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BANDWIDTH SELECTION FOR SMOOTH BACKFITTING
IN ADDITIVE MODELS

BY ENNO MAMMEN 1 AND BYEONG U. PARK2

University of Mannheim and Seoul National University

The smooth backfitting introduced by Mammen, Linton and Nielsen
[Ann. Statist. 27 (1999) 1443–1490] is a promising technique to fit additive
regression models and is known to achieve the oracle efficiency bound. In
this paper, we propose and discuss three fully automated bandwidth selection
methods for smooth backfitting in additive models. The first one is a penalized
least squares approach which is based on higher-order stochastic expansions
for the residual sums of squares of the smooth backfitting estimates. The
other two are plug-in bandwidth selectors which rely on approximations
of the average squared errors and whose utility is restricted to local linear
fitting. The large sample properties of these bandwidth selection methods are
given. Their finite sample properties are also compared through simulation
experiments.

1. Introduction. Nonparametric additive models are a powerful technique
for high-dimensional data. They avoid the curse of dimensionality and allow for
accurate nonparametric estimates also in high-dimensional settings; see Stone [20]
among others. On the other hand, the models are very flexible and allow for
informative insights on the influences of different covariates on a response
variable. This is the reason for the popularity of this approach. Estimation in this
model is much more complex than in classical nonparametric regression. Proposed
estimates require application of iterative algorithms and the estimates are not given
as local weighted sums of independent observations as in classical nonparametric
regression. This complicates the asymptotic analysis of the estimate. In this
paper we discuss practical implementations for the smooth backfitting algorithm.
Smooth backfitting was introduced in [9]. In particular, we will discuss data-
adaptive bandwidth selectors for this estimate. We will present asymptotic results
for the bandwidth selectors. Our main technical tools are uniform expansions of
the smooth backfitting estimate of orderoP (n−1/2) that allow us to carry over
results from classical nonparametric regression.
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There have been three main proposals for fitting additive models: the ordinary
backfitting procedure of Buja, Hastie and Tibshirani [1], the marginal integration
technique of Linton and Nielsen [8] and the smooth backfitting of Mammen,
Linton and Nielson [9]. Some asymptotic statistical properties of the ordinary
backfitting have been provided by Opsomer and Ruppert [13] and Opsomer [12].
Ordinary backfitting is not oracle efficient, that is, the estimates of the additive
components do not have the same asymptotic properties as if the other components
were known. The marginal integration estimate is based on marginal integration
of a full dimensional regression estimate. The statistical analysis of marginal
integration is much simpler. In [8] it is shown for an additive model with two
additive components that marginal integration achieves the one-dimensionaln−2/5

rate of convergence under the smoothness condition that the component functions
have two continuous derivatives. However, marginal integration does not produce
rate-optimal estimates unless smoothness of the regression function increases with
the number of additive components. The smooth backfitting method does not have
these drawbacks. It is rate-optimal and its implementation based on local linear
estimation achieves the same bias and variance as the oracle estimator, that is,
the theoretical estimate that is based on knowing other components. It employs
a projection interpretation of popular kernel estimators provided by Mammen,
Marron, Turlach and Wand [10], and it is based on iterative calculations of fits to
the additive components. A short description of smooth backfitting will be given
in the next two sections. This will be done for Nadaraya–Watson kernel smoothing
and for local linear fits.

For one-dimensional response variablesY i andd-dimensional covariatesXi =
(Xi

1, . . . ,X
i
d) (i = 1, . . . , n) the additive regression model is defined as

Y i = m0 +
d∑

j=1

mj(X
i
j ) + εi,(1.1)

whereXi = (Xi
1, . . . ,X

i
d) are random design points inRd , εi are unobserved

error variables,m1, . . . ,md are functions fromR to R and m0 is a constant.
Throughout the paper we will make the assumption the tuples(Xi, εi) are
i.i.d. and that the error variablesεi have conditional mean zero (given the
covariatesXi). Furthermore, it is assumed thatEmj(X

i
j ) = 0 for j = 1, . . . , d

and that
∑d

j=1 fj (X
i
j ) = 0 a.s. impliesfj ≡ 0 for all j . Then the functionsmj

are uniquely identifiable. The latter assumption is a sufficient condition to avoid
concurvity as termed by Hastie and Tibshirani [5].

Our main results are higher-order stochastic expansions for the residual sums of
squares of the smooth backfitting estimates. These results motivate the definition of
a penalized sum of squared residuals. The bandwidth that minimizes the penalized
sum will be calledpenalized least squares bandwidth. We will compare the
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penalized sum of squares with the average weighted squared error (ASE)

ASE = n−1
n∑

i=1

w(Xi)

{
m̂0 +

d∑
j=1

m̂j (X
i
j ) − m0 −

d∑
j=1

mj(X
i
j )

}2

.(1.2)

Herew is a weight function. We will show that up to an additive term which is
independent of the bandwidth the average weighted squared error is asymptotically
equivalent to the penalized sum of squared residuals. This implies that the
penalized least squares bandwidth is asymptotically optimal. The results for
Nadaraya–Watson smoothing are given in the next section. Local linear smoothing
will be discussed in Section 3.

In addition to the penalized least squares bandwidth choice, we discuss two
plug-in selectors. The first of these is based on a first-order expansion ofASE
given in (1.2). This error criterion measures accuracy of the sum of the additive
components. An alternative error criterion measures the accuracy of each single
additive component,

ASEj = n−1
n∑

i=1

wj(X
i
j ){m̂j (X

i
j ) − mj(X

i
j )}2.

Herewj is a weight function. Use ofASEj instead ofASE may be motivated by a
more data-analytic focus of the statistical analysis. Additionally, a more technical
advantage holds for local linear smoothing. The first-order expansion ofASEj

only depends on the corresponding single bandwidth and does not involve the
bandwidths of the other components. In particular, the plug-in bandwidth selector
based on the approximation ofASEj can be written down explicitly. For Nadaraya–
Watson backfitting estimates the bias of a single additive component depends
on the whole vector of bandwidths. Therefore an asymptotic expansion ofASEj

involves the bandwidths of all components. Also for the global error criterion
ASE implementation of plug-in rules for Nadaraya–Watson smoothing is much
more complex. The bias part in the expansion ofASE for the Nadaraya–Watson
smoothing has terms related to the multivariate design density, a well-known fact
also in the single smoother case, and the bias expression may not even be expressed
in a closed form. For these reasons, our discussion on plug-in bandwidths will be
restricted to local linear fits.

In classical nonparametric regression, the penalized sum of squared resid-
uals which we introduce in this paper is asymptotically equivalent to cross-
validation [4]. We conjecture that the same holds for additive models. The
approach based on penalized sum of squared residuals is computationally more
feasible than cross-validation. It only requires onenth of the computing time that
is needed for the latter. In the numerical study presented in Section 5, we found
that the penalized least squares bandwidth is a good approximation of the stochas-
tic ASE-minimizer. It turned out that it outperforms the two plug-in bandwidths by
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producing the leastASE, while for accuracy of each one-dimensional component
estimator, that is, in terms ofASEj , none of the bandwidth selectors dominates the
others in all cases. In general, plug-in bandwidth selection requires estimation of
additional functionals of the regression function (and of the design density). For
this estimation one needs to select other tuning constants or bandwidths. Quantifi-
cation of the optimal secondary tuning constant needs further asymptotic analysis
and it would require more smoothness assumptions on the regression and density
functions. See [15], [16] and [19]. In this paper, we do not pursue this issue for the
plug-in selectors. We only consider a simple choice of the auxiliary bandwidth.

In this paper we do not address bandwidth choice under model misspecification.
For additive models this is an important issue because in many applications the
additive model will only be assumed to be a good approximation for the true
model. We conjecture that the penalized least squares bandwidth will work reliably
also under misspecification of the additive model. This conjecture is supported
by the definition of this bandwidth. Performance of the plug-in rules has to be
carefully checked because in their definitions they make use of the validity of the
additive model.

There have been many proposals for bandwidth selection in density and
regression estimation with single smoothers. See [17] and [7] for kernel density
estimation, and [6] for kernel regression estimation. For additive models there
have been only a few attempts for bandwidth selection. These include [14] where
a plug-in bandwidth selector is proposed for the ordinary backfitting procedure,
[21] where generalized cross-validation is applied to penalized regression splines
and [11] where cross-validation is discussed for smooth backfitting.

In this paper we discuss smooth backfitting for Nadaraya–Watson smoothing
and for local linear smoothing. For practical implementations we definitely
recommend application of local linear smoothing. Local linear smooth backfitting
achieves oracle bounds. The asymptotic bias and variance of the estimate of
an additive component do not depend on the number and shape of the other
components. They are the same as in a classical regression model with one
component. This does not hold for Nadaraya–Watson smoothing. Nevertheless
in this paper we have included the discussion of Nadaraya–Watson smoothing.
This has been done mainly for clarity of exposition of ideas and proofs. Smooth
backfitting with local linear smoothing requires a much more involved notation.
This complicates the mathematical discussions. For this reason we will give
detailed proofs only for Nadaraya–Watson smoothing. Ideas of the proofs carry
over to local linear smoothing. In Section 2 we start with Nadaraya–Watson
smoothing. Smooth backfitting for local linear smoothing is treated in Section 3.
Practical implementations of our bandwidth selectors are discussed in Section 4.
In Section 5 simulation results are presented for the performance of the discussed
bandwidth selectors. Section 6 states the assumptions and contains the proofs of
the theoretical results.
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2. Smooth backfitting with Nadaraya–Watson smoothing. We now define
the smooth Nadaraya–Watson backfitting estimates. The estimate of the compo-
nent functionmj in (1.1) is denoted bŷmNW

j . We suppose that the covariatesXj

take values in a bounded intervalIj . The backfitting estimates are defined as the
minimizers of the following smoothed sum of squares:

n∑
i=1

∫
I

{
Y i − m̂NW

0 −
d∑

j=1

m̂NW
j (uj )

}2

Kh(u,Xi) du.(2.1)

The minimization is done under the constraints∫
Ij

m̂NW
j (uj )p̂j (uj ) duj = 0, j = 1, . . . , d.(2.2)

Here, I = I1 × · · · × Id and Kh(u, xi) = Kh1(u1, x
i
1) · · · · · Khd

(ud, xi
d) is a

d-dimensional product kernel with factorsKhj
(uj , vj ) that satisfy for allvj ∈ Ij∫

Ij

Khj
(uj , vj ) duj = 1.(2.3)

The kernelKhj
may depend also onj . This is suppressed in the notation. In (2.2)

p̂j denotes the kernel density estimate of the densitypj of Xi
j ,

p̂j (uj ) = n−1
n∑

i=1

Khj
(uj ,X

i
j ).(2.4)

The usual choice forKhj
(uj , vj ) with (2.3) is given by

Khj
(uj , vj ) = K[h−1

j (vj − uj )]∫
Ij

K[h−1
j (vj − wj)]dwj

.(2.5)

Note that foruj , vj in the interior ofIj we have

Khj
(uj , vj ) = h−1

j K[h−1
j (vj − uj )]

whenK integrates to 1 on its support.
By differentiation one can show that a minimizer of (2.1) satisfies forj =

1, . . . , d anduj ∈ Ij

n∑
i=1

∫
I−j

{
Y i − m̂NW

0 −
d∑

k=1

m̂NW
k (uk)

}
Kh(u,Xi) du−j = 0,

and thus
n∑

i=1

∫
I

{
Y i − m̂NW

0 −
d∑

k=1

m̂NW
k (uk)

}
Kh(u,Xi) du = 0,
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whereI−j = I1×· · ·×Ij−1×Ij+1×· · ·×Id andu−j = (u1, . . . , uj−1, uj+1, . . . ,

ud). Now, because of (2.3) we can rewrite these equations as

m̂NW
j (uj ) = m̃NW

j (uj ) − ∑
k �=j

∫
Ik

m̂NW
k (uk)

p̂jk(uj , uk)

p̂j (uj )
duk − m̂NW

0 ,(2.6)

m̂NW
0 = n−1

n∑
i=1

Y i,(2.7)

where p̂jk(uj , uk) = n−1 ∑n
i=1 Khj

(uj ,X
i
j )Khk

(uk,X
i
k) is a two-dimensional

kernel density estimate of the marginal densitypjk of (Xi
j ,X

i
k). Furthermore,

m̃NW
j (uj ) denotes the Nadaraya–Watson estimate

m̃NW
j (uj ) = p̂j (uj )

−1n−1
n∑

i=1

Khj
(uj ,X

i
j )Y

i.

In case one does not use kernels that satisfy (2.3), equations (2.6) and (2.7) have
to be replaced by slightly more complicated equations; see [9] for details.

Suppose now thatIj = [0,1], and define for a weight functionw and a constant
C′

H > 0

RSS(h) = n−1
n∑

i=1

1(C′
Hn−1/5 ≤ Xi

j ≤ 1− C′
Hn−1/5 for 1≤ j ≤ d)

(2.8) × w(Xi){Y i − m̂NW
0 − m̂NW

1 (Xi
1) − · · · − m̂NW

d (Xi
d)}2,

ASE(h) = n−1
n∑

i=1

1(C′
Hn−1/5 ≤ Xi

j ≤ 1− C′
Hn−1/5 for 1≤ j ≤ d)

× w(Xi){m̂NW
0 + m̂NW

1 (Xi
1) + · · · + m̂NW

d (Xi
d)(2.9)

− m0 − m1(X
i
1) − · · · − md(Xi

d)}2,

where1(A) denotes the indicator which equals 1 ifA occurs and 0 otherwise. The
indicator function has been included in (2.8) and (2.9) to exclude boundary regions
of the design where the Nadaraya–Watson smoother has bias terms of ordern−1/5.
In the following Theorems 2.1 and 2.2 we will consider bandwidthshj that are
smaller thanC′

Hn−1/5. Because we assume that the kernelK has support[−1,1]
[see assumption (A1) in Section 6.1], boundary regions with higher-order bias
terms are then excluded. We now state our first main result. The assumptions can
be found in Section 6.

THEOREM 2.1. Suppose that assumptions (A1)–(A4) apply for model (1.1)
and that m̂NW

j are defined according to (2.1) and (2.2). Assume that Ij are
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bounded intervals (Ij = [0,1] w.l.o.g.) and that Khj
(uj , vj ) are kernels that satisfy

Khj
(uj , vj ) = h−1

j K[h−1
j (vj − uj )] for hj ≤ vj ≤ 1 − hj for a function K and

Khj
(uj , vj ) = 0 for |vj − uj | ≥ hj . Then with C′

H as in (2.8)and (2.9)and for all
constants CH < C′

H , we have uniformly for CHn−1/5 ≤ hj ≤ C′
Hn−1/5

RSS(h) − n−1
n∑

i=1

1(C′
Hn−1/5 ≤ Xi

j ≤ 1− C′
Hn−1/5

for 1≤ j ≤ d)w(Xi)(εi)2(2.10)

+ 2n−1

{
n∑

i=1

w(Xi)(εi)2

}{
K(0)

d∑
j=1

1

nhj

}
− ASE(h) = op(n−4/5).

Furthermore, for fixed sequences h with CHn−1/5 ≤ hj ≤ C′
Hn−1/5, this differ-

ence is of order Op(n−9/10).

To state the second main result, letβj (h,uj ), j = 1, . . . , d, denote minimizers
of

∫ {β(h,u) − β1(h,u1) − · · · − βd(h,ud)}2p(u)du, where

β(h,u) =
d∑

j=1

{
m′

j (uj )
∂ logp

∂uj

(u) + 1

2
m′′

j (uj )

}
h2

j

∫
t2K(t) dt.

The functionsβj (h,uj ), j = 1, . . . , d, are uniquely defined only up to an additive
constant. However, their sum is uniquely defined. Define

PLS(h) = RSS(h)

{
1+ 2

d∑
j=1

1

nhj

K(0)

}
.

THEOREM2.2. Under the assumptions of Theorem 2.1,we have uniformly for
CHn−1/5 ≤ hj ≤ C′

Hn−1/5,

ASE(h) = 1

n

n∑
i=1

w(Xi)(εi)2
∫

K2(t) dt

d∑
j=1

1

nhj

(2.11a)

+
∫
I

{
d∑

j=1

βj (h,uj )

}2

w(u)p(u)du + op(n−4/5),

PLS(h) − ASE(h)

= n−1
n∑

i=1

1(C′
Hn−1/5 ≤ Xi

j ≤ 1− C′
Hn−1/5

(2.11b)
for 1 ≤ j ≤ d)w(Xi)(εi)2

+ op(n−4/5).
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Now we define

ĥPLS = argminPLS(h),

ĥASE = argminASE(h).

Here and throughout the paper, the “arg min” runs overh with CHn−1/5 ≤
hj ≤ C′

Hn−1/5. It would be a more useful result to have some theory for a
bandwidth selector that estimates the optimal bandwidth over a range of rates, for
example,hj ∈ [An−a,Bn−b] for some prespecified positive constantsa, b,A,B.
This would involve uniform expansions ofRSS(h) andASE(h) over the extended
range of the bandwidth, which undoubtedly makes the derivations much more
complicated. Thus, it is avoided in this paper.

The following corollary is an immediate consequence of Theorem 2.2.

COROLLARY 2.3. Under the conditions of Theorem 2.1

ĥPLS − ĥASE = op(n−1/5).

We conjecture that(ĥPLS − ĥASE)/ĥASE = Op(n−1/10). This is suggested by the
fact that for fixedh in Theorem 2.2 the error termop(n−4/5) can be replaced by
Op(n−9/10).

3. Smooth backfitting using local linear fits. The smooth backfitting local
linear estimates are defined as minimizers of

n∑
i=1

∫
I

{
Y i − m̂LL

0 −
d∑

j=1

m̂LL
j (uj )

(3.1)

−
d∑

j=1

m̂
LL,1
j (uj )(X

i
j − uj )

}2

Kh(u,Xi) du.

Herem̂LL
j is an estimate ofmj andm̂

LL,1
j is an estimate of its derivative.

By using slightly more complicated arguments than those in Section 6 one can
show thatm̂LL

0 , . . . , m̂
LL,1
d satisfy the equations(

m̂LL
j (uj )

m̂
LL,1
j (uj )

)
= −

(
m̂LL

0
0

)
+

(
m̃LL

j (uj )

m̃
LL,1
j (uj )

)
(3.2)

− M̂j (uj )
−1

∑
l �=j

∫
Ŝlj (ul, uj )

(
m̂LL

l (ul)

m̂
LL,1
l (ul)

)
dul,

m̂LL
0 = n−1

n∑
i=1

Y i −
d∑

j=1

∫
m̂LL

j (uj )p̂j (uj ) duj

(3.3)

−
d∑

j=1

∫
m̂

LL,1
j (uj )p̂

1
j (uj ) duj .
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Here and below,

M̂j (uj ) = n−1
n∑

i=1

Khj
(uj ,X

i
j )

(
1 Xi

j − uj

Xi
j − uj (Xi

j − uj )
2

)
,

Ŝlj (ul, uj ) = n−1
n∑

i=1

Khl
(ul,X

i
l )Khj

(uj ,X
i
j )

(
1 Xi

l − ul

Xi
j − uj (Xi

l − ul)(X
i
j − uj )

)
,

p̂1
j (uj ) = n−1

n∑
i=1

Khj
(uj ,X

i
j )(X

i
j − uj ),

andp̂j is defined as in the last section. For eachj , the estimates̃mLL
j andm̃

LL,1
j are

the local linear fits obtained by regression ofY i ontoXi
j ; that is, these quantities

minimize
n∑

i=1

{Y i − m̃LL
j (uj ) − m̃

LL,1
j (uj )(X

i
j − uj )}2Khj

(uj ,X
i
j ).

A detailed discussion on why (3.1) is equivalent to (3.2) and (3.3) can be
found in [9], where a slightly different notation was used. The definition
of m̂LL

0 , . . . , m̂
LL,1
d can be made unique by imposing the additional norming

conditions ∫
m̂LL

j (uj )p̂j (uj ) duj +
∫

m̂
LL,1
j (uj )p̂

1
j (uj ) duj = 0.(3.4)

The smooth backfitting estimates can be calculated by iterative application
of (3.2). In each application the current versions ofm̂LL

l , m̂
LL,1
l (l �= j) are

plugged into the right-hand side of (3.2) and are used to updatem̂LL
j , m̂

LL,1
j . The

iteration converges with geometric rate (see [9]). The number of iterations may be
determined by a standard error criterion. After the last iteration, a norming constant
can be subtracted from the last fit ofm̂LL

j so that (3.4) holds. Because of (3.4) this

yieldsm̂LL
0 = n−1 ∑n

i=1 Y i .
We now define the residual sum of squaresRSS(h) and the average squared

error. This is done similarly as in (2.8) and (2.9). But now the sums run over the full
intervalsIj . This differs from Nadaraya–Watson smoothing where the summation
excludes boundary values. For Nadaraya–Watson smoothing the boundary values
are removed because of bias problems. Let

RSS(h) = n−1
n∑

i=1

w(Xi){Y i − m̂LL
0 − m̂LL

1 (Xi
1) − · · · − m̂LL

d (Xi
d)}2,(3.5)

ASE(h) = n−1
n∑

i=1

w(Xi){m̂LL
0 + m̂LL

1 (Xi
1) + · · · + m̂LL

d (Xi
d)

(3.6) − m0 − m1(X
i
1) − · · · − md(Xi

d)}2.
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As in Section 6 we define the penalized sum of squared residuals

PLS(h) = RSS(h)

{
1+ 2

d∑
j=1

1

nhj

K(0)

}
.

The penalized least squares bandwidthĥPLS is again given by

ĥPLS = argminPLS(h).

Define

βj (uj ) = 1
2m′′

j (uj )

∫
t2K(t) dt.

Analogous to Theorems 2.1, 2.2 and Corollary 2.3, we now get the following
results for local linear smoothing.

THEOREM 3.1. Suppose that assumptions (A1)–(A4) apply, that Ij = [0,1]
and that m̂LL is defined according to (3.1)and (3.4)with kernels Khj

(uj , vj ). The
kernels are supposed to satisfy the conditions of Theorem 2.1.Then, uniformly for
CHn−1/5 ≤ hj ≤ C′

Hn−1/5,

RSS(h) − n−1
n∑

i=1

w(Xi)(εi)2 + 2n−1

{
n∑

i=1

w(Xi)(εi)2

}{
K(0)

d∑
j=1

1

nhj

}
(3.7) − ASE(h) = op(n−4/5),

ASE(h) =
{∫

I
w(u)p(u)E[(εi)2|Xi = u]du

}∫
K2(t) dt

d∑
j=1

1

nhj

(3.8)

+
∫
I

{
d∑

j=1

h2
jβj (uj )

}2

w(u)p(u)du + op(n−4/5),

PLS(h) − ASE(h) = 1

n

n∑
i=1

w(Xi)(εi)2 + op(n−4/5),(3.9)

ĥPLS − ĥASE = op(n−1/5).(3.10)

For fixed sequences h with CHn−1/5 ≤ hj ≤ C′
Hn−1/5, the expansions in

(3.7)–(3.9)hold up to order Op(n−9/10).

If the errors of the expansions in (3.7)–(3.9) would be of orderOp(n−9/10),
uniformly in h, this would imply(ĥPLS − ĥASE)/ĥASE = Op(n−1/10).
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Next we consider plug-in bandwidth selectors. As for penalized least squares,
plug-in bandwidth selectors may be constructed that approximately minimize
ASE(h). Let AASE(h) denote the nonstochastic first-order expansion ofASE(h),
given in (3.8). Define

ÂASE(h) = n−1
n∑

i=1

w(Xi)(̂ε i)2
{∫

K2(t) dt

} d∑
j=1

1

nhj

+ 1

4n

n∑
i=1

w(Xi)

{
d∑

j=1

h2
j m̂

′′
j (X

i
j )

}2{∫
t2K(t) dt

}2

.

Here m̂′′
j is an estimate ofm′′

j and ε̂ i = Y i − m̃(Xi) are residuals based on an
estimatem̃(x) of m0 + m1(x1) + · · · + md(xd). Choices ofm̂′′

j and m̃ will be

discussed below. A plug-in bandwidtĥhPL = (ĥPL,1, . . . , ĥPL,d) is defined by

ĥPL = argminÂASE(h).(3.11)

The plug-in bandwidtĥhPL will be compared with the theoretically optimal
bandwidthhopt,

hopt = argminAASE(h).(3.12)

There is an alternative way of plug-in bandwidth selection for another error
criterion. It is based on an error criterion that measures accuracy of each one-
dimensional additive component separately. Let

ASEj (h) = n−1
n∑

i=1

wj(X
i
j ){m̂LL

j (Xi
j ) − mj(X

i
j )}2,(3.13)

where wj is a smooth weight function. It may be argued thatASEj is more
appropriate if the focus is more data-analytic interpretation of the data whereas
use ofASE may be more appropriate for finding good prediction rules. Our next
result shows that in first-orderASEj (h) only depends onhj . This motivates a
simple plug-in bandwidth selection rule. An analogous result does not hold for
Nadaraya–Watson smoothing.

THEOREM 3.2. Under the assumptions of Theorem 3.1, it holds that,
uniformly for h with CHn−1/5 ≤ hl ≤ C′

Hn−1/5 (1≤ l ≤ d),

ASEj (h) =
{∫

Ij

wj (uj )pj (uj )E[(εi)2|Xi
j = uj ]duj

}{∫
K2(t) dt

}
1

nhj

+ 1

4
h4

j

∫
Ij

m′′
j (uj )

2wj(uj )pj (uj ) duj

{∫
t2K(t) dt

}2

(3.14)

+ op(n−4/5).
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The first-order expansion ofASEj (h) in (3.14) is minimized by

h∗
opt,j = n−1/5

[{∫
Ij

wj (uj )pj (uj )E[(εi)2|Xi
j = uj ]duj

}{∫
K2(t) dt

}]1/5

×
[∫

Ij

m′′
j (uj )

2wj(uj )pj (uj ) duj

{∫
t2K(t) dt

}2]−1/5

.

We note thathopt defined in (3.12) is different fromh∗
opt = (h∗

opt,1, . . . , h
∗
opt,d).

Now this bandwidth can be estimated by

ĥ∗
PL,j = n−1/5

[
n−1

n∑
i=1

wj(X
i
j )(̂ε

i)2
{∫

K2(t) dt

}]1/5

(3.15)

×
[
n−1

n∑
i=1

wj(X
i
j )m̂

′′
j (X

i
j )

2
{∫

t2K(t) dt

}2
]−1/5

with an estimatêm′′
j of m′′

j and residualŝε i = Y i − m̃(Xi) based on an estimate

m̃(x) of m0 + m1(x1) + · · · + md(xd). Contrary toĥPL, approximation of the
bandwidth selector̂h∗

PL does not require a grid search on a high-dimensional
bandwidth space or an iterative procedure with a one-dimensional grid search. See
the discussion at the end of Section 4.

Now we present a procedure for estimatingm′′
j , which is required to implement

ĥPL andĥ∗
PL. A simple estimate ofm′′

j may be given by smoothed differentiation

of m̂LL
j . However, a numerical study for this estimate revealed that it suffers from

serious boundary effects. We propose to use an alternative estimate which is based
on a local quadratic fit. It is defined by

m̂′′
j (uj ) = 2β̂j,2(uj ),(3.16)

whereβ̂j,2(uj ) along withβ̂j,0(uj ) andβ̂j,1(uj ) minimizes∫
Ij

{m̂LL
j (vj ) − β̂j,0(uj ) − β̂j,1(uj )(vj − uj ) − β̂j,2(uj )(vj − uj )

2}2

× L[g−1
j (vj − uj )]dvj .

The definitions of̂hPL andĥ∗
PL make use of fitted residuals. But these residuals

along with the local quadratic estimate ofm′′
j defined in (3.16) involve application

of the backfitting regression algorithm. For these pilot estimates one needs to select
another set of bandwidths. Iterative schemes to select fully data-dependent plug-in
bandwidths are discussed in Section 4.

The next theorem states the conditions under whichm̂′′
j is uniformly consistent.

This immediately implies that̂hPL − hopt andĥ∗
PL − h∗

opt are of lower order.
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THEOREM 3.3. Suppose that assumption (A5), in addition to the assumptions
of Theorem 3.1,holds. Then, for gj with gj → 0 and g−2

j n−2/5(logn)1/2 → 0, we
have uniformly for 0 ≤ uj ≤ 1,

m̂′′
j (uj ) − m′′

j (uj ) = op(1).

Suppose additionally that

1

n

n∑
i=1

w(Xi){m̃(Xi) − m0 − m1(X
i
1) − · · · − md(Xi

d)}2 = oP (1).

Then

ĥPL − hopt = op(n−1/5).

If additionally

1

n

n∑
i=1

wj(X
i
j ){m̃(Xi) − m0 − m1(X

i
1) − · · · − md(Xi

d)}2 = oP (1),

then

ĥ∗
PL − h∗

opt = op(n−1/5).

We now give a heuristic discussion of the rates of convergence of(ĥPL,j −
hopt,j )/hopt,j and (ĥ∗

PL,j − h∗
opt,j )/h∗

opt,j . For simplicity we consider only the
latter. Similar arguments may be applied to the former. Note that the rate of the
latter coincides with that of

n−1
n∑

i=1

wj(X
i
j )[m̂′′

j (X
i
j )

2 − m′′
j (X

i
j )

2].

We now suppose that̂m′′
j (uj ) can be decomposed intom′′

j (uj ) + bias(uj ) +
stoch(uj ), where bias(uj ) is a bias term and stoch(uj ) is a mean zero part
consisting of local and global averages ofεi . Under higher-order smoothness
conditions one may expect an order ofg2

j for bias(uj ) and an order of(ng5
j )

−1/2

for stoch(uj ). Now

n−1
n∑

i=1

wj(X
i
j ){m̂′′

j (X
i
j )

2 − m′′
j (X

i
j )

2}

= n−1
n∑

i=1

wj(X
i
j )bias(Xi

j )
2 + 2n−1

n∑
i=1

wj(X
i
j )bias(Xi

j )stoch(Xi
j )

+ n−1
n∑

i=1

wj(X
i
j )stoch(Xi

j )
2 + 2n−1

n∑
i=1

wj(X
i
j )m

′′
j (X

i
j )bias(Xi

j )

+ 2n−1
n∑

i=1

wj(X
i
j )m

′′
j (X

i
j )stoch(Xi

j ).
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By standard reasoning, one may find the following rates of convergence for the five
terms on the right-hand side of the above equation:g4

j , n
−1/2g2

j , n
−1g−5

j , g2
j , n

−1/2.

The maximum of these orders is minimized bygj ∼ n−1/7, leading to(ĥPL,j −
h

opt
j )/h

opt
j = Op(n−2/7).

The relative rateOp(n−2/7) for the plug-in bandwidth selectors is also achieved
by the fully automated bandwidth selector of Opsomer and Ruppert [14], and
is identical to the rate of the plug-in rule for the one-dimensional local linear
regression estimator of Ruppert, Sheather and Wand [18]. We note here that more
sophisticated choices of the constant factor ofn−1/7 for the bandwidthgj would
yield faster rates such asn−4/13 or evenn−5/14. See [15, 16] or [19].

4. Practical implementation of the bandwidth selectors. We suggest use
of iterative procedures for approximation of̂hPLS, ĥPL and ĥ∗

PL. We note that
use of ĥPL and ĥ∗

PL is restricted to local linear smooth backfitting. ForĥPLS
we propose use of the iterative smooth backfitting algorithm based on (2.6) for
Nadaraya–Watson smoothing and (3.2) for the local linear fit, and updating of
the bandwidthhj when thej th additive component is calculated in the iteration
step. This can be done by computingPLS(h) for a finite number ofhj ’s with
h1, . . . , hj−1, hj+1, . . . , hd being held fixed, and then by replacinghj by the
minimizing value ofhj . Specifically, we suggest the following procedure:

Step 0. Initializeh
[0]
j for j = 1, . . . , d.

Step r. Find h
[r]
j = argminhj

PLS(h
[r−1]
1 , . . . , h

[r−1]
j−1 , hj , h

[r−1]
j+1 , . . . , h

[r−1]
d ) on a

grid of hj , for j = 1, . . . , d.

The computing time for the above iterative procedure to findĥPLS is R × d ×
N × C whereR denotes the number of iterations,N is the number of points on
the grid of eachhj andC is the time for the evaluation ofPLS (or equivalently
RSS) with a given set of bandwidths. This is much less than the computing time
required for thed-dimensional grid search, which isNd × C.

In the implementation of the iterative smooth backfitting algorithm, the estimate
m̂j could be calculated on a grid ofIj . The integrals used in the updating steps of
the smooth backfitting can be replaced by the weighted averages over this grid. For
the calculation ofPLS(h) we need̂mj(X

i
j ). These values can be approximated by

linear interpolation between the neighboring points on the grid. In the simulation
study presented in the next section we used a grid of 25 equally spaced points in
the intervalIj = [0,1].

Next we discuss how to approximatêhPL for the local linear smooth backfitting.
We calculate the residuals by use of a backfitting estimate. This means that we
replacen−1 ∑n

i=1 w(Xi)(̂ε i)2 in ÂASE by RSS as defined in (3.5). Recall thatRSS
involves the bandwidthh = (h1, . . . , hd), and that the local quadratic estimatem̂′′

j

defined in (3.16) depends on the bandwidthgj as well ash. The residual sum
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of squaresRSS and the estimatêm′′
j depend on the bandwidthsh of the smooth

backfitting regression estimates. To stress this dependence onh andgj , we write
RSS(h) andm̂′′

j (·;h,gj ) for RSS andm̂′′
j , respectively. We propose the following

iterative procedure for̂hPL:

Step 0. Initializeh[0] = (h
[0]
1 , . . . , h

[0]
d ).

Step r. Compute on a grid ofh = (h1, . . . , hd)

ÂASE
[r]

(h) = RSS
(
h[r−1]){∫

K2(t) dt

} d∑
j=1

1

nhj

+ 1

4n

n∑
i=1

w(Xi)

{
d∑

j=1

h2
j m̂

′′
j

(
Xi

j ;h[r−1], g[r−1]
j

)}2

×
{∫

t2K(t) dt

}2

with g
[r−1]
j = c h

[r−1]
j (c = 1.5 or 2, say), and then find

h[r] = argminÂASE
[r]

(h).

A more sophisticated choice ofgj suggested by the discussion at the end of

Section 3 would begj = ch
5/7
j for some properly chosen constantc > 0.

We also give an alternative algorithm to approximateĥPL, which requires only
a one-dimensional grid search. This would be useful for very high-dimensional
covariates:

Step 0′. Initialize h[0] = (h
[0]
1 , . . . , h

[0]
d ).

Step r′. Forj = 1, . . . , d, compute on a grid ofhj

ÂASE
[r,j ](

h
[r−1]
1 , . . . , h

[r−1]
j−1 , hj , h

[r−1]
j+1 , . . . , h

[r−1]
d

)
= RSS

(
h[r−1]){ ∫

K2(t) dt

}{
1

nhj

+
d∑

� �=j

1

nh
[r−1]
�

}

+ 1

4n

n∑
i=1

w(Xi)

{
h2

j m̂
′′
j

(
Xi

j ;h[r−1], g[r−1]
j

)

+
d∑

� �=j

(
h

[r−1]
�

)2
m̂′′

�

(
Xi

�;h[r−1], g[r−1]
�

)}2

×
{∫

t2K(t) dt

}2

,
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and then find

h
[r]
j = argmin

hj

ÂASE
[r,j ](

h
[r−1]
1 , . . . , h

[r−1]
j−1 , hj , h

[r−1]
j+1 , . . . , h

[r−1]
d

)
.

In the grid search forh[r]
j we useh[r−1] rather than(h[r−1]

1 , . . . , h
[r−1]
j−1 , hj ,

h
[r−1]
j+1 , . . . , h

[r−1]
d ) for RSS andm̂′′

� . The reason is that the latter requires repetition
of the whole backfitting procedure (3.2) for every point on the grid of the
bandwidth. Thus, it is computationally much more expensive than our second
proposal for approximatinĝhPL.

Finally, we give an algorithm to approximatêh∗
PL,j . We suppose calculation

of the residuals by use of a backfitting estimate. This means that we replace
n−1 ∑n

i=1 wj(X
i
j )(̂ε

i)2 in (3.15) byRSS. Thus,̂h∗
PL,j is given by

ĥ∗
PL,j = n−1/5

[
RSS ×

{∫
K2(t) dt

}]1/5

(4.1)

×
[
n−1

n∑
i=1

wj(X
i
j )m̂

′′
j (X

i
j )

2
{∫

t2K(t) dt

}2
]−1/5

.

We propose the following iterative procedure forĥ∗
PL. Start with some initial

bandwidthsh1, . . . , hd and calculatêmLL
1 , . . . , m̂LL

d with these bandwidths, and
compute RSS. Choosegj = chj (with c = 1.5 or 2, say). Then calculate
m̂′′

1, . . . , m̂
′′
d by (3.16). PlugRSS and the computed values of̂m′′

j (X
i
j )’s into (4.1),

which defines new bandwidthsh1, . . . , hd . Then the procedure can be iterated.
It was observed in the simulation study presented in Section 5 that the iterative

algorithms for approximatinĝhPLS, ĥPL andĥ∗
PL converge very quickly. With the

convergence criterion 10−3 on the relative changes of the bandwidth selectors, the
average (out of 500 cases) numbers of iterations for the three bandwidth selectors
were 4.27, 6.30 and 5.23, respectively. The worst cases had eight iterations.

5. Simulations. In this section we present simulations for the small sample
performance of the plug-in selectorŝhPL, ĥ∗

PL and the penalized least squares
bandwidtĥhPLS. We will do this only for local linear smooth backfitting.

Our first goal was to compare how much these bandwidths differ from their
theoretical targets. For this, we drew 500 datasets(Xi, Y i), i = 1, . . . , n, with
n = 200 and 500 from the model

Y i = m1(X
i
1) + m2(X

i
2) + m3(X

i
3) + εi,(M1)

where m1(x1) = x2
1, m2(x2) = x3

2, m3(x3) = x4
3 and εi are distributed as

N(0,0.01). The covariate vectors were generated from joint normal distribu-
tions with marginalsN(0.5,0.5) and correlations(ρ12, ρ13, ρ23) = (0,0,0) and
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(0.5,0.5,0.5). Hereρij denotes the correlation betweenXi andXj . If the gen-
erated covariate vector was within the cube[0,1]3, then it was retained in the
sample. Otherwise, it was removed. This was done until arriving at the predeter-
mined sample size 200 or 500. Thus, the covariate vectors follow truncated normal
distributions and have compact support[0,1]3 satisfying assumption (A2). Both of
the kernelsK that we used for the backfitting algorithm andL for estimatingm′′

j

by (3.16) were the biweight kernelK(u) = L(u) = (15/16)(1 − u2)2I[−1,1](u).
The weight functionw in (3.5) and (3.6) was the indicator1(u ∈ [0,1]3), andwj

in (3.13) and (4.1) was1(uj ∈ [0,1]).
Kernel density estimates of the densities of log(ĥPLS,j ) − log(ĥASE,j ),

log(ĥPL,j ) − log(ĥASE,j ) and log(ĥ∗
PL,j ) − log(ĥASE,j ) are overlaid in Figures 1–3

for j = 1,2,3. The results are based on 500 replicates for the two choices of the
correlation values and of the sample sizes. The kernel density estimates were con-
structed by using the standard normal kernel and the common bandwidth 0.12. The
iterative procedures described in Section 4 forĥPLS, ĥPL andĥ∗

PL were used here.
In all cases, the initial bandwidthh[0] = (0.1,0.1,0.1) was used. For̂hPL, the first
proposal with three-dimensional grid search was implemented. We triedg = 1.5h

andg = 2h to estimatem′′
j in the iterative procedures. We found there is little dif-

ference between these two choices, and thus present here only the results for the
caseg = 1.5h. In each of Figures 1–3, the upper two panels show the densities of
the log differences for the sample sizen = 200, while the lower two correspond to
the cases wheren = 500.

Comparing the three bandwidth selectorsĥPLS, ĥPL andĥ∗
PL, one sees that the

penalized least squares bandwidth has the correct center while the two plug-in
bandwidths are positively biased towardĥASE. Furthermore,̂hPLS are less variable
thanĥPL andĥ∗

PL as an estimator of̂hASE. This shows the penalized least squares
approach is superior to the other two methods in terms of estimatingĥASE. We
found, however,̂hPL andĥ∗

PL are more stable and less biased as estimators ofhopt
andh∗

opt, respectively.
It is also interesting to compare the performance of the bandwidth selectors in

terms of the average squared error of the resulting regression estimator. Table 1
shows the means (out of 500 cases) of theASE andASEj for the three bandwidth
selectors. First, it is observed thatĥPLS produces the leastASE. This means that
ĥPLS is most effective for estimating the whole regression function. Now, for
accuracy of each one-dimensional component estimator, none of the bandwidth
selectors dominates the others in all cases. ForASE1, the penalized least squares
bandwidth does the best, while forASE2 and ASE3 the plug-in ĥ∗

PL shows the
best performance. The backfitting estimates the centered true component functions
because of the normalization (3.4). Thus,m̂LL

j (xj ) estimatesmj(xj ) − Emj(X
i
j ),

notmj(xj ). We used these centered true functions to computeASEj .
Table 1 also shows that the means of the average squared errors are reduced

approximately by half when the sample size is increased from 200 to 500.
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FIG. 1. Densities of log(ĥ1) − log(ĥASE,1) constructed by the kernel method based on 500
pseudosamples. The long-dashed, dotted and dot-dashed curves correspond to ĥ1 = ĥPLS,1, ĥPL,1
and ĥ∗

PL,1, respectively.

Although not reported in the table, we computedE(ĥj,200)/E(ĥj,500) for the
three bandwidth selectors, whereĥj,n denotes the bandwidth selector for thej th
component from a sample of sizen. We found that these values vary within the
range(1.20,1.26) which is roughly(200/500)−1/5. This means the assumed rate
O(n−1/5) for the bandwidth selectors actually holds in practice. Now, we note that
the increase of correlation from 0 to 0.5 does not deteriorate much the means of
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FIG. 2. Densities of log(ĥ2) − log(ĥASE,2) constructed by the kernel method based on 500
pseudosamples. The long-dashed, dotted and dot-dashed curves correspond to ĥPLS,2, ĥPL,2 and
ĥ∗

PL,2, respectively.

the ASE andASEj . However, we found in a separate experiment that in a more
extremal case ofρij ≡ 0.9 the means of theASE and ASEj are increased by a
factor of 3 or 4. In another separate experiment where the noise level is 0.1, that
is, the errors are generated fromN(0,0.1), we observed that the means of theASE
andASEj are increased by a factor of 3 or 4, too. The main lessons on comparison
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FIG. 3. Densities of log(ĥ∗
3) − log(ĥASE,3) constructed by the kernel method based on 500

pseudosamples. The long-dashed, dotted and dot-dashed curves correspond to ĥPLS,3, ĥPL,3 and
ĥ∗

PL,3, respectively.

of the three bandwidth selectors from these two separate experiments are the same
as in the previous paragraph.

Figure 4 visualizes the overall performance of the backfitting for the three
bandwidth selectors. For eacĥh = ĥASE, ĥPLS, ĥPL, ĥ∗

PL, we computedASE(ĥ)

and ASEj (ĥ) for 500 datasets and arranged the 500 values ofd = ASE(ĥ) or
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TABLE 1
Averages of ASE(ĥ) and ASEj (ĥ) (j = 1,2,3) for ĥ = ĥPLS, ĥPL and ĥ∗

PL, based on
500pseudosamples

ĥPLS ĥPL ĥ∗
PL

g = 1.5h g = 2h g = 1.5h g = 2h

Average n = 200 ρ = 0 0.00251 0.00347 0.00350 0.00471 0.00478
ASE ρ = 0.5 0.00247 0.00362 0.00367 0.00513 0.00521

n = 500 ρ = 0 0.00130 0.00195 0.00199 0.00269 0.00277
ρ = 0.5 0.00133 0.00209 0.00213 0.00294 0.00303

Average n = 200 ρ = 0 0.00107 0.00131 0.00133 0.00169 0.00172
ASE1 ρ = 0.5 0.00112 0.00150 0.00153 0.00207 0.00211

n = 500 ρ = 0 0.00045 0.00063 0.00065 0.00084 0.00088
ρ = 0.5 0.00052 0.00076 0.00078 0.00103 0.00108

Average n = 200 ρ = 0 0.00104 0.00085 0.00085 0.00078 0.00078
ASE2 ρ = 0.5 0.00100 0.00079 0.00079 0.00072 0.00072

n = 500 ρ = 0 0.00044 0.00037 0.00037 0.00033 0.00033
ρ = 0.5 0.00047 0.00038 0.00038 0.00034 0.00034

Average n = 200 ρ = 0 0.00112 0.00079 0.00079 0.00073 0.00073
ASE3 ρ = 0.5 0.00121 0.00090 0.00090 0.00086 0.00086

n = 500 ρ = 0 0.00051 0.00038 0.00037 0.00034 0.00033
ρ = 0.5 0.00061 0.00050 0.00050 0.00047 0.00047

ASEj (ĥ) in increasing order. Call themd(1) ≤ d(2) ≤ · · · ≤ d(500). Figure 4 shows
the quantile plots{i/500, d(i)}500

i=1 for the case wheren = 500 andρij ≡ 0.5. The
bandwidthg = 1.5h was used in the pilot estimation step for the two plug-in
bandwidths. The figure reveals that the quantile function ofASE(ĥ) for ĥ = ĥPLS
is consistently below those for the two plug-in rules and is very close to that for
ĥ = ĥASE. ForASEj (ĥ), none of the three bandwidth selectors dominates the other
two for all j , the result also seen in Table 1, but in any case the quantile function of
ASEj (ĥPLS) is closest to that ofASEj (ĥASE). We note that the quantile functions of
ASEj (ĥASE) are not always the lowest sincêhASE = (ĥASE,1, ĥASE,2, ĥASE,3) does
not minimize each component’sASEj .

Asymptotic theory says that in first order the accuracy of the backfitting estimate
does not decrease with increasing number of additive components. And this also
holds for the backfitting estimates with the data-adaptively chosen bandwidths. We
wanted to check if this also holds for finite samples. For this purpose we compared
our model (M1) with three additive components with a model that has only one
component,

Y i = m1(X
i
1) + εi .(M2)

We drew 500 datasets of sizes 200 and 500 from the models (M1) and (M2).
The errors and the covariates at the correlation level 0.5 were generated in the
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FIG. 4. Quantile functions of ASE(ĥ) and ASEj (ĥ) for ĥASE and the three bandwidth selectors.
Solid, long-dashed, dotted and dot-dashed curves correspond to ĥASE , ĥPLS, ĥPL and ĥ∗

PL,
respectively. The sample size was n = 500and the correlations between the covariates were all 0.5.

same way as described in the second paragraph of this section. The penalized least
squares bandwidth for the single covariate case, denoted byĥPLS(1), was obtained
by minimizing

PLS1(h1) = RSS1(h1)

{
1+ 2K(0)

nh1

}
,
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TABLE 2
Averages of ASE1(ĥ) as an error criterion for estimating the first

component m1, based on 500pseudosamples from the models (M1) and (M2)

ĥPLS ĥPLS(1) ĥPL ĥ∗
PL ĥPL(1)

n = 200 ρ = 0 0.00107 0.00034 0.00131 0.00169 0.00029
(3.147) (4.517) (5.828)

ρ = 0.5 0.00112 0.00033 0.00150 0.00207 0.00028
(3.394) (5.357) (7.393)

n = 500 ρ = 0 0.00045 0.00015 0.00063 0.00084 0.00014
(3.000) (4.500) (6.000)

ρ = 0.5 0.00052 0.00014 0.00076 0.00103 0.00013
(3.714) (5.846) (7.923)

Also given in the parentheses are the relative increases ofE{ASE1(ĥ)} due to
the increased dimension of the covariates. The choiceg = 1.5h was used for
the plug-in rules.

whereRSS1(h1) = n−1 ∑n
i=1{Y i − m̃LL

1 (Xi
1;h1)}2 andm̃LL

1 (·;h1) is the ordinary
local linear fit for model (M2) with bandwidthh1. The plug-in bandwidth selector,
ĥPL(1), for the single covariate case was obtained by a formula similar to the
one in (4.1), whereRSS is replaced byRSS1 andm̃LL

1 , instead of the backfitting
estimatem̂LL

1 , is used to calculate the local quadratic estimate ofm′′
1. For ĥPL(1),

an iterative procedure similar to those described in Section 4 was used here, again
with the choiceg = 1.5h. Table 2 showsE{ASE1(ĥ)} for ĥ = ĥPLS, ĥPLS(1), ĥPL,
ĥ∗

PL and ĥPL(1). Also, it gives the relative increases ofE{ASE1(ĥ)} due to the
increased dimension of the covariates. ForĥPLS(1) andĥPL(1) the one-dimensional
local linear estimatẽmLL

1 and the noncentered regression functionm1 were used to
compute the values ofASE1.

From Table 2, it appears that the increased dimension of the covariates has
some considerable effect on the regression estimates. The relative increase ofASE1
for the penalized least squares bandwidth is smaller than those for the plug-in
rules, however. Also, one observes higher rates of increase for the correlated
covariates. An interesting fact is thatĥPL(1) is slightly better than̂hPLS(1) in the
single covariate case. The results for the other component functions, which are not
presented here, showed the same qualitative pictures.

6. Assumptions, auxiliary results and proofs.

6.1. Assumptions. We use the following assumptions.

(A1) The kernelK is bounded, has compact support([−1.1], say), is symmetric
about zero and is Lipschitz continuous, that is, there exists a positive finite
constantC such that|K(t1) − K(t2)| ≤ C|t1 − t2|.
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(A2) Thed-dimensional vectorXi has compact supportI1 ×· · ·× Id for bounded
intervalsIj , and its densityp is bounded away from zero and infinity on
I1 × · · · × Id . The tuples(Xi, εi) are i.i.d.

(A3) GivenXi the error variableεi has conditional zero mean, and for someγ > 4
andC′ < ∞

E[|εi |γ |Xi] < C′ a.s.

(A4) The functionsm′′
j ,p

′
j and (∂/∂xj )pjk(xj , xk) (1 ≤ j, k ≤ d) exist and are

continuous.
(A5) The kernelL is twice continuously differentiable and has bounded support

([−1,1], say).

6.2. Auxiliary results. In this section we will give higher-order expansions of
m̂NW

j andm̂LL
j . These expansions will be used in the proofs of Theorems 2.1, 2.2

and 3.3. The expansions given in [9] are only of orderop(n−2/5). Furthermore,
they are not uniform inh. For the proof of our results we need expansions
of orderop(n−1/2). First, we consider the Nadaraya–Watson smooth backfitting
estimatêmNW

j .

As in [9] we decomposêmNW
j into

m̂NW
j (uj ) = m̂

NW,A
j (uj ) + m̂

NW,B
j (uj ),

wherem̂
NW,S
j (S = A,B) is defined by

m̂
NW,S
j (uj ) = m̃

NW,S
j (uj )

(6.1)
− ∑

k �=j

∫
Ik

m̂
NW,S
k (uk)

p̂j,k(uj , uk)

p̂j (uj )
duk − m̂

NW,S
0 ,

wherem̂
NW,A
0 = n−1 ∑n

i=1 εi , m̂
NW,B
0 = n−1 ∑n

i=1{m0 + ∑d
j=1 mj(X

i
j )} and

m̃
NW,A
j (uj ) = p̂j (uj )

−1n−1
n∑

i=1

Khj
(uj ,X

i
j )ε

i,

m̃
NW,B
j (uj ) = p̂j (uj )

−1n−1
n∑

i=1

Khj
(uj ,X

i
j )

{
m0 +

d∑
j=1

mj(X
i
j )

}
.

Herem̃
NW,B
j andm̂

NW,B
j are related to the sum of the true function and the bias,

whereas̃mNW,A
j andm̂

NW,A
j represent the “stochastic” part. In particular,m̃

NW,B
j

andm̂
NW,B
j do not depend on the error variables.

We now state our stochastic expansions ofm̂
NW,A
j andm̂

NW,B
j .
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THEOREM 6.1. Suppose that the assumptions of Theorem 2.1 apply, and
that m̂

NW,A
j and m̂

NW,B
j are defined according to (6.1).Then there exist random

variables Rn,i,j (uj , h,X), depending on 0 ≤ uj ≤ 1, h = (h1, . . . , hd) and X =
(X1, . . . ,Xn) (but not on ε), such that

m̂
NW,A
j (uj ) = m̃

NW,A
j (uj ) + n−1

n∑
i=1

Rn,i,j (uj , h,X)εi,(6.2a)

sup
0≤uj≤1

sup
CH n−1/5≤h1,...,hd≤C′

H n−1/5
|Rn,i,j (uj , h,X)| = Op(1),(6.2b)

sup
0≤uj≤1

sup
CH n−1/5≤h1,h

′
1,...,hd ,h′

d≤C′
H n−1/5

|Rn,i,j (uj , h
′,X) − Rn,i,j (uj , h,X)|

(6.2c)

=
d∑

j=1

|h′
j − hj |Op(nα) for some α > 0.

Furthermore, uniformly for CHn−1/5 ≤ h1, . . . , hd ≤ C′
Hn−1/5 and 0≤ uj ≤ 1,

m̂
NW,A
j (uj ) = m̃

NW,A
j (uj ) + n−1

n∑
i=1

rij (uj )ε
i + op(n−1/2),(6.3)

m̂
NW,B
j (uj ) = mj(uj ) + Op(n−1/5),(6.4)

where rij are absolutely uniformly bounded functions with

|rij (u′
j ) − rij (uj )| ≤ C|u′

j − uj |(6.5)

for a constant C > 0. In particular, uniformly for CHn−1/5 ≤ hj ≤ C′
Hn−1/5 and

hj ≤ uj ≤ 1− hj ,

m̂
NW,B
j (uj ) = mj(uj ) + βj (h,uj ) + op(n−2/5),(6.6)

where βj is chosen so that∫
βj (h,uj )pj (uj ) duj

= −γn,j

= 1
2h2

j

∫ [
m′

j (xj )p
′
j (xj ) + 1

2m′′
j (xj )pj (xj )

]
dxj

∫
u2K(u)du.

This choice is possible because of
∫

β(h, x)p(x) dx = −∑d
j=1 γn,j .

We now come to the local linear smooth backfitting estimate. For a theoretical
discussion, we now decompose this estimate into a stochastic and a deterministic
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term. ForS = A,B, definem̂
LL,S
j by(

m̂
LL,S
j (uj )

m̂
LL,1,S
j (uj )

)
= −

(
m̂

LL,S
0
0

)
+

(
m̃

LL,S
j (uj )

m̃
LL,1,S
j (uj )

)
(6.7)

− M̂j (uj )
−1

∑
l �=j

∫
Ŝlj (ul, uj )

(
m̂

LL,S
l (ul)

m̂
LL,1,S
l (ul)

)
dul,

m̂
LL,S
0 = n−1

n∑
i=1

Y i,S,(6.8)

∫
m̂

LL,S
j (uj )p̂j (uj ) duj +

∫
m̂

LL,1,S
j (uj )p̂

1
j (uj ) duj = 0,

(6.9) j = 1, . . . , d,

whereY i,S = εi for S = A and m0 + ∑d
j=1 mj(X

i
j ) for S = B. Furthermore,

m̃
LL,S
j andm̃

LL,1,S
j are the local linear estimates of the function itself and its first

derivative, respectively, for the regression ofεi (for S = A) or m0 + m1(X
i
1) +

· · · + md(Xd)i (for S = B) ontoXi
j .

For the local linear smooth backfitting estimate, we get the following stochastic
expansions.

THEOREM 6.2. Suppose that the assumptions of Theorem 3.1apply, and that
m̂

LL,S
j and m̂

LL,1,S
j (s = A,B) are defined according to (6.7)–(6.9).Then there

exist random variables RLL
n,i,j (uj , h,X) such that

m̂
LL,A
j (uj ) = m̃

LL,A
j (uj ) + n−1

n∑
i=1

RLL
n,i,j (uj , h,X)εi,(6.10a)

sup
0≤uj≤1

sup
CH n−1/5≤h1,...,hd≤C′

H n−1/5
|RLL

n,i,j (uj , h,X)| = Op(1),(6.10b)

sup
0≤uj≤1

sup
CH n−1/5≤h1,h

′
1,...,hd ,h′

d≤C′
H n−1/5

|RLL
n,i,j (uj , h

′,X) − RLL
n,i,j (uj , h,X)|

(6.10c)

=
d∑

j=1

|h′
j − hj |Op(nα) for some α > 0.

Furthermore, uniformly for CHn−1/5 ≤ h1, . . . , hd ≤ C′
Hn−1/5 and 0≤ uj ≤ 1,

m̂
LL,A
j (uj ) = m̃

LL,A
j (uj ) + n−1

n∑
i=1

rLL
ij (uj )ε

i + op(n−1/2),(6.11)

m̂
LL,B
j (uj ) = mj(uj ) + Op(n−2/5),(6.12)
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where rLL
ij are absolutely uniformly bounded functions that satisfy the Lipschitz

condition (6.5).Furthermore, uniformly for CHn−1/5 ≤ hj ≤ C′
Hn−1/5 and hj ≤

uj ≤ 1− hj , we have

m̂
LL,B
j (uj ) = mj(uj ) + 1

2m′′
j (uj )h

2
j

∫
t2K(t) dt + op(n−2/5).(6.13)

6.3. Proofs.

PROOF OFTHEOREM 6.1. For an additive functionf (x) = f1(x1) + · · · +
fd(xd) we define

�̂jf (x) = f1(x1) + · · · + fj−1(xj−1) + f ∗
j (xj ) + fj+1(xj+1) + · · · + fd(xd),

where

f ∗
j (xj ) = −∑

k �=j

∫
fk(xk)

p̂jk(xj , xk)

p̂j (xj )
dxk + ∑

k

∫
fk(xk)p̂k(xk) dxk.

According to Lemma 3 in [9], we have for̂mNW,A(x) = m̂
NW,A
0 + m̂

NW,A
1 (x1) +

· · · + m̂
NW,A
d (xd),

m̂NW,A(x) =
∞∑

s=0

T̂ s τ̂ (x).

Here,T̂ = �̂d · · · �̂1 and

τ̂ (x) = �̂d · · · �̂2[m̃NW,A
1 (x) − m̃

NW,A
0,1 ] + · · · + �̂d [m̃NW,A

d−1 (x) − m̃
NW,A
0,d−1 ]

+ m̃
NW,A
d (x) − m̃

NW,A
0,d ,

where, in a slight abuse of notation,̃mj(x) = m̃j (xj ) and m̃0,j = ∫
m̃j (xj ) ×

p̂j (xj ) dxj .
We now decompose

m̂NW,A(x) = m̃NW,A(x) +
∞∑

s=0

T̂ s(τ̂ − m̃NW,A)(x) +
∞∑

s=1

T̂ sm̃NW,A(x),(6.14)

where m̃NW,A(x) = m̃
NW,A
1 (x1) + · · · + m̃

NW,A
d (xd). We will show that there

exist absolutely bounded functionsai(x) with |ai(x) − ai(y)| ≤ C‖x − y‖ for
a constantC such that

∞∑
s=1

T̂ sm̃NW,A(x) = n−1
n∑

i=1

ai(x)εi + op(n−1/2)(6.15)

uniformly for CHn−1/5 ≤ hj ≤ C′
Hn−1/5 and 0≤ xj ≤ 1. A similar claim

holds for the second term on the right-hand side of (6.14). This immediately
implies (6.3).
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For the proof of (6.15) we show that there exist absolutely bounded functionsbi

with |bi(x) − bi(y)| ≤ C‖x − y‖ for a constantC such that

T̂ m̃NW,A(x) = n−1
n∑

i=1

bi(x)εi + op(n−1/2),(6.16)

∞∑
s=1

T̂ sm̃NW,A(x) =
∞∑

s=0

T sT̂ m̃NW,A(x) + op(n−1/2).(6.17)

HereT = �d · · ·�1 and

�jf (x) = f1(x1) + · · · + fj−1(xj−1) + f ∗∗
j (xj ) + fj+1(xj+1) + · · · + fd(xd)

for an additive functionf (x) = f1(x1) + · · · + fd(xd) with

f ∗∗
j (xj ) = − ∑

k �=j

∫
fk(xk)

pjk(xj , xk)

pj (xj )
dxk + ∑

k

∫
fk(xk)pk(xk) dxk.

Note that (6.15) follows immediately from (6.16) and (6.17), since

∞∑
s=1

T̂ sm̃NW,A(x) =
∞∑

s=0

T sT̂ m̃NW,A(x) + op(n−1/2)

= n−1
n∑

i=1

[ ∞∑
s=0

T sbi

]
(x)εi + op(n−1/2).

We prove (6.16) first. For this purpose, one has to consider terms of the form

Skj (xj ) =
∫

p̂jk(xj , xk)

p̂j (xj )
m̃

NW,A
k (xk) dxk

= n−1
n∑

i=1

εi
∫

p̂jk(xj , xk)

p̂j (xj )p̂k(xk)
Khk

(xk,X
i
k) dxk.

We make use of the following well-known facts:

p̂jk(xj , xk) = E{p̂jk(xj , xk)} + Op

(
n−3/10√logn

)
,(6.18)

p̂j (xj ) = E{p̂j (xj )} + Op

(
n−2/5

√
logn

)
,(6.19)

(∂/∂xj )p̂jk(xj , xk) = E{(∂/∂xj )p̂jk(xj , xk)} + Op

(
n−1/10

√
logn

)
,(6.20)

(∂/∂xj )p̂j (xj ) = E{(∂/∂xj )p̂j (xj )} + Op

(
n−1/5

√
logn

)
,(6.21)

uniformly for CHn−1/5 ≤ hj ,hk ≤ C′
Hn−1/5 and 0≤ xj , xk ≤ 1, 1 ≤ j , k ≤ d.
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We now argue that

Skj (xj ) − n−1
n∑

i=1

pjk(xj ,X
i
k)

pj (xj )pk(X
i
k)

εi

(6.22)

≡ n−1
n∑

i=1


kj (xj , hj , hk)ε
i = op(n−1/2),

uniformly in xj , hj , hk . From (6.18)–(6.21) and from the expansions of the
expectations on the right-hand sides of these equations we get


kj (xj , hj , hk) = Op(n−1/5),

uniformly in xj , hj , hk . Furthermore, we have, because ofE[|εi |(5/2)+δ|Xi] < C

for someδ > 0, C < +∞, that for a sequencecn → 0

E[|εi |1(|εi | > n2/5)|Xi] ≤ cnn
−3/5,

P (|εi | ≤ n2/5 for 1≤ i ≤ n) → 1.

This shows that

n−1
n∑

i=1


kj (xj , hj , hk)ε
i − n−1

n∑
i=1


kj (xj , hj , hk)ε
i∗ = op(n−1/2)(6.23)

uniformly in xj , hj , hk , where

εi∗ = εi1(|εi | ≤ n2/5) − E[εi1(|εi | ≤ n2/5)|Xi].
Note now that, withX = (X1, . . . ,Xn) and
 = n1/5 supk,j,xj ,hj ,hk

|
kj (xj , hj ,

hk)|,

P

{
n−1

n∑
i=1


kj (xj , hj , hk)ε
i∗ ≥ n−3/5|X

}

≤ E

[
exp

{
n−3/10

n∑
i=1


kj (xj , hj , hk)ε
i∗

}∣∣∣X]
exp(−n1/10)

≤
n∏

i=1

E
{

exp{n−3/10
kj (xj , hj , hk)ε
i∗}|X

}
exp(−n1/10)

≤
n∏

i=1

[
1+ n−3/5
2

kj (xj , hj , hk)E[(εi∗)2|Xi]exp{n−3/10
n−1/52n2/5}]
× exp(−n1/10)

≤ exp
{

2 sup

1≤i≤n

E[(εi∗)2|Xi]exp(2n−1/10
)

}
exp(−n1/10)

≤ Mn exp(−n1/10)
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with a random variableMn = Op(1). Together with (6.23) this inequality shows
that (6.22) uniformly holds on any grid of values ofxj , hj andhk with cardinality
being of a polynomial order ofn. For α1, α2 > 0 large enough and for a random
variableRn = Op(1), one can show

|
kj (x
′
j , h

′
j , h

′
k) − 
kj (xj , hj , hk)|

≤ Rn(n
α1|x′

j − xj | + nα2|h′
j − hj | + nα3|h′

k − hk|).
This implies that (6.22) holds uniformly for 0≤ xj ≤ 1 and CHn−1/5 ≤ hj ,hk ≤
C′

Hn−1/5. By consideration of other terms similar toSkj (xj ), one may complete
the proof of (6.16).

We now come to the proof of (6.17). With the help of (6.18)–(6.21) one can
show by using the Cauchy–Schwarz inequality that

sup
‖f ‖≤1

sup
0≤x1,...,xd≤1

|T̂ f (x) − Tf (x)| = Op

(
n−1/10√logn

)
.(6.24)

Here the first supremum runs over all additive functionsf with
∫
f 2(x)p(x) dx ≤

1. (The slow rate is caused by the fact thatp̂j is inconsistent atxj in neighborhoods
of 0 and 1.) Furthermore, in [9] it has been shown that

sup
‖f ‖≤1

sup
0≤x1,...,xd≤1

|T̂ f (x)| = Op(1),(6.25)

sup
‖f ‖≤1

‖Tf ‖ < 1,(6.26)

where ‖Tf ‖2 = ∫ {Tf (x)}2p(x)dx. Claim (6.17) now follows from (6.16),
(6.24)–(6.26) and the fact

∞∑
s=1

(T̂ s − T s) =
∞∑

s=1

s−1∑
t=0

T̂ t (T̂ − T )T s−1−t .

PROOF OF(6.2a)–(6.2c). Formula (6.2a) is given by the definition ofm̂
NW,A
j .

Claim (6.2b) follows as in the proof of (6.3). For the proof of (6.2c) one uses
bounds on the operator norm ofT̂h′ − T̂h, whereT̂h is defined aŝT with bandwidth
tupleh. �

PROOF OF (6.4) AND (6.6). These claims follow by a slight modification
of the arguments used in the proof of Theorem 4 in [9]. There it has been
shown that (6.6) holds for fixed bandwidthsh1, . . . , hd and uniformly foruj in a
closed subinterval of(0,1). The arguments can be easily modified to get uniform
convergence forhj ≤ uj ≤ 1 − hj and CHn−1/5 ≤ h1, . . . , hd ≤ C′

Hn−1/5. In
Theorem 4 in [9] a wrong value was given forγn,j ; see the wrong proof of (114)
in [9]. A correct calculation givesγn,j as stated here.�
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The proof of Theorem 6.1 is complete.�

PROOF OF THEOREM 6.2. Theorem 6.2 follows with similar arguments as
in the proof of Theorem 6.1. Now one can use Theorem 4′ of [9]. For the proof
of (6.13) note that we use another norming form̂j (cf. (6.9) with (52) in [9]).
Formula (6.13) follows from Theorem 4′ of [9] by noting that

∫
m̂

LL,1,B
j (uj ) ×

p̂1
j (uj ) duj = −γn,j + oP (n2/5) with γn,j defined as in Theorem 4′ of [9]. �

PROOF OFTHEOREM2.1. Withwi = w(Xi)1(C′
Hn−1/5≤ Xi

j ≤ 1−C′
Hn−1/5

for 1≤ j ≤ d), we get

RSS(h) − ASE(h) = 1

n

n∑
i=1

wi(ε
i)2 − 2

n

n∑
i=1

wi{m̂NW (Xi) − m(Xi)}εi,

wherem̂NW (x) = m̂NW
0 +m̂NW

1 (x1)+· · ·+m̂NW
d (xd) andm(x) = m0+m1(x1)+

· · ·+md(xd). We will show that uniformly forCHn−1/5 ≤ h1, . . . , hd ≤ C′
Hn−1/5,

1

n

n∑
i=1

wi{m̂NW,B(Xi) − m(Xi)}εi = op(n−4/5)(6.27)

and

1

n

n∑
i=1

wim̂
NW,A(Xi)εi

(6.28)

= 1

n

n∑
i=1

wi(ε
i)2K(0)

d∑
j=1

1

nhj

+ op(n−4/5),

where forS = A,B we write

m̂NW,S(x) = m̂
NW,S
0 + m̂

NW,S
1 (x1) + · · · + m̂

NW,S
d (xd).

The statement of Theorem 2.1 immediately follows from (6.27) and (6.28).
For the proof of (6.27) one can proceed similarly as in the proof of (6.22). Note

that

sup
1≤i≤n

sup
CH n−1/5≤h1,...,hd≤C′

H n−1/5
n2/5|wi{m̂NW,B(Xi) − m(Xi)}| = Op(1),

and that differences between values ofwi {m̂NW,B(Xi) − m(Xi)} evaluated for
different bandwidth tuples(h′

1, . . . , h
′
d) and (h1, . . . , hd) can be bounded by∑

j |h′
j − hj |Op(nα) with α large enough.
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For the proof of (6.28) we note first that by application of Theorem 6.1,

1

n

n∑
i=1

wim̂
NW,A(Xi)εi

= 1

n

n∑
i=1

wim̃
NW,A(Xi)εi + 1

n2

n∑
i,k=1

d∑
j=1

wiRn,k,j (X
i
j , h,X)εiεk

= 1

n2

n∑
i=1

d∑
j=1

wih
−1
j K(0)(εi)2

+ 1

n2

∑
i �=k

d∑
j=1

wih
−1
j K[h−1

j (Xi
j − Xk

j )]εiεk

+ 1

n2

n∑
i=1

d∑
j=1

wiRn,i,j (X
i
j , h,X)(εi)2

+ 1

n2

∑
i �=k

d∑
j=1

wiRn,k,j (X
i
j , h,X)εiεk

= T1(h) + · · · + T4(h).

Now, it is easy to check that uniformly forCHn−1/5 ≤ h1, . . . , hd ≤ C′
Hn−1/5,

T1(h) = 1

n

n∑
i=1

wi(ε
i)2K(0)

d∑
j=1

1

nhj

{
1+ Op

(
n−1/2

√
logn

)}
,

|T3(h)| ≤ Op(1)
1

n2

n∑
i=1

(εi)2 = Op(n−1).

So, it remains to show

T2(h) = op(n−4/5),(6.29)

T4(h) = op(n−4/5).(6.30)

We will show (6.29). Claim (6.30) follows by slightly simpler arguments. For
(6.29) it suffices to show that for 1≤ j ≤ d

T ∗
2,j (h) ≡ 1

n2

∑
i �=k

wih
−1
j K[h−1

j (Xi
j − Xk

i )]ηiηk = op(n−4/5),(6.31)

where ηi = εi1(|εi | ≤ nα) − E[εi1(|εi | ≤ nα)|Xi] with 1/γ < α < 1/4. The
constantγ was introduced in assumption (A3). It holds thatE|εi |γ < C′ for some
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C′ < ∞; see assumption (A3). Note that

P(|εi | > nα for somei with 1≤ i ≤ n) ≤ nE|ε1|γ n−αγ → 0,

E[|εi |1(|εi | > nα)|Xi] ≤ E[|εi |γ |Xi]n−(γ−1)α ≤ C′n−(γ−1)α = O(n−3/4).

We apply an exponential inequality forU -statistics. Let

κ2
n = E{2−1(wi + wk)n

1/10K[h−1
j (Xi

j − Xk
j )]ηiηk}2,

Mn = sup{2−1(wi + wk)n
1/10K[h−1

j (Xi
j − Xk

j )]ηiηk},
where the supremum in the definition ofMn is over the whole probability space.
We note thatκ2

n = O(1) andMn is bounded by a constant which isO(n2αn1/10).
According to Theorem 4.1.12 in [2], for constantsc1, c2 > 0 and 0< δ < 1

2 − 2α,

P
(|T ∗

2,j (h)| ≥ n−4/5−δ)
≤ P

(∣∣∣∣∣n−1
∑
i �=k

win
1/10K[h−1

j (Xi
j − Xk

j )]ηiηk

∣∣∣∣∣ ≥ CHn1/10−δ

)

≤ c1 exp
[
− c2n

1/10−δ

κn + {Mnn(1/10−δ)/2n−1/2}2/3

]
.

This gives withρ = (1− 2δ − 4α)/3 > 0 and a constantc3 > 0,

P
(|T ∗

2,j (h)| ≥ n−4/5−δ) ≤ c1 exp(−c3n
ρ).

Together with|T ∗
2,j (h

′) − T ∗
2,j (h)| ≤ cnα|h′

j − hj | for c,α > 0 large enough, this
implies (6.31). �

PROOF OF THEOREM 2.2. Claim (2.11a) follows from the expansions of
Theorem 6.1. For the proof of (2.11b) note that

RSS(h) = n−1
n∑

i=1

w(Xi)(εi)2 + op(1)

because of (2.11a) and Theorem 2.1.�

PROOF OFTHEOREMS 3.1–3.3. Theorems 3.1 and 3.2 follow with similar
arguments as in the proofs of Theorems 2.1 and 2.2. For the proof of Theorem 3.3,
one uses

sup
0≤vj≤1

|m̂LL
j (vj ) − mj(vj )| = Op

(
n−2/5√logn

)
.(6.32)

This can be shown by use of the expansions of Theorem 6.2. By standard
arguments in local polynomial regression (see [3], e.g.), it follows that form̂′′

j (uj )
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defined in (3.16),

m̂′′
j (uj ) − m′′

j (uj )

= 2g−3
j

∫
L∗[g−1

j (vj − uj )]
× {

m̂LL
j (vj ) − mj(uj ) − m′

j (uj )(vj − uj )

− 1
2m′′

j (uj )(vj − uj )
2}dvj ,

whereL∗ is the so-calledequivalent kernel having the property that
∫
L∗(vj ) dvj =∫

vjL
∗(vj ) dvj = 0 and

∫
v2
jL

∗(vj ) dvj = 1. Application of (6.32) gives

g−3
j

∫
L∗[g−1

j (vj − uj )]{m̂LL
j (vj ) − mj(vj )}dvj = op(1).

Now, the fact that the function itself and its first two derivatives atuj of ν(·) ≡
mj(·) − mj(uj ) − m′

j (uj )(· − uj ) − m′′
j (uj )(· − uj )

2/2 are all zero yields

g−3
j

∫
L∗[g−1

j (vj − uj )]
×{

mj(vj ) − mj(uj ) − m′
j (uj )(vj − uj ) − 1

2m′′
j (uj )(vj − uj )

2}dvj

= o(1). �
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