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The relationship between a time-dependent covariate and survival times
is usually evaluated via the Cox model. Time-dependent covariates are gen-
erally available as longitudinal data collected regularly during the course of
the study. A frequent problem, however, is the occurence of missing covari-
ate data. A recent approach to estimation in the Cox model in this case jointly
models survival and the longitudinal covariate. However, theoretical justifi-
cation of this approach is still lacking. In this paper we prove existence and
consistency of the maximum likelihood estimators in a joint model. The as-
ymptotic distribution of the estimators is given along with a consistent esti-
mator of the asymptotic variance.

1. Introduction. The commonly used Cox [6] regression model postulates
that the hazard function for the failure time T associated with a time-varying co-
variate Z takes the form

λ(t;Z) = λ0(t) exp[β0Z(t)],(1.1)

where β0 is an unknown regression parameter and λ0 is an unspecified baseline
hazard function. The statistical problem is that of estimating β0 and the cumula-
tive baseline hazard function �0(t) = ∫ t

0 λ0(s) ds on the basis of n possibly right-
censored survival times X1, . . . ,Xn and the corresponding covariates Z1, . . . ,Zn,
where Zi is observed on the interval [0,Xi].

By maximizing the partial likelihood [7], one can obtain an estimator of β0 that
is consistent and asymptotically normal with a covariance matrix which can be
consistently estimated [1]. Letting β̂ be the maximum partial likelihood estimator
of β , Breslow [3, 4] suggested estimating �0(t) by

�̂(t) = ∑
Xi≤t

�i∑n
j=1 exp[β̂Zj (Xi)]1{Xi≤Xj }

.

Andersen and Gill [1] have shown weak convergence of the process n1/2(�̂−�0)

to a Gaussian process.
To apply this methodology, one needs the knowledge of {Z(s) : 0 ≤ s ≤ t} for

all values t ≤ X. This is generally not available. Common problems in survival
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analysis are presence of covariate measurement error (see among others Dafni and
Tsiatis [8], Dupuy [12], Li and Lin [19], Tsiatis and Davidian [29], DeGruttola,
Tsiatis and Wulfsohn [31] and Wulfsohn and Tsiatis [34]) and occurrence of miss-
ing covariate data (see [13–15, 20, 26, 35]).

A recent approach to estimation in the Cox model with a missing or mismea-
sured covariate consists in jointly modeling survival and the longitudinal covariate
data. An extensive literature has now contributed to the estimation in such models
(see [30] for a review and numerous references). However, rigorous proofs of the
large-sample properties of estimators obtained from joint models remain an open
problem. Note that simulations by Tsiatis and Davidian [29] show that the joint
modeling approach should yield a consistent and asymptotically normal estimator
for the regression parameter β0. Li and Lin [19] provide simulations which also
seem to point to the asymptotic validity of this approach for estimating parameters
in the frailty model with covariate measurement error.

In this paper we propose a joint model for estimating parameters in the Cox
model with missing values of a longitudinal covariate. Estimation in this joint
model is carried out via nonparametric maximum likelihood (NPML) estimation.
We prove consistency and asymptotic normality of the NPML estimator, and we
give a consistent estimator for the limiting variance.

The paper is organized as follows: in Section 2 we describe the joint model and
derive the likelihood function. In Section 3 we investigate the theoretical properties
of the model, including identifiability and the existence of the NPML estimator.
In Section 4 we show that the NPML estimator is consistent and asymptotically
normal and we give a consistent estimator of its asymptotic variance.

2. The statistical model and construction of the joint likelihood. Suppose
that n subjects are observed. For each individual, we observe survival and covariate
data. Denote by Ti the random survival time for individual i.

We assume that survival is subject to right censoring, that is, instead of Ti , we
actually observe Xi = min(Ti,Ci) and a failure indicator �i = 1{Ti≤Ci}, where Ci

is a random censoring time.
We examine the case of a single covariate Z that is measured over time at the

instants 0 = t0 < t1 < t2 < · · · . We denote Zi(tj ) by Zi,j . For t > 0, let at =
max(k : tk < t) be the index of the last observed value of Z before time t .

The problem is as follows. Suppose that the data consist of i.i.d. replicates
(Xi,�i,Zi(·)) (i = 1, . . . , n) of (X,�,Z(·)). For each subject i, the actually ob-
served data is an incomplete random vector Yi = (Xi,�i,Zi,0, . . . ,Zi,aXi

), where
the covariate value at the time of failure Zi(Xi) is missing. The goal is to esti-
mate the unknown true regression parameter β0 and the cumulative hazard func-
tion �0(t) = ∫ t

0 λ0(u) du (t ≥ 0) using the incomplete vectors Yi (i = 1, . . . , n).
This work was motivated by a study whose design called for repeated measure-

ments of a covariate to be made at different times t0 < t1 < t2 < · · · on patients un-
til drop-out. The objective is to evaluate the relationship between drop-out and the
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longitudinal values. The covariate being measured at the prespecified times tj , Cox
regression using model (1.1) is complicated by missingness of the covariate values
at drop-out times. Some recent approaches to this problem [20, 26, 35] consist in
extrapolating Zi(u) at failure time using available longitudinal data. However, for
these methods to be valid, it is assumed that drop-out is nonignorable, that is, the
probability of drop-out does not depend on the unobserved covariate value. This
hypothesis does not hold in our setting, since hazard of drop-out at time t depends
on the unobserved Z(t). We then propose to jointly model survival and the covari-
ate in order to use full data available to estimate the parameters. Applications of
this approach in psychometry and AIDS clinical trials can be found in [14, 15, 22],
along with comparisons with alternative methods.

In order to derive asymptotic results for our estimators, we assume throughout
that the following conditions C1–C7 are satisfied:

C1. Let τ be a finite time point at which any individual still under study is cen-
sored. Assume that P(X ≥ τ) > 0.

C2. Conditional on the observed path of the longitudinal covariate, the hazard
function for Ti is given by λ0(t) exp[β0Z(t)].

C3. The covariates Zi,j have uniformly bounded total variation, namely,∫ ∞
0 |dZi,j (t)| + |Zi,j (0)| ≤ c for some finite c > 0 and all i, j .

C4. Let f denote the joint density of (Z0, . . . ,Zat ,Z(t)). Suppose that f de-
pends on an unknown parameter α (α ∈ R

p), that f is continuous with re-
spect to α and has continuous second-order derivatives with respect to α.
Suppose also that f is bounded and that, for any t , f (z0, . . . , zat , z(t);α) =
f (z0, . . . , zat , z(t);α′) a.e. implies α = α′.

C5. The parameters α and β are interior points of known compact sets A ⊂ R
p

and B ⊂ R, respectively. � belongs to the set L of absolutely continuous
[with respect to the Lebesgue measure on [0,∞)], nondecreasing functions
� such that �(0) = 0. Assume �(τ) < ∞.

C6. Let θ = (α,β,�), and note by θ0 = (α0, β0,�0) the true value of θ . Let �

denote the parameter space A × B × L, and suppose that θ0 ∈ �. Denote
by Eθ0[·] the expectation of random variables taken under the true parame-
ter. Suppose that Eθ0[eβ0Z(u)1{u≤X}] is bounded away from 0 on [0, τ ], that

Eθ0[
∫ X

0 {Z(u)}2eβ0Z(u) d�0(u)] > 0, and that −Eθ0[ ∂2

∂α ∂αT lnf (Z0, . . . ,Z;
α0)] is positive definite.

C7. It is assumed that T and C are independent given the covariate Z. Moreover,
we assume that the censoring distribution does not depend on the unobserved
covariate value, or on θ .

Condition C1 is a standard assumption that supposes that some individuals are
at risk at the end τ of the experiment.

Condition C2 assumes for ease of presentation that hazard of failure at time t

depends on the time-varying covariate through its value at t . This could be relaxed,
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for example, by including a value Z(t − h) (h > 0) (such as in λ0(t) exp[γ0Z(t −
h)+β0Z(t)]) to study whether the variation in Z between (t −h) and t influences
survival. We shall note, however, that, in this case, β0 and γ0 are not identifiable
if Z is a time-independent covariate. We refer to Chen and Little [5] for their work
on Cox regression with a missing time-independent covariate.

Condition C4 allows several kinds of parametric models to be used for the time-
dependent covariate. For example, for each individual i, the zi,j ’s may be treated
as a realization of a multivariate normal random vector, whose mean may possibly
depend on explanatory variables (times of measurements tj , treatment arms, co-
variates measured at the entry such as age, gender, . . . ). Various correlation struc-
tures may be assumed to take account of the correlation between measurements
within each individual (see [10], Chapters 4 and 5). The parameter α would sepa-
rate here into components for the mean and covariance structures. One may in this
case impose additional conditions to ensure identifiability of covariance parame-
ters, such as a minimum number of repeated measurements on some subjects. One
may also use transition models (see [10], Chapters 7 and 10), where the conditional
distribution of each Zi,j is modeled as a function of past responses Zi,j−1, . . . and
explanatory variables. Dupuy and Mesbah [14, 15] propose a joint model which
uses a transition model for the longitudinal data. We refer to [10] for a detailed
exposition of various parametric models for longitudinal data.

Condition C6 will ensure invertibility of a Fisher information operator in the
proof of asymptotic normality of the estimators in the joint model.

Condition C7 is the usual condition of independent and noninformative censor-
ing. It is usually satisfied in applications, in particular, when a subject is censored
at τ .

The probability measure induced by the observed Y is denoted by Pθ(dy) =
fY(y; θ) dy (θ ∈ �). We shall obtain the likelihood fY(y; θ) for the vector of ob-
servations y = (x, δ, z0, . . . , zax ) by first writing the density of (y, z) for some
value z of Z(X), and then by integrating over z. Actually, only a partial likelihood
L(θ) for Y is specified, by discarding from fY(y; θ) terms adhering to censoring.
From assumption C7, this does not influence maximization. The resulting likeli-
hood L(θ) is∫

{λ(x)}δ exp
[
δβz −

∫ x

0
λ(u)eβz(u) du

]
f

(
z0, . . . , zax , z;α

)
dz,(2.2)

where integration is over z and the indetermination 00 is set to be equal to 1. In the
following, we shall denote by l(y, z; θ) the integrand of (2.2).

3. Nonparametric maximum likelihood estimation. We shall first demon-
strate identifiability of the proposed joint model. The proof is given in the Appen-
dix.

PROPOSITION 1. Under conditions C1–C7, the model is identifiable, that is,
L(θ) = L(θ ′) for almost all y implies θ = θ ′, for θ, θ ′ ∈ �.
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The problem of estimating θ is semiparametric, since the component � is a
function. Note that the maximum in � of this likelihood function does not ex-
ist, so the principle of maximum likelihood is not applicable here. Nevertheless,
this principle can be conveniently modified to yield a reasonable estimator of the
function �, as well as of β and α.

We assume that there are no tied event times and that the number of events
p(n) increases with the sample size n. We reorder the indices of the data such
that X1 < · · · < Xp(n) [p(n) ≤ n] represent the increasingly ordered event times
and Xp(n)+1 ≤ · · · ≤ Xn represent the nondecreasingly ordered censoring times.
To define an estimator of � out of the likelihood (2.2), we proceed by the method
of sieves [16], which consists in replacing the parameter space � by an appropriate
approximating space �n called a sieve (we refer to Li and Lin [19], McKeague [21]
and Murphy and Sen [25] among others, for use of sieves in various settings of sur-
vival analysis). Precisely, instead of the functions � = �(t), t ≥ 0, one considers
increasing stepwise versions �n = �n(t), t ≥ 0, of them with the unknown deter-
ministic values �n(Xi) = �n,i in the points Xi, i = 1, . . . , p(n). The sieve �n is
then{
θ = (α,β,�n) :α ∈ R

p,β ∈ R,�n,1 ≤ · · · ≤ �n,p(n),�n,i ∈ R, i = 1, . . . , p(n)
}
.

We shall estimate the values �n,i [i = 1, . . . , p(n)] and the parameters β and
α by maximizing the likelihood (2.2) over the parameter space �n, which means
maximizing the pseudo likelihood

Ln(θ) =
n∏

i=1

L(i)(θ)(3.3)

obtained by multiplying over uncensored subjects i [i = 1, . . . , p(n)] the individ-
ual contribution L(i)(θ),∫

��n,i exp

[
βz −

p(n)∑
k=1

��n,ke
βzi(xk)1{xk≤xi}

]
f

(
zi,0, . . . , zi,axi

, z;α)
dz,

and over censored subjects i [i = p(n) + 1, . . . , n] the individual contribution

L(i)(θ) =
∫

exp

[
−

p(n)∑
k=1

��n,ke
βzi(xk)1{xk≤xi}

]
f

(
zi,0, . . . , zi,axi

, z;α)
dz,

where ��n,k = ��n(Xk) = �n,k −�n,k−1 [k = 2, . . . , p(n)] and ��n,1 = �n,1.
The resulting estimator is usually referred to as nonparametric maximum likeli-
hood estimator (NPMLE). We will use this terminology in the following, keeping
in mind that the only part which is really nonparametric is just the representation of
the baseline hazard. We next demonstrate that the estimator in the joint model does
share the useful properties of the estimators from parametric models. We refer to
[19, 23, 24, 28, 34] for use on NPMLE in various situations.

Proposition 2 shows that such an estimator exists in the proposed joint model.
The proof is given in the Appendix.
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PROPOSITION 2. A maximizer θ̂n = (α̂n, β̂n, �̂n) of Ln(θ) over θ ∈ �n exists
and is achieved.

To maximize the logarithm of the likelihood Ln(θ), we use the well-known ap-
proach used for the so-called expectation–maximization (EM) algorithm [9]. The
rationale for this approach is that direct maximization of the integrated likelihood
(3.3) is difficult, and that in the present setting, the maximizer θ̂n can be more
easily characterized from an alternative EM-loglikelihood.

The following proposition provides an important characterization of the maxi-
mizer of

∑n
i=1 lnfY(yi; θ) [or, equivalently, of Ln(θ)] on �n. This characteriza-

tion will serve for the proof of asymptotic properties.
In the following, for any random variable X with density function fX(x; θ), we

shall denote by Eθ [g(X)] the expected value of g(X). Moreover, if X and Y are
random variables, we shall denote by Eθ [g(X)|y] the expectation of g(X) taken
with respect to the conditional density function fX|Y (x|y; θ) of X given Y = y.

PROPOSITION 3. The NPML estimator θ̂n satisfies the equation

�̂n(t) =
∫ t

0

dHn(u)

Wn(u; θ̂n)
,

where

Hn(u) = n−1
n∑

i=1

�i1{Xi≤u} and Wn(u; θ) = n−1
n∑

i=1

Eθ

[
eβZ(u)1{u≤X}|yi

]
.

The proof is given in the Appendix. In this proof and in the following, we shall
use the notation

L
(i)

θ̂n
(θ) = E

θ̂n
[ln l(Y,Z; θ)|yi],

and refer to L
n,θ̂n

(θ) = ∑n
i=1 L

(i)

θ̂n
(θ) as the EM-loglikelihood.

4. Large sample properties.

4.1. Consistency. Since we are interested in almost sure (a.s.) consistency, we
work with fixed realizations of the data which are assumed to lie in a set of prob-
ability one. Let ‖ · ‖∞ denote the supremum norm on [0, τ ] and ‖ · ‖ denote the
Euclidean norm.

THEOREM 1. Under conditions C1–C7, the NPML estimator θ̂n = (α̂n, β̂n,

�̂n) is consistent: ‖α̂n − α0‖, |β̂n − β0| and ‖�̂n − �0‖∞ converge a.s. to zero as
n −→ 0.
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PROOF. In the following, it will be convenient to denote (α,β) by γ . Our
proof follows Murphy’s [23] proof of a.s. consistency in the frailty model. The plan
for proving consistency is as follows. We first show that the set {θ̂n = (γ̂n, �̂n), n ∈
N} is relatively compact. Using the proposition on identifiability, we then show that
its closure reduces to the single element θ0 = (γ0,�0).

We first show that (�̂n)n∈N stays bounded as n −→ ∞. We note from (A.2) in
the Appendix that �̂n(t) ≥ 0 for all t ∈ [0, τ ] and that

�̂n(τ ) ≤
∑n

i=1 �i1{Xi≤τ }
m

∑n
i=1 1{τ≤Xi}

,

where m = minB,i,k eβzi(xk). Noting that there exists a constant l such that 1/

[ 1
n

∑n
i=1 1{τ≤Xi}] ≤ 1/P (X ≥ τ) + l as n −→ ∞, it follows that �̂n(τ ) does not

diverge to infinity.
Let φ(n) be an arbitrary subsequence of (n). From the Bolzanno–Weierstrass

theorem, (γ̂φ(n))n∈N being a bounded sequence of R
p+1 has a convergent subse-

quence (γ̂ϕ(φ(n)))n∈N which converges to some γ ∗. Since �̂n is not allowed to di-
verge, the Helly–Bray lemma can be used to prove the existence of a subsequence
(�̂η(ϕ(φ(n))))n∈N of (�̂ϕ(φ(n)))n∈N which converges pointwise to some �∗. Since
every subsequence of a convergent sequence in R

p+1 must converge to the same
limit, (γ̂η(ϕ(φ(n))))n∈N must converge to γ ∗.

Hence, for any given subsequence θ̂φ(n), we can find a further subsequence
θ̂η(ϕ(φ(n))) which converges to some θ∗ = (γ ∗,�∗). We now show that �̂η(ϕ(φ(n)))

converges uniformly to �∗. In the following, we shall use the following notation
for the sake of clarity of formulas: g(n) = η(ϕ(φ(n))).

We shall use in the sequel the Helly–Bray lemma and the result that the class of
all functions f : [0, τ ] −→ R that are uniformly bounded and of variation bounded
is Glivenko–Cantelli [33].

We first define the intermediate quantity �̄n by �̄n(t) = ∫ t
0

dHn(u)
Wn(u,θ0)

, which will

help mediate between �̂n and �0. By Glivenko–Cantelli, (Hn(u))n∈N converges
uniformly on [0, τ ] to H(u) = Eθ0[�1{X≤u}]. Note that �0(t) = ∫ t

0
dH(u)

W(u,θ0)
, where

W(u, θ0) = Eθ0[eβ0Z(u)1{u≤X}].
The functions u 
−→ Eθ0[eβ0Z(u)1{u≤X}|y] are uniformly bounded and of

variation bounded. Hence, (Wn(u, θ0))n∈N converges uniformly to W(u, θ0) =
Eθ0[eβ0Z(u)1{u≤X}], which is bounded away from 0 by condition C6. Hence,
(1/Wn(u, θ0))n∈N converges to 1/W(u, θ0) uniformly on [0, τ ].

Applying the Helly–Bray lemma gives that both ‖�̄n − �0‖∞ and ‖�̂g(n) −
�∗‖∞ converge almost surely to 0. This establishes the relative compactness of
{θ̂n, n ∈ N}.
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We now show that every subsequence (θ̂g(n))n∈N must converge to the true value
θ0 = (γ0,�0). Since θ̂g(n) maximizes the loglikelihood,

1

g(n)

g(n)∑
i=1

[
lnL(i)(θ̂g(n)

) − lnL(i)(γ0, �̄g(n)

)] ≥ 0.

Note that, for all g(n), as m −→ ∞,

1

m

m∑
i=1

[
lnL(i)(θ̂g(n)

) − lnL(i)(γ0, �̄g(n)

)]

−→ Eθ0

[
lnL

(
θ̂g(n)

) − lnL
(
γ0, �̄g(n)

)]
a.s.

It follows that

Eθ0

[
lnL

(
θ̂g(n)

) − lnL
(
γ0, �̄g(n)

)] ≥ −o(1).(4.4)

We have

lnL
(
θ̂g(n)

) − lnL
(
γ0, �̄g(n)

) −→ lnL(θ∗) − lnL(θ0) a.s.

By Lebesgue’s theorem,

Eθ0

[
ln

(
L

(
θ̂g(n)

)
/L

(
γ0, �̄g(n)

))] −→ Eθ0

[
ln

(
L(θ∗)/L(θ0)

)]
a.s.

From (4.4), Eθ0[ln(L(θ∗)/L(θ0))] ≥ 0. This quantity cannot be treated directly
as a Kullback–Leibler distance, since (2.2) is not a likelihood in the traditional
sense. Due to the missing observation, it may even not be viewed as a gener-
alized likelihood in the sense of Jacobsen [18]. However, it can be shown that
Eθ0[ln(L(θ∗)/L(θ0))] ≤ 0, and, moreover, that it is equal to zero if and only if
L(θ∗) = L(θ0) a.e. This in turn implies θ∗ = θ0 by Proposition 1. �

4.2. Asymptotic normality. In order to establish the asymptotic distribution
of the proposed estimators θ̂n, we follow the function analytic approach de-
scribed by Murphy [24] to derive asymptotic theory for the frailty model. To
calculate the score equations, instead of differentiating Ln,θ (θ) with respect to
α,β and the jump sizes of the cumulative baseline hazard function, we con-
sider one-dimensional submodels through the estimators and we differentiate at
the estimators. That is, we set θt = (αt , βt ,�t), αt = α + th1, βt = β + th2 and
�t(·) = ∫ ·

0(1 + th3(u)) d�(u), where h1 is a p-dimensional vector, h2 ∈ R, and
h3 is a function of bounded variation defined on [0, τ ].

More precisely, let the class of (h1, h2, h3) be the space H = {h = (h1, h2,

h3)|h1 is a p-vector, h2 ∈ R, h3 is a bounded function of bounded variation on
[0, τ ]}.
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The following proposition gives the form of the empirical score Sn,θ . Its proof
is given in the Appendix. Define first

Sn,θ̃ ,1(θ) = n−1
n∑

i=1

Eθ̃

[
∂

∂α
lnf

(
Z0, . . . ,ZaX

,Z;α)|yi

]
,

Sn,θ̃ ,2(θ) = n−1
n∑

i=1

Eθ̃

[
�Z −

∫ X

0
Z(u)eβZ(u) d�(u)|yi

]
,

Sn,θ̃ ,3(θ)(h3) = n−1
n∑

i=1

[
δih3(xi) − Eθ̃

[∫ X

0
h3(u)eβZ(u) d�(u)|yi

]]
,

for some value θ̃ of θ , and the notation ST

n,θ̃,12
(θ) = (ST

n,θ̃ ,1
, Sn,θ̃,2)(θ),

Sn,θ̃ ,12(θ) = n−1 ∑n
i=1 S

(i)

θ̃ ,12
(θ) and hT

12 = (hT
1 , h2).

PROPOSITION 4. The empirical score can be written as

Sn,θ̃ (θ)(h) = hT
12Sn,θ̃,12(θ) + Sn,θ̃ ,3(θ)(h3).

In the sequel, letting sθ̃ (y, θ)(h) = ∂
∂t

Lθ̃ (θt )|t=0, we shall write the empirical
and expected scores as

Sn,θ̃ (θ)(h) = 1

n

n∑
i=1

sθ̃ (yi , θ)(h), Sθ̃ (θ)(h) = Eθ0[sθ̃ (Y, θ)(h)].

We define the following norm on H : if h ∈ H , let ‖h‖H = ‖h1‖+ |h2|+‖h3‖v ,
where ‖ · ‖ is the Euclidean norm and ‖h3‖v is the absolute value of h3(0) plus the
total variation of h3 on the interval [0, τ ]. We further define Hp = {h ∈ H,‖h‖H ≤
p}, H∞ = {h ∈ H,‖h‖H < ∞} and BVp to be the space of real-valued functions
on [0, τ ] bounded by p and of variation bounded by p.

Define θ(h) = (α,β,�)(h) = hT
1 α + h2β + ∫ τ

0 h3(u) d�(u). Then we can con-
sider the parameter θ as a functional on Hp , and the parameter space � as a
subset of l∞(Hp), the space of bounded real-valued functions on Hp . We define
on l∞(Hp) the norm ‖U‖p = suph∈Hp

|U(h)|. For any finite p, the score func-
tion Sn,θ is a map from � to l∞(Hp).

We obtain the following result:

THEOREM 2. Let 0 < p < ∞. Under assumptions C1–C7, the sequence√
n(α̂n − α0, β̂n − β0, �̂n − �0) weakly converges in l∞(Hp) to a centered

Gaussian process G with covariance process

cov[G(g),G(g∗)] =
∫ τ

0
g3(u)σ−1

3,θ0
(g∗)(u) d�0(u) + σ−1

2,θ0
(g∗)g2 + σ−1

1,θ0
(g∗)T g1,
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where σ−1
θ0

= (σ−1
1,θ0

, σ−1
2,θ0

, σ−1
3,θ0

) is the inverse of the continuously invertible linear
operator σθ0 = (σ1,θ0, σ2,θ0, σ3,θ0) from H∞ to H∞, defined by

σ1,θ0(h) = −Eθ0

[
∂2

∂α ∂αT
lnf

(
Z0, . . . ,ZaX

,Z;α0
)]

h1,

σ2,θ0(h) = Eθ0

[∫ X

0
Z(u)eβ0Z(u)(Z(u)h2 + h3(u)

)
d�0(u)

]
,

σ3,θ0(h)(u) = Eθ0

[(
Z(u)h2 + h3(u)

)
eβ0Z(u)1{u≤X}

]
.

PROOF. The proof is based on a theorem by van der Vaart and Wellner [33],
which is stated as Lemma A.1 in the Appendix. In the following lemmas, we ver-
ify that the conditions stated in this theorem are satisfied by our estimator. Some
additional technical lemmas are given in the Appendix, in order to keep attention
on the main steps of the demonstration.

We first establish Fréchet differentiability of the map θ 
−→ Sθ0(θ) at θ0. Let
us define the operator σθ from H∞ to H∞ by σθ (h) = (σ1,θ (h), σ2,θ (h), σ3,θ (h)),
where

σ1,θ (h) = −Eθ0

[
Eθ

[
∂2

∂α ∂αT
lnf

(
Z0, . . . ,ZaX

,Z;α)|y]]
h1,

σ2,θ (h) = Eθ0

[
Eθ

[∫ X

0
Z(u)eβZ(u)(Z(u)h2 + h3(u)

)
d�(u)|y

]]
,(4.5)

σ3,θ (h)(u) = Eθ0

[
Eθ

[(
Z(u)h2 + h3(u)

)
eβZ(u)1{u≤X}|y]]

.

LEMMA 1. For any finite p, the following holds: there exists a continuous lin-
ear operator Ṡθ0(θ0) : lin� −→ l∞(Hp) such that ‖Sθ0(θ)−Sθ0(θ0)− Ṡθ0(θ0)(θ −
θ0)‖p = oP (‖θ − θ0‖p) as ‖θ − θ0‖p −→ 0. The form of Ṡθ0(θ0) is as follows:

Ṡθ0(θ0)(θ)(h) = −
∫ τ

0
σ3,θ0(h)(u) d�(u) − βσ2,θ0(h) − αT σ1,θ0(h).

PROOF. To establish this, we use the following characterization of Fréchet
differentiability (see [2], page 454). Let T be a function from a normed linear
space X to another normed linear space Y. Let S be the set of all bounded subsets
of X. T is Fréchet differentiable at x with derivative Ṫx if, for all S ∈ S,

T (x + εs) − T (x) − Ṫx(εs)

ε
−→ 0 as ε −→ 0 uniformly in s ∈ S.

We first calculate the derivative DθSθ0(θ0) given by

DθSθ0(θ0) = ∂

∂t
Sθ0(θ0 + tθ)|t=0,
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where θ0 + tθ = (α0 + tα,β0 + tβ,�0(·) + t�(·)):
∂

∂t
Sθ0(θ0 + tθ)(h)

= ∂

∂t
Eθ0

[
�h3(X) −

∫ X

0
h3(u)e[β0+tβ]Z(u)(d�0(u) + t d�(u)

)

+ h2�Z −
∫ X

0
h2Z(u)e[β0+tβ]Z(u)(d�0(u) + t d�(u)

)

+ hT
1

∂

∂t
lnf

(
Z0, . . . ,ZaX

,Z;α0 + tα
)]

.

The expression for DθSθ0(θ0)(h) immediately follows and, using a first-order
Taylor expansion of exp([β0 + εβ]Z(u)) around exp(β0Z(u)), it is fairly straight-
forward to see that

Sθ0(θ0 + εθ)(h) − Sθ0(θ0)(h) − DεθSθ0(θ0)(h) = o(ε).

Now, as ε −→ 0,
‖Sθ0 (θ0+εθ)−Sθ0 (θ0)−DεθSθ0 (θ0)‖p

ε
converges to 0 uniformly in θ

ranging over any element of the class of bounded subsets of lin �, where the nota-
tion “lin” before a set denotes the set of all finite linear combinations of elements
of this set.

It follows that Sθ0 is Fréchet differentiable at θ0 and that the Fréchet derivative
Ṡθ0(θ0)(θ) is given by Ṡθ0(θ0)(θ) = DθSθ0(θ0). �

We now consider the asymptotic distribution of the score function.

LEMMA 2. For any finite p, the following holds: let G be a tight Gaussian
process on l∞(Hp) with covariance

cov
(
G(h),G(h∗)

) =
∫ τ

0
h3(u)σ3,θ0(h

∗)(u) d�0(u) + h2σ2,θ0(h
∗) + hT

1 σ1,θ0(h
∗).

Then √
n
(
S

n,θ̂n
(θ0) − Sθ0(θ0)

) �⇒ G.

PROOF. Note that
√

n(S
n,θ̂n

(θ0) − Sθ0(θ0))(h) can be written as

1√
n

n∑
i=1

[
hT

12S
(i)

θ̂n,12
(θ0) + δih3(xi) −

∫ xi

0
h3(u)E

θ̂n

[
eβ0Z(u)|yi

]
d�0(u)

]
.

Note that {hT
12Sθ̂n,12(θ0) :h1 ∈ R

p,‖h1‖ ≤ p,h2 ∈ R, |h2| ≤ p} is bounded
Donsker. The class {δh3(x), h3 ∈ BVp} is Donsker (this follows from the fact that
the class of real-valued functions on [0, τ ] that are uniformly bounded and are of
variation bounded is Donsker). The class {∫ x

0 h3(u)E
θ̂n

[eβ0Z(u)|y]d�0(u) :h3 ∈
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BVp} is a bounded Donsker class. Then the class {hT
12Sθ̂n,12(θ̂n) + δh3(x) −∫ x

0 h3(u)E
θ̂n

[eβ0Z(u)|y]d�0(u) :h ∈ Hp} is Donsker since the sum of bounded

Donsker classes is Donsker. It follows that
√

nS
n,θ̂n

(θ̂n) converges in distribution
to a zero mean tight Gaussian process G in l∞(Hp).

The asymptotic distribution of the score
√

n(S
n,θ̂n

(θ0) − Sθ0(θ0)) is that of a
tight Gaussian process G in l∞(Hp) whose variance var(G(h)) is calculated as

− ∂

∂s
Eθ0

[
sθ0(Y, θ0,s)(h)|s=0

]
which is − Ṡθ0(θ0)(h)(h).

The covariance of G is calculated as

cov
(
G(h),G(h∗)

) = −Eθ0

[
∂

∂s

∂

∂t
Lθ0(θ0,s,t )|s,t=0

]

= −Ṡθ0(θ0)(h
∗)(h).

Let θs = (αs, βs,�s) with αs = α + sh∗
1, βs = β + sh∗

2 and �s(·) = ∫ ·
0(1 +

sh∗
3(u)) d�(u). Then we can calculate ∂

∂s
sθ̃ (y, θs)(h) as

∂

∂s
sθ̃ (y, θs)(h)

= ∂

∂s

[
∂

∂t
Lθ̃ (θs,t )|t=0

]
,

= −Eθ̃

[∫ x

0
h3(u)e[β+sh∗

2]z(u)[h∗
2z(u)

(
1 + sh∗

3(u)
) + h∗

3(u)
]
d�(u)|y

]

− h2Eθ̃

[∫ x

0
z(u)e[β+sh∗

2]z(u)[h∗
2z(u)

(
1 + sh∗

3(u)
) + h∗

3(u)
]
d�(u)|y

]

+ hT
1 Eθ̃

[
∂2 lnf (z0, . . . , zax ,Z;α + sh∗

1)

∂s ∂α

∣∣∣y]
.

Calculation of ∂
∂s

sθ̃ (y, θs)(h)|s=0 is straightforward, and using notation defined
above, it follows that

cov
(
G(h),G(h∗)

) =
∫ τ

0
h3(u)σ3,θ0(h

∗)(u) d�0(u) + h2σ2,θ0(h
∗) + hT

1 σ1,θ0(h
∗).

�

The approximation condition (A.3) in Lemma A.1 follows by the Donsker prop-
erty of the class of functions {sθ (y, θ)(h) − sθ0(y, θ0)(h) :‖θ − θ0‖p < ε,h ∈ Hp}
for some ε > 0. Details can be found in [11].

We now consider continuous invertibility of Ṡθ0(θ0).

LEMMA 3. For any finite p, Ṡθ0(θ0) is continuously invertible on its range.
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PROOF. Continuous invertibility of Ṡθ0(θ0) on its range for some p is equiva-
lent (see [2], page 418) to the fact that there exists some l > 0 such that

inf
θ∈lin�

‖Ṡθ0(θ0)(θ)‖p

‖θ‖p

> l.(4.6)

To prove (4.6), we follow two steps. We first show that σθ0 is a continuously
invertible operator from H∞ to H∞. We can achieve this by proving that σθ0 is one-
to-one and that it can be written as the sum of a continuously invertible operator �

plus a compact operator ([32], page 424).
From Lemma A.3 in the Appendix, we know that σθ0 is one-to-one, hence,

we want to show that σθ0 can be written as the sum of a continuously invertible
operator � and a compact linear operator. We define � as

�(h) =
(
−Eθ0

[
∂2

∂α ∂αT
lnf

(
Z0, . . . ,ZaX

,Z;α0
)]

h1,

Eθ0

[∫ X

0
{Z(u)}2eβ0Z(u) d�0(u)

]
h2,Eθ0

[
eβ0Z(u)1{u≤X}

]
h3(u)

)
.

From conditions C1–C7, it follows that �−1 is a bounded linear operator and,
hence, that � is continuously invertible.

We now have to show that σθ0(h) − �(h) is compact. Let (hn)n∈N = (h1n, h2n,

h3n)n∈N be a sequence in Hp . By the definition of a compact operator [27], we
must prove that there exists a convergent subsequence of σθ0(hn) − �(hn).

Since h3n is of bounded variation, we can write h3n as the difference of bounded
increasing functions h

(1)
3n and h

(2)
3n . From Helly’s theorem, there exists a subse-

quence (h
(1)
3φ(n)) of (h

(1)
3n ) which converges pointwise to some h

(1)∗
3 . There also ex-

ists a subsequence (h
(2)
3η(φ(n))) of (h

(2)
3φ(n)) which converges pointwise to some h

(2)∗
3 .

Finally, (h
(1)
3η(φ(n)), h

(2)
3η(φ(n))) converges pointwise to h∗

3 = (h
(1)∗
3 , h

(2)∗
3 ). Using the

same argument and the Bolzanno–Weierstrass theorem, we can find a subsequence
of (hn)n∈N [let us denote it by (hg(n))n∈N for notational simplicity] that converges
to h∗ = (h∗

1, h
∗
2, h

∗
3).

We must prove that σθ0(hg(n)) − �(hg(n)) converges to σθ0(h
∗) − �(h∗) in Hp

for all p. Note that σθ0(h) − �(h) is equal to(
0,Eθ0

[∫ X

0
Z(u)eβ0Z(u)h3(u) d�0(u)

]
,Eθ0

[
h2Z(u)eβ0Z(u)1{u≤X}

])
.

Now ‖σθ0(hg(n)) − �(hg(n)) − σθ0(h
∗) + �(h∗)‖H is equal to∣∣∣∣Eθ0

[∫ X

0
Z(u)eβ0Z(u)(h3g(n) − h∗

3
)
(u) d�0(u)

]∣∣∣∣
+ ∥∥Eθ0

[(
h2g(n) − h∗

2
)
Z(u)eβ0Z(u)1{u≤X}

]∥∥
v,
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which, under conditions C1–C7, is bounded above by

cebc ·
∫ τ

0

∣∣(h3g(n) − h∗
3
)
(u)

∣∣d�0(u) + cebc(2 + c) · ∣∣h2g(n) − h∗
2
∣∣,

where b is such that |β| < b. From the dominated convergence theorem, the first
term converges to zero and the overall bound converges to zero. It follows that
σθ0(h) − �(h) is a compact operator for all p.

We have then proved that σθ0 is a continuously invertible operator. This means
that, for all p > 0, there exists a q > 0 such that σ−1

θ0
(Hq) ⊂ Hp . Hence, the LHS

of (4.6) is bounded below by

inf
θ∈lin�

sup
h∈σ−1

θ0
(Hq)

|Ṡθ0(θ0)(θ)(h)|
‖θ‖p

= inf
θ∈lin�

[
sup
h∈Hq

∣∣∣∣
∫ τ

0
σ3,θ0

(
σ−1

θ0
(h)

)
(u) d�(u)

+ βσ2,θ0

(
σ−1

θ0
(h)

) + αT σ1,θ0

(
σ−1

θ0
(h)

)∣∣∣∣
]
(‖θ‖p)−1.

Recall that σθ0 is invertible, hence, σθ0(σ
−1
θ0

(h)) = h for all h = (h1, h2, h3) ∈ Hq .

Since σθ0(σ
−1
θ0

(h)) = (σ1,θ0(σ
−1
θ0

(h)), σ2,θ0(σ
−1
θ0

(h)), σ3,θ0(σ
−1
θ0

(h))), it follows

that σi,θ0(σ
−1
θ0

(h)) = hi, i = 1,2,3. Hence, the above bound can be rewritten as

inf
θ∈lin�

suph∈Hq
| ∫ τ

0 h3(u) d�(u) + h2β + hT
1 α|

‖θ‖p

= inf
θ∈lin�

‖θ‖q

‖θ‖p

.(4.7)

Now from Lemma A.2 in the Appendix, ‖θ‖q is greater than or equal to q(‖α‖∨
|β|∨V[0,τ ](�)) and ‖θ‖p is less than or equal to 3p(‖α‖∨|β|∨V[0,τ ](�)), where
V[0,τ ](f ) denotes the total variation of a function f on [0, τ ]. Hence, the RHS
of (4.7) is greater than or equal to q

3p
. It follows that Ṡθ0(θ0) is continuously in-

vertible. �

Putting all these results together, it follows that, for all h ∈ Hp ,

−Ṡθ0(θ0)
√

n(θ̂n − θ0)(h) = √
n
(
S

n,θ̂n
(θ0) − Sθ0(θ0)

)
(h) + oP (1),

where

−Ṡθ0(θ0)
√

n(θ̂n − θ0)(h)

=
∫ τ

0
σ3,θ0(h)(u)

√
n d(�̂n − �0)(u)

+ √
n(β̂n − β0)σ2,θ0(h) + √

n(α̂n − α0)
T σ1,θ0(h).
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Consequently,
√

n(θ̂n − θ0)(h) �⇒ −Ṡθ0(θ0)
−1G(h). We now want to identify

Ṡθ0(θ0)
−1G. σθ0 is continuously invertible, hence, for all q > 0 there exists a p > 0

such that σ−1
θ0

(g) ∈ Hq if g ∈ Hp . Let h = σ−1
θ0

(g). Then

−Ṡθ0(θ0)
√

n(θ̂n − θ0)(h) =
∫ τ

0
g3(u)

√
nd(�̂n − �0)(u)

(4.8)
+ √

n(β̂n − β0)g2 + √
n(α̂n − α0)

T g1

and

−Ṡθ0(θ0)
√

n(θ̂n − θ0)(h) = √
n
(
Sn,θ0(θ0) − Sθ0(θ0)

)(
σ−1

θ0
(g)

) + oP (1).(4.9)

Note that the RHS of (4.8) is (
√

n(α̂n − α0),
√

n(β̂n − β0),
√

n(�̂n − �0))(g),
which converges to −Ṡθ0(θ0)

−1G(g). Note also that the RHS of (4.9) converges
to G(σ−1

θ0
(g)) [which has mean zero and variance

∫ τ
0 g3(u)σ−1

3,θ0
(g)(u) d�0(u) +

σ−1
2,θ0

(g)g2 + σ−1
1,θ0

(g)T g1].

It then follows that −Ṡθ0(θ0)
−1G = G(σ−1

θ0
). Hence, (

√
n(α̂n − α0),

√
n(β̂n −

β0),
√

n(�̂n −�0)) converges in l∞(Hp) to a tight Gaussian process G in l∞(Hp)

with mean zero and covariance process

cov[G(g),G(g∗)] =
∫ τ

0
g3(u)σ−1

3,θ0
(g∗)(u) d�0(u) + σ−1

2,θ0
(g∗)g2 + σ−1

1,θ0
(g∗)T g1,

where (σ−1
1,θ0

, σ−1
2,θ0

, σ−1
3,θ0

) is the inverse of σθ0 = (σ1,θ0, σ2,θ0, σ3,θ0). �

We now consider the problem of estimating the asymptotic variance of the
NPML estimator. From Theorem 2, the asymptotic variance of(√

n(α̂n − α0),
√

n(β̂n − β0),
√

n(�̂n − �0)
)
(h)

is
∫ τ

0 h3(u)σ−1
3,θ0

(h)(u) d�0(u) + σ−1
2,θ0

(h)h2 + σ−1
1,θ0

(h)T h1. Using formulas (4.5),
we propose to first estimate σθ0 by σ̂

θ̂n
= (σ̂1,θ̂n

, σ̂2,θ̂n
, σ̂3,θ̂n

), where

σ̂1,θ̂n
(h) = −1

n

n∑
i=1

E
θ̂n

[
∂2

∂α ∂αT
lnf

(
Z0, . . . ,ZaX

,Z; α̂n

)|yi

]
h1,

σ̂2,θ̂n
(h) = 1

n

n∑
i=1

E
θ̂n

[∫ X

0
Z(u)eβ̂nZ(u)[h2Z(u) + h3(u)]d�̂n(u)|yi

]
,

σ̂3,θ̂n
(h)(u) = 1

n

n∑
i=1

E
θ̂n

[[h2Z(u) + h3(u)]eβ̂nZ(u)1{u≤X}|yi

]
.

We then propose to estimate the asymptotic variance by∫ τ

0
h3(u)σ̂−1

3,θ̂n
(h)(u) d�̂n(u) + σ̂−1

2,θ̂n
(h)h2 + σ̂−1

1,θ̂n
(h)T h1.(4.10)
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Using the same arguments as in the proof of Lemma 2, we are able to show that the
functions under

∑
in σ̂1,θ̂n

, σ̂2,θ̂n
, σ̂3,θ̂n

form Donsker classes (for h ∈ Hp , p > 0),
hence suph∈Hp

‖σ̂
θ̂n

(h) − σθ0(h)‖H −→ 0.
σ̂

θ̂n
is continuously invertible, hence, for all Hp ⊂ H∞ there exists Hq ⊂ H∞

such that σ̂−1
θ̂n

(Hq) ⊂ Hp , and for all g ∈ Hq there exists h ∈ Hp such that h =
σ̂−1

θ̂n
(g).

Then∥∥σ̂−1
θ̂n

(g) − σ−1
θ0

(g)
∥∥
H = ∥∥σ−1

θ0

(
σθ0(h)

) − σ−1
θ0

(
σ̂

θ̂n
(h)

)∥∥
H

≤ sup
h∈Hq

‖σ−1
θ0

(h)‖H

‖h‖H

sup
h∈Hp

∥∥σθ0(h) − σ̂
θ̂n

(h)
∥∥
H .

It follows that supg∈Hq
‖σ̂−1

θ̂n
(g)−σ−1

θ0
(g)‖H −→ 0 and that the sequence of es-

timators (4.10) converges to the limit
∫ τ

0 h3(u)σ−1
3,θ0

(h)(u) d�0(u) + σ−1
2,θ0

(h)h2 +
σ−1

1,θ0
(h)T h1.

In the above framework, specific choices of h allow one to estimate the asymp-
totic variance of any particular estimator. For example, by setting hβ = (0,1,0),
one may obtain the following convergent estimator of the asymptotic variance of√

n(β̂n − β0):

σ̂−1
2,θ̂n

(hβ) =
[

1

n

n∑
i=1

∑
xk≤xi

E
θ̂n

[{Z(xk)}2eβ̂nZ(xk)|yi

]
��̂n,k

]−1

.

5. Discussion. In this paper we have described a joint modeling approach for
estimation in the Cox model with missing values of a time-dependent covariate.
We have used nonparametric maximum likelihood estimation. Using the theory
of empirical processes and techniques developed by Murphy [23, 24] and van der
Vaart and Wellner [33], we have shown that the proposed estimators are consistent
and asymptotically normal. Moreover, we have proposed a consistent estimator of
the asymptotic variance.

An alternative widely used approach to the modeling of longitudinal data in joint
models assumes a normal random effects model for the repeated measurements
(see among others Henderson, Diggle and Dobson [17], Tsiatis, DeGruttola and
Wulfsohn [31] and Wulfsohn and Tsiatis [34]). Tsiatis and Davidian [29] estimate
parameters in a joint model without requiring any distributional assumption on the
random effects, and an informal proof of large-sample properties of estimators in
the proportional hazards model is given. However, a formal theoretical justification
of asymptotic properties for the maximum likelihood estimator in joint models
with random effects for longitudinal data is not yet available, and should be a
subject for further work.
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APPENDIX

PROOF OF PROPOSITION 1. In the following, a.e. will stand for almost every-
where. Using (2.2), lnL(θ) = lnL(θ ′) a.e. can be reexpressed as

δ ln
(

λ

λ′ (x)

)
+ ln

∫
exp

[
δβz −

∫ x

t
eβz(u) d�(u)

]
f

(
z0, . . . , zax , z;α

)
dz

− ln
∫

exp
[
δβ ′z −

∫ x

t
eβ ′z(u) d�′(u)

]
f

(
z0, . . . , zax , z;α′)dz(A.1)

=
∫ t

0

[
eβz(u) d�(u) − eβ ′z(u) d�′(u)

]
a.e.

for t < x and x ∈ (0, τ ]. The LHS of (A.1) depends on the path of the lon-
gitudinal covariate only through {z(u), t ≤ u ≤ x} and {z0, . . . , zat }. Hence, for
given {z(u) : t ≤ u ≤ x} and {z0, . . . , zat }, the RHS of (A.1) should yield the same
value for two different paths z(u) and z∗(u) (0 ≤ u ≤ t) taking the same values
{z0, . . . , zat } at t0, . . . , tat . This can be expressed as∫ t

0

[
eβz(u) d�(u) − eβ ′z(u) d�′(u)

] =
∫ t

0

[
eβz∗(u) d�(u) − eβ ′z∗(u) d�′(u)

]
.

Letting z(u) = ξ and z∗(u) = ξ + h (h > 0) in [0, t] except at t0, . . . , tat [where
z(u) and z∗(u) take values z0, . . . , zat ], and eventually also at at most a count-
able number of time points in [0, t], the following holds: e(β−β ′)ξ = �′(t)(1 −
eβ ′h)/�(t)(1 − eβh). For a fixed h, the RHS of this expression is independent
of ξ . It follows that β = β ′ and then � = �′. Rewriting lnL(θ) = lnL(θ ′) with
β = β ′ and � = �′ leads to α = α′. �

PROOF OF PROPOSITION 2. Recall that α and β are interior points of some
known compact sets A and B . Suppose first that ��n,i ≤ U [i = 1, . . . , p(n)] for
some finite U . Since Ln is a continuous function of α,β and of the jump sizes
��n,i [i = 1, . . . , p(n)] on the compact set A × B × [0,U ]p(n), Ln achieves its
maximum on this set.

To show that a maximum of Ln exists on A×B ×[0,∞)p(n), we show that there
exists a finite U such that, for all θU = (αU ,βU ,��n,1,U , . . . ,��n,p(n),U ) ∈
{A×B ×[0,∞)p(n)} \ {A×B ×[0,U ]p(n)}, there exists a θ = (α,β,��n,1, . . . ,

��n,p(n)) ∈ A × B × [0,U ]p(n) such that Ln(θ) > Ln(θU).
A proof by contradiction is adopted for this purpose. Assume that, for all U ,

there exists θU = (αU ,βU ,��n,1,U , . . . ,��n,p(n),U ) ∈ {A × B × [0,∞)p(n)} \
{A × B × [0,U ]p(n)} such that, for all θ = (α,β,��n,1, . . . ,��n,p(n)) ∈ A ×
B × [0,U ]p(n), Ln(θ) < Ln(θU). Under conditions C1–C7, it is easily seen that
the likelihood Ln(θ) is bounded above by

n∏
i=1

[
(M��n(xi))

δi exp

(
−m

p(n)∑
k=1

��n,k1{xk≤xi}
)
f

(
zi,0, . . . , zi,axi

;α)]
,
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where m = minB,i,k eβzi(xk) and M = maxB,i,k eβzi(xk).
If θU = (αU ,βU ,��n,1,U , . . . ,��n,p(n),U ) ∈ {A×B ×[0,∞)p(n)}\{A×B ×

[0,U ]p(n)}, then there exists j [j ∈ {1, . . . , p(n)}] such that ��n,j,U > U . Hence,

there exists at least one iU (iU ∈ {1, . . . , n}) such that
∑p(n)

k=1 ��n,k,U1{xk≤xiU
} >

U . Hence,
∑p(n)

k=1 ��n,k,U1{xk≤xiU
} −→ +∞ as U −→ +∞. It follows that the

upper bound of Ln(θU) [and, hence, Ln(θU)] can be made as close to 0 as desired
by increasing U . This is the desired contradiction. �

PROOF OF PROPOSITION 3. The maximizer θ̂n of
∑n

j=1 lnfY(yj ; θ) over
θ ∈ �n satisfies

n∑
j=1

∂

∂θ

[
E

θ̂n
[lnfY,Z(Y,Z; θ)|yj ]]|θ=θ̂n

= 0.

This result can be obtained by using the same argument that Dempster, Laird and
Rubin [9] used to derive the principle of the EM algorithm. Its proof is therefore
omitted. Discarding from E

θ̂n
[lnfY,Z(Y,Z; θ)|yj ] terms adhering to censoring

does not influence maximization, hence we can write that
n∑

j=1

∂

∂θ
L

(j)

θ̂n
(θ)|θ=θ̂n

= 0.

Letting θ ∈ �n, we note that L
(j)

θ̂n
(θ) is equal to

E
θ̂n

[
�βZ −

p(n)∑
k=1

��n,ke
βZ(Xk)1{Xk≤X}

+ [ln��n,j ]� + lnf
(
Z0, . . . ,ZaX

,Z;α)|yj

]
.

Summing this expression over j (j = 1, . . . , n), deriving with respect to ��n,i

and solving the derivative to 0 gives ��̂n,i = 1/[∑n
j=1 E

θ̂n
[eβ̂nZ(Xi)1{Xi≤X}|yj ]].

The cumulative baseline hazard can be estimated by �̂n(t) = ∑p(n)
i=1 ��̂n,i1{Xi≤t}.

Using Hn and Wn given in Proposition 3, this can further be written as

�̂n(t) =
∫ t

0

dHn(u)

Wn(u; θ̂n)
.(A.2) �

PROOF OF PROPOSITION 4. Letting θ̃ be some value of θ and θt =
(αt , βt ,�t), Lθ̃ (θt ) is equal to

Lθ̃ (θt ) = δ ln
[(

1 + th3(x)
)
d�(x)

] − Eθ̃

[∫ X

0
e[β+th2]Z(u)(1 + th3(u)

)
d�(u)|y

]

+ Eθ̃

[
�[β + th2]Z|y] + Eθ̃

[
lnf

(
Z0, . . . ,ZaX

,Z;α + th1
)|y]

.
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Then

∂

∂t
Lθ̃ (θt ) = δ

h3(x)

1 + th3(x)
− Eθ̃

[∫ X

0
h3(u)e[β+th2]Z(u) d�(u)|y

]

+ h2Eθ̃

[
�Z −

∫ X

0
Z(u)e[β+th2]Z(u)(1 + th3(u)

)
d�(u)|y

]

+ Eθ̃

[
∂

∂t
lnf

(
Z0, . . . ,ZaX

,Z;α + th1
)|y]

.

Letting t = 0 in this derivative and using notation previously defined for Sn,θ̃ ,1(θ),

Sn,θ̃ ,2(θ) and Sn,θ̃ ,3(θ), Proposition 4 immediatly follows.

We verify that S
n,θ̂n

(θ̂n) = 0. To see this, recall (proof of Proposition 3) that the

maximizer θ̂n of
∑n

i=1 lnfY(yi; θ) over �n satisfies

1

n

n∑
i=1

∂

∂θ
L

(i)

θ̂n
(θ)|

θ=θ̂n
= 0, or, equivalently,

1

n

n∑
i=1

s
θ̂n

(yi , θ̂n)(h) = 0.

Hence, S
n,θ̂n

(θ̂n)(h) = 0.
Note also that Sθ0(θ0) = 0. To see this, recall that, in Proposition 1 it was shown

that the model is identifiable, that is, the function t 
−→ Eθ0[lnfY(Y; θ0,t )] has a
unique maximum at t = 0 [where θ0,t = (α0,t , β0,t ,�0,t )].

Since Eθ0[ ∂
∂t

lnfY(Y; θ0,t )|t=0] = 0 and

∂

∂t
lnfY(y; θ0,t )|t=0 = ∂

∂t

[
Eθ0[lnfY,Z(Y,Z; θ0,t )|y]]|t=0,

it follows that Eθ0[ ∂
∂t

[Eθ0[lnfY,Z(Y,Z; θ0,t )|y]]|t=0] = 0. By discarding terms
adhering to censoring from Eθ0[lnfY,Z(Y,Z; θ0,t )|y], it follows that
Eθ0[ ∂

∂t
Lθ0(θ0,t )|t=0] = 0. Hence Sθ0(θ0)(h) = 0. �

In the following lemma, we recall Theorem 3.3.1 of [33], which will serve as a
basis for our proof of asymptotic normality.

LEMMA A.1 (Theorem 3.3.1 of [33]). Let Sn and S be random maps and a
fixed map, respectively, from � into a Banach space such that

√
n(Sn − S)(ψ̂n) − √

n(Sn − S)(ψ0) = oP

(
1 + √

n‖ψ̂n − ψ0‖)
,(A.3)

and such that the sequence
√

n(Sn − S)(ψ0) converges in distribution to a tight
random element Z. Let ψ 
−→ S(ψ) be Fréchet-differentiable at ψ0 with a con-
tinuously invertible derivative Ṡ(ψ0). If S(ψ0) = 0 and ψ̂n satisfies Sn(ψ̂n) =
oP (n−1/2) and ψ̂n − ψ0 = oP (1), then

√
n(ψ̂n − ψ0) ⇒ −Ṡ(ψ0)

−1Z.



922 J.-F. DUPUY, ION GRAMA AND MOUNIR MESBAH

The following two technical lemmas will be useful for our proof.

LEMMA A.2. For any finite p, the following holds: if θ ∈ l∞(Hp), then

p
(‖α‖ ∨ |β| ∨ V[0,τ ](�)

) ≤ ‖θ‖p ≤ 3p
(‖α‖ ∨ |β| ∨ V[0,τ ](�)

)
.

This lemma can easily be proved and its proof is therefore omitted. See [11] for
details.

LEMMA A.3. The operator σθ0 is such that Ker(σθ0) = {0}.

PROOF. Suppose that σθ0(h) = 0 for some h = (h1, h2, h3). Then σ1,θ0(h) = 0.

It follows that hT
1 σ1,θ0(h) = 0. Since −Eθ0[ ∂2

∂α ∂αT lnf (Z0, . . . ,Z;α0)] is positive
definite (condition C6), it follows that h1 = 0.

If we assume σθ0(h) = 0, then∫ τ

0
h3(u)σ3,θ0(h)(u) d�0(u) + h2σ2,θ0(h) + hT

1 σ1,θ0(h) = 0,

which we can rewrite as Eθ0[(sθ0(Y, θ0)(h))2] = 0. From this, it follows that
sθ0(y, θ0)(h) = 0 a.e. Using the fact that h1 = 0, and acting similarly as in proof of
identifiability, we can show that h2 = 0.

At this stage, we get that h1 = 0 and h2 = 0. Let h = (0,0, h3). Then

σ3,θ0(h)(u) = h3(u)Eθ0

[
eβ0Z(u)1{u≤X}

] = 0 for all u.

It follows from condition C6 that h3(u) = 0 for all u. We conclude that σθ0 is
one-to-one. �
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