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SHRINKAGE PRIORS FOR BAYESIAN PREDICTION

BY FUMIYASU KOMAKI

University of Tokyo

We investigate shrinkage priors for constructing Bayesian predictive
distributions. It is shown that there exist shrinkage predictive distributions
asymptotically dominating Bayesian predictive distributions based on the
Jeffreys prior or other vague priors if the model manifold satisfies some differ-
ential geometric conditions. Kullback–Leibler divergence from the true dis-
tribution to a predictive distribution is adopted as a loss function. Conformal
transformations of model manifolds corresponding to vague priors are intro-
duced. We show several examples where shrinkage predictive distributions
dominate Bayesian predictive distributions based on vague priors.

1. Introduction. Suppose that we have a set of independent observations
x(N) = (x(1), x(2), . . . , x(N)) from a distribution with density p(x|θ) that be-
longs to a model {p(x|θ)|θ = (θ1, θ2, . . . , θd) ∈ �}. An unobserved variable
y := x(N +1) from the same distribution p(y|θ) is predicted by using a predictive
density p̂(y;x(N)).

We adopt the Kullback–Leibler divergence D{p(y|θ), p̂(y;x(N))} :=∫
p(y|θ) log{p(y|θ)/p̂(y;x(N))}dy, which has a natural information theoretic

meaning, as a loss function. We evaluate the performance of predictive distribu-
tions by using the risk function E[D(p, p̂)|θ ] = ∫

p(x(N)|θ)
∫

p(y|θ) log{p(y|θ)/

p̂(y;x(N))}dy dx(N).
A widely used method to construct a predictive density is to use a plug-in

density p(y|θ̂ (x(N))), where θ̂ (x(N)) is an appropriate estimator of θ . However,
Bayesian predictive densities

pπ

(
y|x(N)) =

∫
p(y|θ)p(x(N)|θ)π(θ) dθ∫

p(x(N)|θ̄ )π(θ̄) dθ̄

have better performance than plug-in distributions in many examples [1, 12, 18].
In the present paper we investigate the use of shrinkage priors for construct-

ing Bayesian predictive distributions asymptotically dominating those based on
improper vague priors such as the Jeffreys prior.

There exist many studies on shrinkage estimators where elliptic operators in-
cluding the Laplacian and (super) harmonic functions play important roles [5, 7,
10, 14, 23–25].
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Recently, several results suggesting that shrinkage priors are useful for various
prediction problems have been obtained; see [13, 19] for the normal model and
[21] for the Poisson model. Further studies on more general models are required.

In the present paper construction methods for shrinkage priors are introduced
and properties of them are investigated from the viewpoint of information geome-
try by using the results of previous studies on asymptotic properties of predictive
distributions [8, 15, 18, 28]. The model {p(x|θ)|θ ∈ �} is regarded as a manifold,
and the relation between differential geometric properties of the model manifold
and the existence of shrinkage priors is studied. It is shown that there exist useful
shrinkage priors if the model manifold satisfies some differential geometric condi-
tions. The geometrical approach is useful to investigate Bayesian methods because
prior distributions are naturally regarded as volume elements on model manifolds.

In Section 2 we show that there exist shrinkage predictive distributions asymp-
totically dominating the Bayesian predictive distribution based on the Jeffreys
prior if the model manifold endowed with the Fisher metric satisfies some differ-
ential geometric conditions. In Section 3 we introduce conformal transformations
of model manifolds corresponding to prior distributions and show that there exist
shrinkage predictive distributions asymptotically dominating Bayesian predictive
distributions based on various priors if the transformed model manifolds satisfy
some differential geometric conditions. In Section 4 we show several examples
where shrinkage predictive distributions constructed by using the introduced meth-
ods asymptotically or exactly dominate Bayesian predictive distributions based on
vague priors.

2. Shrinkage priors asymptotically dominating the Jeffreys prior. First,
we present some differential geometric notions and notation to be used. In the fol-
lowing, we assume that the model manifold M is a d(≥ 2)-dimensional connected
and orientable C∞ manifold. The parameter space � is regarded as a coordinate
system of M . We use Einstein’s summation convention: if an index occurs twice
in any one term, once as an upper and once as a lower index, summation over that
index is implied.

The Fisher metric tensor is defined by gij (θ) := E[∂i logp(x|θ)

∂j logp(x|θ)|θ ], where ∂i := ∂/∂θi . The coefficients of the α-connection are de-

fined by
α

�
k
ij (θ) := �k

ij (θ)− α
2 Tijl(θ)gkl(θ), where �k

ij := 1
2(∂igjl(θ)+ ∂jgli(θ)−

∂lgij (θ))gkl(θ) are the coefficients of the Riemannian connection, Tijk(θ) :=
E[∂i logp(x|θ)∂j logp(x|θ)∂k logp(x|θ)|θ ] is the skewness tensor, and gij de-
notes the (i, j)-component of the inverse matrix of (gij ); see [2] for details. The
−1-connection and 1-connection are called the m-connection and e-connection
and their coefficients are denoted by

m
�

k
ij and

e
�

k
ij , respectively. The α-covariant

derivative of a vector field v is defined by
α∇ iv

j = ∂iv
j + α

�
j
ikv

k , and
0∇ and

1∇
are denoted by ∇ and

e∇ , respectively.
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The Laplacian � on a manifold (M,g) endowed with a Riemannian metric gij

is defined by

�f = |g|−1/2∂i(|g|1/2gij ∂jf ) = ∇i (g
ij ∂jf ),

where f is a real function on M , and |g| is the determinant of the matrix (gij ).
A continuous function G(ξ, θ) of ξ and θ on M ×M −{θ = ξ} is called a Green

function if it satisfies the following conditions (see, e.g., [4, 27]):

1. �θG(ξ, θ) = 0 for all ξ ∈ M and θ �= ξ , where �θ denotes the Laplacian with
respect to θ .

2. G(ξ, θ) ≥ 0.
3. In a neighborhood of ξ , G(ξ, θ) has the singularity

G(ξ, θ) ∼
{{(d − 2)ωd−1}−1 dis(ξ, θ)−(d−2), d ≥ 3,

−(1/2π) log dis(ξ, θ), d = 2,

where ωd−1 := 2πd/2/�(d/2) is the area of the (d − 1)-dimensional unit
sphere and dis(ξ, θ) denotes the Riemannian distance between ξ and θ .

4. There exists a positive number δ > 0 such that G(ξ, θ) is a bounded function
of θ ∈ {θ |θ ∈ M,dis(ξ, θ) > δ}.
When a Green function G(ξ, θ) exists on (M,g), it is represented by

G(ξ, θ) =
∫ ∞

0
γt (ξ, θ) dt,(1)

where γt (ξ, θ) is the minimal positive fundamental solution of the heat equation
∂u(t, θ)/∂t = �u(t, θ); see [16, 17].

In the following, we introduce shrinkage priors and evaluate the risk of Bayesian
predictive distributions based on the shrinkage priors by using the results of pre-
vious studies on asymptotic properties of predictive distributions. Asymptotic ex-
pansions of predictive distributions are studied by Vidoni [28], Komaki [18] and
Hartigan [15].

THEOREM 1. Let (M,g) be a model manifold endowed with the Fisher met-
ric. If a Green function G(ξ, θ) on (M,g) exists, there exist Bayesian predictive
distributions asymptotically dominating the Bayesian predictive distribution based
on the Jeffreys prior πJ(θ) ∝ |g(θ)|1/2. In particular, the Bayesian predictive dis-
tribution based on the prior πG(θ) dθ := G(ξ, θ)πJ(θ) dθ , where ξ ∈ M is an ar-
bitrary fixed point, asymptotically dominates the Bayesian predictive distribution
based on the Jeffreys prior.

PROOF. In the following we assume that d ≥ 2 since a Green function does
not exist on the manifold when d = 1; see [4].



SHRINKAGE PRIORS FOR PREDICTION 811

First, we assume that the true parameter value θ is different from ξ . The
Bayesian predictive density based on a prior f (θ) can be expanded as

pf

(
y|x(N)) = p

(
y|θ̂mle

(
x(N)))

+ 1

2N
gij (θ̂mle)

(
∂i∂jp(y|θ̂mle) − m

�
k
ij ∂kp(y|θ̂mle)

)
(2)

+ 1

N

{
∂i log

f

πJ
(θ̂mle) + 1

2
Ti(θ̂mle)

}
gik(θ̂mle)∂kp(y|θ̂mle)

+ op(N−1),

where θ̂mle(x
(N)) is the maximum likelihood estimate, Ti := Tijkg

jk and the rela-

tion ∂i logπJ = ∂i log |gij |1/2 = �
j
ij = e

�
j
ij + (1/2)Ti is used; see [8, 15, 18].

The risk of the Bayesian predictive density pf (y|x(N)) is given by

E
[
D

(
p(y|θ),pf

(
y|x(N)))|θ]

= d

2N
+ 1

2N2 gij

(
∂i log

f

πJ
+ 1

2
Ti

)(
∂j log

f

πJ
+ 1

2
Tj

)
(3)

+ 1

N2

e∇ i

{
gij

(
∂j log

f

πJ
+ 1

2
Tj

)}

+ the terms independent of f + o(N−2);
see [18, 15].

Thus, the difference between the risk of pπJ(y|x(N)) based on the Jeffrey prior
πJ(θ) and the risk of pf (y|x(N)) based on f (θ) is given by

E
[
D

(
p(y|θ),pπJ

(
y|x(N)))|θ] − E

[
D

(
p(y|θ),pf

(
y|x(N)))|θ]

= 1

8N2 gijTiTj + 1

2N2

e∇ i (g
ij Tj )

− 1

2N2 gij

(
∂i log

f

πJ
+ 1

2
Ti

)(
∂j log

f

πJ
+ 1

2
Tj

)
(4)

− 1

N2

e∇ i

{
gij

(
∂j log

f

πJ
+ 1

2
Tj

)}
+ o(N−2)

= 1

2N2 gij ∂i log
f

πJ
∂j log

f

πJ
− 1

N2

πJ

f
�

f

πJ
+ o(N−2).

Therefore, if �(f/πJ) ≤ 0 and ∂i log(f/πJ) �= 0, pf (y|x(N)) asymptotically
dominates pπJ(y|x(N)). The prior density πG(θ) satisfies these conditions.

Next, we assume that θ = ξ .
Since

∫
(θ̄ i − θi)(θ̄ j − θj )pf (θ̄ |x(N)) dθ̄ = Op(N−1),

∫
(θ̄ i − θi)(θ̄ j − θj ) ×

(θ̄ k − θk)pf (θ̄ |x(N)) dθ̄ = Op(N−3/2) and θ̂ i
f − θi = Op(N−1/2), where
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θ̂f (x(N)) = ∫
θ̄pf (θ̄ |x(N)) dθ̄ , we have

E
[
D

(
p(y|θ),pf

(
y|x(N)))|θ]

=
∫

p
(
x(N)|θ) ∫

p(y|θ) log
p(y|θ)

pf (y|x(N))
dy dx(N)

= −
∫

p
(
x(N)|θ) ∫

p(y|θ) log
[∫ {

1 + ∂ip(y|θ)

p(y|θ)
(θ̄ i − θi)

+1

2

∂i∂jp(y|θ)

p(y|θ)
(θ̄ i − θi)

(5)

× (θ̄ j − θj )

}

× pf

(
θ̄ |x(N))dθ̄

]
dy dx(N)

+ O(N−3/2)

= 1

2
gij (θ)

∫
p

(
x(N)|θ)(

θ̂ i
f

(
x(N)) − θi)(θ̂ j

f

(
x(N)) − θj )

dx(N) + O(N−3/2).

This relation holds for all the three cases f = πJ, f = πG (ξ = θ ) and f = πG
(ξ �= θ ); see [22] for details.

When f = πJ, the asymptotic distribution of Ngij (θ)(θ̂ i
f (x(N)) − θi) ×

(θ̂
j
f (x(N)) − θj ) is the chi-square distribution with d degrees of freedom since

pπJ(µ|x(N)) ∝ (2π)−d/2|gij (θ)|1/2 exp{(1/2)gij (θ)(µi − ηi)(µj − ηj )}(1 +
Op(N−1/2)), where µi := √

N(θ̄ i − θi), ηi := √
N(θ̂ i − θi) and θ̂ is the max-

imum likelihood estimator based on the observation x(N). Thus, the risk (5) is
d/(2N) + o(N−1), coinciding with (3).

When d ≥ 3, the risk (5) with f = πG (ξ = θ ) is smaller than that with f =
πJ on the order of 1/N since pπG(µ|x(N)) ∝ (gij (θ)µiµj )−(d−2)/2(2π)−d/2 ×
|gij (θ)|1/2 exp{(1/2)gij (θ)(µi − ηi)(µj − ηj )}(1 + Op(N−1/2)).

When d = 2, we can verify that the risk (5) with f = πG (ξ = θ ) is smaller
than that with with f = πJ on the order of 1/(N logN) since pπG(µ|x(N)) ∝
{1 − (1/ logN) log(gij (θ)µiµj )} × (2π)−d/2|gij (θ)|1/2 exp{(1/2)gij (θ)(µi −
ηi)(µj − ηj )}(1 + Op(logN)−2).

Therefore, the Bayesian predictive distribution based on πG asymptotically
dominates that based on the Jeffreys prior πJ. �

From (4) and the relation (1/2)gij ∂i log(f/πJ)∂j log(f/πJ)−(πJ/f )�(f/πJ) =
−2(πJ/f )1/2�(f/πJ)

1/2, we have the following theorem. For the definition of su-
perharmonic functions on Riemannian manifolds, see, for example, [16]. A C2

function is superharmonic if and only if �f ≤ 0.
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THEOREM 2. Let f (θ) be a smooth prior density on a model manifold (M,g)

endowed with the Fisher metric. The Bayesian predictive distribution based on
f (θ) asymptotically dominates the Bayesian predictive distribution based on the
Jeffreys prior πJ(θ) if and only if (f/πJ)

1/2 is a nonconstant positive superhar-
monic function on (M,g).

It is known that there exists a Green function associated with the Laplacian �

if and only if there exists at least one nonconstant positive superharmonic function
[16]. Therefore, the existence of a Green function on (M,g) is necessary (and
sufficient) for the existence of positive superharmonic functions on (M,g).

It is proved by Aomoto [4] that there exists a Green function if a complete and
simply connected manifold has strictly negative curvature (d = 2) or has negative
curvature (d ≥ 3).

The sectional curvature of two-dimensional subspace of the tangent space Tp

of M at p spanned by X and Y is defined by K(X,Y ) := (RijklX
iY jY kXl)/

{(gikgjl − gjkgil)X
iY jXkY l}, where Rijkl is the curvature tensor defined by

Rijkl := (∂i�
m
jk − ∂j�

m
ik + �m

in�
n
jk − �m

jn�
n
ik)glm. A Riemannian manifold M is

said to have negative curvature if K(X,Y ) ≤ 0 for all linearly independent tan-
gent vectors X,Y ∈ Tp at every point p ∈ M and have strictly negative curvature
if K(X,Y ) ≤ −δ (δ is an arbitrary positive number) for all linearly independent
tangent vectors X,Y ∈ Tp at every point p ∈ M .

Thus, we have the following theorem.

THEOREM 3. Let (M,g) be a complete simply connected model manifold en-
dowed with the Fisher metric. If (M,g) has strictly negative curvature (d = 2)
or has negative curvature (d ≥ 3), then there exist Bayesian predictive distribu-
tions asymptotically dominating the Bayesian predictive distribution based on the
Jeffreys prior.

Note that some global differential geometric properties of the model manifold
are essential in the present theory, although the field of information geometry has
hitherto required only the theory of the locally characterizable properties of mani-
folds; see [3], page 1.

3. Conformal transformations corresponding to prior distributions. We
investigate constructing methods for shrinkage priors asymptotically dominating
various kinds of vague priors other than the Jeffreys prior. For instance, right in-
variant priors are more recommended for group models than the Jeffreys priors; see
[20, 29]. In this section we assume that the dimension d of the model manifold M

is greater than 2.
We introduce conformal transformations corresponding to prior densities and

show that there exist shrinkage predictive distributions if the model manifold en-
dowed with the conformally transformed metric satisfies some differential geomet-
ric conditions.
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A transformation of the metric tensor gij (θ) of the form g̃ij (θ) = ν(θ)gij (θ),
where ν(θ) is a positive function on M , is called a conformal transformation. Refer
to [11] for details of conformal transformations.

From (3), the difference between the risks of the Bayesian predictive distribu-
tions based on prior densities f and h is

N2{
E

[
D

(
p(y|θ),ph

(
y|x(N)))|θ] − E

[
D

(
p(y|θ),pf

(
y|x(N)))|θ]}

=
(

h

πJ

)2/(d−2)[1

2

(
h

f

)2

g̃ij ∂i

f

h
∂j

f

h
− h

f
�̃

f

h

]
+ o(1),

where �̃ denotes the Laplacian corresponding to the metric g̃ij (θ) := {h(θ)/

πJ(θ)}2/(d−2)gij (θ). Thus, we obtain the following theorem in the same way as
in the proof of Theorem 1.

THEOREM 4. Let h(θ) be a smooth prior density and let (M, g̃) be the model
manifold endowed with the metric defined by g̃ij (θ) := {h(θ)/πJ(θ)}2/(d−2)gij (θ),
where πJ(θ) is the density of the Jeffreys prior. The dimension of M is assumed to
be greater than 2.

If there exists a Green function G̃(ξ, θ) on the Riemannian manifold (M, g̃),
there exist Bayesian predictive distributions asymptotically dominating the
Bayesian predictive distribution based on the prior density h(θ). In particu-
lar, the Bayesian predictive distribution based on the prior density πG̃(θ) dθ :=
G̃(ξ, θ)h(θ) dθ , where ξ ∈ M is an arbitrary fixed point, asymptotically domi-
nates the Bayesian predictive distribution based on the prior density h(θ).

In the same way we proved Theorem 2 and 3, we have the following theorems.

THEOREM 5. Let f (θ) and h(θ) be smooth prior densities on a model man-
ifold M (d ≥ 3). The Bayesian predictive distribution based on f (θ) asymp-
totically dominates the Bayesian predictive distribution based on h(θ) if and
only if (f/h)1/2 is a nonconstant positive superharmonic function on the model
manifold (M, g̃) endowed with the conformally transformed metric g̃ij (θ) :=
{h(θ)/πJ(θ)}2/(d−2)gij (θ).

THEOREM 6. If a model manifold (M, g̃) (d ≥ 3) endowed with the confor-
mally transformed metric g̃ij (θ) := {h(θ)/πJ(θ)}2/(d−2)gij (θ) is complete, simply
connected and has negative curvature, there exist Bayesian predictive distributions
asymptotically dominating the Bayesian predictive distribution based on the prior
density h(θ).
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4. Examples. In this section we see several examples of Bayesian predictive
distributions based on shrinkage priors constructed by using the methods intro-
duced in the previous sections.

In estimation theory, it is known that asymptotic domination of one estimator
over another does not always means exact finite-sample domination because there
are examples where the convergence of the risk expansion is not uniform over the
parameter space (see [14, 15, 23–25]), and further studies that bridge asymptotic
and exact theories are required. The same difficulty exists in asymptotic prediction
theory.

Nevertheless, in the following examples, many Bayesian predictive distributions
based on shrinkage priors constructed by using the asymptotic theoretical methods
exactly dominate Bayesian predictive distributions based on vague priors. There-
fore, the methods introduced in the previous sections are useful tools to construct
shrinkage predictive distributions for practical use.

EXAMPLE 1 (The multivariate normal model with a known covariance ma-
trix). We consider the d-dimensional Normal model Nd(µ,�), where µ =
(µ1,µ2, . . . ,µd) ∈ R

d is an unknown mean vector and � is a known variance-
covariance matrix. We consider the problem of predicting y ∼ Nd(µ,�) using
x(N), that is, a set of N independent observations from the same density.

The (i, j)-component of the Fisher information matrix gij does not depend on
µ. We assume that gij = 1 for i = j and gij = 0 for i �= j without loss of general-
ity. Thus, the model manifold (M,g) endowed with the Fisher metric is isometric
to d-dimensional Euclidean space.

The Jeffreys prior πJ(µ) ∝ 1, which is invariant under the translation group,
is commonly used as a vague prior for µ. The Bayesian predictive density
pπJ(y|x(N)) based on πJ(µ) is the best predictive density that is invariant under
the translation group.

The minimal positive fundamental solution of the heat equation ∂u(t, θ)/∂t =
�u(t, θ) on R

d endowed with the usual Euclidean metric is given by γt (ξ,µ) =
(4πt)−d/2 exp{−‖µ − ξ‖2/(4t)}, where µ, ξ ∈ R

d .
When d ≤ 2, the integral (1) becomes infinite and shrinkage priors do not exist.

This fact corresponds to the relation discussed by Brown [6] between the recur-
rence properties of Brownian motion on R

d and the existence of shrinkage es-
timators for the multivariate normal model with known covariance matrix. When
d ≥ 3, the integral, which is the Green function on d-dimensional Euclidean space,
is given by G(ξ,µ) = {�(d/2 − 1)/(4πd/2)}‖µ − ξ‖−(d−2).

The Green prior defined by πG(µ)dµ = G(0,µ)πJ(µ)dµ ∝ ‖µ‖−(d−2) dµ co-
incides with Stein’s prior πS(µ) [26]. By Theorem 1, the Bayesian predictive dis-
tribution pG(y|x̄) based on Stein’s prior asymptotically dominates pπJ(y|x̄). These
asymptotic results also hold for general multivariate location models.

The explicit form pπG(y|x(N)) for the d-dimensional Normal model was ob-
tained and it was shown that pπG(y|x(N)) exactly dominates pπJ(y|x(N)) for arbi-
trary N > 0; see [19]. Recently, George, Liang and Xu [13] showed the Bayesian
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predictive distribution based on a prior density f exactly dominates pπJ(y|x(N))

when N is sufficiently large if and only if
√

f is a positive superharmonic function.
This result for the multivariate Normal model corresponds to Theorem 2.

Next, we consider the conformal transformation corresponding to the Green
prior πG(µ)dµ. Here we assume that the parameter space is � = R

d − {O}
for simplicity. Then the model manifold M is homeomorphic to the “cylin-
der” Sd−1 × R, where Sd−1 denotes the (d − 1)-dimensional unit sphere. The
conformal transformation corresponding to the prior πG is given by g̃ij =
(πG(µ)/πJ(µ))2/(d−2)gij = (

∑
µ2

i )
−1gij . The Riemannian manifold (M, g̃) can

be imbedded in Euclidean space R
d+1 endowed with the usual metric by

the map (µ1,µ2, . . . ,µd) �→ ((
∑d

i=1 µ2
i )

−1/2µ1, . . . , (
∑d

i=1 µ2
i )

−1/2µd, (1/2) ×
log(

∑d
i=1 µ2

i )).
There does not exist a Green function on the Riemannian manifold (M, g̃), be-

cause the integral (1) becomes infinite. Thus, a predictive distribution asymptot-
ically dominating pπG(y|x(N)) based on the Green prior cannot be constructed
by using the method introduced in Section 3. This fact seems to be related to the
admissibility of the shrinkage predictive distribution.

EXAMPLE 2 (Location-scale models). Let p(x) be a probability density
on R that is symmetric about the origin. We consider the location-scale model
p(x|µ,σ)dx := (1/σ)p((x − µ)/σ)dx, where µ ∈ R and σ > 0 are unknown
parameters. Without loss of generality, we can assume that the metric tensor co-
efficients are given by gµµ = a/σ 2, gσσ = a/σ 2 and gµσ = 0 by rescaling µ,
where a > 0 is a constant depending on p(x). The model manifold is the hyper-
bolic plane H 2(−1/a) with constant curvature K = −1/a. The Laplacian on the
model manifold is given by � = (σ 2/a)(∂2/∂µ2 + ∂2/∂σ 2). The Green function
on H 2(−1/a) is given by G((µ,σ), (0,1)) = −1/(2π) log tanh(ρ(µ,σ )/(2

√
a )),

where ρ(µ,σ) = dis((0,1), (µ,σ )); see, for example, [4, 9].
Thus, the Bayesian predictive distribution based on the prior πG(µ,σ ) dµdσ ∝

G((µ,σ), (0,1))πJ(µ,σ ) dµdσ asymptotically dominates the Bayesian predic-
tive distribution based on the Bayesian predictive distribution based on the Jeffreys
prior.

The location-scale model is a group model. The Jeffreys prior πJ(µ,σ ) ∝ 1/σ 2

is the left invariant prior. However, the best invariant predictive distribution is the
Bayesian predictive distribution based on the right invariant prior πR(µ,σ ) ∝ 1/σ ;
see [20, 29]. Here πR/πJ ∝ σ is a positive harmonic function on the model man-
ifold and satisfies the condition of Theorem 2. Furthermore, there exist Bayesian
predictive distributions based on positive superharmonic priors asymptotically
dominating the best invariant predictive distribution. The details of this topic will
be discussed in another paper.

EXAMPLE 3 (The 2 × 2 Wishart model W2(m,�)). Suppose that we have
a set of independent observations X(1),X(2), . . . ,X(N) from the 2 × 2 Wishart
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distribution W2(m,�) with m degrees of freedom. The density of the 2×2 Wishart
distribution W2(m,�) is given by

p(X|�)dX = 1

2m�2(m/2)|�|m/2 |X|(m−3)/2 exp
(
−1

2
tr�−1X

)
dX,

X > 0,m ≥ 2.

Then the distribution of the sufficient statistic X̃ := ∑N
l=1 X(l) is the 2×2 Wishart

distribution W2(Nm,�) with Nm degrees of freedom.
Let (M,g) be a Riemannian manifold composed of 2 × 2 positive definite ma-

trices endowed with the Fisher metric. The inner product of tangent vectors A and
B at a point � ∈ M is given by m

2 tr(�−1A�−1B), and the Jeffreys prior is given
by πJ(�)d� ∝ |�|−3/2 d� = |�|3/2 d�−1.

The posterior distribution with respect to the Jeffreys prior is the inverted
Wishart distribution W−1

d (Nm,X). The Bayesian predictive distribution for Y ∼
W2(m,�) based on the Jeffreys prior is given by

pπJ(Y |X̃) dY = �((Nm + m)/2)�((Nm + m − 1)/2)

π1/2�(Nm/2)�((Nm − 1)/2)�(m/2)�((m − 1)/2)

× |X̃|Nm/2|Y |(m−3)/2

|X̃ + Y |(Nm+m)/2
dY.

We construct a shrinkage predictive distribution asymptotically dominating
pπJ(Y |X̃).

We parameterize � by

� = eλ


 cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2




(
eρ 0
0 e−ρ

)
 cos

θ

2
sin

θ

2

− sin
θ

2
cos

θ

2


,(6)

where λ ∈ R, ρ > 0, 0 ≤ θ < 2π . The Fisher metric is g = m(dλ2 + dρ2 +
sinh2 ρ dθ2), and the density of the Jeffreys prior is πJ(λ,ρ, θ) dλdρ dθ =
πJ(�)|(∂�/∂(ρ, θ, λ))|dλdρ dθ ∝ sinhρ dλdρ dθ .

Let Sλ0 be a submanifold of (M,g) specified by λ = λ0, where λ0 is a constant.
The induced metric on the submanifold Sλ0 is g = m(dρ2 + sinh2 ρ dθ2). Thus,
the Riemannian submanifold (Sλ0, g) of the model manifold (M,g) is isometric to
the hyperbolic plane H 2(−1/m) with constant curvature K = −1/m. Geometric
properties of the hyperbolic plane are widely known; see, for example, [9]. The
Laplacian on (M,g) is

� = 1

m

(
∂2

∂λ2 + ∂2

∂ρ2 + coshρ

sinhρ

∂

∂ρ
+ 1

sinh2 ρ

∂2

∂θ2

)
.

The Riemannian geometric structure of Sλ0 does not depend on the value of λ0. We
identify (Sλ, g) with H 2(−1/m). The set of submanifolds {Sλ|λ ∈ R} is a foliation
of the model manifold (M,g).
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By Theorem 3, a shrinkage prior dominating the Jeffreys prior on the model
manifold (M,g) exists since (M,g) has negative curvature and the dimension d

is 3. Here we introduce a shrinkage prior based on the Green function on (Sλ, g),
which is different from the Green prior πG based on the Green function on (M,g).
The Green function on (Sλ, g) is given by Ḡλ(e

λI,�) = −(1/2π) log{tanh(ρ/2)},
where |�| = exp(2λ).

We define a function on (M,g) by h(�) := Ḡ(1/2) log |�|(|�|1/2I,�). The func-
tion h(�) is superharmonic on (M,g) and satisfies �h(�) = 0 if ρ �= 0.

We introduce a shrinkage prior distribution defined by πS(�)dρ dθ dλ ∝
h(�)πJ(λ,ρ,σ ) dλdρ dθ ∝ −(1/2π) log{tanh(ρ/2)} sinhρ dλdρ dθ . This prior
“shrinks” the posterior to the submanifold of (M,g) specified by ρ = 0.

By a discussion similar to the proof of Theorem 1, we can see that the Bayesian
predictive distribution pπS(Y |X̃) based on πS asymptotically dominates pπJ(Y |X̃).

In fact, the explicit Bayesian predictive distribution pπS(Y |X̃) with respect to
the prior πS exactly dominates pπJ(Y |X̃) based on the Jeffreys prior. The details
and some other priors will be discussed in a forthcoming paper.
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