(Zj ,w)|Vj = v],

where

�(Zj ,w) =


Zj (w)ZT

j (w) 0 0

0 Zj (w)ZT
j (w)µ2 Zj (w)µ2

0 ZT
j (w)µ2 µ2

 .

To facilitate notation, the true functions θ0(u) = (βT
0 (u), g0(u))T , ξ0(u),

ζ 0 = 0 and v shall be omitted in S∗
njk(t, θ, v), Snjk(t, ζ, v) and s∗

jk(t, θ, v),
sjk(t, ζ , v) whenever there is no ambiguity, for example,

S∗
njk(t) = S∗

njk(t, v) = S∗
njk(t, θ0, v), s∗

jk(t) = s∗
jk(t, v) = s∗

jk(t, θ0, v),

Snjk(t) = Snjk(t, v) = Snjk(t,0, v), sjk(t) = sjk(t, v) = sjk(t,0, v),

Snjk(t, ζ ) = Snjk(t, ζ , v), sjk(t, ζ ) = sjk(t, ζ , v).

We will need the following two lemmas in the proofs of the theorems. Let

Cnj (t) = n−1
n∑

i=1

Yij (t)ψ
(
Vij , (Vij − v)/h,Zij (t)

)
Kh(Vij − v)

for a function ψ(·, ·, ·).
LEMMA 1. Assume that conditions (i) and (iv) hold. Assume that ψ(·, ·, ·) is

continuous for its three arguments and that E(ψ(Vj ,w,Zj (t))|Vj = v) is contin-
uous at the point v for each j and w. If h → 0 in such a way that nh/ logn → ∞,
then

sup
0≤t≤τ

J∑
j=1

|Cnj (t) − Cj(t)| P−→ 0,

where Cj(t) = fj (u)
∫

E(Y (t)ψ(v,w,Zj (t))|Vj = v)K(w)dw, fj (u) being the
density function of V . Under conditions (viii)–(x), we have

sup
0≤t≤τ

sup
v∈B

J∑
j=1

|Cnj (t, v) − Cj(t, v)| P→ 0,



346 J. CAI, J. FAN, H. ZHOU AND Y. ZHOU

where B is a compact set satisfying infu∈B fj (u) > 0.

PROOF. By the assumption on h, it is easy to show that for every t ∈ [0, τ ],
|Cnj (t) − Cj(t)| P−→ 0.(14)

Now, we divide [0, τ ] into M subintervals [ti−1, ti] with a given length not exceed-
ing δ. Note that δ does not depend on n. Then

max
1≤i≤M

|Cnj (ti) − Cj(ti)| P−→ 0.(15)

Thus, we need only deal with the term

max
1≤i≤M

sup
|t−ti−1|<δ

|Cnj (t) − Cj(t) − {Cnj (ti−1) − Cj(ti−1)}|.(16)

By decomposing ψ into a positive part and negative part, we can decompose Cnj (t)

into C+
nj (t) and C−

nj (t). Hence, we need only show that as n → ∞ and δ → 0,

max
1≤i≤M

sup
|t−ti−1|<δ

|C+
nj (t) − C+

nj (ti−1)|
(17)

+ max
1≤i≤M

sup
|t−ti−1|<δ

|C+
j (t) − C+

j (ti−1)| P−→ 0

and a similar result for C−
nj (t) and C−

j (t).
We now focus on the first term of (17), which is bounded by J1 + J2, where

J1 = max
1≤i≤M

sup
|t−ti−1|≤δ

∣∣∣∣∣n−1
n∑

l=1

Ylj (t)Kh(Vlj − v)

× {
ψ+(Vlj , (Vlj − v)/h,Zlj (t)

)
− ψ+(Vlj , (Vlj − v)/h,Zlj (ti−1)

)}∣∣∣∣∣
and

J2 = max
1≤i≤M

sup
|t−ti−1|≤δ

∣∣∣∣∣n−1
n∑

l=1

{Ylj (t) − Ylj (ti−1)}

× ψ+(Vlj , (Vlj − v)/h,Zlj (ti−1)
)
Kh(Vlj − v)

∣∣∣∣∣.
Note that Zlj (t), l = 1,2, . . . , n, is continuous on [0, τ ]. Thus, J1 is bounded by

max
1≤l≤n

max
1≤i≤M

sup
|t−ti−1|≤δ

∣∣ψ+(Vlj , (Vlj − v)/h,Zlj (t)
)

−ψ+(Vlj , (Vlj − v)/h,Zlj (ti−1)
)∣∣n−1

n∑
l=1

Kh(Vlj − v),
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which tends to zero in probability. Since Ylj (t) is a decreasing function of t , we
have, for any ε > 0, that the probability P (J2 > ε) is bounded by

MP

(
n−1

∣∣∣∣∣
n∑

l=1

I (ti−1 < Xlj < ti)

× ψ+(Vlj , (Vlj − v)/h,Zlj (ti−1)
)
Kh(Vlj − v)

∣∣∣∣∣ > ε

)
.

It is easy to show that

n−1
n∑

l=1

I (ti−1 < Xlj < ti)ψ
+(Vlj , (Vlj − v)/h,Zlj (ti−1)

)
Kh(Vlj − v)

P−→
∫

E{I (ti−1 < Xlj < ti)ψ
+(v,w,Zlj (ti−1))|Vlj = v}K(w)dw.

Note that by the Cauchy–Schwarz inequality,

E
(
I (ti−1 < Xj < ti)ψ

+(v,w,Zj (ti−1))|Vj = v
)

= |P(ti−1|Vj = v) − P(ti |Vj = v)|1/2E1/2(ψ+2(v,w,Zj (ti−1))|V = v)

< M∗δ1/2,

since |ti − ti−1| ≤ δ, where M∗ is some constant. Hence, J2 → 0 as first n → ∞
and then δ → 0.

The second term of (17) is bounded by

max1≤i≤M sup|t−ti−1|≤δ fj (v)

∣∣∣∣∫ E{Yj (t)(ψ
+(v,w,Zj (t))

−ψ+(v,w,Zj (ti−1))|Vj = v}K(w)dw

∣∣∣∣
+ max

1≤i≤M
fj (v) sup

|t−ti−1|≤δ

∣∣∣∣∫ E{I (ti−1 < Xj < ti)

×ψ+(v,w,Zj (ti−1))|Vj = v}K(w)dw

∣∣∣∣,
(18)

which tends to zero as δ → 0. This implies that (17) holds and hence completes
the proof of Lemma 1. �

LEMMA 2. Under conditions (i)–(vi), we have for k = 0,1,2,

S∗
njk(w) = s∗

jk(w) + op(1),

uniformly for w ∈ (0, τ ], where s∗
jk(w) = s∗

jk(w, θ0, v) and, in addition, under
conditions (viii)–(x), we have

sup
w∈(0,τ ],v∈�V

‖S∗
njk(w, v) − s∗

jk(w, v)‖ = op(1).
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Furthermore, we have

sup
w∈(0,τ ]

‖Snjk(w, ζ ) − sjk(w, ζ )‖ = op(1).

Lemma 2 can be easily proven by Lemma 1.

PROOF OF THEOREM 1. We first show that ζ̂ → 0 in probability, where ζ̂ =
H(ξ̂ − ξ0), ξ̂ being the maximum local pseudo-partial likelihood estimator of ξ0.
Let

Xnj (t, ζ ) = 1

n

n∑
i=1

∫ t

0
Kh(Vij − v)

[
ζ T U∗

ij (w) − log
Snj0(w, ζ )

Snj0(w,0)

]
dMij (w).

Then it is easy to show that

�̃n(t, ζ ) − �̃n(t,0) =
J∑

j=1

Xnj (t, ζ ) + Yn(t, ζ ),(19)

where

Yn(t, ζ ) =
J∑

j=1

∫ t

0

[
(S∗

nj1(w))T ζ − log
Snj0(w, ζ )

Snj0(w,0)
S∗

nj0(w)

]
λ0j (w)dw.

By Lemma 2, we obtain that

Yn(t, ζ ) =
J∑

j=1

∫ t

0

[
(s∗

j1(w))T ζ − log
sj0(w, ζ )

sj0(w,0)
s∗
j0(w)

]
λ0j (w)dw + oP (1)

≡ Y(t, ζ ) + oP (1).

By an argument similar to that in [1], it can be shown that each term in the sum
of the asymptotic representation of Yn(t, ζ ) is a strictly concave function in ζ and
that it has the maximum value at ζ = 0. The first term in (19) is a sum of J local
square integrable martingales with the square variation process being

〈Xnj ,Xnj 〉(t) = 1

n2

n∑
i=1

∫ t

0
K2

h(Vij − v)

[
ζ T U∗

ij (w) − log
(

Snj0(w, ζ )

Snj0(w,0)

)]2

× Yij (w) exp
(
β0(Vij )

T Zij (w) + g0(Vij )
)
λ0j (w)dw.

It follows from Lemmas 1 and 2 that

EX2
nj (t, ζ ) = E〈Xnj ,Xnj 〉(t) = O((nh)−1) → 0, 0 < t ≤ τ.

This implies that Xnj (t, ζ ) → 0 in probability for 1 ≤ j ≤ J . Hence, we obtain
that

�̃n(t, ζ ) − �̃n(t,0) = Y(t, ζ ) + oP (1).
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We can easily show that ζ̂ maximizes the strictly concave function �̃n(t, ζ ) −
�̃n(t,0). By Lemma A.1 of [8], it follows that ζ̂ → 0 in probability.

We now prove the second result of Theorem 1. By the same argument as above,
we can prove from Lemma 1 that

sup
t∈[0,τ ]

sup
ξ0∈C∗

sup
v∈�V

|�̃n(t, ζ ) − �̃n(t,0) − Y(t, ζ )| −→ 0

in probability, where ζ = H(ξ − ξ0) and C∗ is a convex and compact subset of
R2p+1. Therefore, it follows from Lemma A.1 of [8] that supv∈�V

|ζ̂ | −→ 0 in
probability. Hence, the proof of Theorem 1 is complete. �

PROOF OF THEOREMS 2 AND 3. Note that we have proved in Theorem 1
that H(ξ̂(v) − ξ0(v)) → 0 in probability. This result is very useful for proving
Theorem 2. We divide the proofs into the following three steps:

(a) The asymptotic normality of �̃′
n(0). The logarithm of the local pseudo-partial

likelihood function can be written as

�̃′
n(0) = 1

n

n∑
i=1

J∑
j=1

∫ τ

0
Kh(Vij − v)

[
U∗

ij (w) − Snj1(w, v)

Snj0(w, v)

]
dMij (w)

+ 1

n

n∑
i=1

J∑
j=1

∫ τ

0
Kh(Vij − v)

[
U∗

ij (w) − Snj1(w, v)

Snj0(w, v)

]
× exp

(
β0(Vij )

T Zij (w) + g0(Vij )
)
Yij (w)λ0j (w)dw

≡ I1(τ,0) + I2(τ,0).

We first deal with I2(τ,0). Noting that

I2(τ,0) = 1

n

n∑
i=1

J∑
j=1

∫ τ

0

(
U∗

ij (w) − Snj1(w)

Snj0(w)

)
× [

exp{β0(Vij )
T Zij (w) + g0(Vij )}

− exp
(
ξT

0 X∗
ij + g0(v)

)]
×Kh(Vij − v)Yij (w)λ0j (w)dw,

it follows from a Taylor expansion and Lemma 1 that

I2(τ,0) = 1

2n

n∑
i=1

J∑
j=1

∫ τ

0

[
U∗

ij (w) − s∗
j1(w)

s∗
j0(w)

]
Yij (w) exp

(
ξT

0 X∗
ij + g0(v)

)
× [β ′′

0(v)T Zij (w) + g′′
0 (v)](Vij − v)2Kh(Vij − v)

× λ0j (w)dw
(
1 + OP (h)

)
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= 1

2
h2

J∑
j=1

fj (v)

∫ τ

0
E

{[(
Zj (w)µ2
Zj (w)µ3

µ3

)
− s∗

j1(w)µ2

s∗
j0(w)

]
ρ(w,Zj (w), v)

× [β ′′
0 (v)T Zj (w) + g′′

0 (v)]
∣∣∣Vj = v

}
× λ0j (w)dw

(
1 + OP (h)

)
,

where s∗
jk(w) = s∗

jk(w, θ0, v) for k = 0,1,2. Since K(·) is a symmetric function,
by simple calculation we have

I2(τ,0) = Bn(τ, v) = 1
2h2ν2[(�−1β ′′

0(v))T ,0T ,0]T (1 + OP (h)
)
.(20)

We now consider I1(τ,0). Let Bnij (τ ) = ∫ τ
0 Kh(Vij − v)[U∗

ij (w) −
sj1(w,ζ ,v)

sj0(w,ζ ,v)
]dMij (w). By conditions (vi)–(x), Lemma 2, Lemma A.1 of [25] and

some tedious and routine calculation, we can prove that

1

n

n∑
i=1

∫ τ

0
Kh(Vij − v)

[
Snj1(w, v)

Snj0(w, v)
− sj1(w, v)

sj0(w, v)

]
dMij (w) = OP ((nh)−1/2).

Hence, it follows that

I1(τ,0) = 1

n

n∑
i=1

J∑
j=1

Bnij (τ ) + oP (1).

Note that
√

nhI1(τ,0) is a sum of i.i.d. random vectors
∑J

j=1 Bnij (τ ) with zero
mean and finite variance. The desired asymptotic normality follows from the mul-
tivariate central limit theorem by using the Lyapunov condition. It can be shown
that the asymptotic variance is

� = lim
n→∞Eh

(
J∑

i=1

Bnij (τ )

)⊗2

=
J∑

j=1

lim
n→∞EhBn1j (τ )⊗2 +

J∑
l=1

J∑
j=1,j �=l

lim
n→∞EhBn1j (τ )Bn1l(τ )T .

(21)

Note that
∑n

i=1 Bnij (t) is a local square-integrable martingale with respect to
the filtration

⋃n
i=1 Ft,ij = σ {Nij (w

−),Zij (w),Vij , Yij (w),0 ≤ w ≤ t, i = 1,2,

. . . , n}. Hence, it can be shown that the first term of (21) converges to D. By the
Cauchy–Schwarz inequality, we can easily see that limn→∞ EhBn1j (τ )Bn1l(τ )T

exists. Write �j l(τ, v) = limn→∞ EhBn1j (τ )Bn1l(τ )T . Hence, we can prove that
the second term of (21) converges to �0(τ, v) = ∑

l �=j �lj (τ, v) for the limit ma-
trix �lj (τ, v). The proof of Theorem 2 is then completed by using the asymptotic
results for I1(τ,0) and I2(τ,0).

(b) Convergence of the Hessian matrix. We shall show that the second derivative
of the logarithm of the local pseudo-partial likelihood function converges to a finite
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constant matrix. We have shown in Theorem 1 that ζ̂ → 0 in probability. Hence,
by the mean value theorem, we have

�̃′′
n(ζ̂ ) = �̃′′

n(0) + oP (1).(22)

Since s∗
jk(w) = sjk(w) exp(g0(v)), k = 0,1,2, from Lemma 2, we can obtain

�̃′′
n(0) = 1

n

∫ τ

0

n∑
i=1

J∑
j=1

Kh(Vij − v)
s∗
j2(w)s∗

j0(w) − s∗
j1(w)(s∗

j1(w))T

(s∗
j0(w))2 dNij (w)

+ oP (1).

Write Fu(w) = P(X ≤ w,� = 1|Vj = u) and denote its corresponding condi-
tional empirical distribution F̃nj (w) = 1

n

∑n
i=1 Kh(Vij − v)I (Xij ≤ w,�ij = 1).

By means of the conventional argument used in kernel smoothing, together with
empirical process theory, it can be shown that

�̃′′
n(0) =

J∑
j=1

∫ τ

0

s∗
j2(w)s∗

j0(w) − s∗
j1(w)(s∗

j1(w))T

(s∗
j0(w))2 dF̃nj (w)

= −A(τ, v) + oP (1),

(23)

where A(τ, v) = ∑J
j=1

∫ τ
0

s∗
j2(w)s∗

j0(w)−s∗
j1(w)(s∗

j1(w))T

(s∗
j0(w))2 dFu(w). It is easy to show

that A(τ, v) is positive definite by condition (vii).

(c) Asymptotic normality of ξ̂(v). Since ζ̂ maximizes �̃n(ζ ), by Taylor expan-
sion around 0, we have

−�̃′
n(0) = �̃′

n(ζ̂ ) − �̃′
n(0) = (�̃′′

n(ζ̂
∗
))T ζ̂ ,

where ζ̂
∗

lies between 0 and ζ̂ (strictly speaking, the intermediate point can de-
pend on the element of �̃′

n, but this does not alter the proof). Hence, ζ̂
∗ → 0 in

probability. It follows from (23) that

ζ̂ − A(τ, v)−1Bn(τ, v) = −(�̃′′
n(ζ̂

∗
))−1(�̃′

n(0) − Bn(τ, v)
)+ oP (1).

By Theorem 1, (23) and Slutsky’s theorem, we obtain that
√

nh
(
ζ̂ − A(τ, v)−1Bn(τ, v)

)→ N
(
0,A−1(τ, v)�(τ, v)A−1(τ, v)

)
.

We now simplify the matrix A(τ, v). By some simple calculation, we have

s∗
j2(w) =

aj2(w) 0 0
0 aj2(w)µ2 aj1(w)µ2

0 aT
j1(w)µ2 aj0(w)µ2

 .(24)

Similarly, we obtain that (s∗
j1(w))⊗2 = diag(aj1(w)aT

j1(w),0). Note that s∗
j0(w) =

aj0(w). By some tedious basic calculation, we have A(τ, v) = diag(�−1,Q2µ2).
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Hence, the asymptotic bias of the estimator ξ̂(v) is b(τ, v) = A−1(τ, v)Bn(τ, v) =
h2epξ ′′

0(v)µ2/2 and the asymptotic covariance is

	(τ, v) = A−1(τ, v)�(τ, v)(A−1(τ, v))T

= diag(�,Qµ−2
2 ν2) + A−1�0(A−1)T .

Therefore, we have finished the proof of the asymptotic normality of the maximum
local pseudo-partial likelihood function estimator. �

From the proof of Theorems 2 and 3, we have the following result. If nh4 → 0,
then

sup
u∈�V,ε

|(nh)1/2H{ξ̂(u) − ξ0(u)} − A−1(τ, ξ0(u))�′
n(ξ0(u), τ )| = oP (h−1/2).(25)

PROOF OF THEOREM 4. By arguments similar to those used in proving
Lemma 1, it can be shown that

sup
t∈[0,τ ]

sup
‖θ−θ0‖≤‖θ̂−θ0‖

n−1|ψnj (t, θ) − ψnj (t, θ0)| −→ 0(26)

in probability, where

ψnj (t, θ) =
n∑

i=1

I (Vij ∈ V)Yij (t) exp{βT (Vij )Zij (t) + g(Vij )},

θ equaling (βT (·), g(·))T . By the definition of �̂0j (t), we can show that �̂0j (t) −
�0j (t) can be represented by a summation of three terms that are functionals of
ψnj (t, θ) − ψnj (t, θ0) and it follows that these terms are negligible in the sense
of probability. Hence, �̂0j (t) → �0j (t), uniformly on (0, τ ]. Therefore, we can
prove by the standard argument of kernel estimation that λ̂0j (t) → λ0j (t), uni-
formly on (0, τ ]. �

PROOF OF THEOREM 5. By (25), Theorem 2 and an argument similar to that
of Theorem 3 in [25], we can prove Theorem 5. �

Acknowledgments. The authors thank Dr. Matthew Knuiman and the Bussel-
ton Population Medical Research Foundation in Western Australia for providing
the data used in the illustration and are grateful to the Associate Editor and referees
for helpful comments.

REFERENCES

[1] ANDERSEN, P. K. and GILL, R. D. (1982). Cox’s regression model for counting processes:
A large sample study. Ann. Statist. 10 1100–1120. MR0673646

[2] ANDERSON, J. E. and LOUIS, T. A. (1995). Survival analysis using a scale change random
effects model. J. Amer. Statist. Assoc. 90 669–679. MR1340521

http://www.ams.org/mathscinet-getitem?mr=0673646
http://www.ams.org/mathscinet-getitem?mr=1340521


MULTIVARIATE HAZARDS REGRESSION 353

[3] CAI, J. and PRENTICE, R. L. (1995). Estimating equations for hazard ratio parameters based
on correlated failure time data. Biometrika 82 151–164. MR1332846

[4] CAI, J. and PRENTICE, R. L. (1997). Regression estimation using multivariate failure time
data and a common baseline hazard function model. Lifetime Data Anal. 3 197–213.

[5] CAI, J. and SHEN, Y. (2000). Permutation tests for comparing marginal survival functions with
clustered failure time data. Stat. Med. 19 2963–2973.

[6] CAI, Z., FAN, J. and LI, R. (2000). Efficient estimation and inferences for varying-coefficient
models. J. Amer. Statist. Assoc. 95 888–902. MR1804446

[7] CAI, Z. and SUN, Y. (2003). Local linear estimation for time-dependent coefficients in Cox’s
regression models. Scand. J. Statist. 30 93–111. MR1963895

[8] CARROLL, R. J., FAN, J., GIJBELS, I. and WAND, M. P. (1997). Generalized partially linear
single-index models. J. Amer. Statist. Assoc. 92 477–489. MR1467842

[9] CARROLL, R. J., RUPPERT, D. and WELSH, A. H. (1998). Local estimating equations. J.
Amer. Statist. Assoc. 93 214–227. MR1614624

[10] CLAYTON, D. and CUZICK, J. (1985). Multivariate generalizations of the proportional hazards
model. J. Roy. Statist. Soc. Ser. A 148 82–117. MR0806480

[11] COX, D. R. (1972). Regression models and life-tables (with discussion). J. Roy. Statist. Soc.
Ser. B 34 187–220. MR0341758

[12] CULLEN, K. J. (1972). Mass health examinations in the Busselton population, 1966 to 1970.
Medical J. Australia 2 714–718.

[13] FAN, J. and CHEN, J. (1999). One-step local quasi-likelihood estimation. J. R. Stat. Soc. Ser. B
Stat. Methodol. 61 927–943. MR1722248

[14] FAN, J., FARMEN, M. and GIJBELS, I. (1998). Local maximum likelihood estimation and
inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 591–608. MR1626013

[15] FAN, J., GIJBELS, I. and KING, M. (1997). Local likelihood and local partial likelihood in
hazard regression. Ann. Statist. 25 1661–1690. MR1463569

[16] FAN, J. and LI, R. (2002). Variable selection for Cox’s proportional hazards model and frailty
model. Ann. Statist. 30 74–99. MR1892656

[17] HASTIE, T. J. and TIBSHIRANI, R. J. (1993). Varying-coefficient models (with discussion). J.
Roy. Statist. Soc. Ser. B 55 757–796. MR1229881

[18] KALBFLEISCH, J. D. and PRENTICE, R. L. (2002). The Statistical Analysis of Failure Time
Data, 2nd ed. Wiley, Hoboken, NJ. MR1924807

[19] KNUIMAN, M. W., CULLEN, K. J., BULSARA, M. K., WELBORN, T. A. and HOBBS, M. S.
T. (1994). Mortality trends 1965 to 1989 in Busselton, the site of repeated health surveys
and interventions. Australian J. Public Health 18 129–135.

[20] LIN, D. Y. (1994). Cox regression analysis of multivariate failure time data: The marginal
approach. Stat. Med. 13 2233–2247.

[21] MURPHY, S. A. (1993). Testing for a time dependent coefficient in Cox’s regression model.
Scand. J. Statist. 20 35–50. MR1221960

[22] OAKES, D. and JEONG, J. (1998). Frailty models and rank tests. Lifetime Data Anal. 4 209–
228.

[23] R̆ER̆ICHA, V., KULICH, M., R̆ER̆ICHA, R., SHORE, D. and SANDLER, D. (2006). Incidence
of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: A case-cohort
study. Environmental Health Perspectives 114 818–822.

[24] ROBINSON, P. M. (1988). The stochastic difference between econometric statistics. Economet-
rica 56 531–548. MR0946120

[25] SPIEKERMAN, C. F. and LIN, D. Y. (1998). Marginal regression models for multivariate fail-
ure time data. J. Amer. Statist. Assoc. 93 1164–1175. MR1649210

[26] TIAN, L., ZUCKER, D. and WEI, L. J. (2002). On the Cox model with time-varying regression
coefficients. Working paper, Dept. Biostatistics, Harvard Univ.

http://www.ams.org/mathscinet-getitem?mr=1332846
http://www.ams.org/mathscinet-getitem?mr=1804446
http://www.ams.org/mathscinet-getitem?mr=1963895
http://www.ams.org/mathscinet-getitem?mr=1467842
http://www.ams.org/mathscinet-getitem?mr=1614624
http://www.ams.org/mathscinet-getitem?mr=0806480
http://www.ams.org/mathscinet-getitem?mr=0341758
http://www.ams.org/mathscinet-getitem?mr=1722248
http://www.ams.org/mathscinet-getitem?mr=1626013
http://www.ams.org/mathscinet-getitem?mr=1463569
http://www.ams.org/mathscinet-getitem?mr=1892656
http://www.ams.org/mathscinet-getitem?mr=1229881
http://www.ams.org/mathscinet-getitem?mr=1924807
http://www.ams.org/mathscinet-getitem?mr=1221960
http://www.ams.org/mathscinet-getitem?mr=0946120
http://www.ams.org/mathscinet-getitem?mr=1649210


354 J. CAI, J. FAN, H. ZHOU AND Y. ZHOU

[27] VAUPEL, J. W., MANTON, K. G. and STALLARD, E. (1979). The impact of heterogeneity in
individual frailty on the dynamics of mortality. Demography 16 439–454.

[28] WEI, L. J., LIN, D. Y. and WEISSFELD, L. (1989). Regression analysis of multivariate in-
complete failure time data by modeling marginal distributions. J. Amer. Statist. Assoc. 84
1065–1073. MR1134494

J. CAI

H. ZHOU

DEPARTMENT OF BIOSTATISTICS

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

CHAPEL HILL, NORTH CAROLINA 27599-7420
USA
E-MAIL: cai@bios.unc.edu

zhou@bios.unc.edu

J. FAN

DEPARTMENT OF OPERATIONS RESEARCH

AND FINANCIAL ENGINEERING

PRINCETON UNIVERSITY

PRINCETON, NEW JERSEY 08540
USA
E-MAIL: jgfan@princeton.edu

Y. ZHOU

INSTITUTE OF APPLIED MATHEMATICS AND

CENTER OF STATISTICS

ACADEMY OF MATHEMATICS AND

SYSTEMS SCIENCE

CHINESE ACADEMY OF SCIENCES

BEIJING 100080
CHINA

E-MAIL: yzhou@amss.ac.cn

http://www.ams.org/mathscinet-getitem?mr=1134494
mailto:cai@bios.unc.edu
mailto:zhou@bios.unc.edu
mailto:jgfan@princeton.edu
mailto:yzhou@amss.ac.cn

	Introduction
	Marginal hazards model with varying coefficients
	Local pseudo-partial likelihood estimation
	Assumptions and notation
	Asymptotic properties
	Estimation of the baseline hazard function
	One-step local pseudo-partial likelihood estimator

	Weighted average estimator
	Numerical examples
	Simulations
	Application to Busselton population health surveys

	Concluding remarks
	Proofs
	Acknowledgments
	References
	Author's Addresses

