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TESTING FOR MONOTONE INCREASING HAZARD RATE

BY PETER HALL AND INGRID VAN KEILEGOM1

Australian National University, and Australian National University
and Université Catholique de Louvain

A test of the null hypothesis that a hazard rate is monotone nondecreas-
ing, versus the alternative that it is not, is proposed. Both the test statistic
and the means of calibrating it are new. Unlike previous approaches, neither
is based on the assumption that the null distribution is exponential. Instead,
empirical information is used to effectively identify and eliminate from fur-
ther consideration parts of the line where the hazard rate is clearly increasing;
and to confine subsequent attention only to those parts that remain. This pro-
duces a test with greater apparent power, without the excessive conservatism
of exponential-based tests. Our approach to calibration borrows from ideas
used in certain tests for unimodality of a density, in that a bandwidth is in-
creased until a distribution with the desired properties is obtained. However,
the test statistic does not involve any smoothing, and is, in fact, based directly
on an assessment of convexity of the distribution function, using the conven-
tional empirical distribution. The test is shown to have optimal power prop-
erties in difficult cases, where it is called upon to detect a small departure, in
the form of a bump, from monotonicity. More general theoretical properties
of the test and its numerical performance are explored.

1. Introduction. Estimation of a hazard rate under the hypothesis that it
is nondecreasing, and testing the validity of this assumption, are motivated by
problems where failure rate of a machine part or a biological system can be
expected to increase with lifetime. If for some reason a machine part becomes
more reliable with time over at least part of its life cycle, then it can be particularly
important to know that fact. The knowledge may lead to changes in the way the
part is manufactured or finished, so as to remove the requirement for a running-in
period where failure is relatively likely to occur. In this paper we suggest a new test
statistic of the null hypothesis of monotone nondecreasing failure rate and a new
approach to calibrating the distribution of the statistic so as to determine a critical
point for the test.

Our methods confer two advantages relative to existing approaches. First, our
test statistic is focused on relatively “local” departures from the null hypothesis
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of nondecreasing hazard rate, and pays relatively little attention to those parts
of the sample space where the hazard rate is indeed monotone nondecreasing.
Nevertheless, the method is easily localized still further, since it focuses on
variation of the hazard rate over an interval which can be increased or decreased
at the investigator’s discretion, or, indeed, replaced by the union of two or more
intervals.

Second, our new method of calibration makes the test statistic much more
sensitive to relatively small departures from the null hypothesis. For a given
nominal probability of rejection, our calibration approach produces a test with
greater apparent power than do standard methods based on calibration by
comparison with the exponential distribution. The reason is that the exponential
case is particularly awkward to detect; the corresponding hazard rate is perfectly
flat, and, therefore, to avoid incorrectly rejecting the null hypothesis in this case,
the test statistic has to satisfy itself that there are no significant bumps on a
perfectly flat line. In consequence, the test tends to overlook small bumps, for
fear of committing a Type I error, and so has relatively low power against hazard
rates that are nondecreasing except for small bumps.

The test we propose has substantially greater apparent power in so-called
“difficult cases” (cf. [7]) than does, for example, Proschan and Pyke’s [19] test,
calibrated using the exponential distribution. Indeed, we shall prove that our
method has optimal power in this setting. That is, it is able to detect a very small
perturbation of the empirical distribution, placed at a point where it produces a
small nonmonotone bump in the hazard rate, and so small that even a likelihood
ratio test (requiring knowledge of the shape of the bump) is barely able to detect
the bump.

Our calibration method is related to the “increasing bandwidth” approach first
suggested by Silverman [20] in the case of density estimation, and used in a
range of other settings since; see [6] for an application in the setting of monotone
nonparametric regression. However, quite unlike those applications, we increase
the bandwidth only for the purpose of calibrating the test. Our test statistic does
not involve any smoothing at all and is based directly on the standard empirical
distribution function.

Contributions to the problem of testing for aconstanthazard rate against a
monotone alternative include those of Bickel and Doksum [5], based, like the
method of Proschan and Pyke [19], on normalized spacings; Bickel [4], on
the existence of asymptotically most powerful tests; Barlow and Doksum [3], on
the more general problem of testing for convex orderings; and Ahmad [1], Gail
and Gastwirth [11, 12] and Klefsjö [16], who proposed tests of the hypothesis of
an exponential distribution. However, these approaches share the drawbacks noted
above for exponential-based methods. A related difficulty arises in the context of
testing for unimodality of a probability density by calibrating against the most
difficult case of a uniform density; see, for example, [15]. Hall, Huang, Gifford
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and Gijbels [14] have suggested methods for estimating a hazard rate under the
assumption of monotonicity and surveyed earlier work on the topic.

Although our focus is on testing the null hypothesis of a monotone nondecreas-
ing hazard rate, the case where the null asserts a monotone nonincreasing rate is
related. In the former case, the smoothed empirical hazard rate estimator is guaran-
teed to be monotone nondecreasing for all sufficiently large bandwidths, and this
property is not available in the latter setting. The property makes it particularly
easy to propose a bandwidth selection rule that ensures resampling from a distrib-
ution that satisfies the null; we may start with any conventional bandwidth selector,
for example, based on a plug-in rule, and steadily increase the bandwidth until the
smoothed empirical distribution has a monotone nondecreasing hazard rate in the
region where the test is to be conducted.

There is also a simple rule in the case whereH0 stipulates that the hazard
rate is nonincreasing: starting with any conventional bandwidth selector, increase
the bandwidth until a monotone nonincreasing hazard rate is obtained; or, if that
does not occur no matter how large the bandwidth, reject the null hypothesis at
this point without passing to a further step. This rule is justified by the fact that,
if the hazard rate is nonincreasing, then the probability that there exists a finite
bandwidth (of larger order than the conventionaln−1/5), such that the smoothed
empirical hazard rate is nonincreasing, generally converges to 1 as sample size
increases. Nevertheless, in the remainder of the paper we shall address only the
more practically important case whereH0 asserts a nondecreasing hazard rate.

2. Methodology.

2.1. Test statistic. Suppose the random sampleX = {X1, . . . ,Xn} is drawn
from a distribution with distribution functionF . The standard empirical distri-
bution function isF̂ (x) = n−1 ∑

i I (Xi ≤ x), whereI (E) denotes the indicator
function of an eventE . The null hypothesis thatF has monotone hazard rate on
an intervalI is equivalent toH = − log(1 − F) being convex onI, and, hence,
providedF is twice differentiable with a nonvanishing first derivative onI, to H ′′
being nonnegative onI. The functionH is the cumulative hazard rate. Its derivative
is the hazard rate.

The empirical form ofH , Ĥ = − log(1 − F̂ ), is not differentiable, however.
Therefore, it makes little sense to test the null hypothesis by checking for
nonnegativity of the second derivative of̂H . We could investigate methods based
directly on smoothed forms of̂H , but this would not necessarily lead to tests that
have good power properties; see Section 2.3. Instead we note that convexity ofH

onI is equivalent to nonnegativity ofH(x+y)+H(x−y)−2H(x) for all x andy

such that bothx + y andx − y are elements ofI. It is not essential to takeI to
be an interval; it can be replaced by a disjoint union of intervals, for example. In
the latter case it is, however, necessary to integrate inT [defined in (2.2)] over the
pairs(x, y) belonging toI so thatx + y andx − y lie in the same interval asx.
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Therefore, a test of the hypothesis of increasing hazard rate or, equivalently, of

H0 :H is convex onI,(2.1)

is to rejectH0 in favor of its complement if the value of

T =
∫ ∫

x,y : x+y,x−y∈I

max{0,2Ĥ (x) − Ĥ (x + y) − Ĥ (x − y)}rw(x, y) dx dy(2.2)

is “too large.” The exponentr is an arbitrary positive number andw is a
nonnegative weight function. By taking the maximum in the argument of the
integral at (2.2), we have largely restricted attention to places where the sampled
distribution has a decreasing hazard rate. (Here and below we use the words
“increasing” and “decreasing” to mean “nondecreasing” and “nonincreasing,”
resp.) Further restriction will be made through our method for calibration, which
uses the data to determine where the hazard rate is more likely to be increasing or
decreasing.

2.2. Calibration. Our approach to calibration will be based on bootstrap
sampling from the distribution determined by a kernel density estimator,

f̃ (x|h) = (nh)−1
n∑

i=1

K

(
x − Xi

h

)
,

whereK is a kernel andh a bandwidth. We shall chooseK to be a smooth,
symmetric density function, its graph being of conventional bell shape. Let
F̃ denote the distribution function corresponding to the densityf̃ , and letH̃ =
− log(1− F̃ ) be the associated cumulative hazard function. Then

H̃ ′′(x) = −(d/dx)2 log{1− F̃ (x)} = {1− F̃ (x)}f̃ ′(x) + f̃ (x)2

{1− F̃ (x)}2
.(2.3)

We shall writeH̃ ′′(x) as H̃ ′′(x|h) when it is necessary to indicate dependence
on bandwidth, and, as at (2.3), we shall drop the notationh from quantities such
as f̃ (·|h) when it is not necessary for our argument. An empirical approach to
bandwidth choice will be employed, as follows.

Let ĥ denote a conventional empirical bandwidth, the asymptotic size of
which is n−1/5. We shall call ĥ the “starting bandwidth.” Examples include
the bandwidths selected by the bootstrap, cross-validation or plug-in methods.
Steadily increase the bandwidth, starting fromĥ, and stopping on the first occasion
on whichH̃ ′′ does not change sign onI. Define

ĥcrit = inf{h ≥ ĥ : the equationH̃ ′′(·|h) = 0 has no solution onI}.(2.4)

We claim that if I is a compact interval, then for all sufficiently largeh,
H̃ ′′(·|h) > 0 on I, and so the set at (2.4) is not empty. Therefore,ĥcrit is well
defined.
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To verify the claim, assumeK has two continuous derivatives in a neighborhood
of the origin,K(0) > 0 andK ′(0) = 0, and observe that ash → ∞, f̃ (x|h) =
h−1 K(0)+op(h−1) andf̃ ′(x|h) = h−3 K ′′(0) n−1 ∑

i (x −Xi)+op(h−3), where
both relations hold uniformly inx ∈ I. It follows that, for all sufficiently largeh,
f̃ (x)2 > |f̃ ′(x)| for all x ∈ I. The claim thatH̃ ′′(·|h) > 0 on I now follows
from (2.3).

Having computedĥcrit, we repeatedly create samples of sizen by sampling
randomly, with replacement, from the distribution with densityf̃ (·|ĥcrit), and
thereby repeatedly compute bootstrap values,T ∗ say, of the statisticT . Arguing
thus, and given a nominal probability of rejection,α say, for the test, we may
compute a critical point̂c(a) defined by

P {T ∗ > ĉ(α)|X} = α.

The test takes the form: reject the null hypothesis ifT > ĉ(α).

2.3. The road not taken: tests based onH̃ ′′. In the test described in
Sections 2.2 and 2.3 we have used smoothing methods only for calibration, not
to construct the test statistic itself. An alternative approach would be to base a test
directly on the property that, whenH is twice continuously differentiable, the null
hypothesis is satisfied if and only ifH ′′ ≥ 0 onI. In particular, we could construct a
smoothed version,̃H say, ofĤ with the property that̃H ′′ is a consistent estimator
of H ′′, and rejectH0 if (e.g.)S = ∫

I{max(0,−H̃ ′′)}2 is “too large.”
This approach has drawbacks, however. First, it requires a bandwidth to be

chosen when constructing the test statisticS; a second bandwidth would be
needed when calibrating the test, if calibration were to involve sampling from
a smoothed distribution. Second, the power of the test will depend intimately
on choice of the first bandwidth. Indeed, the minimum distance from the null
hypothesis at which local alternative distributions can be detected by the test will
generally be proportional ton−1/2h−c, whereh is the bandwidth employed when
constructingS, andc > 0 depends on the smoothing method used. Examples of
this behavior in more conventional testing problems may be found in the work of
Anderson, Hall and Titterington [2], Lavergne and Vuong [18] and Delecroix, Hall
and Roget [10].

3. Theoretical properties.

3.1. Summary of properties.Section 3.2 shows that, ifH is in the classH01 of
hazard rates for whichH ′′ is bounded above zero onI [see (3.1)], then the statistic
T is of sizen−1 and asymptotically normally distributed. The bootstrap accurately
captures this distribution. As the convexity ofH becomes more marginal, the
stochastic fluctuations ofT increase. Thus, ifH is in the classH02 [see (3.6)]
of hazard rates for whichH ′′ vanishes at just a finite number of discrete points
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in I, then the size ofT increases toO(n−6/7), and its distribution becomes
nonnormal (see Section 3.3). The size ofT increases still further, toOp(n−1/2),
if H ′′ vanishes on an interval, and, in particular, ifF is an exponential distribution.
(See Section 3.7, and see the third paragraph of Section 1 for an intuitive account of
difficulties experienced calibrating against the exponential distribution.) Properties
of our calibration method, whenH is in H02, are treated in Section 3.4, where
it is shown that the asymptotic probability of rejection is bounded away from
zero. (Section 4 reports numerical properties in this case.) By way of contrast,
if calibration is made against the exponential distribution then, whenH is in H01
or H02, the rejection probability converges to zero (Section 3.7), implying that
this approach gives ultra conservatism. Optimality of our approach for identifying
small, nonmonotone “wiggles” in the hazard rate is proved in Section 3.5. The
ability of our calibration method to identify a fixed departure from the null
hypothesis is shown in Section 3.6.

3.2. Strict monotonicity of hazard rate.Throughout Section 3 we shall define
the statisticT by takingr = 1 andw ≡ 1 in the definition at (2.2). LetH01 be the
following subset of the class of cumulative hazard functions for whichH0, defined
at (2.1), holds:

H01 = {H :H ′′ has two continuous derivatives onI andH ′′ > 0 onI}.(3.1)

(We would mention that neitherH01 nor H02, the latter introduced in Section 3.3,
is closed.) Putg = f 1/2/(1− F),

µ = −
∫
I
dx

∫ ∞
−∞

E[min{0, y2 H ′′(x) + g(x)(2|y|)1/2N}]dy > 0,

σ 2 =
∫
I
dx

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

cov
(
min{0, y2

1H ′′(x) + g(x)W(y1)},

min[0, y2
2H ′′(x)

+ g(x){W(y2 + y3) − W(y3)}])dy1 dy2 dy3,

where the random variableN has the standard normal distribution andW denotes
a standard Brownian motion. It is clear thatµ is finite; our proof of Theorem 3.1
will show thatσ 2 is also well defined and finite.

THEOREM 3.1. Assume the distribution functionF has three continuous
derivatives on an open intervalI′ which contains the compact boundedI, and
that the densityf = F ′ > 0 on I. If H ∈ H01, thenT = n−1µ + n−7/6σNn, where
Nn is asymptotically normally distributed with zero mean and unit variance.

A version of the theorem continues to hold if the distribution functionF = Fn is
allowed to depend onn. The main requirements in this case are that the regularity
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conditions hold in a contiguous way, andFn converge sufficiently fast to a proper
limiting distribution,G say. In particular,Fn andG (the former for all sufficiently
large n) should satisfy the conditions of the theorem, and, forj = 0, 1 and 2,
F

(j)
n − G(j) should converge to 0 at a faster rate thann−1/6, uniformly on I′.

Under these assumptions, the limiting distribution ofT is that defined when, in
the definitions ofµ andσ , F is replaced byG. The proof requires only minor
modifications.

This result may be used to prove that ifH ∈ H01, and under mild conditions on
h andK , the bootstrap estimator of the distribution ofT is strongly consistent for
the limiting distribution ofT . Our next theorem will state this result. To formulate
it, put H(ξ1, ξ2) = [n−ξ1, n−ξ2], where

1
12 < ξ2 < ξ1 < 2

9.(3.2)

Assume that

K is a symmetric, compactly supported probability
density with a Hölder-continuous derivative.

(3.3)

Note particularly that bandwidths of sizen−1/5 are in H(ξ1, ξ2) if (3.2) holds.
Indeed, conventional bandwidth selectors, for example, those based on bootstrap
methods, cross-validation or plug-in rules, satisfy

P(C1n
−1/5 < ĥ < C2n

−1/5) → 1
(3.4)

asn → ∞, for some 0< C1 < C2 < ∞.

Let T ∗ denote the version ofT , defined at (2.2), but withr = 1 andw ≡ 1, and
computed from a sample drawn by sampling randomly from the distributionF̃

conditional onX. Let µ andσ be as in Theorem 3.1, and write� for the standard
normal distribution function.

THEOREM 3.2. Assume that the( possibly random) bandwidth h lies in
H(ξ1, ξ2), whereξ1 and ξ2 satisfy(3.2), and thatK satisfies(3.3). Suppose too
that F has four bounded derivatives on an open intervalI′ which contains the
compact intervalI, that f > 0 on I and thatH ∈ H01. Then, uniformly inx and
with probability1,

P {n7/6(T ∗ − n−1 µ)/σ ≤ x|X} → �(x)(3.5)

asn → ∞.

Since the conclusion of Theorem 3.1 may be stated equivalently as

P {n7/6(T − n−1µ)/σ ≤ x} → �(x),

then (3.5) may be interpreted as implying that the bootstrap distribution ofT ∗
converges to the limiting distribution ofT , providedH ∈ H01.
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It should be mentioned too that if a starting bandwidthĥ is chosen using
a standard method such as the bootstrap, cross-validation or plug-in, and if
the method suggested in Section 2.2 is employed to calculate the critical
bandwidthĥcrit, then, under the conditions imposed onF andK in Theorem 3.2,
it is true with probability 1 thatĥ = ĥcrit for all sufficiently largen. That is to
say, the iterative process used to defineĥcrit stops at the very first step. This is a
consequence of two properties: (i) ifH ∈ H01, thenH ′′ must, in fact, be bounded
above zero on the compact intervalI; and (ii) if a bandwidth of conventional size
is used, thenH̃ ′′ converges uniformly toH ′′ on I with probability 1. Together
(i) and (ii) imply that with probability 1H̃ ′′ is bounded above zero for all
sufficiently largen, and, hence, that̂h = ĥcrit for all sufficiently largen.

Furthermore, with probability 1̂h ∈ H(ξ1, ξ2) for all sufficiently largen.
Therefore, whenH ∈ H01 the calibration step in Section 2.2 degenerates in
asymptotic terms to simply using the standard bandwidth selector, in which case its
properties are covered by Theorem 3.2. In particular, using a standard bandwidth
selector leads to consistent estimation of the limiting distribution ofT when
H ∈ H01.

3.3. Strict monotonicity at all but a finite number of points.Let H02 be the
following subset of the class of cumulative hazard functions satisfyingH0:

H02 = {
H :H ′′ has two continuous derivatives onI, andH ′′ > 0 onI,

except for a finite number of distinct pointsx1, . . . , xm ∈ I,

whereH ′′ vanishes andH(4) > 0
}
.

(3.6)

We assumem ≥ 1. Note that it is not possible forH ′′ to vanish at a pointx, for H(4)

to be strictly negative there, and at the same time for the hazard rate to be strictly
increasing on sufficiently small intervals containingx.

The case of strict monotonicity at all but a finite number of points may fairly
be interpreted as the boundary between cases whereH ∈ H01 and those where
the hazard rate has decreasing parts in the vicinities of pointsx1, . . . , xn. The
assumption thatH ′′(xi) = 0 andH(4)(xi) > 0 implies that the hazard rate has
a “shoulder” atxi and is on the verge of decreasing there. Therefore, testing
in this context means attempting to identify alternative hypotheses in difficult
cases; compare [7]. It offers the opportunity to assess performance against local
alternative hypotheses, an opportunity we shall take up in Section 3.5. The
opportunity is virtually absent in the setting of Section 3.2.

Let Z1, . . . ,Zm be independent random variables,Zi having the distribution of

−
∫ ∞
−∞

∫ ∞
−∞

min
{
0,

(1
2x2 y2 + 1

12y
4)H(4)(xi) + g(xi)W(x + y)

}
dx dy,(3.7)

whereW denotes a standard Brownian motion. For simplicity, we shall assume
that

noxi is an endpoint ofI.(3.8)
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Theorem 3.3 has an analogue in the contrary case; it involves altering the
distribution ofZi whenxi is an endpoint.

THEOREM3.3. AssumeF has four continuous derivatives on an open interval
which contains the compact intervalI, and thatf = F ′ > 0 onI. Suppose too that
H ∈ H02 for pointsx1, . . . , xm in the definition of that function class, and that(3.8)
holds. Then we may writeT = n−6/7 ∑

1≤i≤m Zni , where the joint distribution of
(Zn1, . . . ,Znm) converges to that of(Z1, . . . ,Zm).

Again, a version of the theorem holds whenF = Fn varies withn. However,
a direct analogue of Theorem 3.2 does not exist in this setting. Essentially, this
is because a bandwidth that is sufficiently large to ensure convergence ofH̃ (4)

to H(4), and so capture the role ofH(4)(xi) in the definition of the distribution
of Zi , is too large to allow sufficiently fast convergence for capturing other features
of the limiting distribution. Thus, in the “boundary” case treated by Theorem 3.2,
there is not a direct way, based on the estimatorF̃ and using a bandwidth that
is asymptotic to a nonrandom quantity, of calibrating the test so as to capture the
exact distribution ofT .

Details behind this claim will be given in Section 5.4. These difficulties persist
even ifF̃ is computed using a high-order kernel.

One way of overcoming these difficulties would be to locally model the behavior
of F in the neighborhood of pointsx whereH̃ ′′(x) was small, rather than leaving
estimation there up to the generic estimatorF̃ and to use the model directly to
estimate the distributions ofZ1, . . . ,Zn. This approach is rather cumbersome,
however, and so, for simplicity we shall not consider it further. Moreover, the
problems are largely overcome by the calibration method proposed in Section 2.2,
the theory of which we treat next.

3.4. Calibration based onĥcrit. The calibration method suggested in Sec-
tion 2.2 produces a test for which the rejection probability, forH ∈ H02, converges
to a number that lies strictly between 0 and 1, and so suffers less from the difficul-
ties noted above. First we describe limiting behavior of the critical bandwidth,ĥcrit,
in the caseH ∈ H02. For simplicity we assume there is only a single point,x1, at
whichH ′′ vanishes.

Definec = 1
2

∫
u2K(u)du and

S(q, x, y) = (
cq2 + 1

2x2 + 1
12y

2)H(4)(x1)

+ q−2g(x1)

∫ ∞
−∞

K ′′(u) du

×
∫ 1

0
{W(x + ty − qu) + W(x − ty − qu)}(1− t) dt,

(3.9)

whereg = f 1/2/(1−F) andW is a standard Brownian motion. LetQ > 0 denote
the infimum of valuesq > 0 such thatS(q, x, y) ≥ 0 for all realx, y.
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THEOREM 3.4. Assume the conditions of Theorem3.3, but with m = 1.
Suppose too thatK is a symmetric, compactly supported probability density with
two Hölder-continuous derivatives, and that the starting bandwidtĥh used to
initiate the algorithm that produceŝhcrit satisfies(3.4). Thenn1/7ĥcrit → Q in
distribution asn → ∞.

Next we describe the asymptotic rejection probability for the test when
H ∈ H02. For 0< α < 1, definezα to be theα-level quantile of the distribution
defined at (3.7) in the casei = 1. Noting (3.7), we see that we may writezα as a
continuous function ofH(4)(x1) andg(x1), sayzα = �α{H(4)(x1), g(x1)}. Put

S(x) = S(Q,x,0)

= (
cQ2 + 1

2x2)H(4)(x1) + Q−2g(x1)

∫ ∞
−∞

K ′′(u)W(x − Qu)du.
(3.10)

It follows from the definition ofQ that, with probability 1, (a)S(x) ≥ 0 for −∞ <

x < ∞, (b) there exists a unique (random) pointx = A at whichS(x) = 0, and
(c) S′(A) = 0 andS′′(A) > 0. [To appreciate why, observe thatS is asymptotically
proportional toH̃ ′′(x1 + n−1/7x), after taking the bandwidth to equaln−1/7Q.
Note that the second derivative ofS is well defined and continuous as long asK

has three continuous derivatives.]
Let Z1 denote the random variable at (3.7) wheni = 1, constructed using

the same Brownian motionW as at (3.10). Therefore,Z1 andS′′(A) are linked
through W . In interpreting the theorem below, note that the probability that
Z1 ≤ �α{H(4)(x1), g(x1)} equalsα.

THEOREM3.5. Assume the conditions of Theorem3.4,but with the additional
requirement thatK have three continuous derivatives. Takeh = ĥcrit. Then the
rejection probability for the bootstrap test converges asn → ∞ to the probability
thatZ1 ≤ �α{S′′(A), g(x1)}.

3.5. Power against local alternatives and optimality.Let F denote a four-
times continuously-differentiable distribution function for which the correspond-
ing hazard rate is inH02. Assume for simplicity that there is only one point at
which, for thisF , H ′′ vanishes onI. Let this point bex1 = 0, and take it to be an
interior point ofI. SinceH ∈ H02, thenH(3)(0) = 0 andH(4)(0) > 0.

We shall add a “wiggle” toF in the vicinity of the origin, such that the
perturbed distribution violates the null hypothesis. The perturbation will be chosen
so that it is only barely detectable using an optimal parametric method, that is, the
likelihood-ratio test. We shall then explore the performance of our nonparametric
test, based on the statisticT , and show that it too is able to detect the wiggle.

The perturbation,aε4 �(x/ε), is based on a four-times continuously-differ-
entiable function� supported on[−1,1]. The constanta > 0 represents the height
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of the wiggle, andε = ε(n) → 0 indicates the extent of the perturbation away from
its center, at the origin. We shall chooseε so small that the perturbation is only
barely detectable by the likelihood-ratio test. Our construction of the perturbation
ensures that, like the distributionF to which it is added, it has four bounded
derivatives near the origin.

The perturbed distribution is

Fn(x) = F(x) + aε4�(x/ε).(3.11)

(It is possible, for smalln, thatFn will be decreasing in some region, but for the
choiceε = n−1/7 that we shall make, and under the other regularity conditions
of Theorem 3.6,Fn will be nondecreasing onI for all sufficiently largen.) Let
Hn denote the cumulative hazard rate corresponding toFn. If we choose� so
that �(x) ≡ −x4 in a neighborhood of the origin, then, for eacha > 0 and all
sufficiently largen, H ′

n is strictly monotone decreasing in a neighborhood of 0.
[This neighborhood is of widthO(ε).] Therefore,Fn fails to satisfy the null
hypothesis of an increasing hazard rate.

The densityfn = F ′
n satisfiesfn(x) = f (x)+aε3ψ(x/ε), whereψ = � ′. Since

fn must be a density, then
∫

ψ = 0. Now,

log{fn(x)/f (x)} = aε3ψ(x/ε)

f (x)
− a2ε6ψ(x/ε)2

2f (x)2 + O(ε9).

Therefore, puttingb(a) = 1
2a2f (0)−1 ∫

ψ2, f+ = fn andf− = f , we have, taking
the± signs, respectively,∫

f±(x) log{fn(x)/f (x)}dx = ±b(a)ε7 + o(ε7).(3.12)

It follows from (3.12) that the expected log-likelihood ratio, for a sample of
sizen, is of sizenε7. Choosingε such that this quantity is bounded away from zero
and infinity, in particular,ε = n−1/7, makes the perturbation only barely detectable.
In that case, a likelihood-ratio test for discriminating betweenf andfn does not
have asymptotically perfect accuracy.

Our test is able to detect local alternatives such asFn, provided the function
π2α(a) for our test satisfies

lim
a→∞π2α(a) = 1.(3.13)

If (3.13) holds, then our test shares the optimal performance of the likelihood-ratio
test.

To establish (3.13), note first that, forj = 0, . . . ,4,

H(j)
n = H(j) + aε4−j�(j)(x/ε)

1− F(x)
+ O{ε5−j I (|x| ≤ ε)},

uniformly in x. In particular, the second derivative ofHn − H is of sizen−2/7,
and the fourth derivative is asymptotic toa�(j)(x/ε)/{1 − F(x)}. Using these
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properties, and the arguments leading to Theorem 3.5, the following result may
be proved. It verifies (3.13) in the case where the test in question is the bootstrap-
calibrated one proposed in Section 2.

THEOREM 3.6. Assume the hazard rate of the four-times continuously-
differentiable distributionF lies in H02, with m = 1 and x1 = 0; and that
Fn is given by(3.11), where the four-times continuously-differentiable function
� is supported on[−1,1] and satisfies�(x) = −x4 in a neighborhood of the
origin. Suppose too thatε in (3.11) is n−1/7, that h = ĥcrit, and that the starting
bandwidthĥ satisfies(3.4).Letpα(a,n) denote the probability that the bootstrap-
calibrated test of the null hypothesis of monotone hazard rate rejects the null
hypothesis when applied to data fromFn. Then(a) pα(a,n) converges to a limit,
π2α(a) say, asn → ∞, and (b) π2α(a) satisfies(3.13)asa → ∞.

3.6. Rejection probability under the null hypothesis, and power against fixed
alternatives. The result below shows that the bootstrap-calibrated form of our
test is asymptotically consistent in rejecting the null hypothesis whenever it is
violated by a fixed alternative.

THEOREM 3.7. AssumeF has two continuous derivatives on an open
interval I′ which contains the compact intervalI, that f > 0 on I, but that the
hazard rate forF is strictly decreasing in a subinterval ofI. Suppose too thatK
satisfies(3.3), that K(0) 	= 0, that E|X| < ∞ and that the starting bandwidtĥh
for the algorithm leading toĥcrit defined in Section2.2 satisfies(3.4). Then
P {T ≥ ĉ(α)} → 1, as n → ∞, for each0 < α < 1, whereĉ(α) is the bootstrap
critical point introduced in Section2.2.

3.7. Calibration against the exponential distribution.Put A(x) = B{F(x)}/
{1− F(x)}, whereB is a standard Brownian bridge, and define

T0 =
∫ ∫

x,y : x+y,x−y∈I

max{0,A(x + y) + A(x − y) − 2A(x)}dx dy.

In this notation, and using standard Gaussian approximations to the empirical
distributionF̂ (see, e.g., [17]), it can be proved that ifF is taken to be exponential
over I, thenn1/2T → T0 in distribution. This result follows from the fact that,
in the exponential case, the cumulative hazard rate is linear. In particular, in that
settingH is in neitherH01 norH02.

Therefore, if we calibrateT by reference to an exponential distribution, then
the critical points for the test will be distantn−1/2 from the origin. However, ifH
is in eitherH01 or H02, this is much further from zero than the actual critical
points of the distribution ofT . Indeed, we know from Theorems 3.1 and 3.3
that those points are distant onlyO(n−1) from zero whenH ∈ H01, and only
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distant O(n−6/7) when H ∈ H02. (The same is true of the bootstrap critical-
point estimator suggested in Section 2.2.) It follows that, for each value of the
nominal rejection probability of an exponentially calibrated test, the exact rejection
probability (forH in eitherH01 or H02) will converge to 0 asn → ∞.

Put another way, the exponentially calibrated test will become ultra-conservative
as sample size increases. In particular, it will fail, asymptotically, to detect the
perturbation-type null hypothesis discussed in Section 3.5. In order for detection to
be even barely possible in that setting, the perturbationε4�(x/ε) (with ε = n−1/7)
would have to be increased by the factorn3/14.

4. Simulations. Simulations are carried out for two models. First, consider a
variableX with hazard rate

H ′(x) = a{(x − b)3 + b3} + c + dx2,(4.1)

where x, a, b, c > 0 and d is chosen such thatH ′(x) > 0 for all x > 0. The
distribution function corresponding to this hazard function is given by

F(x) = 1− exp
[−a

{1
4 (x − b)4 + b3x

} − cx − 1
3 dx3].

It is readily verified thatH ∈ H01 whend > 0, H ∈ H02 whend = 0 andH is in
neitherH01 nor H02 whend < 0. Figure 1 shows the graph ofH ′(x) for certain
values of the parameters.

FIG. 1. Graph of H ′(x) for model (4.1) when a = 2.5, b = 0.75, c = 0.5 and
d = −1,−0.75,−0.50 and −0.25 (dashed curves), d = 0 ( full curve) and d = 0.5,1 and
1.5 (dotted curves).
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The simulations are based on 2000 samples of sizen = 50 and, for each
simulated sample, 2000 resamples are generated. The intervalI on which the
test statisticT is based is given by[0,F−1(0.95)]. The starting bandwidtĥh
is determined from the normal reference rule for plug-in estimation, that is,
ĥ = 1.06n−1/5σ̂ , whereσ̂ is the estimated standard error ofX. The kernel function
used is the normal kernel. The results fora = 2.5, b = 0.75, c = 0.50, for several
values ofd and forα = 0.10 are presented in Figure 2. The power curve starts
at −1.14, which is the smallest possible value ofd for this choice of parameters.
The results for other choices of the parameters and forα = 0.05 are similar.
For most choices slightly conservative rejection probabilities are observed. As a
comparison we also implemented the global sign test of Proschan and Pyke [19]
and the local sign test of Gijbels and Heckman [13]. From Figure 2 it is clear that
the power curves of both tests are considerably below the curve of the new test. The
power of the global test is even identical to zero for all values ofd. This confirms
what was explained in Sections 1 and 3.7 about the lack of power of tests based on
calibration with respect to the exponential distribution.

FIG. 2. Rejection probability for model(4.1), whena = 2.5, b = 0.75, c = 0.5, and for a range
of values ford . The full curve is obtained with the new test, the dotted curve with the local test of
Gijbels and Heckman[13], while the dashed curve represents the nominal levelα = 0.10.The global
test of Proschan and Pyke[19] has everywhere zero power.
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Next, we consider hazard rates which contain a small “bump” and we study how
well the three tests are able to detect this little perturbation fromH0. The hazard
rate considered is

H ′(x) = exp[γ logx + β(2πσ 2)−1/2 exp{−(x − µ)2/(2σ 2)}],(4.2)

wherex,σ,µ > 0 andγ andβ are real numbers. This model is also considered
in [13]. Graphs of this hazard rate for different values of the parameters are
presented in Figure 3. It is clear that, forβ sufficiently large, the hazard rate
contains a “bump” atx = µ. The simulation results are obtained from 1000
samples of sizen = 50 and for the bootstrap procedure 1000 resamples are used.
The results are shown in Table 1. Clearly, the hypothesisH0 is only satisfied when
γ = 0,0.50 or 1 andβ = 0. In comparison with the local sign test of Gijbels and
Heckman [13] and the global sign test of Proschan and Pyke [19], the new testing
procedure is now leading to rejection probabilities that are most of the time higher,
but not always. Also note that the new test tends to be anticonservative, while the
global and local test are, on the contrary, quite conservative. This has to be taken
into account when comparing the powers of the three curves.

FIG. 3. Graph of H ′(x) for model (4.2) whenµ = 1 and β = 0 (dashed curve), β = 0.3 and
σ = 0.1 ( full curve) andβ = 0.3 andσ = 0.2 (dotted curve). For the figure on the leftγ = −0.5, for
the one on the rightγ = 0.5.



1124 P. HALL AND I. VAN KEILEGOM

TABLE 1
Rejection probability for model(4.2)and forα = 0.10.The numbers in

italic are rejection probabilities under the null hypothesis

γ

Parameter Test −0.50 −0.25 0 0.50 1

β = 0 New 0.833 0.643 0.437 0.189 0.121
Global 1.00 0.800 0.100 0.000 0.000
Local 0.983 0.416 0.100 0.034 0.027

β = 0.3 New 0.675 0.753 0.772 0.656 0.508
σ = 0.1 Global 0.997 0.458 0.019 0.000 0.000
µ = 1 Local 0.962 0.291 0.178 0.176 0.154

β = 0.3 New 0.715 0.714 0.663 0.443 0.277
σ = 0.2 Global 0.999 0.588 0.035 0.000 0.000
µ = 1 Local 0.968 0.301 0.114 0.065 0.054

5. Technical arguments.

5.1. Proof of Theorem3.1. Define�0F = F̂ − F , and observe that

Ĥ = H + �0F

1− F
+ Op(n−1), �0F = n−1/2B(F) + Op(n−1 logn),(5.1)

where the first result holds uniformly onI, the second uniformly on the real line
andB denotes a Brownian bridge, the construction of which depends on the data.
The first identity at (5.1) follows by simple Taylor expansion, while the second
uses results of Komlós, Major and Tusnády [17]. Together the identities imply that

Ĥ = H + n−1/2 B(F)

1− F
+ Op(n−1 logn),(5.2)

uniformly onI.
AssumeH ∈ H01, and, given a functionψ(x) defined forx ∈ I, putψ(x, y) =

ψ(x + y) + ψ(x − y) − 2ψ(x) wheneverx + y, x − y ∈ I. Now H(x, y) =
y2 H ′′(x + θy), where−1≤ θ = θ(x, y) ≤ 1. Hence, forH ∈ H01,

inf
x,y : x+y,x−y∈I

y−2H(x, y) > 0.

We may therefore deduce from (5.2) that, for some constantC1 > 0,−Ĥ (x, y) > 0
only if

C1n
1/2y2 ≤ max

{|B{F(x + y)} − B{F(x)}|, |B{F(x − y)} − B{F(x)}|}
+ n−1/2(logn)An,

(5.3)

where the random variableAn does not depend onx or y and equalsOp(1) as
n → ∞.
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For eachx, letY(x) denote the supremum of valuesy such thatx +y, x −y ∈ I
and (5.3) holds. Then for eachx, Y(x) = Op(n−1/3). Since

|B(t + u) − B(t)| = Op(|u logu|1/2)(5.4)

uniformly in t, u such that 0< t, t + u < 1, then

sup
I

Y(x) = Op{(n−1 logn)1/3}.(5.5)

Defining �1F = B(F) and�2F = B(F)/(1 − F), we deduce first by Taylor
expansion and then application of (5.4) that

�2F (x, y) = B{F(x + y)}
1− F(x)

(
1+ yf (x

1− F(x)

)
+ B{F(x − y)}

1− F(x)

(
1− yf (x)

1− F(x)

)
− 2

B{F(x)}
1− F(x)

+ Op{Y(x)2}

= �1F (x, y)

1− F(x)
+ Op{Y(x)3/2(logn)1/2},

(5.6)

uniformly in x ∈ I and|y| ≤ Y(x). Therefore,

T =
∫
I
dx

∫ Y (x)

−Y (x)
max{0,−Ĥ (x, y)}dy

= −
∫
I
dx

∫ Y (x)

−Y (x)
min{0,H(x, y) + n−1/2�2F (x, y)}dy(5.7)

+ Op{(n−1 logn)4/3}

= −
∫
I
dx

∫ Y (x)

−Y (x)
min

{
0,H(x, y) + n−1/2�1F (x, y)

1− F(x)

}
dy

(5.8)
+ Op{(n−1 logn)4/3},

where the second identity follows from (5.2) and (5.5), and the third comes from
(5.5) and (5.6).

Let W denote the standard Brownian motion through whichB may be
expressed asB(t) = W(t) − tW(1) for 0 ≤ t ≤ 1. Put�3F = W(F). Observe
that �1F (x, y) − �3F (x, y) = Op{Y(x)2} uniformly in x ∈ I and |y| ≤ Y(x).
Therefore, (5.5) and (5.8) imply that

T = −
∫
I
dx

∫ Y (x)

−Y (x)
min

{
0,H(x, y) + n−1/2�3F (x, y)

1− F(x)

}
dy

+ Op{(n−1 logn)4/3}.
(5.9)

SinceH ′′′ is bounded, thenH(x, y) = y2 H ′′(x)+O(|y|3) asy → 0, uniformly
in x ∈ I. From this result, (5.5) and (5.9), we deduce that

T = T1 + Op{(n−1 logn)4/3},(5.10)
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where

−T1 =
∫
I
dx

∫ Y (x)

−Y (x)
min

{
0, y2H ′′(x) + n−1/2�3F (x, y)

1− F(x)

}
dy

= n−1
∫
I
dx

∫
In(x)

min
{
0, z2 H ′′(x) + n1/6�3F (x,n−1/3z)

1− F(x)

}
dz

(5.11)

andIn(x) denotes the set ofy such that bothx + n−1/3y andx − n−1/3y lie in I.
Put

Wx(y) = n1/6[W {F(x) + n−1/3yf (x)} − W {F(x)}]/f (x)1/2,

which, likeW , is a standard Brownian motion. It may be proved from (5.11) that

−nE(T1)

=
∫
I
dx

∫ ∞
−∞

E

{
min

(
0, z2H ′′(x)

+ f (x)1/2

1− F(x)

×
[
Wx

{
z + 1

2
n−1/3z2f ′(x)f (x)−1

}
+ Wx

{
−z + 1

2
n−1/3z2f ′(x)f (x)−1

}])}
dz

+ o(n−1/6).

From this result and the fact that, for 0< |u| < |z|, Wx(z + u) + Wx(−z + u) has
the normal N(0,2|z|) distribution, we deduce that

nE(T1) = µ + o(n−1/6),(5.12)

whereµ is as defined in Section 3.
To derive a central limit theorem forT1, we first approximateT1 by a sum

of 3-dependent random variables, as follows. Defineλn = logn andδ = δ(n) =
λn(n

−1 logn)1/3. Put

−T2 =
∫
I
dx

∫ δ

−δ
min

{
0, y2H ′′(x) + n−1/2�3F (x, y)

1− F(x)

}
dy,

−T2(i) =
∫
I∩(iδ,(i+1)δ)

dx

∫ δ

−δ
min

{
0, y2H ′′(x) + n−1/2�3F (x, y)

1− F(x)

}
dy;

compare these definitions with the first identity at (5.11). ThenT2 = ∑
i T2(i). Note

that, since Brownian motion has independent increments,T2(i) is stochastically
independent ofT2(j) for |i − j | ≥ 3.
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In view of (5.5), the probability that maxI |Y(x)| ≤ δ converges to 1 as
n → ∞. Note too that maxx∈I |Y(x)| ≤ δ implies T1 = T2. Hence, if we
prove that the following three results are true: (a) varT2 ∼ varT1 ∼ σ 2n−7/3,
(b) (T2 − ET2)/(varT2)

1/2 has an asymptotic standard normal distribution, and
(c) n7/6(ET1 − ET2) → 0; then it will follow that n7/6(T1 − ET1)/σ has an
asymptotic standard normal distribution. Theorem 3.1 is a consequence of this
property and (5.12).

Result (c) may be proved using the argument leading to (5.12), and the first
asymptotic relation in (a) may be derived using the method giving the second.
Therefore, it suffices to show that (b) holds and that (d) varT1 ∼ σ 2n−7/3.

To prove (b), letC > 0 and defineT3(i) = n7/6δ−1/2T2(i), T4(i) = T3(i)×
I {|T3(i)| ≤ C}, T5(i) = T3(i) − T4(i) and Tj = ∑

i Tj (i) for j = 4,5. For
all sufficiently largeC, the variance ofT4, and the number of nondegenerate
summandsT4(i), are both asymptotic to constant multiples ofδ−1; and the
summands are uniformly bounded. Therefore, using a central limit theorem for
uniformly boundedm-dependent random variables (see, e.g., Theorem 7.3.1,
page 214 of [9]), we may prove that(T4 − ET4)/(varT4)

1/2 has an asymptotic
standard normal distribution; call this result (e). The argument that we shall
use to prove (d) may be employed to show that asC → ∞, (f ) limn→∞ δ ×
varT4 → σ 2 and (g) limn→∞ δ varT5 → 0. Combining (e)–(g), we deduce that
(T3 − ET3)/(varT3)

1/2 has an asymptotic normal distribution. This is equivalent
to (b).

It remains to derive (d). Recall thatg = f 1/2/(1− F), and define

Ux(y) = n1/6[W {F(x + n−1/3y)} − W {F(x)}]/f (x)1/2,

Vx(y) = Ux(y) + Ux(−y),

W1(x1, y1) = min
{
0, y2

1H ′′(x1) + g(x1)Vx1(y1)
}
,

W2(x1, x, y2) = min
{
0, y2

2H ′′(x1 + n−1/3x) + g(x1 + n−1/3x)Vx1+n−1/3x(y2)
}

andJn(x1) = {x :x1 + n−1/3x ∈ I}. In this notation,

n2 varT1 =
∫
I
dx1

∫
I
dx2

∫
In(x1)

dy1

×
∫
In(x2)

cov
[
min{0, y2

1H ′′(x1) + g(x1)Vx1(y1)},

min{0, y2
2H ′′(x2) + g(x2)Vx2(y2)}]dy1 dy2

= n−1/3
∫
I
dx1

∫
Jn(x1)

dx

∫
In(x1)

dy1

×
∫
In(x1+n−1/3x)

cov{W1(x1, y1),W2(x1, x, y2)}dy2,
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whereIn(x) is as defined below (5.11). In view of the independent increments
of Brownian motion, the random variablesVx1(y1) and Vx1+n−1/3x(y2) are
independent if|y1| + |y2| ≤ |x|. In this case, the covariance in the second identity
above vanishes. Therefore,

n7/3 varT1

=
∫
I
dx1

∫
Jn(x1)

dx

×
∫ ∫

y1,y2 : |y1|+|y2|>|x|;C(x1,x)

cov{W1(x1, y1),W2(x1, x, y2)}dy1 dy2,

(5.13)

whereC(x1, x) denotes the constraint thaty1 ∈ In(x1) andy2 ∈ In(x1 + n−1/3x).
The random variables|W1(x1, y1)| and|W2(x1, x, y2)| are respectively bounded

by C1|N1|I (|N1| > C2y
2
1) and C1|N2|I (|N2| > C2y

2
2), whereN1 and N2 are

standard normal random variables, andC1 and C2 are positive constants not
depending onx1, x, y1 or y2, although the correlation betweenN1 and N2
does depend on these quantities. We may therefore deduce that, for constants
C3,C4 > 0,

|cov{W1(x1, y1),W2(x1, x, y2)}|
≤ C1E{|N1|2I (|N1| > C2y

2
1)}1/2E{|N2|2I (|N2| > C2y

2
2)}1/2

≤ C3 exp{−C4(y
4
1 + y4

2)}.
(5.14)

Therefore,|cov{W1(x1, y1),W2(x1, x, y2)}| is bounded above by a function which
does not depend onn and whose integral over−∞ < x < ∞ and over all real
y1, y2 that satisfy|y1| + |y2| > |x| is bounded uniformly inx1 ∈ I.

Furthermore, ifV is a standard Brownian motion, then

cov{W1(x1, y1),W2(x1, x, y2)}
→ cov

(
min{0, y2

1H ′′(x1) + g(x1)V (y1)},
min[0, y2

2H ′′(x1) + g(x1){V (x + y2) − V (x)}]),
uniformly in x1 ∈ I andx, y1 andy2 in any compact set. We may therefore deduce
from (5.13) and the dominated convergence theorem that varT1 ∼ σ 2n−7/3, which
is the desired result (d). Note that (5.14) also implies the finiteness ofσ 2.

5.2. Proof of Theorem3.2. Put ν0 = 0 andνj = 2j − 1 for j ≥ 1. Observe
that, forj = 0,1,2 and eachη > 0,

F̃ (j)(x) − F (j)(x) = Op

{
(nhνj )η−(1/2) + h2},(5.15)

uniformly in h ∈ H(ξ1, ξ2) andx ∈ I′. (The assumption thatF has four bounded
derivatives is needed to derive theOp(h2) remainder term in (5.15) whenj = 2.
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The other part of the remainder at (5.15), which applies to the error of the left-hand
side about its mean, may be obtained by applying the stochastic approximation of
Komlós, Major and Tusnády [17].) It follows from this property and (2.3) that, with
probability 1,H̃ ′′ converges toH ′′ uniformly in h ∈ H(ξ1, ξ2) andx ∈ I′. We may
chooseI′ andε > 0 such thatH ′′ > ε on I′. In this case, and with probability 1,
H̃ ′′ > 1

2ε on I′ for all sufficiently largen. In particular, for all sufficiently largen,
the hazard rate corresponding tõF lies inH01.

The argument leading to Theorem 3.1 may now be used to prove that (3.5) holds
whenF̃ , rather thanF , is the sampled distribution, providedµ andσ at (3.5) are
replaced by the analogous functionals ofF̃ . Let these bẽµ and σ̃ , respectively,
and denote by (R) the corresponding version of (3.5). By (5.15),

|µ̃ − µ| + |σ̃ − σ | = Op

{
(nh3)η−(1/2) + h2} = op(n−1/6),(5.16)

the second identity holding uniformly inh ∈ H(ξ1, ξ2) and following from (3.2).
Property (3.5) follows from (5.16) and (R).

We should mention that the assumption in Theorem 3.1 thatF have three
derivatives is imposed for simplicity, and is a little more stringent than necessary.
At (5.10) we need only two derivatives and a Hölder condition of order1

2 + ε

on F ′′, in which case theOp term at (5.10) becomesOp{(n−1 logn)(3+ε)/3} =
op(n−7/6) (as required), the identity holding providedε > 0. An empirical version
of this argument can be developed providedh ∈ H(ξ1, ξ2) andξ1, ξ2 satisfy (3.2).

5.3. Proof of Theorem3.3. The assumption that the hazard rate is nondecreas-
ing and thatH ′′(xi) = 0 implies thatH ′′′(xi) = 0 for 1≤ i ≤ m. To appreciate
why, observe that

H(x, y) = y2H ′′(x) + 1
12y

4H(4)(x + θy),

where−1 ≤ θ = θ(x, y) ≤ 1. Takingx = xi + u, where|u| is small, and Taylor-
expanding, we deduce that

H(xi + u,y) = y2uH ′′′(xi) + (1
2u2y2 + 1

12y
4)H(4){x + θ ′(|u| + |y|)},

where−1 ≤ θ ′ ≤ 1. If H ′′′(xi) 	= 0, then, taking|u| = |y|3/2 and choosing the
sign of u such thatuH ′′′(xi) < 0, we find that asy → 0, H(xi + u,y) =
−|y|7/2|H ′′′(xi)| + o(|y|7/2). This implies thatH is nonconvex nearxi , and so
contradicts the assumption that the hazard rate is nondecreasing.

Result (5.2) continues to hold in the setting of Theorem 3.3, and so by (5.7),

T = T2 + Op{(n−1 logn)8/7},(5.17)

where

T2 = −
∫
I
dx

∫ Y (x)

−Y (x)
min

{
0, y2H ′′(x) + 1

12y
4H(4)(x + θy) + n−1/2�2F (x, y)

}
dy
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and we redefineY(x) to equal the supremum of valuesy such thatx +y, x −y ∈ I

and

y2H ′′(x) + 1
12y

4H(4)(x + θy) + n−1/2�2F (x, y) + n−1(logn)An ≤ 0,

where the random variableAn = Op(1) does not depend onx or y. In
deriving (5.17), we have used the fact that, by employing arguments leading
to (5.5), it may be proved that

sup
x∈I

Y(x) = Op{(n−1 logn)1/7}.

More analogously to (5.5), it may be shown that ifη > 0 andJ = J(η) is the
subset ofI all of whose points are distant at leastη from eachxi , then, using the
new definition ofY(x),

sup
x∈J

Y(x) = Op{(n−1 logn)1/3}.

Using this result and the arguments leading to (5.9) and (5.10), we may show that,
if T2(J) denotes the contribution toT2 from the integral overx ∈ J, rather than
x ∈ I, thenT2(J) = T3(J) + op(n−1), where

T3(J) = −
∫
J

dx

∫ Y (x)

−Y (x)
min

{
0, y2H ′′(x) + n−1/2�3F (x, y)

1− F(x)

}
dy.

The methods leading to (5.12) give thatE{T3(J)} = O(n−1). Therefore,

T2(J) = Op(n−1).(5.18)

Let η > 0 be less than half the minimum ofxi+1 − xi over 0≤ i ≤ m, where
x0 denotes the lower limit ofI andxm+1 is the upper limit. WriteT2(xi, η) for the
contribution toT2 from the integral overxi − η < x < xi + η. Then

T2(xi, η) = −
∫ η

−η
du

∫ Y (xi+u)

−Y (xi+u)
min

[
0,

(1
2u2y2 + 1

12y
4)

× H(4){xi + θi(|u| + |y|)} + n−1/2�2F (xi, y)
]
dy,

where−1 ≤ θi ≤ 1. Changing variables from(u, y) to (v, z), whereu = n−1/7v

andy = n−1/7z, we deduce that

T2(xi, η) = −n−6/7
∫ ∞
−∞

dv

∫ ∞
−∞

min
{
0,

(1
2v2z2 + 1

12z
4)H(4)(xi)

+ g(xi)Wi(v + z)
}
dz

+ op(n−6/7),

(5.19)

whereWi is a standard Brownian motion. The processesWi , 1 ≤ i ≤ m, may be
taken to be independent without violating (5.19). Theorem 3.3 now follows on
combining (5.18) and (5.19).
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5.4. Reasons for failure of bootstrap version of Theorem3.3. In order forH̃ (4)

to consistently estimateH(4), it is necessary that the bandwidthh used to construct
F̃ be of larger order thann−1/7. For simplicity, we shall assume below thath is at
least of sizenξ−(1/7) for someξ > 0, although our argument may by pursued to an
unaltered conclusion when the increase ofh overn−1/7 is by only a logarithmic
factor.

Put c = 1
2

∫
u2K(u)du. Observe that, for eachη > 0, F̃ ′′ = F ′′ + ch2F (4) +

Op{(nh3)η−(1/2)} + o(h2), uniformly in x ∈ I′. [Here we have used the fact that
h ≥ nξ−(1/7).] It follows that H̃ ′′ = D2A(F + ch2F ′′) + Op{(nh3)η−(1/2)} +
o(h2), uniformly in x ∈ I′, whereA(u) = − log(1 − u) andD is the differential
operator. Now,D2A(F + ch2F ′′) = D2A(F) + ch2D2{F ′′A′(F )} + o(h2), and
D2{F ′′A′(F )} = D2{D2A(F) − (F ′)2A′′(F )} = D2{H ′′ − (H ′)2}. Therefore,
D2{F ′′A′(F )} = H(4) − 2{H ′H ′′′ + (H ′′)2}. Hence,

H̃ ′′ = H ′′ + ch2[H(4) − 2{H ′H ′′′ + (H ′′)2}]
+ Op

{
(nh3)η−(1/2)} + o(h2),

(5.20)

uniformly in x ∈ I′.
The term of order(nh3)η−(1/2) on the right-hand side of (5.20) is, of course,

the result of stochastic error, and performance would only improve if it could be
dropped. Let us assume this can be done. Then we can estimateH ′′(x) with error
equal to

ch2[H(4)(x) − 2{H ′(x)H ′′′(x) + H ′′(x)2}] + o(h2).(5.21)

Now, the limiting distribution ofT , whenH ∈ H02, is determined by properties
of H in arbitrarily small neighborhoods of the pointsxi , and so it is there
that we are most interested in properties ofH̃ ′′. If x is in a decreasingly small
neighborhood ofxi , the expansion at (5.21) equals

ch2[H(4)(xi) − 2{H ′(xi)H
′′′(xi) + H ′′(xi)

2}] + o(h2) = ch2H(4)(xi) + o(h2),

the second identity holding sinceH ′′(xi) = H ′′′(xi) = 0. Therefore, if we ignore
stochastic fluctuations (which are asymptotically equally likely to increase or
decrease the value of̃H ′′), H̃ ′′(x) is distant at least orderh2 strictly above zero
whenx is in the neighborhood ofxi . Sinceh is at least of ordern−1/7, then the
distance ofH̃ ′′ above zero, in the neighborhood ofxi , is [with probability at least
1
2 +o(1)] no less than a certain fixed constant multiple ofn−2/7; call this result (R).

Let Ĥ ∗ denote the bootstrap version of̂H , and recall from the proof of
Theorem 3.2 that that limit result derives entirely from fluctuations ofĤ (x, y)

below zero whenx is close toxi andy is near zero. IfH ∈ H02, these fluctuations
occur with a probability that is bounded away from zero asn increases. The
perturbations of̂H ∗ − H̃ are of order onlyn−1/2, and, in particular, are of strictly
smaller order thann−2/7. This property and result (R) imply that the probability
that the empirical fluctuations of̂H ∗ nearx1, . . . , xm ever protrude below zero
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converges to zero asn → ∞. In consequence, the limit results described by
Theorem 3.2 do not apply in the bootstrap setting.

5.5. Proof of Theorem3.4. Observe that

H̃ (x + y) + H̃ (x − y) − 2H̃ (x)

= y2
∫ 1

0
{H̃ ′′(x + ty) + H̃ ′′(x − ty)}(1− t) dt.

(5.22)

Let HG denote the version ofH that arises ifF is replaced by a distributionG, and
note that, by (2.3) and approximations based, for example, on the Komlós, Major
and Tusnády [17] embedding,

H̃ ′′ = H ′′
E(F̃ )

+ (1− F)−1(f̃ ′ − Ef̃ ′) + Op

{
(nh)η−(1/2)},(5.23)

uniformly in x ∈ I′ and inh ∈ H , for eachη > 0. The argument in Section 5.4 [see
particularly (5.20)] shows that

H ′′
E(F̃ )

= H ′′ + ch2[H(4) − 2{H ′H ′′′ + (H ′′)2}] + o(h2)

uniformly onI′ and inh ∈ H . Therefore,∫ 1

0

{
H ′′

E(F̃ )
(x + ty) + H ′′

E(F̃ )
(x − ty)

}
(1− t) dt

=
∫ 1

0
{H ′′(x + ty) + H ′′(x − ty)}(1− t) dt + ch2H(4)(x1) + o(h2)

= H ′′(x) + ( 1
12y

2 + ch2)H(4)(x1) + o(h2 + y2)

(5.24)

uniformly in h ∈ H , |x − x1| ≤ δ(n) and|y| ≤ δ(n) for any sequenceδ(n) ↓ 0.
Furthermore,

f̃ ′(x) − Ef̃ ′(x) = h−2
∫

K ′′(u){F̂ (x − hu) − F(x − hu)}du

= h−2n−1/2
∫

K ′′(u)[W {F(x − hu)} − W {F(x)}]du

+ Op{h−1n−1/2(logn)1/2},
uniformly in h ∈ H andx ∈ I′, whereW is a standard Brownian motion. Puth =
n−1/7q, x = x1 + n−1/7s + ty andy = n−1/7z, and recall thatg = f 1/2/(1− F).
Then there exists a standard Brownian motionV such that

h−2n−1/2{1− F(x)}−1[W {F(x − hu)} − W {F(x)}]
= n−2/7q−2g(x1){V (s + tz − qu) − V (s + tz)}

+ Op{n−5/14(logn)1/2(|q| + |s| + |z|)},
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uniformly in 0≤ t ≤ 1, |u| ≤ C for anyC > 0 andq, s, z such thatn−1/7q ∈ H ,
|s| ≤ n1/7δ(n) and|z| ≤ n1/7δ(n). Therefore, definingM = (1−F)−1(f̃ ′ −Ef̃ ′),
we have ∫ 1

0
{M(x + ty) + M(x − ty)}(1− t) dt

= n−2/7q−2 g(x1)

∫
K ′′(u) du

×
∫ 1

0
{V (s + tz − qu) + V (s − tz − qu)}(1− t) dt

+ Op{n−5/14(logn)1/2(|q| + |q|−1 + |s| + |z|)},

(5.25)

uniformly in n−1/7q ∈ H , |s| ≤ n1/7δ(n) and|z| ≤ n1/7δ(n).
Combining (5.22)–(5.25), and takingx = x1 + n−1/7s and y = n−1/7z, we

deduce that

n4/7{H̃ (x + y) + H̃ (x − y) − 2H̃ (x)}
= z2(cq2 + 1

2s2 + 1
12z

2)H(4)(x1)

+ z2q−2g(x1)

∫
K ′′(u) du

×
∫ 1

0
{V (s + tz − qu) + V (s − tz − qu)}(1− t) dt

+ Op{n−1/14(logn)1/2z2(|q| + |q|−1 + |s| + |z|)}
+ op{z2(q2 + s2 + z2)},

(5.26)

uniformly in n−1/7q ∈ H , |s| ≤ n1/7δ(n) and|z| ≤ n1/7δ(n). The theorem follows
from (5.26).

5.6. Proof of Theorem3.5. Dividing both sides of (5.26) byz2 and letting
z → 0, we deduce that, whenh = ĥcrit, n2/7H̃ ′′(x1 + n−1/7s) = S(s) + op(1),
uniformly in |s| ≤ n1/7 δ(n), whereS(s) is defined as at (3.10). Thus, the bootstrap
calibration step involves sampling from a distribution whose cumulative hazard
rate H̄ is convex onI and satisfiesH̄ ′′(x) > 0 for all x ∈ I, excepting a single
point x which may be expressed asx = x1 + n−1/7A + op(n−1/7), whereA is
uniquely defined byS(A) = 0. At this pointH̄ ′′ vanishes. Reworking the proof
of Theorem 3.3, we deduce that the critical pointĉ(α) of T ∗, defined conditional
on the dataX, equalsn−6/7�α{S′′(A), g(x1)} + op(n−6/7). [Here,T ∗ denotes the
value ofT computed from ann-sample drawn from the distributioñF(·|ĥcrit).]

The distribution ofT may be represented, in asymptotic form, as before,
and in terms of the same Brownian motionW that was used to construct the
representation for̃H at (5.26). In particular, the Brownian motionW1 appearing
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at (5.19) (wheni = 1) may be taken identical to the processV at (5.26). LettingW
denote the common process, we see that the inequalityT ≤ ĉ(α) may equivalently
be written as

n−6/7Z1 + op(n−6/7) ≤ n−6/7�α{S′′(A), g(x1)} + op(n−6/7),(5.27)

whereZ1 is defined by (3.7) withi = 1. Theorem 3.5 follows from (5.27).

5.7. Proof of Theorem3.7. If the hazard rateH ′ is not increasing onI,
then, for someε > 0, there exists a nondegenerate rectangleR such that for
all (x, y) ∈ R, both x + y and x − y lie in I and H(x, y) ≤ −ε. Under the
hypotheses of the theorem,̂H(x, y) = H(x, y) + op(1) uniformly in (x, y) ∈ R,
and soT ≥ ε |R|+op(1), where|R| denotes the area ofR. Therefore, the theorem
will follow if we prove that, for eachα ∈ (0,1), the pointĉ(α) derived using the
bootstrap argument in Section 2.2 satisfies

P {ĉ(α) > η} → 0 for eachη > 0.(5.28)

As h → ∞, E{f̃ (x|h)} = h−1K(0) + o(h−1) andE|f̃ ′(x|h)| = h−3K ′′(0) ×
E|x − X| + o(h−3), uniformly in x ∈ I. Hence, there existsh0 > 0 such that
{Ef̃ (x|h0)}2 ≥ 2E|f̃ ′(x|h0)| for all x ∈ I. It may be proved from this property
that, with probability converging to 1,f̃ (x|h0)

2 ≥ |f̃ ′(x|h0)| for all x ∈ I.
Therefore, by (2.3), the probability that̃H ′′(x|h0) ≥ 0 for all x ∈ I converges to 1
asn → ∞, and so

P(ĥcrit ≤ h0) → 1.(5.29)

Standard calculations of the expected value of a kernel distribution estimator
show that, under the conditions of the theorem, for eachh1 > 0, there exists
ε(h1) > 0 such that, for all sufficiently largen,

1− E{F̃ (x|h)} ≥ ε(h1) for all x ∈ I and allh ∈ (0, h1].
By employing a stochastic approximation based on the results of Komlós, Major
and Tusnády [17], it may be proved that, for eachh1 > 0,∣∣F̃ (x|h) − E{F̃ (x|h)}∣∣ = op(1) uniformly in x ∈ I andh ∈ (0, h1].
Therefore,

P
{
1− F̃ (x|h) ≥ 1

2ε(h1) for all x ∈ I and allh ∈ (0, h1]} → 1.

This result and (5.29) imply that

P
{
1− F̃ (x|ĥcrit) ≥ 1

2ε(h0) for all x ∈ I
} → 1.(5.30)

If F̂ ∗
h denotes the bootstrap version ofF̂ , computed from ann-sample drawn

from the distributionF̃ (·|h) rather than fromF , then for allλ > 0,

sup
x∈I

sup
h∈(0,h1]

E
{∣∣F̂ ∗

h (x) − F̃ (x|h)
∣∣λ} = O(n−λ/2)
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for all λ > 0. (The method of proof involves only direct calculation of moments,
first conditional on the data and then unconditionally.) Therefore, ifA1 andA2 are
subsets ofI and[Cn−1/5, h1], respectively, each of which contains no more than
O(nD) elements, then for eachλ > 0 and by Hölder’s inequality,

E

{
sup
x∈A1

sup
h∈A2

∣∣F̂ ∗
h (x) − F̃ (x|h)

∣∣}

≤
[ ∑

x∈A1

∑
h∈A2

E
{∣∣F̂ ∗

h (x) − F̃ (x|h)
∣∣λ}]1/λ

= {
O

(
n2D−(λ/2))}1/λ

= O
(
n(2D/λ)−(1/2)).

SinceD/λ can be made arbitrarily small by choosingλ sufficiently large, then
we have proved that, for eachη > 0, and each choice ofA1 andA2 with only
polynomially many elements,

E

{
sup
x∈A1

sup
h∈A2

∣∣F̂ ∗
h (x) − F̃ (x|h)

∣∣} = O
(
nη−(1/2)).

Using this property, and the fact thatK is Hölder continuous, it may be shown by
a “continuity argument” (see, e.g., [8]) that

E

{
sup
x∈I

sup
h∈[Cn−1/5,h1]

∣∣F̂ ∗
h (x) − F̃ (x|h)

∣∣} = o(1)

for anyC > 0. It follows that if h̃ is a random element of the interval[Cn−1/5, h1],

E

{
sup
x∈I

∣∣F̂ ∗
h̃
(x) − F̃ (x|h̃)

∣∣} = o(1).(5.31)

Write simplyF̂ ∗ for F̂ ∗
ĥcrit

, and putĤ ∗ = − log(1− F̂ ∗) andH̃ = − log(1− F̃ ).

Taking h1 = h0 and h̃ = ĥcrit, which in view of (5.29) and the assumptions in
the theorem satisfiesP(Cn−1/5 ≤ ĥcrit ≤ h0) → 1 for someC > 0, we deduce
from (5.31) that |F̂ ∗ − F̃ (·|ĥcrit)| = op(1) uniformly on I. From this result
and (5.30), we see that

sup
x∈I

∣∣Ĥ ∗(x) − H̃ (x|ĥcrit)
∣∣ = R∗

1,(5.32)

where, here and below,R∗
j denotes a random variable that is defined through Monte

Carlo simulation conditional onX and satisfiesP(|R∗
j | > η) → 0 for eachη > 0,

where the probability is defined in the unconditional sense.
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If T ∗ denotes the bootstrap version ofT , then

T ∗ =
∫ ∫

x,y : x+y,x−y∈I

max{0,2Ĥ ∗(x) − Ĥ ∗(x + y) − Ĥ ∗(x − y)}dx dy

=
∫ ∫

x,y : x+y,x−y∈I

max{0,2H̃ (x|ĥcrit) − H̃ (x + y|ĥcrit)

− H̃ (x − y|ĥcrit)}dx dy + R∗
2

= R∗
2,

where the second identity follows from (5.32) and the third from the fact that, by
the definition ofĥcrit, H̃ (·|ĥcrit) is convex onI. Therefore,P(T ∗ > η) → 0 for
eachη > 0. Hence, sincêc(α) is defined byP {T ∗ > ĉ(α)|X} = α, then (5.28)
must hold.
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