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INFERENCE FOR COVARIATE ADJUSTED REGRESSION VIA
VARYING COEFFICIENT MODELS1
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Pennsylvania State University and University of California, Davis

We consider covariate adjusted regression (CAR), a regression method
for situations where predictors and response are observed after being distorted
by a multiplicative factor. The distorting factors are unknown functions of
an observable covariate, where one specific distorting function is associated
with each predictor or response. The dependence of both response and pre-
dictors on the same confounding covariate may alter the underlying regres-
sion relation between undistorted but unobserved predictors and response.
We consider a class of highly flexible adjustment methods for parameter es-
timation in the underlying regression model, which is the model of interest.
Asymptotic normality of the estimates is obtained by establishing a connec-
tion to varying coefficient models. These distribution results combined with
proposed consistent estimates of the asymptotic variance are used for the con-
struction of asymptotic confidence intervals for the regression coefficients.
The proposed approach is illustrated with data on serum creatinine, and fi-
nite sample properties of the proposed procedures are investigated through a
simulation study.

1. Introduction. For many statistical applications, a multiple linear regres-
sion model is a standard tool,

Yni = γ0 +
p∑

r=1

γrXnri + eni,(1)

for data (Xnri, Yni), i = 1, . . . , n, r = 1, . . . , p, where γ0 and γr are unknown pa-
rameters, Yni is the response, Xnri is the r th predictor and eni is the error term
for the ith subject in the sample. An implicit assumption is that predictors and
response are directly observable. However, in some situations both response and
predictor variables may be distorted under the influence of a confounding variable.
In this paper we consider a variant of (1), where one observes contaminated ver-
sions of predictors and response. Contamination of the variables in the regression
model occurs through a multiplicative factor that is determined by the value of
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an unknown function of an observable covariate U . That is, instead of observing
Xnri and Yni, one actually observes distorted variables X̃nri and Ỹni,

X̃nri = φr(Uni)Xnri, r = 1, . . . , p, Ỹni = ψ(Uni)Yni.(2)

Here ψ(·) and φr(·) are unknown smooth functions of the contaminating covari-
ate U , and the available observations are (Uni, X̃nri, Ỹni).

An example where a model of this type is relevant are the creatinine data that
are explored further in Section 5. Here serum creatinine levels are regressed on
cholesterol level and serum albumin. The observed response and the two predic-
tors are known to depend on body mass index, defined as Kg/m2, which thus has
a confounding effect on the regression relation. Therefore, we investigate the ap-
plication of a multiplicative confounding via model (2), where the confounding
variable U is taken to be body mass index. “Normalization” by weight or body
mass index is common in the analysis of medical data, and this refers to sim-
ply dividing the measured quantities by these confounding variables. This type of
normalization implicitly assumes that the confounding is of a multiplicative na-
ture. The adjustment considered in this paper applies to a class of more general
multiplicative confounding where the effects of the confounder are modeled by
unknown distorting functions ψ(·) and φr(·). This leads to flexible models that
include a large class of confounding mechanisms. Reasonable identifiability con-
ditions for these functions are

E{ψ(U)} = 1, E{φr(U)} = 1, r = 1, . . . , p,(3)

corresponding to the assumption that the mean distorting effect vanishes. Ad-
ditional basic assumptions are that the (Xr,U, e) are mutually independent for
r = 1, . . . , p, and that observations made on different subjects are independent,
with E(eni) = 0, and var(eni) = σ 2. The assumption that the underlying predic-
tors, Xr , and response, Y , are independent of the contaminating variable U is an
assumption defining the proposed contamination setting through defining these un-
observed, underlying variables; and for that matter it is not one that can be checked
in practice. Thus, the question to be answered in practice is whether or not these
independence conditions help define interpretable latent variables of interest from
their observable counterparts. In our creatinine example, the latent variables are
defined to be body mass index adjusted serum protein levels and cholesterol level,
which are commonly used in medical studies.

The contamination of the predictor and response in a multiplicative fashion as
given in (2) can alter the regression relation between the original response and
predictors completely. It has also been shown for the case of simple linear regres-
sion that standard adjustment methods such as nonparametric partial regression or
partial regression cannot adjust for the multiplicative contamination [11]. There-
fore, a modified parameter estimation procedure is necessary, one which accounts
for the multiplicative confounding effect of U . Such a procedure was proposed



656 D. ŞENTÜRK AND H.-G. MÜLLER

in [11], where consistent parameter estimation in the model (1)–(3) was estab-
lished. This estimation procedure relies on the fact that regressing Ỹ on X̃1, . . . , X̃p

gives rise to a varying coefficient model. Furthermore, a main attraction of this es-
timation procedure is that under the identifiability conditions of vanishing mean
distorting effects, it also works for the case of additive contamination, that is,
X̃nri = φr(Uni) + Xnri, Ỹni = ψ(Uni) + Yni, and for no contamination, that is,
φr(Uni) = ψ(Uni) = 1 for r = 1, . . . , p. Thus, the proposed estimation proce-
dure provides a flexible and general tool for adjustment, where the specific na-
ture of the contamination of the variables or even its mere existence need not be
known.

The aim of this paper is to derive the asymptotic distribution of these parame-
ter estimates, and to discuss applications to confidence intervals. We show that
our proposed parameter estimates are asymptotically normal, and combining this
result with consistent estimation of the asymptotic variance leads to asymptotic
inference.

The paper is organized as follows. In Section 2 we describe the model in detail.
In Section 3 issues of estimation are discussed and the results on asymptotic infer-
ence are presented. Consistent estimates for the asymptotic variance are derived in
Section 4. Applications of the proposed method to creatinine data and simulation
studies are in Section 5. The proofs of the main results are assembled in Section 6,
followed by the Appendix with some additional technical conditions and auxiliary
results.

2. Covariate adjustment via varying coefficient regression. Consider the
model (1)–(3). Writing X̃ni = (X̃n1i , . . . , X̃npi), the regression of the observed re-
sponse on the observed predictors leads to

E(Ỹni|X̃T
ni,Uni)

= E{Yniψ(Uni)|φ1(Uni)Xn1i , . . . , φp(Uni)Xnpi,Uni}
= ψ(Uni)E

{
γ0 +∑γrXnri + eni|φ1(Uni)Xn1i , . . . , φp(Uni)Xnpi,Uni

}
.

Assuming that E(eni) = 0 and that (e, U , Xr ) are mutually independent for r =
1, . . . , p, the model reduces to

E(Ỹni|X̃T
ni,Uni) = ψ(Uni)γ0 + ψ(Uni)

∑
γr

φr(Uni)Xnri

φr(Uni)
(4)

= β0(Uni) +∑βr(Uni)X̃nri.

Defining the functions

β0(u) = ψ(u)γ0, βr(u) = γr

ψ(u)

φr(u)
,(5)
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we obtain

Ỹni = β0(Uni) +∑βr(Uni)X̃nri + ε(Uni),

where ε(u) = ψ(u)e.
We find that this is a multiple varying coefficient model, that is, an extension of

regression and generalized regression models where the coefficients are allowed to
vary as a smooth function of a third variable [5]. A unique feature is that both the
response and predictors depend on the covariate U .

For varying coefficient models, Hoover, Rice, Wu and Yang [6] have proposed
smoothing methods based on local least squares and smoothing splines, and re-
cent approaches include a componentwise kernel method [13], a componentwise
spline method [2] and a method based on local maximum likelihood estimates [1].
Wu and Yu [14] provide a review of recent developments. We derive asymptotic
distributions for an estimation method that is tailored to this special model.

3. Estimation and asymptotic distributions. The estimates of the regres-
sion coefficients γr will be obtained by targeting weighted averages of the smooth
varying coefficient functions. Even though various smoothing methods have been
proposed in the literature for the estimation of these smooth varying coefficient
functions, we propose a smoothing method based on binning. The main reason for
the use of the binning approach is its simplicity in targeting the desired weighted
averages, rather than its performance on estimating the varying coefficient func-
tions themselves. Nevertheless, the proposed binning approach has similarities
with earlier developments for longitudinal data in Fan and Zhang [3], who use
the data collected at each fixed time point to fit a linear regression, obtaining the
raw estimators for the smooth varying coefficient functions.

Generalizing this idea to our independent and identically distributed data
scheme, we assume that the covariate U is bounded below and above, −∞ < a ≤
U ≤ b < ∞ for real numbers a < b, and divide the interval [a, b] into m equidis-
tant intervals denoted by Bn1, . . . ,Bnm, referred to as bins. Given m, the Bnj,
j = 1, . . . ,m, are fixed, but the number of Uni’s falling into Bnj is random and
is denoted by Lnj. For every Uni falling in the j th bin, that is, Uni ∈ Bnj, the corre-
sponding observed predictors are X̃n1i , . . . , X̃npi and the response is Ỹni.

After binning the data, we fit a linear regression of Ỹni on X̃n1i , . . . , X̃npi fusing
the data falling within each bin Bnj, j = 1, . . . ,m. The least squares estimates
of the resulting multiple regression for the data in the j th bin are denoted by
β̂T

nj = (β̂n0j , . . . , β̂npj)
T . The estimators of γn0 and γnr, for r = 1, . . . , p, are then

obtained as weighted averages of the β̂nj’s, weighted according to the number of
data Lnj in the j th bin,

γ̂n0 =
m∑

j=1

Lnj

n
β̂n0j(6)
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and

γ̂nr = 1
¯̃
Xnr

m∑
j=1

Lnj

n
β̂nrj

¯̃
X′

nrj,(7)

where ¯̃
Xnr = n−1∑n

i=1 X̃nri and ¯̃
X′

nrj is the average of the X̃nri falling in Bnj,

that is, L−1
nj
∑n

i=1 X̃nri1{Uni∈Bnj} [11]. These estimates are motivated by

E{β0(U)} = γ0 and E{βr(U)X̃r} = γrE(X̃r) [see (5) and (3)].
We present the asymptotic distribution of estimates γ̂n0 in (6), γ̂nr in (7) for

γ0, γr in model (1), when the number of subjects n tends to infinity. As in
typical smoothing applications, the number of bins m = m(n) is required to
satisfy m → ∞, n/(m logn) → ∞ and m/

√
n → ∞ as n → ∞. We denote

convergence in distribution by
D→ and convergence in probability by

p→.

THEOREM 1. Under the technical conditions (C1)–(C7) in Section 6, on
event En [defined in (12)] with P(En) → 1 as n → ∞,

√
n(γ̂nr − γr)

D→ N(0, σ 2
r ), 0 ≤ r ≤ p,

where

σ 2
0 = γ 2

0 var{ψ(U)} + σ 2(X−1)11E{ψ2(U)},

σ 2
r = γ 2

r [E(X2
r )E{ψ2(U)} − {E(Xr)}2] + σ 2{E(Xr)}2E{ψ2(U)}(X−1)rr

{E(Xr)}2

− 2γ 2
r [E{φr(U)ψ(U)}E(X2

r ) − {E(Xr)}2] + γ 2
r var(X̃r)

{E(Xr)}2 , 1 ≤ r ≤ p,

and

X =




1 E(X1) . . . E(Xp)

E(X1) E(X2
1) . . . E(X1Xp)

...
. . .

...

E(Xp) E(X1Xp) . . . E(X2
p)


(8)

is assumed to be nonsingular, according to condition (C5) in Section 6.

4. Estimating the asymptotic variance. The observable data is of the form
(Uni, X̃

T
ni, Ỹni), i = 1, . . . , n, for a sample of size n, where X̃ni = (X̃n1i , . . . , X̃npi)

are the p-dimensional predictors. Correspondingly, the underlying unobserv-
able predictors, responses and errors are (XT

ni, Yni, eni), i = 1, . . . , n, where
Xni = (Xn1i , . . . ,Xnpi). Let {(U ′

njk, X̃
′
nrjk, Ỹ

′
njk,X

′
nrjk, Y

′
njk, e

′
njk), k = 1, . . . ,Lnj,

r = 1, . . . , p} = {(Uni, X̃nri, Ỹni,Xnri, Ynri, enri), i = 1, . . . , n, r = 1, . . . , p :
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Uni ∈ Bnj} denote the data for which Uni ∈ Bnj, where we refer to (U ′
njk, X̃

′
nrjk, Ỹ

′
njk,

X′
nrjk, Y

′
njk, e

′
njk) as the kth element in bin Bnj. Further let (U ′T

nj , X̃′
nj, Ỹ

′T
nj ,X′

nj, Y
′T
nj ,

e′T
nj ) be the data matrix belonging to the j th bin, where U ′

nj = (U ′
nj1, . . . ,U

′
njLnj

),

Ỹ ′
nj = (Ỹ ′

nj1, . . . , Ỹ
′
njLnj

), Y ′
nj = (Y ′

nj1, . . . , Y
′
njLnj

), e′
nj = (e′

nj1, . . . , e
′
njLnj

) and X̃′
njk =

(1, X̃′
n1jk, . . . , X̃

′
npjk), X′

njk = (1,X′
n1jk, . . . ,X

′
npjk) for k = 1, . . . ,Lnj contain p

components of the kth element in bin j , and

X̃′
nj = (

X̃′T
nj1, . . . , X̃

′T
njLnj

)T
Lnj×(p+1), X′

nj = (
X′T

nj1, . . . ,X
′T
njLnj

)T
Lnj×(p+1).

Then we can express the least squares estimates of the multiple regression of
the observable data falling in the j th bin Bnj as

β̂T
nj = (β̂n0j , . . . , β̂npj)

T = (X̃′T
nj X̃

′
nj)

−1X̃′T
nj Ỹ

′T
nj ,(9)

leading to the parameter estimates γ̂n0 and γ̂nr given in (6) and (7), respectively,

where ¯̃
Xnr = n−1∑n

i=1 X̃nri and ¯̃
X′

nrj = L−1
nj
∑Lnj

k=1 X̃′
nrjk.

Let γ̃nj be the least squares estimates of the multiple regression of the unobserv-
able data falling into Bnj, that is,

γ̃ T
nj = (γ̃n0j , . . . , γ̃npj)

T = (X′T
nj X

′
nj)

−1X′T
nj Y

′T
nj .(10)

This quantity is not estimable, but will be used in the proof of the main results.
For the estimates given in (6) and (7) to be well defined, the least squares es-

timate β̂nj must exist for each bin Bnj. This requires that the inverse of X̃′T
nj X̃

′
nj is

well defined, that is, det(X̃′T
nj X̃

′
nj) �= 0. Correspondingly, γ̃nj will exist under the

condition that det(X′T
nj X

′
nj) �= 0. Define the events

Ãn =
{
ω ∈ � : inf

j
|det(L−1

nj X̃′T
nj X̃

′
nj)| > ζ and min

j
Lnj > p

}
,

(11)

An =
{
ω ∈ � : inf

j
|det(L−1

nj X′T
nj X

′
nj)| > ζ and min

j
Lnj > p

}
,

where ζ = min{ρ/2, [infj (φ2
1(U ′∗

nj ), . . . , φ
2
p(U ′∗

nj ))]pρ/2}, ρ is as defined in (C5),

U ′∗
nj = L−1

nj
∑Lnj

k=1 U ′
njk is the average of the U ’s in Bnj and (�,F ,P ) is the un-

derlying probability space. On event Ãn, γ̂n0 and γ̂nr given in (6) and (7), and on
event An, γ̃nj given in (10) are well defined, respectively. Event En in Theorems
1 and 2 is defined to be the intersection of An and Ãn, that is,

En = A ∩ Ãn.(12)

It is shown in Appendix A.3 that P(En) → 1 as n → ∞.
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THEOREM 2. Under the technical conditions (C1)–(C7) in Section 6, on
event En [defined in (12)] with P(En) → 1 as n → ∞,

σ̂ 2
nr

p→ σ 2
r , 0 ≤ r ≤ p,

where

σ̂ 2
n0 =

(
m∑

j=1

Lnj

n
β̂2

n0j − γ̂ 2
n0

)

+
{

1

n

m∑
j=1

Lnj∑
k=1

(Ỹ ′
njk − β̂n0j − β̂n1j X̃

′
n1jk − · · · − β̂npjX̃

′
npjk)

2

}

×
{

m∑
j=1

Lnj

n
(L−1

nj X̃′T
nj X̃

′
nj)

−1
11

}
,

σ̂ 2
nr =

[
1

n

m∑
j=1

β̂2
nrj

Lnj∑
k=1

X̃′2
nrjk + γ̂ 2

nr
¯̃
X2

nr − 2
γ̂nr

n

m∑
j=1

β̂nrj

Lnj∑
k=1

X̃′2
nrjk + γ̂ 2

nrs
2
X̃r

+
{

1

n

m∑
j=1

Lnj∑
k=1

(Ỹ ′
njk − β̂n0j − β̂n1j X̃

′
n1jk − · · · − β̂npjX̃

′
npjk)

2

}

×
{

m∑
j=1

Lnj

n

¯̃
X2

nrj(L
−1
nj X̃′T

nj X̃
′
nj)

−1
rr

}]/ ¯̃
X2

nr,

1 ≤ r ≤ p,

and s2
X̃r

= (n − 1)−1∑n
i=1(X̃nri − ¯̃

Xnr)
2.

REMARK. These proposed variance estimates are motivated by the identi-
fiability conditions, the definition of the smooth varying coefficient functions
given in (5), Lemma A.3 and Lemma A.4(a). Using the consistency of β̂nrj

for the value of the function βr at the midpoint of the j th bin and the defi-
nitions of Ỹ ′

njk and X̃′
nrjk, we target the quantities σ 2E{ψ(U)}, γ 2

0 E{ψ2(U)},
γ 2
r E(X2

r )E{ψ2(U)} and γ 2
r E{φr(U)ψ(U)}E(X2

r ) with the estimators n−1 ×∑m
j=1

∑Lnj
k=1(Ỹ

′
njk − β̂n0j − β̂n1j X̃

′
n1jk − · · · − β̂npjX̃

′
npjk)

2,
∑m

j=1 n−1Lnjβ̂
2
n0j ,

n−1∑m
j=1 β̂2

nrj
∑Lnj

k=1 X̃′2
nrjk and n−1γ̂nr

∑m
j=1 β̂nrj

∑Lnj
k=1 X̃′2

nrjk, respectively. Fur-

thermore, relying mainly on Lemmas A.3 and A.4(a), we target (X−1)11 and

{E(Xr)}2(X−1)rr with
∑m

j=1 n−1Lnj(L
−1
nj X̃′T

nj X̃
′
nj)

−1
11 and

∑m
j=1 n−1Lnj

¯̃
X2

nrj ×
(L−1

nj X̃′T
nj X̃

′
nj)

−1
rr , respectively.
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5. Applications and Monte Carlo study. Under the technical conditions
(C1)–(C7) in Section 6,

√
n

σr

(γ̂nr − γr)
D→ N(0,1), 0 ≤ r ≤ p as n → ∞.(13)

Using the consistent estimate σ̂ 2
nr of σ 2

r proposed in Theorem 2, it follows
from (13) and Slutsky’s theorem that

√
n

σ̂nr
(γ̂nr − γr)

D→ N(0,1), 0 ≤ r ≤ p,

so that an approximate (1 − α) asymptotic confidence interval for γr has the end-
points

γ̂nr ± zα/2
σ̂nr√

n
.(14)

Here zα/2 is the (1 − α/2)th quantile of the standard Gaussian distribution.

5.1. Application to creatinine data. An observational study in which various
laboratory and patient data were analyzed for patients with end-stage renal dis-
ease is described in [7]. To illustrate our methods, we analyzed a similar but much
smaller set of data and note that our analysis does not provide inference for the
data in [7]. Variables include serum creatinine level (CRT), cholesterol level (CH),
serum albumin level (ALB) and body mass index (BMI), measured for n = 508
subjects. Creatinine is a protein produced by muscle and released into the blood.
Since the amount produced is relatively stable, the creatinine level in the serum is
determined by the rate at which it is removed, and is therefore an important indica-
tor of renal function. We analyze the dependence of serum creatinine (response) on
cholesterol level and serum albumin (predictors). An unadjusted approach would
be to fit the multiple regression model CRT = γ0 + γ1CH + γ2ALB + e, where
e is an error term, usually by least squares. Body mass index (BMI) is defined as
weight/height2 and is known to affect both the response and the predictors. This
provides the motivation to adjust for this influence by means of the CAR model (4),
(5), using body mass index as the confounder U .

The parameters γ0, γ1 and γ2 were estimated by the CAR algorithm and the
results were compared to the estimates obtained from the least squares regression
of the observed CRT on observed CH and ALB. The estimates and the approxi-
mate 95% asymptotic confidence intervals for the regression parameters obtained
through both methods are displayed in Table 1. The approximate confidence inter-
vals for CAR estimates were obtained as proposed in (14). The scatter-plots of the
raw estimates (β̂nr1, . . . , β̂nrm) (9) versus midpoints of the bins (Bn1, . . . ,Bnm) are
shown in Figure 1 for r = 0,1,2.

The implementation of the binning algorithm allows for merging of sparsely
populated bins. Bin widths were chosen such that there are at least (p + 1) points,
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TABLE 1
Parameter estimates for the regression model CRT = γ0 + γ1CH + γ2ALB + e, obtained by least

squares regression of Ỹ = CRT (serum creatinine level ) on X̃1 = CH (cholesterol level )
and X̃2 = ALB (serum albumin level ), and alternatively by covariate

adjusted regression, for n = 508 subjects

Least sq. reg. Covariate adj. reg.

Coefficients Lower b. Estimate Upper b. Lower b. Estimate Upper b.

Intercept 1.2715 4.3685 7.4656 0.3679 3.9987 7.6296
CH −0.0106 −0.0041 0.0023 −0.0154 −0.0082 −0.0009
ALB 1.1819 1.9729 2.7639 1.3065 2.2532 3.2000

Confidence intervals at the 95% level were obtained by the standard t-statistic for least squares
regression and by the proposed asymptotic intervals (14) for CAR, respectively.

FIG. 1. Scatter-plots of the raw estimates (β̂nr1, . . . , β̂nrm) versus midpoints of the bins
(Bn1, . . . ,Bnm) for r = 0 (top left panel )and r = 1 (top right panel ) and r = 2 (bottom left panel)
in the CAR model CRT = β0(BMI) + β1(BMI)CH + β2(BMI)ALB + ε(BMI). Local polynomial
smooth curves have been fitted through the scatter-plots using cross-validation bandwidth choices
of h = 8,7,7, respectively, for r = 0,1,2. CRT = serum creatinine level, CH = cholesterol level,
ALB = serum albumin level and BMI = body mass index. Sample size is 508, and the number of bins
formed is 34.
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enough to fit the linear regression with (p − 1) predictors in each bin. Where there
were bins with less than (p+1) elements, such bins were merged with neighboring
bins. For this example with n = 508, the average number of points per bin was 14,
yielding a total of 34 bins after merging.

For least squares regression, CH was not found significant at the usual 5%
level, while ALB was found to be significant. When applying the CAR method,
CH and ALB were both significant. As BMI increases, the slope parameter of
serum albumin level increases exponentially, while the negative slope parameter
of cholesterol level declines slightly. Adjusting for different BMI levels across pa-
tients, both serum albumin level and cholesterol level seem to play a significant
role for the serum creatinine level. The effects of BMI are thus masking the true
overall negative effect that CH has on CRT in the unadjusted regression equation.

5.2. Monte Carlo simulation. The confounding covariate U was simulated
from Uniform(2,6). The underlying unobserved multiple regression model was

Y = 4 − X1 + 0.3X2 + 3X3 + e,(15)

where X1 ∼ N (1.5,0.7), X2 ∼ N (1,1.2), X3 ∼ N (0.5,1) and e ∼ N (0,0.3).
The distortion functions were chosen as ψ(U) = (U + 3)/7, φ1(U) =
(U + 1)2/26.3333, φ2(U) = (U + 10)/14 and φ3(U) = (U + 2)2/37.3333, sat-
isfying the identifiability conditions. We conducted 1000 Monte Carlo runs with
sample sizes 100, 400 and 1600. For each run approximate 95% asymptotic con-
fidence intervals were formed for the regression parameters by plugging in the
estimates σ̂ 2

nr, r = 0, . . . , p, given in Theorem 2, into (14). The estimated coverage
fractions and mean interval lengths for these confidence intervals are given in Ta-
ble 2. The estimated noncoverage fractions are seen to get very close to the target
value 0.05 as sample size increases, and the estimated interval lengths are sharply
decreasing.

We have also carried out simulations to study the effects of different choices
of m, the total number of bins, on the mean square error of the CAR estimates.

TABLE 2
Coverage (in percent) and mean interval length for the approximate 95% asymptotic confidence

intervals formed for the parameters of the regression model (15)

γ0 γ1 γ2 γ3

n Coverage Length Coverage Length Coverage Length Coverage Length

100 90.7 0.56 90.4 0.32 91.7 0.20 96.6 0.73
400 93.4 0.21 94.1 0.11 93.4 0.06 95.5 0.30

1600 94.2 0.10 95.2 0.05 94.7 0.03 95.0 0.14

The values were obtained from 1000 Monte Carlo runs. The average number of points per bin was 5,
16 and 32 for sample sizes 100, 400 and 1600.
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Under the rate conditions on m given in Section 3, the estimates are found to be
sufficiently robust regarding different choices of m.

6. Proofs of the main results. While the main steps in the proofs of the two
theorems are given here, the auxiliary results for these proofs are deferred to the
Appendix, where they are listed as Lemmas A.1–A.4. We introduce some technical
conditions:

(C1) The covariate U is bounded below and above, −∞ < a ≤ U ≤ b < ∞ for
real numbers a < b. The density f (u) of U satisfies infa≤u≤b f (u) > c1 > 0,
supa≤u≤b f (u) < c2 < ∞ for real c1, c2, and is uniformly Lipschitz contin-
uous, that is, there exists a real number M such that supa≤u≤b |f (u + c) −
f (u)| ≤ M|c| for any real number c.

(C2) The variables (e,U,Xr) are mutually independent for r = 1, . . . , p.
(C3) For the predictors, sup1≤i≤n,1≤r≤p |Xnri| ≤ B for some bound B ∈ R.
(C4) Contamination functions ψ(·) and φr(·), 1 ≤ r ≤ p, are twice continuously

differentiable, satisfying

Eψ(U) = 1, Eφr(U) = 1, φr(·) > 0,1 ≤ r ≤ p.

(C5) As n → ∞, 1
n
XT X

p→ X, where X, the limiting (p + 1) × (p + 1)-matrix,
is nonsingular, that is, ρ = |det(X)| > 0.

These are mild conditions that are satisfied in most practical situations. Bounded
covariates are standard in asymptotic theory for least squares regression, as are
conditions (C2) and (C5) (see [8]). The identifiability conditions stated in (C4) are
equivalent to

E(Ỹ |X) = E(Y |X), E(X̃r |Xr) = Xr.

This means that the confounding of Y by U does not change the mean regression
function. Some further technical conditions will be introduced in Appendix A.1;
these are required to prove the auxiliary lemmas in the Appendix.

For two matrices of the same dimension, let A � B denote the Hadamard prod-
uct, where A � B is also of the same dimension with (i, j )th element equal to the
product of the (i, j )th elements of A and B .

PROOF OF THEOREM 1. By Lemma A.4(b) and properties (b), (c), (e), (f )
given in Appendix A.3, it holds that

sup
j

|(L−1
nj X̃′T

nj Ỹ
′
nj) − {� � (L−1

nj X′T
nj Y

′
nj)}| = Op(m−1)1(p+1)×1,(16)

where (L−1
nj X̃′T

nj Ỹ
′
nj) = (L−1

nj
∑

k Ỹ ′
njk,L

−1
nj
∑

k Ỹ ′
njkX̃

′
n1jk, . . . ,L

−1
nj
∑

k Ỹ ′
njkX̃

′
npjk)

T ,

(L−1
nj X′T

nj Y
′
nj) = (L−1

nj
∑

k Y ′
njk,L

−1
nj
∑

k Y ′
njkX

′
n1jk, . . . ,L

−1
nj
∑

k Y ′
njkX

′
npjk)

T ,
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� = {ψ(U ′∗
nj ),ψ(U ′∗

nj )φ1(U
′∗
nj ), . . . ,ψ(U ′∗

nj )φp(U ′∗
nj )}T and 1(p+1)×1 denotes

a (p + 1) × 1 vector of 1’s. Under event En, Lemma A.3 and (16) imply that

sup
j

∣∣∣∣∣∣∣∣∣∣∣

β̂n0j − ψ(U ′∗
nj )γ̃n0j

β̂n1j − {ψ(U ′∗
nj )/φ1(U

′∗
nj )}γ̃n1j

...
...

β̂npj − {ψ(U ′∗
nj )/φp(U ′∗

nj )}γ̃npj

∣∣∣∣∣∣∣∣∣∣∣
= Op(m−1)1(p+1)×1,(17)

where γ̃nj is as defined in (10). First consider the case r = 0. Using (17),√
n(γ̂n0 − γ0)

= √
n

(
m∑
j

Lnj

n
β̂n0j − γ0

)

=
m∑
j

Lnj√
n
ψ(U ′∗

nj )γ̃n0j − √
nγ0 + Op

(√
n

m

)

=
m∑
j

Lnj√
n
ψ(U ′∗

nj )[γ0 + {(X′T
nj X

′
nj)

−1X′T
nj e

′
nj}1] − √

nγ0 + Op

(√
n

m

)
.

By property (b), Lemma A.4(a), (b) and substituting L−1
nj
∑

k{(L−1
nj X′T

nj X
′
nj)

−1 ×
X′T

nj }1ke
′
njk for {(X′T

nj X
′
nj)

−1X′T
nj e

′
nj}1,

√
n(γ̂n0 − γ0) further simplifies to

m∑
j=1

Lnj∑
k=1

[γ0ψ(U ′
njk)√

n
+ ψ(U ′

njk)e
′
njk√

n
{(L−1

nj X′T
nj X

′
nj)

−1X′T
nj }1k

]
(18)

− √
nγ0 + Op

(√
n

m

)
.

Since the above sum is over all bins indexed by j , and over all points within
the bins indexed by k, it is equal to the sum over all data points indexed by i,
summed up in a random order. We introduce notation where X′

nj(i) refers to the
matrix X′

nj and Lnj(i) refers to the number of points in the j th bin such that

Uni ∈ Bnj, and {(L−1
nj(i)X

′T
nj(i)X

′
nj(i))

−1X′T
nj(i)}rk(i) is the (r, k)th element of the ma-

trix {(L−1
nj X′T

nj X
′
nj)

−1X′T
nj } for 1 ≤ r ≤ p, where Uni = U ′

njk is the kth element in
the ordered sample (U ′

nj1, . . . ,U
′
njLnj

) ∈ Bnj. Thus (18) is equal to

n∑
i=1
j,k

[
γ0ψ(Uni)√

n
+ ψ(Uni)eni√

n

{(
L−1

nj(i)X
′T
nj(i)X

′
nj(i)

)−1
X′T

nj(i)
}

1k(i) − γ0√
n

]

(19)

+ Op

(√
n

m

)
.
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The term
√

n(γ̂n0 − γ0) is asymptotically equivalent to

Sn0t =
t∑

i=1
j,k

[
γ0ψ(Uni)√

n
+ ψ(Uni)eni√

n

{(
L−1

nj(i)X
′T
nj(i)X

′
nj(i)

)−1
X′T

nj(i)
}

1k(i) − γ0√
n

]

=
t∑

i=1

Zn0i ,

since m/
√

n → ∞ as n → ∞ makes the term Op(
√

n/m) negligible.
Let Fn0t be the σ -field generated by {en1, . . . , ent ,Un1, . . . ,Unt ,Lnj(1), . . . ,

Lnj(t),X
′
nj(1), . . . ,X

′
nj(t)}. Then {Sn0t = ∑t

i=1 Zn0i , Fn0t ,1 ≤ t ≤ n} is a mean-
zero martingale for n ≥ 1, since E(Sn0t ) = 0, E(Sn0,t+1|Fn0t ) = Sn0t and Sn0t

is adapted to Fn0t . Since the σ -fields are nested, that is, Fn0t ⊆ Fn0,t+1 for all
t ≤ n, using Lemma A.1, Sn0n → N(0, σ 2

0 ) in distribution ([9], Theorem 2.3 and
subsequent discussion), and Theorem 1 follows for r = 0.

Next we show

√
n




m∑
j=1

Lnj

n
β̂nrj

¯̃
X′

nrj − γrE(Xr)

m∑
j=1

Lnj

n

¯̃
X′

nrj − E(Xr)




D→ N2(0,r).(20)

The asymptotic normality of
√

n(γ̂nr − γr) for r = 1, . . . , p will follow from this

with a simple application of the δ-method, since γ̂nr = (
∑m

j=1 Lnjn
−1β̂nrj

¯̃
X′

nrj)/

(
∑m

j=1 Lnjn
−1 ¯̃

X′
nrj) as defined in (7). By the Cramér–Wald device it is enough

to show the asymptotic normality of
√

n[a{∑m
j=1 Lnjn

−1β̂nrj
¯̃
X′

nrj − γrE(Xr)} +
b{∑m

j=1 Lnjn
−1 ¯̃

X′
nrj − E(Xr)}] for real a, b, and (20) will follow.

Using (17), properties (b), (c), Lemma A.4(a), (b) and substituting L−1
nj ×∑

k{(L−1
nj X′T

nj X
′
nj)

−1X′T
nj }rke

′
njk for {(X′T

nj X
′
nj)

−1X′T
nj e

′
nj}r , we have

m∑
j=1

Lnj

n
β̂nrj

¯̃
X′

nrj =
m∑

j=1

Lnj

n
ψ(U ′∗

nj )X̄
′
nrj[γr + {(X′T

nj X
′
nj)

−1X′T
nj e

′
nj}r ] + Op(m−1)

=
m∑

j=1

Lnj∑
k=1

[
γr

n
ψ(U ′

njk)X
′
nrjk

+ X̄′
nrj

n
ψ(U ′

njk)e
′
njk{(L−1

nj X′T
nj X

′
nj)

−1X′T
nj }rk

]

+ Op(m−1)
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and

m∑
j=1

Lnj

n

¯̃
X′

nrj =
m∑

j=1

Lnj∑
k=1

1

n
φr(U

′
njk)X

′
nrjk + Op(m−1).

Thus using the same notation as in (19), it holds that

√
n

[
a

{
m∑

j=1

Lnj

n
β̂nrj

¯̃
X′

nrj − γrE(Xr)

}
+ b

{
m∑

j=1

Lnj

n

¯̃
X′

nrj − E(Xr)

}]

=
n∑

i=1
j,k

[
a

γr√
n
ψ(Uni)Xnri

+ a
X̄′

nrj(i)√
n

ψ(Uni)eni
{(

L−1
nj(i)X

′T
nj(i)X

′
nj(i)

)−1
X′T

nj(i)
}

rk(i)

− a
γr√
n
E(Xr) + b√

n
φr(Uni)Xnri − b

E(Xr)√
n

]

+ Op

(√
n

m

)
,

where X̄′
nrj(i) = L−1

nj
∑Lnj(i)

k=1 X′
nrj(i)k . Since Op(

√
n/m) is asymptotically negligi-

ble, the above term is asymptotically equivalent to

Snrt =
n∑

i=1
j,k

[
a

γr√
n
ψ(Uni)Xnri

+ a
X̄′

nrj(i)√
n

ψ(Uni)eni
{(

L−1
nj(i)X

′T
nj(i)X

′
nj(i)

)−1
X′T

nj(i)
}

rk(i)

− a
γr√
n
E(Xr) + b√

n
φr(Uni)Xnri − b

E(Xr)√
n

]

=
t∑

i=1

Znri.

Let Fnrt be the σ -field generated by {en1, . . . , ent ,Un1, . . . ,Unt ,Lnj(1), . . . ,

Lnj(t),X
′
nj(1), . . . ,X

′
nj(t)}. Then it is easy to check that {Snrt =∑t

i=1 Znri,Fnrt,1 ≤
t ≤ n} is a mean-zero martingale for n ≥ 1. Since the σ -fields are nested, that
is, Fnrt ⊆ Fnr,t+1 for all t ≤ n, using Lemma A.2, Snrn

D→ N(0, (a, b)r(a, b)T ).

Thus, it also follows by a simple application of the δ-method that
√

n(γ̂nr − γr)
p→

N(0, σ 2
r ) for r = 1, . . . , p, where σ 2

r is as defined in Theorem 1. �
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PROOF OF THEOREM 2. Using Lemma A.4(a) and (b), it holds on event An

that

sup
j

|γ̃nj − γ | = op(1)1(p+1)×1,(21)

where γ = (γ0, γ1, . . . , γp)T . Using (21) and (17),

sup
j

∣∣∣∣∣∣∣∣∣∣∣

β̂n0j − ψ(U ′∗
nj )γ0

β̂n1j − {ψ(U ′∗
nj )/φ1(U

′∗
nj )}γ1

...
...

β̂npj − {ψ(U ′∗
nj )/φp(U ′∗

nj )}γp

∣∣∣∣∣∣∣∣∣∣∣
= op(1)1(p+1)×1.(22)

By (22), properties (b), (c), (d), boundedness considerations and the law of large
numbers,

m∑
j=1

Lnj

n
β̂2

n0j = γ 2
0

m∑
j=1

Lnj

n
{ψ2(U ′∗

nj ) + op(1)}

= γ 2
0

n

n∑
i=1

ψ2(Uni) + op(1) = γ 2
0 E{ψ2(U)} + op(1),

1

n

m∑
j=1

Lnj∑
k=1

(Ỹ ′
njk − β̂n0j − β̂n1j X̃

′
n1jk − · · · − β̂npjX̃

′
npjk)

2

= 1

n

m∑
j=1

Lnj∑
k=1

{
ψ(U ′∗

nj )e
′
njk + δn0jkY

′
njk − γ1

ψ(U ′∗
nj )

φ1(U
′∗
nj )

δn1jkX
′
n1jk − · · ·

− γp

ψ(U ′∗
nj )

φp(U ′∗
nj )

δnpjkX
′
npjk + op(1)

}2

= 1

n

n∑
i=1

ψ(U2
ni)e

2
ni + op(1) = σ 2E{ψ2(U)} + op(1),

1

n

m∑
j=1

β̂2
nrj

Lnj∑
k=1

X̃′2
nrjk = γ 2

r

n

m∑
j=1

ψ2(U ′∗
nj )

Lnj∑
k=1

X′2
nrjk + op(1)

= γ 2
r

n

n∑
i=1

ψ2(Uni)X
2
nri + op(1) = γ 2

r E{ψ2(U)}E(X2
r ) + op(1)
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and

1

n

m∑
j=1

β̂nrj

Lnj∑
k=1

X̃′2
nrjk = γr

n

m∑
j=1

ψ(U ′∗
nj )φr(U

′∗
nj )

Lnj∑
k=1

X′2
nrjk + op(1)

= γr

n

n∑
i=1

ψ(Uni)φr(Uni)X
2
nri + op(1)

= γrE{ψ(U)φr(U)}E(X2
r ) + op(1),

where δn0jk and δnrjk are as defined in Appendix A.3. Using Lemma A.3,
Lemma A.4(a) and (31),

m∑
j=1

Lnj

n

(
1

Lnj
X̃′

njX̃
′
nj

)−1

11

p→ (X−1)11,

m∑
j=1

Lnj

n

¯̃
X2

nrj

(
1

Lnj
X̃′

njX̃
′
nj

)−1

rr

p→ {E(Xr)}2(X−1)rr.

Since γ̂n0
p→ γ0, γ̂nr

p→ γr , s2
X̃r

p→ var(X̃r) and ¯̃
Xnr

p→ E(Xr), the result follows.
�

APPENDIX: AUXILIARY RESULTS AND PROOFS

A.1. Additional technical conditions. We introduce some further technical
conditions:

(C6) The functions h1(u) = ∫
xg1(x, u) dx and h2(u) = ∫

xg2(x, u) dx are uni-
formly Lipschitz, where g1(·, ·) and g2(·, ·) are the joint density functions of
(X,U) and (Xe,U), respectively.

(C7) The error term satisfies E|eλ| < ∞ for λ > 4.

Conditions (C1), (C6) and (C7) are needed for the proof of Lemma A.4 given in
the next section.

A.2. Auxiliary results on martingale differences.

LEMMA A.1. Under the technical conditions (C1)–(C6), on event An (11) the
martingale differences Zn0t satisfy the conditions

n∑
t=1

E{Z2
n0t I (|Zn0t | > ε)} → 0 for all ε > 0,(a)

�2
n0 =

n∑
t=1

Z2
n0t

p→ σ 2
0 for σ 2

0 > 0.(b)
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PROOF. Let Zn0t = wn0t vn0t , where wn0t = 1/
√

n, and

vn0t = γ0ψ(Unt ) + ψ(Unt )ent

{(
Lnj(t)X

′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

1k(t) − γ0

= α1nt + α2nt ent ,

where α1nt = γ0ψ(Unt ) − γ0, α2nt = ψ(Unt ){(L−1
nj(t)X

′T
nj(t)X

′
nj(t))

−1X′T
nj(t)}1k(t) and

E(vn0t ) = 0. Using (C1), (C3) and (C4), it holds on event An that
sup1≤t≤n |α1nt | < c1 and sup1≤t≤n |α2nt | < c2 for some c1, c2 > 0. Thus, it holds
for ε > 0 that

n∑
t=1

E{Z2
n0t I (|Zn0t | > ε)} =

n∑
t=1

∫
x2I (|x| > ε)dFwn0t vn0t

(x)

=
n∑

t=1

∫
x2I (|x| > ε/|wn0t |)w2

n0t dFvn0t
(x)

= n−1
n∑

t=1

∫
x2I

(|x| > √
nε
)
dFvn0t

(x)

≤ n−1
n∑

t=1

{E(v4
n0t )}1/2{P(v2

n0t > nε2)}1/2.

Now, E(v4
n0t ) is bounded uniformly in n and t , since ent has finite fourth moment

by (C7), and P(v2
n0t > nε2) = P((α1nt + α2nt ent)

2 > nε2) ≤ P(α2
1nt + α2

2nt e
2
nt +

2|α1ntα2nt ent| > nε2) ≤ P(c2
1 + c2

2e
2
nt + 2c1c2|ent| > nε2). Lemma A.1(a) follows,

since P(c2
1 + c2

2e
2
nt + 2c1c2|ent| > nε2) → 0 uniformly in n and t , e2

nt and |ent|
being i.i.d. with finite fourth moments.

The term �2
n0 given in Lemma A.1(b) is equal to

�2
n0 = γ 2

0

{
n−1

∑
t

ψ2(Unt)

}
+ γ 2

0 − 2γ 2
0

{
n−1

∑
t

ψ(Unt)

}

+ 2γ0n
−1
∑
t

ψ2(Unt)ent
{(

L−1
nj(t)X

′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

1k(t)

− 2γ0n
−1
∑
t

ψ(Unt)ent
{(

L−1
nj(t)X

′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

1k(t)

+ n−1
∑
t

ψ2(Unt)e
2
nt
{(

L−1
nj(t)X

′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}2

1k(t)

= T1 + · · · + T6.

It follows from the law of large numbers that

T1 + T2 + T3
p→ γ 2

0 E{ψ2(U)} + γ 2
0 − 2γ 2

0 E{ψ(U)} = γ 2
0 var{ψ(U)}.
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On event An, E(T4|U,X,Lnj) = 0 and

var(T4|U,X,Lnj) = 4σ 2γ 2
0

n2

∑
t

ψ4(Unt)
{(

L−1
nj(t)X

′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}2

1k(t)

= O(n−1).

Thus, E(T4) = 0 and var(T4) = O(n−1), implying that T4 = Op(n−1/2) on An.
Similarly, it can be shown that T5 = Op(n−1/2) on An.

Next consider the last term T6, which can also be written as

T6 = n−1
m∑

j=1

Lnj∑
k=1

{(L−1
nj X′T

nj X
′
nj)

−1X′T
nj }2

1kψ
2(U ′

njk)e
′2
njk.

Expanding {(L−1
nj X′T

nj X
′
nj)

−1X′T
nj }2

1kψ
2(U ′

njk)e
′2
njk for each k, we get

T6 = n−1
m∑

j=1

Lnj∑
k=1

{(L−1
nj X′T

nj X
′
nj)

−1
11 e′

njkψ(U ′
njk)

+ (L−1
nj X′T

nj X
′
nj)

−1
12 e′

njkψ(U ′
njk)X

′
n1jk + · · ·

+ (L−1
nj X′T

nj X
′
nj)

−1
1,p+1e

′
njkψ(U ′

njk)X
′
npjk}2,

which by Lemma A.4(a) and the law of large numbers is equal to

σ 2E{ψ2(U)}[(X−1)2
11 + (X−1)2

12E(X2
1) + · · ·

+ (X−1)2
1,p+1E(X2

p)

+ {2(X−1)11(X
−1)12E(X1) + · · ·

+ 2(X−1)11(X
−1)1,p+1E(Xp)}

+ {2(X−1)12(X
−1)13E(X1X2) + · · ·

+ 2(X−1)12(X
−1)1,p+1E(X1Xp)} + · · ·

+ {2(X−1)1p(X−1)1,p+1E(Xp−1Xp)}] + op(1)

= σ 2E{ψ2(U)}(X−1XT X−1T )
11 + op(1)

= σ 2E{ψ2(U)}(X−1)11 + op(1),

where X is as defined in (C5) and given explicitly in (8). Thus

�2
n0

p→ γ 2
0 var{ψ(U)} + σ 2(X−1)11E{ψ2(U)} ≡ σ 2

0 ,

and Lemma A.1(b) follows. �
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LEMMA A.2. Under the technical conditions (C1)–(C6), on event An (11) the
martingale differences Znrt satisfy the conditions

n∑
t=1

E{Z2
nrtI (|Znrt| > ε)} → 0 for all ε > 0,(a)

�2
nr =

n∑
t=1

Z2
nrt

p→ (a, b)r(a, b)T for (a, b)r(a, b)T > 0.(b)

PROOF. Let Znrt = wnrtvnrt, where wnrt = 1/
√

n, α3nt = aγrψ(Unt)Xnrt −
aγrE(Xr) + bφr(Unt)Xnrt − bE(Xr), α4nt = aX̄′

nrj(t)ψ(Unt){(L−1
nj(t)X

′T
nj(t) ×

X′
nj(t))

−1X′T
nj(t)}rk(t), vnrt = α3nt + α4nt ent and E(vnrt) = 0. On event An,

sup1≤t≤n |α3nt | < c3 and sup1≤t≤n |α4nt | < c4 for some c3, c4 > 0, and thus
Lemma A.2(a) follows in a fashion similar to Lemma A.1(a).

The term �2
nr in Lemma A.2(b) is equal to

�2
nr = a2γ 2

r

{
n−1

∑
t

ψ2(Unt)X
2
nrt

}
+ a2γ 2

r {E(Xr)}2 + b2

{
n−1

∑
t

φ2
r (Unt)X

2
nrt

}

+ b2{E(Xr)}2 − 2a2γ 2
r E(Xr)

{
n−1

∑
t

ψ(Unt)Xnrt

}
+ 2abγr{E(Xr)}2

+ 2abγr

{
n−1

∑
t

ψ(Unt)φr(Unt)X
2
nrt

}
− 2b2E(Xr)

{
n−1

∑
t

φr(Unt)Xnrt

}

− 2abγrE(Xr)

{
n−1

∑
t

ψ(Unt)Xnrt

}

− 2abγrE(Xr)

{
n−1

∑
t

φr(Unt)Xnrt

}

+ 2a2γrn
−1
∑
t

ψ2(Unt)entX̄
′
nrj(t)Xnrt

{(
L−1

nj(t)X
′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

rk(t)

− 2a2γrE(Xr)n
−1
∑
t

ψ(Unt)entX̄
′
nrj(t)

{(
L−1

nj(t)X
′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

rk(t)

+ 2abn−1
∑
t

ψ(Unt)φr(Unt)entX̄
′
nrj(t)Xnrt

{(
L−1

nj(t)X
′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

rk(t)

− 2abE(Xr)n
−1
∑
t

ψ(Unt)entX̄
′
nrj(t)

{(
L−1

nj(t)X
′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}

rk(t)

+ a2n−1
∑
t

ψ2(Unt)e
2
ntX̄

′2
nrj(t)

{(
L−1

nj(t)X
′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}2

rk(t)

= T1 + · · · + T15,
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and by the law of large numbers

T1 + · · · + T10
p→ a2γ 2

r [{E(Xr)}2 var{ψ(U)} + var(Xr)E{ψ2(U)}]
+ 2abγr [E{φr(U)ψ(U)}E(X2

r ) − {E(Xr)}2] + b2 var(X̃r).

On event An, E(T11|U,X,Lnj) = 0 and

var(T11|U,X,Lnj)

= 4a4σ 2γ 2
r

n2

∑
t

ψ4(Unt)X̄
′2
nrjX

′2
nrt
{(

L−1
nj(t)X

′T
nj(t)X

′
nj(t)

)−1
X′T

nj(t)
}2

rk(t),

which is O(n−1). Thus, E(T11) = 0 and var(T11) = O(n−1), implying that T11 =
Op(n−1/2) on An. Similarly, it can be shown that T12 = T13 = T14 = Op(n−1/2)

on An.
Next consider the last term T15, which can also be expressed as

T15 = a2n−1
m∑

j=1

Lnj∑
k=1

{(L−1
nj X′T

nj X
′
nj)

−1X′T
nj }2

rkψ
2(U ′

njk)e
′2
njkX̄

′2
nrj.

Again expanding {(L−1
nj X′T

nj X
′
nj)

−1X′T
nj }2

1kψ
2(U ′

njk)e
′2
njkX̄

′2
nrj for each k, we get

T15 = a2n−1
m∑

j=1

Lnj∑
k=1

{(L−1
nj X′T

nj X
′
nj)

−1
r1 X̄′

nrje
′
njkψ(U ′

njk)

+ (L−1
nj X′T

nj X
′
nj)

−1
r2 X̄′

nrje
′
njkψ(U ′

njk)X
′
n1jk + · · ·

+ (L−1
nj X′T

nj X
′
nj)

−1
r,p+1X̄

′
nrje

′
njkψ(U ′

njk)X
′
npjk}2,

which by Lemma A.4(a) and the law of large numbers is equal to

a2σ 2{E(Xr)}2E{ψ2(U)}
× [(X−1)2

r1 + (X−1)2
r2E(X2

1) + · · · + (X−1)2
r,p+1E(X2

p)

+ {2(X−1)r1(X
−1)r2E(X1) + · · · + 2(X−1)r1(X

−1)r,p+1E(Xp)}
+ {2(X−1)r2(X

−1)r3E(X1X2) + · · ·
+ 2(X−1)r2(X

−1)r,p+1E(X1Xp)} + · · ·
+ {2(X−1)rp(X

−1)r,p+1E(Xp−1Xp)}]
+ op(1)

= a2σ 2{E(Xr)}2E{ψ2(U)}(X−1XT X−1T )
rr + op(1)

= a2σ 2{E(Xr)}2E{ψ2(U)}(X−1)rr + op(1).
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Thus

�2
nr

p→ (a, b)r(a, b)T = (a, b)

[
r11 r12

r12 r22

]
(a, b)T ,

where r11 = γ 2
r [{E(Xr)}2 var{ψ(U)} + var(Xr)E{ψ2(U)}] + σ 2{E(Xr)}2 ×

E{ψ2(U)}(X−1)rr, r12 = γr [E{φr(U)ψ(U)}E(X2
r ) − {E(Xr)}2] and r22 =

var(X̃r). Hence Lemma A.2(b) follows. �

A.3. Auxiliary results on approximations of inverses. Defining δn0jk =
ψ(U ′

njk) − ψ(U ′∗
nj ) and δnrjk = φr(U

′
njk) − φr(U

′∗
nj ) for 1 ≤ k ≤ Lj and 1 ≤ r ≤ p,

where U ′∗
nj = L−1

nj
∑Lnj

k=1 U ′
njk is the average of the U ’s in Bnj, we obtain the follow-

ing results, by Taylor expansions and boundedness considerations: for 1 ≤ t, s ≤ p,
0 ≤ r, r ′ ≤ p and 1 ≤ � ≤ 2, (a) supk,j |U ′

njk −U ′∗
nj | ≤ (b−a)/m; (b) supk,j |δnrjk| =

O(m−1); (c) supj |L−1
nj
∑

k δnrjkX
′�
ntjk| = O(m−1); (d) supj |L−1

nj
∑

k δ2
nrjkX

′�
ntjk| =

O(m−2); (e) supj |L−1
nj
∑

k δnrjkX
′
ntjkX

′
nsjk| = O(m−1); (f ) supj |L−1

nj
∑

k δnrjk ×
δnr′jkX′

ntjkX
′
nsjk| = O(m−2).

LEMMA A.3. Under the technical conditions (C1)–(C6), it holds on event En

(12) that

sup
j

|(L−1
nj X̃′T

nj X̃
′
nj)

−1 − (�nj � �nj)| = O(m−1)1(p+1)×(p+1),

where

�nj =




1 1/φ1(U
′∗
nj ) . . . 1/φp(U ′∗

nj )

1/φ1(U
′∗
nj ) 1/φ2

1(U ′∗
nj ) . . . 1/

(
φp(U ′∗

nj )φ1(U
′∗
nj )
)

...
. . .

1/φp(U ′∗
nj ) 1/

(
φp(U ′∗

nj )φ1(U
′∗
nj )
)

. . . 1/φ2
p(U ′∗

nj )


 ,(23)

�nj = (L−1
nj X′T

nj X
′
nj)

−1 and 1(p+1)×(p+1) denotes the (p + 1) × (p + 1) matrix
of 1’s.

PROOF. The proof is by induction on p. Define

X̃
′(�)
nrj = 1

Lnj

Lnj∑
k=1

X̃′�
nrjk, (X̃′

nrjX̃
′
nsj)

(�) = 1

Lnj

Lnj∑
k=1

(X̃′
nrjkX̃

′
nsjk)

�,(24)

and analogously for X
′(�)
nrj and (X′

nrjX
′
nsj)

(�) where 1 ≤ r, s ≤ p. First consider the
claim for p = 1 on En,

(L−1
nj X̃′T

nj X̃
′
nj)

−1 = 1

X̃
′(2)
n1j − (X̃

′(1)
n1j )

2

[
X̃

′(2)
n1j −X̃

′(1)
n1j

−X̃
′(1)
n1j 1

]
.



INFERENCE FOR ADJUSTED REGRESSION 675

By boundedness considerations and properties (c) and (d), it holds that
supj |X̃′(2)

n1j − φ2
1(U ′∗

nj )X
′(2)
n1j | = O(m−1), supj |X̃′(1)

n1j − φ1(U
′∗
nj )X

′(1)
n1j | = O(m−1),

and therefore

sup
j

∣∣{X̃′(2)
n1j − (X̃′(1)

n1j

)2}− φ2
1(U ′∗

nj )
{
X

′(2)
n1j − (X′(1)

n1j

)2}∣∣= sup
j

|d̃nj − φ2
1(U ′∗

nj )dnj|

= O(m−1),

where d̃nj = det(L−1
nj X̃′T

nj X̃
′
nj) and dnj = det(L−1

nj X′T
nj X

′
nj). Thus,

sup
j

|(L−1
nj X̃′T

nj X̃
′
nj)

−1 − (�nj � �nj)| = O(m−1)12×2,

where (�nj)2×2 is as given in (23) and (�nj)2×2 = (L−1
nj X′T

nj Xnj)
−1
2×2.

Next, we show that Lemma A.3 holds for p + 1, assuming it holds for p. Let

(L−1
nj X̃′T

nj X̃
′
nj)(p+2)×(p+2) = Bnj =

[
Bnj11 Bnj12

BT
nj12 Bnj22

]
,

(L−1
nj X̃′T

nj X̃
′
nj)

−1
(p+2)×(p+2) = B−1

nj =
[

B11
nj B12

nj

B12T

nj B22
nj

]
,

and similarly let

(L−1
nj X′T

nj X
′
nj)(p+2)×(p+2) = Dnj =

[
Dnj11 Dnj12

DT
nj12 Dnj22

]
,

(L−1
nj X′T

nj X
′
nj)

−1
(p+2)×(p+2) = D−1

nj =
[

D11
nj D12

nj

D12T

nj D22
nj

]
,

where Bnj11 = (L−1
nj X̃′T

nj X̃
′
nj)(p+1)×(p+1) and Dnj11 = (L−1

nj X′T
nj X

′
nj)(p+1)×(p+1).

By the assumption,

sup
j

∣∣B−1
nj11 − (�nj � �nj)(p+1)×(p+1)

∣∣= O(m−1)1(p+1)×(p+1).(25)

By properties (c), (d), (e), (f ) and boundedness considerations, it holds that

sup
j

|Bnj12 − (Vnj � Dnj12)| = O(m−1)1(p+1)×1,(26)

sup
j

|Bnj22 − φ2
n(p+1)(U

′∗
nj )Dnj22| = O(m−1),(27)

where BT
nj12 = (X̃

′(1)
n(p+1)j , (X̃

′
n(p+1)j X̃

′
n1j )

(1), . . . , (X̃′
n(p+1)j X̃

′
npj)

(1)), DT
nj12 =

(X
′(1)
n(p+1)j , (X

′
n(p+1)jX

′
n1j )

(1), . . . , (X′
n(p+1)jX

′
npj)

(1)), Bnj22 = X̃
′(2)
n(p+1)j , Dnj22 =

X
′(2)
n(p+1)j and V T

nj = (φp+1(U
′∗
nj ), φp+1(U

′∗
nj )φ1(U

′∗
nj ), . . . , φp+1(U

′∗
nj )φp(U ′∗

nj )).
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Since B22
nj = (Bnj22 − BT

nj12B
−1
nj11Bnj12)

−1, using (25), (26), (27) and the uniform

boundedness of Dnj12, D−1
nj11, Dnj22 on An,

sup
j

|B22
nj − {φ2

p+1(U
′∗
nj )D

22
nj }−1| = O(m−1),

where infj |φ2
p+1(U

′∗
nj )D

22
nj | = infj |φ2

p+1(U
′∗
nj )(Dnj22 − DT

nj12D
−1
nj11Dnj12)| > 0,

since φp+1(·) is assumed to be strictly positive, and since supj |Dnj22 − DT
nj12 ×

D−1
nj11Dnj12| > 0. The latter holds on An, since then supj |dj | = supj |det(Dnj11) ×

(Dnj22 − DT
nj12D

−1
nj11Dnj12)| > 0.

Now B11
nj = B−1

nj11 + B−1
nj11Bnj12B

22
nj BT

nj12B
−1
nj11. Since Dnj12, D−1

nj11 are uniformly
bounded on An,

sup
j

|B11
nj − (�nj � �nj)| = O(m−1)1(p+1)×(p+1),(28)

where �nj is as defined in (23), and �nj = D−1
nj11 + D−1

nj11Dnj12D
22
nj DT

nj12D
−1
nj11 =

D11
nj .

Since B12
nj = −B11

nj Bnj12B
−1
nj22, using (26), (27), (28) and boundedness consider-

ations,

sup
j

|B12
nj − (�nj � �nj)| = O(m−1)1(p+1)×1,

where �T
nj = (1/φp+1(U

′∗
nj ),1/{φp+1(U

′∗
nj )φ1(U

′∗
nj )}, . . . ,1/{φp+1(U

′∗
nj )φp(U ′∗

nj )})
and �nj = −D11

nj Dnj12D
−1
nj22 = D12

nj . Thus, reassembling the partitioned ma-

trix B−1
nj , Lemma A.3 follows. �

LEMMA A.4. Under the technical conditions (C1)–(C7), for a sequence
rn such that rn = Op{√(m logn)/n }, on event An (11)

sup
j

|(L−1
nj X′T

nj X
′
nj)

−1 − X−1| = Op(rn)1(p+1)×(p+1),(a)

sup
j

|L−1
nj X′T

nj e
′
nj| = Op(rn)1(p+1)×1,(b)

where X as defined in (8) is assumed to be nonsingular by (C5), and e′
nj =

(e′
nj1, . . . , e

′
njLnj

)T .

PROOF. Using the sample moment notation in (24),

1

Lnj
X′T

nj X
′
nj =




1 X
′(1)
n1j . . . X

′(1)
npj

X
′(1)
n1j X

′(2)
n1j . . . (X′

n1jX
′
npj)

(1)

...
. . .

X
′(1)
npj (X′

npjX
′
n1j )

(1) . . . X
′(2)
npj




(p+1)×(p+1)
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leads to

dnj =∑
(−1)sign(τ )(L−1

nj X′T
nj X

′
nj)1τ(1) · · · (L−1

nj X′T
nj X

′
nj)(p+1),τ (p+1),

where the sum is taken over all permutations τ of (1, . . . , p+1), and sign(τ ) equals
+1 or −1, depending on whether τ can be written as the product of an even or odd
number of transpositions. The terms in the above sum have the general form

X
′(1)
nr1j

(
X′

n1jX
′
nr2j

)(1) · · · (X′
npjX

′
nrp+1j

)(1)
,(29)

where X′
0 = 1 and (r1, . . . , rp+1) is a permutation of (0, . . . , p). Considering the

definition of the Nadaraya–Watson kernel estimator [10, 12], we note that an arbi-
trary term in (29) has the form (X′

nsjX
′
nrs+1j

)(1) = m̂nsrs+1(U
M
nj ) for 0 ≤ s ≤ p + 1,

K(·) = (1/2)1[−1,1], h = (b − a)/m, and UM
nj = a + (2j − 1){(b − a)/(2m)} are

the midpoints of the bins Bnj. Uniform consistency of Nadaraya–Watson estima-
tors with kernels of compact support has been shown in [4], where

sup
a≤u≤b

∣∣m̂nsrs+1(u) − msrs+1(u)
∣∣= Op(rn),(30)

msrns+1(u) = E(XsXrs+1 |U = u) = E(XsXrs+1), and rn is as defined in Lem-
ma A.4. Then (30) implies

sup
j

∣∣m̂nsrs+1(U
M
nj ) − msrs+1(U

M
nj )
∣∣= Op(rn),

(31)
sup
j

∣∣(X′
nsjX

′
nrs+1j

)(1) − E(XsXrs+1)
∣∣= Op(rn).

Hence the uniform consistency of (29) follows, where the limit of (29) is
E(Xr1)E(X1Xr2) · · ·E(XpXrp+1), and

sup
j

|dnj − det(X)| = Op(rn)(32)

follows.
The cofactor of (L−1

nj X′T
nj Xnj)r� is defined by (−1)r+� times the minor of

(L−1
nj X′T

nj Xnj)r�, where the minor is the determinant after deleting the r th row and

the �th column of (L−1
nj X′T

nj Xnj). With a similar argument as in the case of dnj,
it can be shown that the minor of (L−1

nj X′T
nj Xnj)r� converges uniformly over j to

the minor of (X)r� with rate rn. Thus part (a) of the lemma follows. For part (b)
of the lemma, consider

L−1
nj X′T

nj e
′
nj =

(
L−1

nj

Lnj∑
k=1

e′
njk,L

−1
nj

Lnj∑
k=1

X′
n1jke

′
njk, . . . ,L

−1
nj

Lnj∑
k=1

X′
npjke

′
njk

)T

.

Each term in the above sum is equal to m̂(UM
nj ), where m(UM

nj ) = E(e|U) = 0 or

m(UM
nj ) = E(Xre|U) = 0, for r = 1, . . . , p. Thus by the uniform consistency of

m̂(UM
nj ) for m(UM

nj ), part (b) of the lemma follows.
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On event An, (32) implies that P(infj dnj > ζ) → 1 as n → ∞, where ζ =
min{ρ/2, [infj (φ2

1(U ′∗
nj ), . . . , φ

2
p(U ′∗

nj ))]pρ/2} and ρ is as defined in (C5). We also
need to show P(minj Lnj ≤ p) → 0 as n → ∞ in order to show that P(A) → 1 as
n → ∞. Since P(minj Lnj > p) = 1 −P(0 ≤ Lnj ≤ p for all j = 1, . . . ,m) ≥ 1 −∑m

j=1 P(0 ≤ Lnj ≤ p) ≥ 1 − m supj P (0 ≤ Lnj ≤ p), it is enough to show P(0 ≤
Lnj ≤ p) = o(m−1) uniformly in j . Now, Lnj ∼ Bin(n,pnj), where c1(b − 1)/m ≤
pnj ≤ c2(b − a)/m uniformly in j , and c1, c2 are as given in (C1). Therefore,
mP(0 ≤ Lnj ≤ p) = m

∑p
x=0 px

nj(1−pnj)
n−xn!/(x!(n−x)!) ≤ m

∑p
x=0 nx{c2(b−

a)/m}x{1 − (c1(b − a)/m)}n−x ≈ ∑p
x=0 m(n/m)x{e−c1(b−a)}n/m, where “≈”

is used to denote asymptotic equivalence. The previously made assumption of
m logn/n → 0 as n → 0 implies logm/(n/m) → 0 as n → 0. Thus, logm +
x log(n/m) − nc1(b − a)/m → −∞, m(n/m)x{e−c1(b−a)}n/m → 0 for x =
0, . . . , p and mP(0 ≤ Lnj ≤ p) → 0 uniformly in j as n → ∞. It follows that
P(A) → 1 as n → ∞.

Furthermore, Lemma A.3 implies

sup
j

|d̃nj − φ2
1(U ′∗

nj · · ·φ2
p(U ′∗

nj )dnj| = Op(m−1).

This shows that P(infj d̃nj > ζ) → 1 as n → ∞, which implies P(Ãn) → 1 as
n → ∞. Thus P(En) → 1 as n → ∞. �
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[11] ŞENTÜRK, D. and MÜLLER, H.-G. (2005). Covariate-adjusted regression. Biometrika 92

75–89. MR2158611
[12] WATSON, G. S. (1964). Smooth regression analysis. Sankhyā Ser. A 26 359–372. MR0185765
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