
The Annals of Statistics
2005, Vol. 33, No. 3, 1084–1108
DOI 10.1214/009053605000000066
© Institute of Mathematical Statistics, 2005

ON OPTIMALITY OF STEPDOWN AND STEPUP
MULTIPLE TEST PROCEDURES

BY E. L. LEHMANN, JOSEPHP. ROMANO AND JULIET POPPERSHAFFER

University of California, Berkeley, Stanford University and
University of California, Berkeley

Consider the multiple testing problem of testingk null hypotheses,
where the unknown family of distributions is assumed to satisfy a certain
monotonicity assumption. Attention is restricted to procedures that control
the familywise error rate in the strong sense and which satisfy a monotonicity
condition. Under these assumptions, we prove certain maximin optimality
results for some well-known stepdown and stepup procedures.

1. Introduction. For classical single-stage multiple comparison procedures,
a number of optimality results are available. (See, e.g., [6], Chapter 11, and [11],
Chapter 7 particularly Sections 7.9 and 7.10.) However, no such literature exists
for the more recent stepdown and stepup methods. It is the purpose of the present
paper to establish optimality properties for procedures of the latter kind.

Our setup and conditions are those of Lehmann [9], who discusses such an
optimality result for the testing of two hypotheses. For the general problem of
testingk null hypothesesH1, . . . ,Hk, considerk random variablesX1, . . . ,Xk;
typically, these are test statistics for the individual hypothesesH1, . . . ,Hk .
We assume thatX = (X1, . . . ,Xk) has somek-dimensional joint cumulative
distribution functionFθ(·) indexed byθ = (θ1, . . . , θk) in Rk . The null hypothesis
Hi statesθi ≤ 0, which is being tested against the alternativesθi > 0.

Stepdown procedures were initiated by Holm [7], while the stepup approach
can be found in [2, 5, 8, 14, 16]. Background material on stepwise procedures is
provided by Hochberg and Tamhane [6] and Westfall and Young [18]. Roughly
speaking, stepdown procedures start by rejecting the most significant hypothesis
(corresponding to the largestXi) and then they sequentially consider the most
significant of the remaining hypotheses. Alternatively, stepup procedures start with
the least significant hypothesis (corresponding to the smallestXi ).

Our optimality results require crucial monotonicity assumptions and restric-
tions. We say that a regionM of x values is a monotone increasing region if
x = (x1, . . . , xk) ∈ M andxi ≤ yi implies thaty = (y1, . . . , yk) is also inM. We
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assume of our model that increased values ofθ lead to higher values ofX, specif-
ically, that if θi ≤ γi , then∫

M
dFθ(x1, . . . , xk) ≤

∫
M

dFγ (x1, . . . , xk)(1)

for every monotone increasing regionM. This assumption holds, in particular,
if the distributionsFθ have densitiespθ with (increasing) monotone likelihood
ratio; that is, if x = (x1, . . . , xk), y = (y1, . . . , yk), θ = (θ1, . . . , θk) and θ ′ =
(θ ′

1, . . . , θ
′
k), then

pθ ′(x)

pθ (x)
≤ pθ ′(y)

pθ (y)

wheneverxi ≤ yi for all i andθj ≤ θ ′
j for all j . This notion of monotonicity was

studied in [10]; other notions of stochastic ordering are discussed in [12].
In addition to condition (1), we will assume an analogous monotonicity property

for the distribution of(δ1X1, . . . , δkXk), for any δi ∈ {−1,1}. Specifically, for
every monotone increasing regionM andδiθi ≤ δiγi ,∫

M
dFθ(δ1x1, . . . , δkxk) ≤

∫
M

dFγ (δ1x1, . . . , δkxk).(2)

For example, the condition for(−X1, . . . ,−Xk) means that for any monotone
decreasing regionM′ (the complement of a monotone increasing region), the
inequality (1) is reversed; that is, the probability of the event{X ∈ M′} increases
asθ decreases (in each component).

Under these assumptions, we shall restrict attention to decision rules satisfying
the following monotonicity condition. A decision ruleD based onX states for
each possible valuex of X the subsetI = Ix of {1, . . . , k} of valuesi for which
the hypothesisHi is rejected. A decision ruleD is said to be monotone if

xi ≤ yi for i ∈ Ix butyi < xi for i /∈ Ix

implies thatIx = Iy . Thus, the subset ofx values that results in rejecting all
hypotheses is a monotone increasing region. More generally, fixI ⊂ {1, . . . , k}
and, based on a monotone decision rule, letMI denote the set ofx values such
thatIx = I . If δi = 1 for i ∈ I andδi = −1 otherwise, then

{(δ1x1, . . . , δkxk) : (x1, . . . , xk) ∈ MI }
is a monotone increasing set. By assumption (2), the probability of this set is
increasing inδiθi .

Among all monotone decision rules that provide strong control of the family-
wise error rate (FWER), that is, of the probability of committing a Type 1 error by
wrongly rejecting one or more true hypotheses, under any configuration of true and
false null hypotheses we shall show how to maximize certain aspects of the power
of the procedures (i.e., of the probability of correctly rejecting false hypotheses).
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However, we note that we are not restricting attention to any kind of stepwise
procedure; rather, the resulting optimal procedures take the form of well-known
stepwise procedures, which will be fully described later.

Here the restriction to monotone procedures is not just for convenience—the
results are not true without this restriction. It is, in fact, possible to improve
the rejection probability without violating the error control by adding small
implausible pieces to the rejection regions, resulting in decision rules that are very
counterintuitive. That this is possible is due to the fact that the bound for the error
control is not attained but only approached in the limit as some parameter values
tend to∞ or −∞. For a discussion of the pros and cons of such counterintuitive
decision rules with references to the literature, see [13].

To conclude this introduction, we mention some situations in which the present
approach does and some in which it does not apply. As a first example, consider a
paired comparison experiment with pairs of observations(Yi,Zi). Let E(Yi) = µi

andE(Zi) = νi , and consider testing the hypothesesθi = νi − µi = 0 against the
alternativesθi > 0. If we putXi = Zi − Yi and base our inferences on theX’s,
this reduces to the situation considered here. This example can be extended to
the comparison of two treatments withmi and ni observations (i = 1, . . . , k),
respectively, onk subjects. Another application is the comparison ofk treatments
with a control. Hereθi = µi − µ0, where theµi (i = 1, . . . , k) and µ0 are the
means for thek treatments and the control, respectively.

On the other hand, the approach does not apply to the comparison ofk

treatments, that is, the hypothesisH :µ1 = · · · = µk , where in the case of rejection
one wishes to determine the pairsi < j for which µi < µj . As in the preceding
examples, the hypothesis can be reduced toH : θ2 = · · · = θk = 0 with, for
example,θi = µi − µ1. However, with the resulting procedure, one can only
determine the significant differencesµj − µi with i = 1 and not those with
1< i < j .

In Section 2 we treat the casek = 2 separately. In Section 3 we consider general
k for stepdown procedures, but make a further exchangeability assumption. The
corresponding results for stepup procedures are then provided in Section 4, though
a further assumption of monotonicity of critical values is invoked. Section 5 is a
brief conclusion and all proofs are deferred to Section 6.

Distributional assumptions. We suppose(X1, . . . ,Xk) has a joint cumulative
distribution functionFθ(·), indexed byθ = (θ1, . . . , θk) in Rk . The parameter
space is a finite or infinite open rectangle with

θL
i < θi < θU

i , i = 1, . . . , k.

Similarly, the sample space is assumed to be a finite or infinite open rectangle with

xL
i < Xi < xU

i ,
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independent ofθ . We further assume the distribution of any subcollection
{Xi, i ∈ I } depends only on thoseθi with i ∈ I , and thatXi tends in probability
to xL

i asθi → θL
i andXi tends in probability toxU

i asθi → θU
i .

To ease the notation, we assume here and in the remainder of the paper thatθi

varies in all ofR, so thatθL
i = −∞ andθU

i = ∞. We also simplify the notation by
takingxL

i = −∞ andxU
i = ∞. In addition, we assume that the joint distribution

of X has a density with respect to Lebesgue measure; this is used only so that the
critical constants of the optimal procedures can be obtained for control at a given
level α to be achieved exactly, but this hypothesis can certainly be weakened. In
order for the critical constants to be uniquely defined, we further assume that the
joint density is positive on its (assumed rectangular) region of support, but this can
be weakened as well.

2. The case k = 2. We are testing hypothesesH1 andH2 with Hi correspond-
ing to θi ≤ 0. Letω0,0 denote the part of the parameter space where bothH1 and
H2 are true; letω0,1 correspond to the part whereH1 is true andH2 is not true;
similarly for ω1,0 andω1,1.

A decision ruleD analogously divides up the sample space into regionsd0,0,
d0,1, d1,0 andd1,1. For example,d0,1 corresponds to the region in the sample space
whereH1 is declared true andH2 is declared false. Also, letdi be the region where
Hi is rejected, sod1 = d1,0 ∪ d1,1 andd2 = d0,1 ∪ d1,1.

We will restrict attention to rulesD that are

monotone(3)

and such that the

FWER≤ α.(4)

For ε = (ε1, ε2) with εi > 0, consider subsets of elements(θ1, θ2) defined by

A1(ε) = {θ1 > ε1} ∪ {θ2 > ε2}(5)

and

A2(ε) = {θ1 > ε1} ∩ {θ2 > ε2}.(6)

A decision rule is deemed good if the quantities

inf
θ∈A1(ε)

Pθ {dc
0,0}(7)

and

inf
θ∈A2(ε)

Pθ {d1,1}(8)

are large. As we will see, it isnot possible to find a ruleD satisfying (3) and (4)
that maximizes (7) and (8) simultaneously.
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In order to appreciate the criteria (7) and (8), first supposeθ ∈ A1(ε). Then
at least oneθi is positive and so we would not want to conclude that bothθi

are≤ 0; rather, we wish to concludedc
0,0. Thus, maximizing (7) maximizes the

minimum probability that we do not concluded0,0 asθ varies inA1(ε). Similarly,
if θ ∈ A2(ε), then bothθi are positive, and so we wish to maximize the (minimum)
chance that we make the decisiond1,1.

In addition, we also consider the following notion of optimality. Again suppose
θ ∈ A1(ε), so that at least oneθi is positive. Then, as above, we do not want to
make the decisiond0,0. However, we also do not wish to make the decisiond0,1 if,
in fact,H1 is false andH2 is true; we would rather make the correct decisiond1,0.
So, we also consider the probability of maximizing

inf
θ∈A1(ε)

Pθ {reject at least one false hypothesis}.(9)

In other words, the criterion (7) maximizes the minimum probability of rejecting
exactly least one hypothesis (regardless of which are true and false), while
criterion (9) maximizes the minimum probability of rejecting at least onefalse
hypothesis. The latter criterion seems more compelling, though the former
criterion might be justified in a situation where it is important to know that the
joint null hypothesis (i.e., the global hypothesis that both hypotheses are true) is
not true. In any case, we shall see that the same optimal procedureD arises from
both criteria.

THEOREM 2.1. Consider the case k = 2 under the assumptions given in
Section 1.

(i) A rule D satisfying (3) and (4) maximizes (7) if

dc
0,0 = {X1 > a1 or X2 > a2}(10)

and {Xi > ai} ⊂ di , where a1 and a2 are determined so that

P0,0{X1 > a1 or X2 > a2} = α(11)

and

Pε1{X1 > a1} = Pε2{X2 > a2}.(12)

Its minimum (rejection) probability over A1(ε) is given by Pε1{X1 > a1}.
(ii) The (stepdown) rule D satisfying (3), (4) and (10) that maximizes (8) is

given by

d0,1 = {X1 < b1,X2 ≥ a2},(13)

d1,0 = {X1 ≥ a1,X2 < b2},(14)

d1,1 = {X1 ≥ b1,X2 ≥ b2} ∩ dc
0,0,(15)
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where bi satisfies

P0{Xi ≥ bi} = α(16)

(and so bi < ai ). The minimum probability of d1,1 over A2(ε) is

Pε1,ε2{X1 > a1,X2 > b2 ∪ X1 > b1,X2 > a2}.
(iii) The result (i) holds for D if criterion (7) is replaced by (9), and (12) is also

the maximum value of criterion (9).

Note that onced0,0 andd1,1 are determined, so ared0,1 andd1,0 (by monotonic-
ity).

The procedureD of Theorem 2.1 is an example of a stepdown procedure.
It starts by rejecting the most significant hypothesis (corresponding to the
largestXi) and it then sequentially considers the most significant of the remaining
hypotheses. Alternatively, stepup procedures start with the least significant
hypothesis (corresponding to the smallestXi), and an optimality result is now
given for such a procedure.

REMARK 2.1. The proof shows that the optimal procedureD in (i) and (ii) is
the unique rule satisfying (3) and (4) which maximizes (7), in the sense that ifE is
any other such rule, thene0,0 
d0,0 has Lebesgue measure 0, whereA
B denotes
the symmetric difference between setsA andB. Similarly, a ruleE satisfying (3),
(4) and (10) maximizing (8) must satisfye1,1 
d1,1 has Lebesgue measure 0.

Also, notice that the optimal procedureD does not depend onε. It follows that
D is admissible in the following sense. Suppose there exists another monotone
ruleE that controls the FWER, and such that

Pθ {dc
0,0} ≤ Pθ {ec

0,0} for all θ ∈ ωc
0,0,(17)

with strict inequality for someθ ∈ ωc
0,0. Taking the infimum of both sides over

θ ∈ A1(0), it follows thatE must also be optimal in the sense of Theorem 2.1(i).
But, by uniqueness,e0,0 
d0,0 has Lebesgue measure 0, which implies the≤
in (17) is an equality. A similar admissibility result for the regiond1,1 can be
stated as well.

Analogous uniqueness and admissibility results hold for all the optimal
procedures presented later on. For a discussion of admissibility in multiple testing
problems, see [3].

THEOREM 2.2. Consider the case k = 2 under the assumptions given in
Section 1.

(i) A rule D satisfying (3) and (4) maximizes (8) if d1,1 is given by

d1,1 = {X1 > b1,X2 > b2},(18)
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and di ⊂ {Xi > bi}, where bi satisfies (16) (so it is the same constant as in
Theorem 2.1). Its minimum probability over A2(ε) is given by Pε1,ε2{X1 > b1,

X2 > b2}.
(ii) The (stepup) rule D satisfying (3), (4)and (18) that maximizes (7) is given

by

d0,1 = {X1 < b1,X2 ≥ ã1},(19)

d1,0 = {X1 ≥ ã1,X2 < b2},(20)

d0,0 = {X1 ≤ ã1,X2 ≤ ã2} ∩ dc
1,1,(21)

where ãi is determined so that

P0,0{dc
0,0} = α(22)

and

Pε1{X1 ≥ ã1} = Pε2{X2 ≥ ã2}.(23)

The value of (23) is the minimum probability of D over A1(ε).
(iii) The result (ii) holds for D if criterion (7) is replaced by (9), and (23) is

also the maximum value of criterion (9).

REMARK 2.2. Note thatbi < ai < ãi . Also, the best minimum probability
overA1(ε) in the case of Theorem 2.1 exceeds the best in the case of Theorem 2.2,
but it reverses for Theorem 2.2.

REMARK 2.3. A remark analogous to Remark 2.1 applies to the optimal
procedure in Theorem 2.2.

REMARK 2.4. It is now clear that, subject to (3) and (4), we cannot find a
rule to maximize both (7) and (8). By Theorem 2.1(i) and Theorem 2.2(ii), such a
ruleD would have to satisfy

d0,0 = {X1 ≤ a1 andX2 ≤ a2}
and

d1,1 = {X1 > b1,X2 > b2}
simultaneously, which is impossible because these two sets have a nontrivial
intersection asbi < ai .

REMARK 2.5. The results of this paper do not hold without the monotonicity
assumption. For example, consider part (i) of Theorem 2.2. Suppose further thatX1
andX2 are independent withXi normally distributed with meanθi and variance 1.
Thenbi = b = z1−α , the 1− α quantile of the standard normal distribution. The
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probability of d1,1 under (θ1, θ2) with both θi > 0 is always less thanα and
approachesα as eitherθi → ∞. Therefore, by adding tod1,1 a small enough
region in the southwest quadrant, one can increase the rejection probability without
violating the level constraint; see Section 4 of [13]. Such a procedure is not
monotone. Similarly, regarding the problem addressed in (i) of Theorem 2.1, [9],
Section 3, shows that the maximin test is not monotone.

3. General k stepdown. Consider testingk null hypothesesH1, . . . ,Hk with
Hi corresponding toθi ≤ 0. In this section and the next, we add a symmetry
condition for the joint distribution of(X1, . . . ,Xk). Specifically, we assume that
the joint distribution of(X1, . . . ,Xk) underθi = θ (some value independent ofi)
is exchangeable. This is not a crucial assumption (and actually only needs to hold
atθ = 0 orθ = ε, whereε is given in the statement of the theorems), but it reduces
the number of critical values from order 2k to k. The results should generalize, but
at the expense of more complicated notation.

Let

Xr1 ≥ Xr2 ≥ · · · ≥ Xrk

denote the orderedX-values, and letHr1, . . . ,Hrk denote their corresponding null
hypotheses.

For any (monotone) decision ruleE, let Ek,j denote the event thatE rejects at
leastj of the null hypotheses. Forε > 0, let

Aj(ε) = {(θ1, . . . , θk) : at leastj θi satisfyθi > ε}.
Consider the monotone stepdown decision ruleD that rejectsHr1, . . . ,Hrj and

accepts the remaining null hypotheses ifXri ≥ ck,i for 1 ≤ i ≤ j , but Xrj+1 <

ck,j+1, where theck,j = ck,j (α) are determined by

P 0,...,0︸ ︷︷ ︸
k−j+1 times

{Xi > ck,j for somei,1≤ i ≤ k − j + 1} = α.(24)

Then

Dk,j = {
Xri ≥ ck,i,1≤ i ≤ j

}
.

Note that (24) implies the important relationship

ck,j = ck−1,j−1(25)

if k ≥ j ≥ 2. Also note that, for fixedk, ck,j is nonincreasing inj .
Since the constantsck,j depend only onk − j , we may more succinctly define

fk−i+1 ≡ ck,i,(26)

where thefj are determined by

P0,...,0︸ ︷︷ ︸
j times

{max(X1, . . . ,Xj ) > fj } = α.(27)
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The procedureD then rejectsHr1, . . . ,Hrj if and only if Xri ≥ fk−i+1 for
1≤ i ≤ j .

LEMMA 3.1. Suppose the assumptions of Section 1 and the symmetry
condition described at the beginning of this section hold.

(i) The above decision rule D controls the FWER at level α.
(ii) Define

βk,j (α, ε) = inf
θ∈Aj (ε)

Pθ {Dk,j };

that is, βk,j (α, ε) is the minimum probability of Dk,j over Aj(ε). Then

βk,j (α, ε) = Pε,...,ε︸︷︷︸
j times

{Sk,j },(28)

where

Sk,j = {
Xπj (1) > fk, . . . ,Xπj (j) > fk−j+1

(29)
for some permutation πj of {1, . . . , j}}.

So (28) is the minimum probability over Aj(ε) not only of rejecting at least j

hypotheses, but also of rejecting at least j false hypotheses.

THEOREM 3.1. Suppose the assumptions of Section 1 and the symmetry
condition described at the beginning of this section hold.

(i) Among monotone decision rules E that control the FWER, D maximizes

inf
θ∈A1(ε)

Pθ {Ek,1}.(30)

Also, D maximizes

inf
θ∈A2(ε)

Pθ {Ek,2}
among such rules E that also satisfy Ek,2 ⊂ Dk,1. In general, for j = 2, . . . , k,
D maximizes

inf
θ∈Aj (ε)

Pθ {Ek,j }(31)

among monotone rules E that control the FWER and satisfy

Ek,j ⊂ Dk,j−1.(32)

Therefore, for any other rule E, we must have

inf
θ∈Aj (ε)

Pθ (Ek,j ) < βk,j (α, ε)

for at least one j .
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(ii) D also is optimal in the sense that it maximizes

inf
θ∈Aj (ε)

Pθ {reject at least j false hypotheses}

subject to (32).

REMARK 3.1. The procedureD is essentially unique (up to sets of Lebesgue
measure 0), as described in Remark 2.1, and an admissibility result analogous to
that described in Remark 2.1 holds as well.

REMARK 3.2. For fixedk, the optimal constants withck,j = fk−j+1 are given
by the values

ck,1, ck,2, . . . , ck,k.(33)

But, sinceck,2 = ck−1,1, ck,3 = ck−2,1, and so on, the sequence (33) is equivalent to

ck,1, ck−1,1, ck−2,1, . . . , c1,1.

This is just a sequentially rejective procedure of the kind proposed by Holm [7]:
after the first step using the critical valueck,1, reduce the number of hypotheses
from k to k − 1 and repeat the first step but now withck−1,1, and so on. In the case
where theXi have a uniform(0,1) marginal distribution under the null hypothesis
so that we translate everything intop-values and reject forsmall values, Holm [7]
usedck,1 = α/k since he assumed only the marginal distributions to be known (and
strong error control follows by Bonferroni). Ourck,1 would then be determined by

P0,...,0︸ ︷︷ ︸
k times

{Xi ≤ ck,1 for one or more values ofi : 1≤ i ≤ k} = α

or, equivalently,

P0,...,0︸ ︷︷ ︸
k times

{min(X1, . . . ,Xk) ≤ ck,1} = α.

If we further assume independence of thep-values, then the critical con-
stantsck,j satisfy

1− (1− ck,j )
k−j+1 = α.

Thus, the Holm principle remains in effect, except that instead of usingck,1 =
α/k, the independence assumption implies the exact critical valuesck,1 = 1 −
(1− α)1/k .



1094 E. L. LEHMANN, J. P. ROMANO AND J. P. SHAFFER

4. General k stepup. Assume the conditions imposed in the previous section.
We are testing null hypothesesH1, . . . ,Hk with Hi corresponding toθi ≤ 0. Let

X(1) ≤ X(2) ≤ · · · ≤ X(k)

denote the orderedX-values; in the notation of the previous section,X(j) = Xrk−j+1.
Consider the following monotone stepup decision ruleD for appropriately

chosen constantsd1, . . . , dk (to be specified shortly, but assumed nondecreasing).
If X(1) > d1, then reject all null hypotheses. Otherwise, ifX(1) ≤ d1 butX(2) > d2,
reject thek − 1 hypotheses corresponding to thek − 1 largestX’s. In general, for
the smallestj such thatX(j) > dj , reject thek − j + 1 hypotheses corresponding
to thek − j + 1 largestX’s and accept the remaining. (Note that the constantsdj

should perhaps be written asdk,j to show the dependence onk; however, we will
see thatdk,j will be chosen to be independent ofk and so we just abbreviate todj .)

The above rule rejects at leastj null hypotheses for the setDk,j defined by

Dk,j = {
X(1) > d1

} ∪ · · · ∪ {
X(k−j+1) > dk−j+1

}
.

Equivalently, at leastk − j + 1 hypotheses are accepted ifDc
k,j occurs, where

Dc
k,j = {

X(1) ≤ d1
} ∩ · · · ∩ {

X(k−j+1) ≤ dk−j+1
}
.

Evidently,

Dk,j+1 ⊂ Dk,j .

The constantsdj are determined so that

P0,...,0︸ ︷︷ ︸
j times

{Lj } = 1− α,(34)

where

Lj = {
Xπ(1) ≤ d1, . . . ,Xπ(j) < dj for some permutation of{1, . . . , j}}.(35)

Note that the constantdj does not depend onk as reflected in the notation.
Also, d1 = ck,k = c1,1 = f1, wherec1,1 andf1 are the constants (24) and (26) of
the previous section. However, as pointed out by an anonymous referee, in the case
k > 2, it need not be the case thatdk,j is nondecreasing inj . A counterexample
is provided in [4]; some further references on the monotonicity of critical values
are [1] and [15]. In order to prove our results, we need to assume the monotonicity
holds.

LEMMA 4.1. Assume the conditions of Lemma 3.1. Also assume that the
constants dj used in the procedure D are nondecreasing in j .

(i) The above decision rule D controls the FWER at level α.
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(ii) Define

β̃k,j = inf
θ∈Aj (ε)

Pθ {Dk,j };

that is, β̃k,j (α, ε) is the minimum probability of Dk,j over Aj(ε). Then

β̃k,j (α, ε) = Pε,...,ε︸︷︷︸
j times

{min(X1, . . . ,Xj ) > dk−j+1}.(36)

The minimum probability over Aj(ε) of rejecting at least j false hypotheses is also
given by (36).

THEOREM 4.1. Assume the conditions of Theorem 3.1.Also assume that the
constants dj used in the procedure D are nondecreasing in j .

(i) Among monotone decision rules E that control the FWER at level α,
D maximizes

inf
θ∈Ak(ε)

Pθ {Ek,k}.(37)

Also, D maximizes

inf
θ∈Ak−1(ε)

Pθ {Ek,k−1}

among rules that satisfy Dk,k ⊂ Ek,k−1. In general, for j = k − 1, . . . ,1,
D maximizes

inf
θ∈Aj (ε)

Pθ {Ek,j }(38)

among monotone rules E that control the FWER and satisfy

Dk,j+1 ⊂ Ek,j .(39)

Therefore, for any other rule E, we must have

inf
θ∈Aj (ε)

Pθ (Ek,j ) < β̃k,j (α, ε)

for at least one j .
(ii) D also is optimal in the sense that it maximizes

inf
θ∈Aj (ε)

Pθ {reject at least j false hypotheses}

subject to (39).

REMARK 4.1. Again, the procedureD is unique up to sets of Lebesgue
measure 0, and it is admissible; see Remark 2.1.
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REMARK 4.2. Letting

Xj : 1 ≤ · · · ≤ Xj : j

denote the ordered values of just the firstj X’s, the constantsdj are determined by

P0,...,0︸ ︷︷ ︸
j times

{Xj : 1 ≤ d1, . . . ,Xj : j ≤ dj } = 1− α.

If we compare this with (27), we see thatfj < dj , except whenj = 1, in which
casef1 = d1.

5. Conclusions. Stepdown and stepup methods were proposed as intuitively
appealing by Holm, Hochberg, Dunnett and Tamhane, and others. The present
paper, treating the case of one-sided alternatives only, used optimality criteria
that seemed reasonable and were not selected to justify predetermined solutions.
It is gratifying that the results confirm the intuition of the originators of these
methods. Even though our assumptions are strong, some stepwise methods can
now be viewed as asymptotically optimal, such as the stepup method of Dunnett
and Tamhane [2]. Outside the strong assumptions imposed in this paper, Westfall
and Young [18] give general resampling methods to approximate the critical values
of stepdown procedures, while Troendle [17] addresses the corresponding problem
for stepup procedures.

6. Proofs and auxiliary results.

PROOF OFTHEOREM2.1. First, observe that for the procedureD given in (i),
for θ ∈ ω0,0,

Pθ {dc
0,0} ≤ P0,0{dc

0,0} = P0,0{X1 > a1 or X2 > a2} = α

by choice ofai . For thisD, by monotonicity, the inf overθ ∈ A1(ε) in (7) occurs
at (θ1, θ2) = (ε1,−∞) or (−∞, ε2); this is a shorthand notation so that

Pε1,−∞{dc
0,0} = lim

θ2→−∞{dc
0,0}.

But then

Pε1,−∞{dc
0,0} = Pε1{X1 > a1}

and

P−∞,ε2{dc
0,0} = Pε2{X2 > a2}.

So, the value of criterion (7) for the procedureD is indeed given by (12). Similarly,
the value of criterion (9) forD is also (12). Indeed, asθ1 → −∞, the chance that
H1 is incorrectly rejected tends to 0.
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To prove (i), supposeE is another decision rule satisfying (3) and (4). Assume
there exists(x1, x2) /∈ d0,0, but (x1, x2) ∈ e0,0. Then there exists at least one
component withxi > ai , sayx1 > a1. Hence,

Pε1,−∞{e0,0) ≥ Pε1,−∞{X1 ≤ x1,X2 ≤ x2} = Pε1{X1 ≤ x1} > Pε1{X1 ≤ a1}.
Therefore,

Pε1,−∞{ec
0,0} < Pε1,−∞{X1 ≤ a1} = Pε1{X1 ≤ a1},

so thatE has a smaller value of criterion (7) than does a claimed optimalD. So
it must be the case thate0,0 ⊂ d0,0. But, if e0,0 is strictly contained ind0,0 such
that the set differencee0,0 
d0,0 has positive Lebesgue measure, then its region
for rejectingω0,0, namely,ec

0,0, is bigger thandc
0,0, implying

P0,0{ec
0,0} > P0,0{dc

0,0} = α.

The conclusion is that an optimal regionD must have the stated region (10)dc
0,0.

To prove (ii), let us first check that the claimed solution controls the FWER.
For θ ∈ ω0,0,

Pθ {dc
0,0} ≤ α

as previously argued. Forθ ∈ ω0,1,

Pθ {Type 1 error} = Pθ {d1,1 ∪ d1,0} ≤ Pθ {X1 ≥ b1} ≤ P0{X1 ≥ b1} = α

similarly for ω1,0.
The goal now is to findD satisfying (3), (4) anddc

0,0 given by (10) to
maximize (8). Consider another ruleE satisfying (3), (4) ande0,0 = d0,0. Suppose
there exists(x1, x2) ∈ e1,1 such thatxi < bi for somei, sayi = 1. Then

P0,∞{e1,1} ≥ P0,∞{X1 ≥ x1,X2 ≥ x2} = P0{X1 ≥ x1} > P0(X1 ≥ b1) = α,

which would contradict strong control. Soe1,1 ⊂ d1,1. But you cannot take away
points fromd1,1 without lowering the minimum power at(θ1, θ2) = (ε, ε).

To prove (iii), simply observe, for anyθ ,

Pθ {rejecting at least one falseHi} ≤ Pθ {rejecting at least oneHi},
and so

inf
θ∈A1(ε)

Pθ {rejecting at least one falseHi} ≤ inf
θ∈A1(ε)

Pθ {rejecting at least oneHi}.

But the right-hand side isPε1{X1 > a1}, and so it suffices to show thatD satisfies

inf
θ∈A1(ε)

Pθ {D rejects at least one falseHi} = Pε1{X1 > a1}.

But the earlier argument for (12) showed this to be the case.�
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PROOF OFTHEOREM 2.2. To prove (i), supposeE is another rule satisfying
(3) and (4) which rejects both hypotheses if(X1,X2) ∈ e1,1. Suppose there exists
(x1, x2) ∈ e1,1 such thatxi < bi for somei, sayi = 1. Then

P0,∞{e1,1} ≥ P0,∞{X1 ≥ x1,X2 ≥ x2} = P0{X1 ≥ x1} > P0{X1 ≥ b1} = α,

which would contradictE control of the FWER. So,e1,1 ⊂ d1,1. But you cannot
take away any point fromd1,1 without lowering the minimum power at(ε1, ε2).

To prove (ii), note that, for the claimed solution the value of (7) is given by

inf
θ : θ∈A1(ε)

Pθ (d
c
0,0} = Pε1,−∞{dc

0,0} = Pε1{X1 > ã1}.
We now seek to determined0,0 [like Theorem 2.1(i) with the added constraint that
d0,0 ⊂ dc

1,1]. To prove optimality of the claimed solution, supposeE is another rule
satisfying (3), (4) ande1,1 = d1,1, with d1,1 given by (18). Suppose(x1, x2) /∈ d0,0,
but (x1, x2) ∈ e0,0, so thatxi > ãi for somei, sayi = 1. Then

Pε1,−∞{e0,0} ≥ Pε1,−∞{X1 ≤ x1,X2 ≤ x2}
= Pε1{X1 ≤ x1} > Pε1{X1 > ã1}.

Therefore,

Pε,−∞{ec
0,0} < Pε{X1 > ã1},

so thatE cannot be optimal. So it must be the case thate0,0 ⊂ d0,0. But if e0,0 is
strictly contained ind0,0, its region for rejectingω0,0, namely,ec

0,0, is bigger than
dc

0,0, in which case

P0,0{ec
0,0} > P0,0{dc

0,0} = α,

a contradiction of strong control.
Finally, we check thatD itself exhibits control of the FWER. Forθ ∈ ω0,0, the

probability of a Type 1 error is≤ α because of (22). Forθ = (θ1, θ2) ∈ ω0,1,

Pθ {Type 1 error} ≤ P0,∞{X1 > b1,X2 > b2 ∪ X1 ≥ ã1,X2 < b2}
= P0{X1 > b1} = α,

as required.
The proof of (iii) is completely analogous to the proof of Theorem 2.1(iii).�

PROOF OF LEMMA 3.1. To prove (i), supposeH1, . . . ,Hp are true and
Hp+1, . . . ,Hk are false. A Type 1 error occurs if any ofH1, . . . ,Hp are rejected.
For the ruleD, the set where a rejection of any ofH1, . . . ,Hp occurs is a monotone
increasing set, and so the probability of this event is largest under this configuration
of true and false hypotheses when

(θ1, . . . , θk) = (0, . . . ,0︸ ︷︷ ︸
p times

,∞, . . . ,∞︸ ︷︷ ︸
k−p times

),
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and this probability is equal to

P0,...,0︸ ︷︷ ︸
p times

{Xi > fp for somei = 1, . . . , p} = α

by (27) withj = p.
To prove (ii), note that the minimum power occurs whenθ is one of the

(k
j

)
points withj values ofε andk − j values of−∞, such as

wk,j = wk,j (ε) = (ε, . . . , ε︸ ︷︷ ︸
j times

,−∞, . . . ,−∞︸ ︷︷ ︸
k−j times

).(40)

Then,Pwk,j
(Dk,j ) reduces toβk,j (α, ε) as claimed. Also, for such a configura-

tion wk,j , only thej hypothesesH1, . . . ,Hj can be rejected, and so the minimum
probability of rejecting at leastj hypotheses is the same as the minimum proba-
bility of rejecting exactlyj hypotheses (and it is also equal to the probability of
rejecting exactlyj false hypotheses).�

Before the proof of Theorem 3.1, we need two lemmas. We will make use of
the following notation. IfR is any region inRk , let

Rz = {(x1, . . . , xk−1) : (x1, . . . , xk−1, z) ∈ R}.

LEMMA 6.1. Let R be any monotone rejection region in Rk [so x =
(x1, . . . , xk) ∈ R implies y ∈ R if yi ≥ xi for all i].

(i) If z1 < z2, then Rz1 ⊂ Rz2.
(ii) Rz,

⋃
z Rz and

⋂
z Rz are all monotone rejection regions in Rk−1.

PROOF. If z1 < z2 and (x1, . . . , xk−1) ∈ Rz1, then (x1, . . . , xk−1, z1) ∈ R.
By monotonicity,(x1, . . . , xk−1, z2) ∈ R, and so(x1, . . . , xk−1) ∈ Rz2. The proof
of (ii) is just as easy. �

LEMMA 6.2. Assume the distributional assumptions given at the end of
Section 1. Let R be any monotone rejection region in Rk . Then for any values
of the parameters θ1, . . . , θk−1,

Pθ1,...,θk−1,∞(R) = Pθ1,...,θk−1

{⋃
z

Rz

}
(41)

and

Pθ1,...,θk−1,−∞{R} = Pθ1,...,θk−1

{⋂
z

Rz

}
.(42)
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PROOF. To prove (41),

Pθ1,...,θk−1,∞{R} = lim
θk→∞Pθ1,...,θk

{(X1, . . . ,Xk−1) ∈ RXk }

= lim
θk→∞Pθ1,...,θk

{(X1, . . . ,Xk−1) ∈ RXk,Xk ≥ z}

≤ Pθ1,...,θk−1

{
(X1, . . . ,Xk−1) ∈ ⋃

Rz
}
.

Also, for everyz,

Pθ1,...,θk−1,∞{R} = lim
θk→∞Pθ1,...,θk

{(X1, . . . ,Xk−1) ∈ RXk,Xk ≥ z}
≥ Pθ1,...,θk−1{(X1, . . . ,Xk−1) ∈ Rz}

and so

Pθ1,...,θk−1,∞{R} ≥ Pθ1,...,θk−1

{
(X1, . . . ,Xk−1) ∈ ⋃

Rz
}
,

and (41) follows.
To prove (42),

Pθ1,...,θk−1,−∞(R)

= lim
θk→−∞Pθ1,...,θk

{(X1, . . . ,Xk−1) ∈ RXk }

= lim
θk→−∞Pθ1,...,θk

{(X1, . . . ,Xk−1) ∈ RXkXk,≤ z}
≤ Pθ1,...,θk−1{(X1, . . . ,Xk−1) ∈ Rz}

for everyz. Let z → −∞, so thatRz decreases to
⋂

Rz. Then we can conclude

Pθ1,...,θk−1,−∞(R) ≤ Pθ1,...,θk−1

{
(X1, . . . ,Xk−1) ∈ ⋂

Rz
}
.

Also,

Pθ1,...,θk−1,−∞{R} = lim
θk→∞Pθ1,...,θk

{(X1, . . . ,Xk−1) ∈ RXk }

≥ Pθ1,...,θk−1

{
(X1, . . . ,Xk−1) ∈ ⋂

Rz
}
,

and the result follows. �

Next, given a monotone rejection regionR, define

U1(R) = ⋃
z

Rz,

U2(R) = U1(U1(R)
)
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and

Uj(R) = U1(Uj−1(R)
)
.

Similarly, let

I1(R) = ⋂
z

Rz

and

I j (R) = I1(I j−1(R)
)
.

By applying Lemma 6.2 repeatedly, we also obtain

Pθ1,...,θk−j ,∞,...,∞︸ ︷︷ ︸
j times

{R} = Pθ1,...,θk−j
{Uj(R)}(43)

and

Pθ1,...,θk−j ,−∞,...,−∞︸ ︷︷ ︸
j times

{R} = Pθ1,...,θk−j
{I j (R)}.(44)

PROOF OFTHEOREM 3.1. (i) Note, for any monotone ruleE, the smallest
probability of Ek,j over Aj(ε) occurs whenθ = wk,1 defined in (40), as well as
whenθ is any permutation ofwk,1. Furthermore, for any monotone ruleE that
controls the FWER, we must have

Pθ {Ek,j } ≤ α

whenθ is

vk,j = (∞, . . . ,∞︸ ︷︷ ︸
j−1 times

, 0, . . . ,0︸ ︷︷ ︸
k−j+1 times

),(45)

or permutations ofvk,j .
To prove the optimality result (30), consider another ruleE, with Ec

k,1 the subset
of Rk that accepts all null hypotheses. Suppose there existsx = (x1, . . . , xk) /∈Dc

k,1,
butx ∈ Ec

k,1. Then there exists at least one component ofx, sayx1, with x1 > ck,1.
By monotonicity, the set

L(x) = {y ∈ Rk :yi ≤ xi}(46)

is also inEc
k,1. Then

Pwk,1{Ec
k,1} ≥ Pwk,1{L(x)} = Pε{X1 ≤ x1} > Pε{X1 ≤ ck,1} = 1− βk,1(α, ε),

and so the smallest power ofE overA1(ε) satisfies

Pwk,1{Ek,1} < βk,1(α, ε).
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Therefore, in order forE to be optimal we must have

Ec
k,1 ⊂ Dc

k,1.

But if Dk,1 is a proper subset ofEk,1 (except for a set with 0 Lebesgue measure),
then

P0,...,0︸ ︷︷ ︸
k times

{Ek,1} > P0,...,0︸ ︷︷ ︸
k times

{Dk,1} = α,

a contradiction ifE controls the FWER. Therefore, (30) is proved.
To prove the result (31) withj = k, let E be any other monotone decision rule

which has strong control and satisfies the constraint

Ek,k ⊂ Dk,k−1 = {
Xr1 ≥ ck,1, . . . ,Xrk−1 ≥ ck,k−1

}
.

SupposeEk,k includes a pointy = (y1, . . . , yk), whereyi ≥ ck,i for i = 1, . . . , k −1
andyk < ck,k . Then

P∞,...,∞︸ ︷︷ ︸
k−1 times

,0{Ek,k} ≥ P∞,...,∞︸ ︷︷ ︸
k−1 times

,0
{
Xr1 ≥ y1, . . . ,Xrk−1 ≥ yk−1,Xk ≥ yk

}
= P0{Xk ≥ yk} > P0{Xk > ck,k} = α,

a contradiction of strong control. So such a pointy cannot be inEk,k , nor can any
permutation of the coordinates ofy (by a similar argument). Therefore,Ek,k can
at most includeDk,k . But taking away any points fromDk,k could only lower the
minimum power at(ε, . . . , ε), and soDk,k is optimal.

To prove the result (31) with 1< j < k, let E be any other monotone decision
rule which has strong control and satisfies the constraint (32). Let

Xj : 1 ≥ Xj : 2 ≥ · · · ≥ Xj : j(47)

denote the ordered values ofX1, . . . ,Xj . SinceE has strong control, it follows
by (43) that

P 0,...,0︸ ︷︷ ︸
k−j+1 times

{Uj−1(Ek,j )} = α.

Hence,Uj−1(Ek,j ) can be viewed as a rejection region inRk−j+1 for the case
with k andj replaced byk′ = k − j + 1 andj ′ = 1. [Note that ifEk,j satisfies the
constraintEk,j ⊂ Dk,j−1, then

Uj−1(Ek,j ) ⊂ Uj−1(Dk,j−1) = Rk−j+1,

so the constraint is vacuous.] It follows that

P0,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Uj−1(Ek,j )} ≤ βk−j+1,1(α,0)
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or

P0,−∞,...,−∞︸ ︷︷ ︸
k−j times

,∞,...,∞︸ ︷︷ ︸
j−1 times

{Ek,j } ≤ βk−j+1,1(α,0).

By the same reasoning applied to any permutation of

θ = (0,−∞, . . . ,−∞︸ ︷︷ ︸
k−j times

,∞, . . . ,∞︸ ︷︷ ︸
j−1 times

),

P0,∞,...,∞︸ ︷︷ ︸
j−1 times

,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Ek,j }

= P0,∞,...,∞︸ ︷︷ ︸
j−1 times

{I k−j (Ek,j )} ≤ βk−j+1,1(α,0).

SoI k−j (Ek,j ) is a rejection region inRj that controls the Type 1 error at the point

(0,∞, . . . ,∞︸ ︷︷ ︸
j−1 times

)

(as well as at permutations of its coordinates), not at levelα, but at level
βk−j+1,1(α,0). [In words, if you use the ruleE which is originally designed to
testk hypotheses, but you ignore the lastk − j hypotheses, the overall probability
of a Type 1 error for testing thej hypotheses is reduced toβk−j+1,1(α,0).] Also,
note that the constraintEk,j ⊂ Dk,j−1 implies

I k−j (Ek,j ) ⊂ I k−j (Dk,j−1) = {Xj : 1 ≥ ck,1, . . . ,Xj : j−1 ≥ ck,j−1}.
(Note thatck,j always refers to the critical values based on the given value ofα,
so its dependence onα is suppressed.) Then, by the case withk andj replaced by
j andj (already proved above) andα replaced byβk−j+1,1(α,0), it follows that

Pε,...,ε︸︷︷︸
j times

{I k−j (Ek,j )} ≤ βj,j

(
βk−j+1,1(α,0), ε

)
or

Pε,...,ε︸︷︷︸
j times

,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Ek,j } ≤ βj,j

(
βk−j+1,1(α,0), ε

)
.(48)

We must argue that the right-hand side of (48) isβk,j (α, ε). But notice that if we
apply the above reasoning toE = D, the inequalities are all equalities. Indeed,

Uj−1(Dk,j ) = {at least one ofX1, . . . ,Xk−j+1 ≥ ck,j }
and the optimal minimum power (withε = 0) for the subproblem withk′ =
k − j + 1, j ′ = 1 andα′ = α is βk−j+1,1(α,0). Also,

I k−j (Dk,j ) = {Xj : 1 ≥ ck,1, . . . ,Xj : j ≥ ck,j }
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is optimal for the casek′′ = j ′′ = j at the levelα′′ = βk−j+1,1(α,0). Indeed,
checking the level condition,

P0,∞,...,∞︸ ︷︷ ︸
j−1 times

{I k−j (Dk,j )} = P0{X1 ≥ ck,j }

= P0{X1 ≥ ck−j+1,1} = βk−j+1,1(α,0).

So, by the casek′′ = j ′′ = j ,

Pε,...,ε︸︷︷︸
j times

{I k−j (Ek,j )} ≤ Pε,...,ε︸︷︷︸
j times

{I k−j (Dk,j )}

= Pε,...,ε︸︷︷︸
j times

{Xj : 1 ≥ ck,1, . . . ,Xj : j ≥ ck,j } = βk,j (α, ε).

The proof of (ii) is completely analogous to the proof of Theorem 2.1(iii), with
the help of Lemma 3.1(ii). �

PROOF OF LEMMA 4.1. To prove (i), supposeH1, . . . ,Hp are true and
Hp+1, . . . ,Hk are false. A Type 1 error occurs if any ofH1, . . . ,Hp are rejected.
For the ruleD, the set where any ofH1, . . . ,Hp is rejected is a monotone
increasing set (invoking the monotonicity of critical values). Hence the probability
of this event is largest under this configuration of true and false hypotheses when

(θ1, . . . , θk) = (0, . . . ,0︸ ︷︷ ︸
p times

,∞, . . . ,∞︸ ︷︷ ︸
k−p times

),

and this probability is equal to

P0,...,0︸ ︷︷ ︸
p times

,∞,...,∞︸ ︷︷ ︸
k−p times

{reject any ofH1, . . . ,Hp}

= P0,...,0︸ ︷︷ ︸
p times

,∞,...,∞︸ ︷︷ ︸
k−p times

{reject any ofH1, . . . ,Hp(49)

∩ reject all ofHp+1, . . . ,Hk},
because as(θ1, . . . , θk) → (0, . . . ,0︸ ︷︷ ︸

p times

), X(p+1) > dp+1 with probability tending to

one, and so the hypothesesHp+1, . . . ,Hk are rejected with probability tending to
one. Then (49) is bounded above by

P0,...,0︸ ︷︷ ︸
p times

,∞,...,∞︸ ︷︷ ︸
k−p times

{at leastk − p + 1 rejections}

= P0,...,0︸ ︷︷ ︸
p times

,∞,...,∞︸ ︷︷ ︸
k−p times

{Dk,k−p+1}
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= 1− P0,...,0︸ ︷︷ ︸
p times

,∞,...,∞︸ ︷︷ ︸
k−p times

{
X(1) ≤ d1, . . . ,X(p) ≤ dp

}

= 1− P0,...,0︸ ︷︷ ︸
p times

{Lj } = α,

by (34) and (35).
To prove (ii), note that the minimum power occurs whenθ is one of the

(k
j

)
points withj values ofε andk − j values of−∞, such aswk,j given by (40).
Then

Pwk,j
(Dk,j ) = 1− Pwk,j

{
X(1) ≤ d1, . . . ,X(k−j+1) ≤ dk−j+1

}
= 1− Pε,...,ε︸︷︷︸

j times

{{X1 ≤ dk−j+1} ∪ · · · ∪ {Xj ≤ dk−j+1}},
which reduces tõβk,j (α, ε) as claimed. �

PROOF OFTHEOREM 4.1. To prove (37) (the casej = k), first observe that

Dk,k = {
X(1) > d1

}
.

Consider another monotone ruleE, and suppose there exists some pointx =
(x1, . . . , xk) with x ∈ Ek,k but x /∈ Dk,k . Then there exists at least one component
of x, sayx1, with x1 < d1. By monotonicity the set

M(x) = {y ∈ Rk :yi ≥ xi}
is also inEk,k . Then

P0,∞,...,∞︸ ︷︷ ︸
k−1 times

{Ek,k} ≥ P0,∞,...,∞︸ ︷︷ ︸
k−1 times

{M(x)}

= P0{X1 ≥ x1} > P0{X1 ≥ d1} = α,

which would contradict strong control. So we must haveEk,k ⊂ Dk,k . But then

Pε,...,ε︸︷︷︸
k times

{Ek,k} ≤ Pε,...,ε︸︷︷︸
k times

{Dk,k},

and so (37) is proved.
To prove the result (38) in the casej = 1, the constraint is thatEk,1 must

containDk,2, or, equivalently,

Ec
k,1 ⊂ Dc

k,2 =
k−1⋂
i=1

{
X(i) ≤ di

}
.

Supposex = (x1, . . . , xk) ∈ Ec
k,1 but x /∈ Dc

k,1. For the sake of argument, assume
thexi are nondecreasing ini with xi ≤ di for i = 1, . . . , k − 1 (so the constraint is
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satisfied), butxk > dk . Thenx ∈ Ec
k,1 impliesL(x) ∈ Ec

k,1, whereL(x) is defined
in (46). So

P−∞,...,−∞︸ ︷︷ ︸
k−1 times

,ε{Ec
k,1} ≥ P−∞,...,−∞︸ ︷︷ ︸

k−1 times

,ε{L(x)}

= Pε{Xk ≤ xk} > Pε{Xk ≤ dk}.
Therefore

P−∞,...,−∞︸ ︷︷ ︸
k−1 times

,ε{Ek,1} < Pε{Xk > dk} = β̃k,1(α, ε),

and soEk,1 is less powerful thanDk,1. Therefore such a pointx cannot exist in
order forEk,1 to be optimal. (A similar argument applies to any permutation of
the coordinates ofx.) Thenx ∈ Dk,1 implies x ∈ Ek,1. But adding any pointsx
to Dk,1 would increase the probability of rejection whenθ = (0, . . . ,0), and this
would contradict the level constraint. So the casej = 1 is proved.

To prove (38) for 1< j < k, let E be any other monotone decision rule which
has strong control and satisfies the constraint (39). Since the setEk,j cannot have
probability greater thanα whenθ = vk,j , wherevk,j is given by (45), we must
have

α ≥ Pvk,j
{Ek,j } = P 0,...,0︸ ︷︷ ︸

k−j+1 times

{Uj−1(Ek,j )}

by (43). ThereforeUj−1(Ek,j ) is a region in Rk−j+1 which has rejection
probabilityα whenθ = (0, . . . ,0). Note that the constraintEk,j ⊃ Dk,j+1 implies
the regionUj−1(Ek,j ) must contain

Uj−1(Dk,j+1) = {Xk−j+1 : k−j+1 > d1} ∪ · · · ∪ {Xk−j+1 : 2 > dk−j }.
Therefore, by the case considered above withk′ = k−j +1 andj ′ = 1, the optimal
region inRk−j+1 is

{Xk−j+1 : k−j+1 > d1} ∪ · · · ∪ {Xk−j+1 : 1 > dk−j+1},
which, in fact, is equal toUj−1(Dk,j ). So

P0,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Uj−1(Ek,j )} ≤ P0,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Uj−1(Dk,j )}

= P0{X1 > dk−j+1} = β̃k−j+1,1(α,0).

Using (43) and applying the argument to any permutation ofvk,j , we have

P0,∞,...,∞︸ ︷︷ ︸
j−1 times

,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Ek,j } ≤ β̃k−j+1,1(α,0),



OPTIMALITY OF STEPWISE PROCEDURES 1107

or by (44),

P0,∞,...,∞︸ ︷︷ ︸
j−1

{I k−j (Ek,j )} ≤ β̃k−j+1,1(α,0).

SoI k−j (Ek,j ) is a rejection region inRj that controls the Type 1 error at

(0,∞, . . . ,∞︸ ︷︷ ︸
j−1 times

)

(as well as permutations of its coordinates), not at levelα, but at level
β̃k−j+1,1(α,0). [Also note that the constraintEk,j ⊃ Dk,j+1 implies

I k−j (Ek,j ) ⊃ I k−j (Dk,j+1) = ∅,

which is always satisfied.] By the case withk′′ = j ′′ = j andα′′ = β̃k−j+1,1(α,0)

considered above,

I k−j (Dk,j ) = {min(X1, . . . ,Xj ) > dk−j+1}
is optimal for this case and so

Pε,...,ε︸︷︷︸
j times

{I k−j (Ek,j )} ≤ Pε,...,ε︸︷︷︸
j times

{I k−j (Dk,j )} = β̃k,j (α, ε)

by Lemma 4.1(ii). Therefore

Pε,...,ε︸︷︷︸
j times

,−∞,...,−∞︸ ︷︷ ︸
k−j times

{Ek,j } ≤ β̃k,j (α, ε),

as was to be proved.
The proof of (ii) is analogous to the proof of Theorem 3.1(ii).�
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