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DETERMINING THE DIMENSION OF ITERATIVE
HESSIAN TRANSFORMATION

BY R. DENNIS COOK1 AND BING LI2

University of Minnesota and Pennsylvania State University

The central mean subspace (CMS) and iterative Hessian transformation
(IHT) have been introduced recently for dimension reduction when the
conditional mean is of interest. Suppose thatX is a vector-valued predictor
andY is a scalar response. The basic problem is to find a lower-dimensional
predictor ηT X such thatE(Y |X) = E(Y |ηT X). The CMS defines the
inferential object for this problem and IHT provides an estimating procedure.
Compared with other methods, IHT requires fewer assumptions and has been
shown to perform well when the additional assumptions required by those
methods fail. In this paper we give an asymptotic analysis of IHT and provide
stepwise asymptotic hypothesis tests to determine the dimension of the CMS,
as estimated by IHT. Here, the original IHT method has been modified to
be invariant under location and scale transformations. To provide empirical
support for our asymptotic results, we will present a series of simulation
studies. These agree well with the theory. The method is applied to analyze
an ozone data set.

1. Introduction. The basic problem of dimension reduction for regression [Li
(1991, 1992), Cook and Weisberg (1991) and Cook (1998a)] is to find a lower-
dimensional predictor that carries all the information relevant to the regression.
Suppose thatX is a p-dimensional predictor andY is a scalar response. If there
is a p by q, q ≤ p, matrix η such that theq linear combinationsηT X fully
describe the conditional distribution ofY givenX, then the subspace spanned by
the columns ofη is called a dimension reduction subspace. In symbols, if

Y |= X|ηT X,

then the column space ofη is a dimension reduction subspace. Here|= stands
for independence, so the statement is thatY is independent ofX given ηT X.
Any subspace that contains a dimension reduction subspace is itself a dimension
reduction subspace. Under mild conditions the intersection of all dimension
reduction subspaces is itself a dimension reduction subspace and then is called
the central subspace (CS), and written asSY |X. If the CS is known, thenX can be
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replaced withPSY |XX without loss of information on the conditional distribution
of Y |X, whereP(·) indicates a projection in the usual inner product onto the
indicated subspace.

If, as in many regression analyses, the conditional meanE(Y |X) is of particular
interest, then it is possible, and beneficial, to carry out dimension reduction for
that purpose. Cook and Li (2002) formulated dimension reduction in this context
as follows. If there is ap by q matrix η such that

E(Y |X) = E(Y |ηT X),

then the column space ofη is a dimension reduction subspace for the conditional
mean, and is called amean subspace. Under mild conditions, the intersection of
all such subspaces is again a mean subspace and then is called the central mean
subspace (CMS), and written asSE(Y |X). See Li, Cook and Chiaromonte (2003)
and Yin and Cook (2002) for other developments related to the CMS.

Several benefits accrue from studying the conditional meanE(Y |X) rather than
all of Y |X:

1. BecauseSE(Y |X) ⊆ SY |X, it may be possible to achieve further reduction of
dimension.

2. As in classical estimation, focusing on a smaller inferential object could lead
to increased accuracy. HereSE(Y |X) acts as the “parameter of interest” and all
aspects of the conditional distribution ofY |X not described by the conditional
mean act as the nuisance parameter.

3. Study ofSE(Y |X) leads to a categorization of several existing methods, such
as ordinary least square estimates (OLS) [Li and Duan (1989)], sliced inverse
regression (SIR) [Li (1991)], principal Hessian directions (PHD) [Li (1992)]
and the sliced average variance estimator (SAVE) [Cook and Weisberg (1991)].
It thus provides further insight into the dimension reduction problem.

As demonstrated by Cook and Li (2002), these four methods estimate either the
CS or the CMS under the first or both of the following two conditions:

(A) Linearity condition: E(X|PSX) is a linear function ofX,
(B) Constant covariance condition: Var(X|PSX) is a nonrandom matrix,

where the subspaceS is either the CSSY |X or the CMSSE(Y |X), depending on
the method. In particular, usingS = SE(Y |X), OLS and PHD estimate vectors in
the CMS, with OLS requiring condition (A) and PHD requiring both conditions.
Using S = SY |X, SIR and SAVE estimate vectors in the CS, with SIR requiring
condition (A) and SAVE requiring both conditions.

Condition (A) holds for all subspaces ofRp if the predictorX has an elliptical
distribution [Eaton (1986)], and it holds approximately if dim(S) � p [Hall and Li
(1993)]. Condition (B) is more stringent but will be satisfied ifX has a multivariate
normal distribution. It is noteworthy that both conditions apply to the marginal
distribution of the predictors and not to the conditional distribution ofY |X as is
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common in regression modeling. Consequently, we are free to use experimental
design, predictor transformations or re-weighting [Cook and Nachtsheim (1994)]
to induce the conditions as necessary without suffering complications when
inferring aboutE(Y |X) or Y |X.

In some practical problems, such as in the recumbent cow data [Clark et al.
(1987); see also Cook and Li (2002)], there is significant heteroscedasticity among
the predictors. In such cases condition (B) fails and application of PHD and SAVE
becomes problematic. Also, OLS provides at most one vector, and so does SIR if
the responseY is binary as it is in the recumbent cow data. Hence if the dimension
of the CMS or the CS is 2 or more, then OLS and SIR will necessarily miss part
of the CMS and CS.

It is in this context that Cook and Li (2002) introduced the method of IHT,
presenting two versions of IHT that both estimate vectors in the CMS. Assuming
that X is standardized to have mean zero and covariance matrixIp (the identity
matrix of dimensionp), one version uses the response-based (y-based) Hessian
matrix E((Y − E(Y ))XXT ) and the other uses the residual-based (r-based)
Hessian matrix

H = E
((

Y − E(Y ) − E(YXT )X
)
XXT )

.

Both versions require only condition (A) but, like PHD, can estimate multiple
vectors in the CMS. Following the findings of Cook (1998b) on the general
superiority of r-based PHD over y-based PHD, we use the r-based Hessian
matrix H in the rest of this article.

Cook and Li (2002) demonstrated the following fundamental relation, which is
the basis for IHT. Under condition (A) alone, the CMS is an invariant subspace of
the linear transformationH , that is,

HSE(Y |X) ⊆ SE(Y |X).

It follows that if we know any nonzero vector in the CMS, then we can transform
it iteratively by the Hessian matrix to bring out other vectors in the CMS. An
obvious initial vector is the OLS vector, which we know belongs to the CMS
under condition (A) alone. Thus if we useβ to denote the OLS vector, which,
assumingX to be standardized, has the formβ = E(YX), then the vectors

β,Hβ,H 2β, . . .

are all in the CMS. At a certain point, say atHk−1β (with k ≤ p), one more
iteration ceases to bring out a linearly independent vector, and all subsequent
vectors in the sequence must also be linear combinations of the firstk vectors.

In brief, under the linearity condition (A) theIHT subspace

SIHT ≡ Span{β,Hβ,H 2β, . . . ,Hp−1β} = Span{β,Hβ,H 2β, . . . ,Hk−1β}
is contained in the CMS,SIHT ⊆ SE(Y |X) [Cook and Li (2002)]. The task of this
paper is to estimate the dimensionk of SIHT, the number of linearly independent
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vectors generated by the iterative transformationsHjβ, j = 0,1, . . . , p − 1, and
thereby obtain an estimator ofSIHT. Of course, if we knowβ and H , then all
we need to do is to check at each stepj whether the smallest singular value of
the matrix(β, . . . ,H jβ), j = 0, . . . , p − 1, is zero, and stop as soon as it is. At
that point,k = j . However, in practice,H and β are replaced by their sample
estimates, saŷH and β̂. Whereas in the population sequence{β,Hβ, . . . } the
smallest singular value becomes zero after a certain point, in the sample sequence
{β̂, Ĥ β̂, . . .} the smallest singular value becomes small, rather than zero, after a
certain point. So our task is to deduce an asymptotic distribution against which we
can judge if the observed smallest singular values correspond to singular values
of 0 in the population.

Procedures for determining the order of a dimension reduction space via
sequential testing of hypotheses were developed previously for other dimension
reduction methods. For example, Li (1992) developed a testing procedure for PHD,
and Li (1991) and Schott (1994) developed testing procedures for SIR.

It should be mentioned that, although IHT can bring out multiple vectors in
the CMS, at the present stage we do not have a rigorous set of sufficient conditions
that guarantees IHT will actually cover the CMS. However, based on our numerous
experiences with real data, IHT often does well in bringing out the full pattern
in the conditional mean. Hence in part of the subsequent development (i.e., the
constrained case) we take the pragmatic approach of making coverage a working
assumption at the outset. Indeed, the issue of coverage is challenging, and to date
there has not been a general result published in this regard. For this reason a similar
working assumption is typically adopted for the asymptotic development of other
methods, such as those for SIR and PHD [Li (1991, 1992)]. Or, alternatively,
the null hypothesis is formulated directly on the rank of the population matrix
corresponding to the estimator rather than on the dimension of the CS [Schott
(1994)]. In fact, we are inclined to believe that IHT is more comprehensive in
estimating the CMS than using OLS or PHD alone, because it can pick up both
monotone and U-shaped trends, so long as it has a nonzero vector such as OLS
to prime the process. Cook and Li (2002) argued that the span of OLS and PHD
is a subset of the CMS, and it seems that a combination of them should provide a
reasonably comprehensive estimator of the CMS. IHT can be viewed as one way
of combining these elements, without evoking the constant covariance condition
that is required by PHD.

The rest of the paper is organized as follows. In Section 2 we introduce a version
of IHT that is modified slightly from that of Cook and Li (2002) for an invariance
consideration. We also formulate the hypothesis testing problem and establish
initial asymptotic expansions. In Section 3 we derive the asymptotic distribution
under certain assumptions on the predictorX and its relation with the responseY .
In this case the limiting distribution is a chi-squared distribution (Theorem 4).
In Section 4 we derive the asymptotic distribution when no practically restrictive
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conditions are placed onX or Y (Theorem 5). In Section 5 we discuss the
implementation of the tests in both cases. We check our theoretical conclusions
against simulated results in Section 6, and we apply both procedures to analyze an
ozone data set.

2. Foundations.

2.1. Invariant IHT. Let (X1, Y1), . . . , (Xn,Yn) be n independent copies of
(X,Y ), in which the predictorX is a random vector inRp and the responseY is a
scalar random variable. We assume throughout this article that Var(X) is positive
definite. As demonstrated in Cook and Li (2002), the CMS is invariant under affine
transformation ofX: For any nonsingularp by p matrix A andp-dimensional
vectorb,

SE(Y |AT X+b) = A−1SE(Y |X).

Thus, without loss of generality, we prestandardize and useZ = Var(X)−1/2(X −
E(X)) as the predictor vector so thatE(Z) = 0 and Var(Z) = Ip. In what follows,
we first estimate the standardized subspaceSE(Y |Z) along with its dimension, and
then transform back to estimateSE(Y |X).

Let �Z and�̂ be the sample mean and sample covariance matrix ofZ:

�Z = En(Z) and �̂ = En(Z − �Z )(Z − �Z )T ,

whereEnf (Z) stands forn−1 ∑n
i=1 f (Zi). Let Ẑ be the standardizedZ,

Ẑ = �̂−1/2(Z − �Z ),

and let

H̃ = En{ẽẐẐT },
whereẽ is the observed regression errorY − �Y − β̃T Ẑ with β̃ = En(Ẑ(Y − �Y )).
This matrix was suggested in Cook and Li (2002) as the transformation matrix
in the r-based IHT method. However, in practice, it is desirable to make IHT
invariant under affine transformation of bothZ andY ; that is, conclusions drawn
from (Z,Y ) should be identical to those drawn from(AZ + b, cY + d), where
A is anyp by p nonsingular matrix,b is anyp-dimensional vector,c is a nonzero
scalar andd is any scalar. For this purpose we will replaceY − �Y in the above
transformation by its standardized version

Ŷ = σ̂−1(Y − �Y ),

whereσ̂ 2 = En(Y − �Y)2, and use the transformation matrix

Ĥ = En{êẐẐT },
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whereê = Ŷ − β̂T Ẑ with β̂ being the regression estimateEn(Ŷ Ẑ). For consistency
in the rest of this article, we now redefineH andβ to be the population versions
of Ĥ andβ̂,

H = E
([(

Y − E(Y )
)
/σ − βT Z

]
ZZT

)
,

whereβ = E((Y − E(Y ))Z)/σ .

2.2. Formulation of hypotheses. Let

B = (β,Hβ, . . . ,Hp−1β) and B̂ = (β̂, Ĥ β̂, . . . , Ĥ p−1β̂).

We estimate the rank ofB, which is equal to the dimension ofSIHT sinceSIHT =
Span(B), by conducting a series of hypothesis tests. Letλ1 ≥ λ2 ≥ · · · ≥ λp be the
eigenvalues ofBBT , and consider the sequence of tests

H0,j :λj+1 = · · · = λp = 0, j = 0,1, . . . , p − 1.

The rankk of B is the smallest value ofj for which this hypothesis holds. Let
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the eigenvalues ofnB̂B̂T . We testH0,j using the statistic

Tj = C−1
p∑

i=j+1

λ̂i ,

whereC is a positive constant that depends onj and will be determined later.
Relatively large values ofTj provide evidence againstH0,j . Tests ofH0,j are
used to estimate the rankk of B as follows: Beginning withj = 0, testH0,0. If
the hypothesis is rejected, incrementj by one and test again, stopping with the
first nonsignificant result. The corresponding value ofj is the estimatêk of k.
Procedures of this form are fairly common for estimating the rank of a matrix; see,
for example, Rao [(1965), page 472].

2.3. Initial asymptotic equivalences. In this section we characterize the
components ofTk in terms of their asymptotically equivalent variables, and
provide expansions that will be useful when studying the distribution ofTk in later
sections.

First, consider the singular value decomposition ofB:

B = (�1 �0)

(
D 0
0 0

)(
�T

1
�T

0

)
,(1)

where� = (�1,�0) and� = (�1,�0) arep by p orthonormal matrices,D is ak

by k diagonal matrix with positive diagonal elements,�1 and�1 have dimensionp
by k, and �0 and �0 have dimensionp by p − k. It follows from Eaton and
Tyler (1994) that the joint asymptotic distribution of thep − k smallest singular
values of the matrix

√
nB̂ is the same as that of the singular values of the matrix
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√
n�T

0 (B̂ −B)�0. Therefore the asymptotic distribution ofCTk is the same as that
of

n{vec[�T
0 (B̂ − B)�0]}T vec[�T

0 (B̂ − B)�0],
where vec is the usual operator that maps a matrix to a vector by stacking its
columns: ifA is a matrix with columnsa1, . . . , ap, then vec(A) = (aT

1 · · ·aT
p )T .

Thus determining the asymptotic distribution ofTk boils down to computing the
asymptotic distribution of

√
nvec[�T

0 (B̂ − B)�0].
The estimateB̂ is a function of β̂ and Ĥ , both of which are essentially

(though not exactly) sums of independent and identically distributed (i.i.d.) random
variables. So the key is to expand

√
nvec[�T

0 (B̂ − B)�0] as a function of sums of
i.i.d. random variables.

First, expandĤ iβ̂ so that the remainder is of the orderOp(n−1), i = 1, . . . ,

p − 1. Starting with

Ĥ i β̂ = {H + (Ĥ − H)}i{β + (β̂ − β)},(2)

the term{H + (Ĥ − H)}i can be expanded as the sum of 2i terms, each being
of the formG1 · · ·Gi , where theG’s can be eitherH or Ĥ − H . However, those
G1 · · ·Gi terms involving two or morêH −H are of the orderOp(n−1) or smaller
and can be dropped. For the terms involving only oneĤ − H , the i − 1 H ’s
appear either on the left, or right, or both sides, ofĤ −H . In other words they can
be expressed asHj(Ĥ − H)Hi−1−j , wherej = 0, . . . , i − 1. Hence we have the
following expansion:

{H + (Ĥ − H)}i = Hi +
i−1∑
j=0

Hj(Ĥ − H)Hi−1−j + Op(n−1).

Substitute this expansion into (2) to obtain

Ĥ iβ̂ − Hiβ = Hi(β̂ − β) +
i−1∑
j=0

Hj(Ĥ − H)Hi−1−jβ + Op(n−1),
(3)

i = 1, . . . , p − 1.

We next further expand̂β − β andĤ − H as functions of sums of i.i.d. random
variables. This is given in the next lemma; its proof is provided in the Appendix.

LEMMA 1. Under regularity conditions we have the following expansions:

β̂ − β = En(ZY ) − β − 1
2En(ZZT − Ip)β

(4)
− 1

2En(Y
2 − 1)β + Op(n−1),

Ĥ − H = En{e(ZZT − Ip) − H } − 1
2En(ZZT − Ip)H

(5)
− 1

2HEn(ZZT − Ip) − 1
2En(Y

2 − 1)H + Op(n−1).
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Here, the “regularity conditions” refer to those under which the central limit
theorem applies to averages of i.i.d. random variables, which in our case are
guaranteed ifZ has finite fourth moments.

In the next section we derive the asymptotic distribution ofTk under a set of
constraints onX andY . These constraints are similar to those imposed on SIR
and PHD to produce chi-squared asymptotic distributions [Li (1991, 1992), Cook
(1998b) and Bura and Cook (2001)]. We refer to this case as theconstrained
case. We then derive the asymptotic distribution without these conditions. While
the results for the general case can be applied to the constrained case, the latter
takes advantage of the structures imposed and performs better if the constraints
are satisfied. It also has a simple form of a chi-squared distribution which is easy
to use.

3. Asymptotic distribution for constrained case.

3.1. Constraints. In the constrained case we assume that:

(C1) The span of the IHT vectors exhausts the CMS,SIHT = SE(Y |Z).
(C2) The predictorZ is normally distributed.
(C3) E(e2|Z) = E(e2|PSE(Y |Z)

Z), wheree = Y − βT Z is the population regres-
sion error.

These assumptions are similar in spirit to those imposed on the constrained cases
of PHD and SIR. Under the linearity condition (A) alone,SIHT ⊆ SE(Y |Z). In
condition (C1) we carry this a step further and assume equality. This implies,
for example, that if dim(SE(Y |Z)) > 0, then we must haveβ �= 0. Condition (C3)
says thatSE(e2|Z) ⊆ SE(Y |Z). That is,SE(Y |Z) must be a mean subspace for the
regression ofe2 on Z. This means that any heteroscedasticity present in the
residuals must depend only on directions in the CMS. Conditions (C2) and (C3)
are used to force a simple chi-squared asymptotic distribution forTk .

BecauseZ is normal, both the linearity condition (A) and the constant
covariance condition (B) hold and thus Span(β,H) ⊆ SE(Y |Z). Also, for any
integer j > 0, Hjβ ∈ Span(H), implying that SIHT ⊆ Span(β,H). Hence, it
follows from condition (C1) that

SIHT = Span(β,H) = SE(Y |Z).(6)

Because r-based PHD [Li (1992)] is designed to estimate Span(H), it follows
that in the constrained case IHT combines r-based PHD with OLS. Cook
(1998b) found that y-based PHD is not very effective at finding linear trends
and that the best results in practice are often found by informally combining
OLS with r-based PHD. IHT is the first formal method for combining OLS with
r-based PHD, making use ofβ to find linear trends in the mean function andH to
find curvature.

We next consider the asymptotic distribution ofTk in the constrained case,
picking up the general argument at the end of Section 2.3.
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3.2. Expansion of
√

nvec[�T
0 (B̂ −B)�0]. From the singular value decompo-

sition (1) we know that�T
0 B = 0. That is, the columns of�0 are orthogonal to

the columns ofB, and by (6) they are also orthogonal to the columns of(β,H)

becauseSIHT = Span(B). Thus, if we multiply both sides of (3) by the matrix�T
0

from the left, all the terms that begin with anH drop, and we have

�T
0 (Ĥ i β̂ − Hiβ) = �T

0 (Ĥ − H)Hi−1β + Op(n−1).

It follows that
√

n�T
0 (B̂ − B)�0

= √
n�T

0
(
β̂ − β, (Ĥ − H)β, . . . , (Ĥ − H)Hp−2β

)
�0 + Op(n−1/2)(7)

≡ √
n�T

0
(
β̂ − β, (Ĥ − H)B0

)
�0 + Op(n−1/2),

whereB0 = (β, . . . ,Hp−2β).
Observe that, in expansions (4) and (5), the terms

−β, −En(Y
2 − 1)β, H, HEn(ZZT − Ip)/2, En(Y

2 − 1)H/2

vanish if we multiply them by�T
0 from the left. Therefore,�T

0 (B̂ −B)�0 reduces
to

�T
0

(
En(ZY ) − En(W)β/2,

(
En(eW) − En(W)H/2

)
B0

)
�0 + Op(n−1),

whereW stands for the matrixZZT − Ip. Using the relationB = (β,HB0) we
can rewrite the above matrix as

�T
0

(
En(ZY ),En(eW)B0

)
�0 − 1

2�T
0 En(W)B�0 + Op(n−1).

Note that the second term drops becauseB�0 = 0. Furthermore, the identity
matrix Ip in W = ZZT − Ip also drops because it is to be multiplied from the
left by �T

0 and from the right byB0, and the columns of�0 are orthogonal to
the columns ofB0, which consists of the firstp − 1 columns of the matrixB. To
conclude, we have the following expansion for

√
n�T

0 (B̂ − B)�0.

THEOREM 1. Under conditions (C1) and (C2) for the constrained case, we
have

√
n�T

0 (B̂ − B)�0 = √
n�T

0
(
En(ZY ),En(eZZT )B0

)
�0 + Op(n−1/2).(8)

The right-hand side of (8) can be further simplified using the properties of�0.
We will do this in two separate cases,β ∈ Span(H) or β /∈ Span(H), and then
synthesize them into a simple and general formula.
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3.3. Case I: β /∈ Span(H). The next lemma describes the structure of�0 in
this case, which is the key to the simplification. Its proof is given in the Appendix.

LEMMA 2. If β /∈ Span(H), then:
(i) the first row of �0 is a zero vector, and
(ii) the second row of �0 is not a zero vector.

To simplify the expansion of
√

n�T
0 (B̂ − B)�0 using this result, rewrite the

expansion (8) as

�T
0 (B̂ − B)�0 = (

En(�
T
0 ZY),En(e�

T
0 ZZT B0)

)
�0 + Op(n−1)

(9)
= En(e�

T
0 ZZT B0)�0 + Op(n−1),

where�0 is thep − 1 by p − k matrix comprising the second through thepth
rows of thep by p − k matrix �0. Furthermore, because the first row of�0 is 0
and becauseB�0 = 0, we have

(Hβ, . . . ,Hp−1β)�0 = HB0�0 = 0.

In other words, the columns of the matrixB0�0 are orthogonal to the columns
of H . Consequently, lettingQH = Ip − PSpan(H),

B0�0 = QHB0�0 = (QHβ,0, . . . ,0)�0 = QH βαT
0 ,(10)

whereαT
0 is the first row of the matrix�0, which by Lemma 2 is a nonzero vector.

Substitute (10) into the right-hand side of (9) to obtain

�T
0 (B̂ − B)�0 = En(e�

T
0 ZZT QH βαT

0 ) ≡ En(eUV T ) + Op(n−1),

whereU = �T
0 Z andV = α0β

T QHZ. Hence
√

nvec�T
0 (B̂ − B)�0 = √

nvec
(
En(eUV T )

) + Op(n−1/2)

= √
nEn(eV ⊗ U) + Op(n−1/2).

Letting the columns of thep by k matrix γ be an orthonormal basis forSIHT, we
see thatV = α0(β

T Z − βT γ γ T Z) is measurable with respect toγ T Z because
β ∈ SIHT. This implies thatE(eV ⊗ U) = 0, as can be seen from the following
derivation:

E(eV ⊗ U) = E
(
E(e|Z)V ⊗ U

)
= E

(
E(e|γ T Z)V ⊗ U

)
= E

(
eE(V ⊗ U |γ T Z)

)
= E

(
eV ⊗ E(U |γ T Z)

)
= E(eV ) ⊗ E(U) = 0,
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where, for the second equality we used the definition of the CMS, for the fourth
we used the measurability ofV with respect toγ T Z, and for the fifth we used the
independence betweenU andγ T Z, which follows from the normality ofZ and
the orthogonality between the columns of�0 and the columns ofγ .

Hence, by the central limit theorem,
√

nEn(eV ⊗ U) is asymptotically normal
with mean 0 and covariance matrixE{e2(V ⊗ U)(V ⊗ U)T }. We now simplify
this covariance matrix:

E{e2(V ⊗ U)(V ⊗ U)T } = E{e2(V V T ⊗ UUT )}
= E{E(e2|γ T Z)(V V T ⊗ UUT )}
= E{e2E(VV T ⊗ UUT |γ T Z)}

(11)
= E{(e2V V T ) ⊗ E(UUT |γ T Z)}
= E(e2V V T ) ⊗ E(UUT )

= E(e2V V T ) ⊗ Ip−k.

For the second equality we have used the assumptionE(e2|Z) = E(e2|γ T Z), and
for the last equality we have used the fact thatE(UUT ) = �T

0 E(ZZT )�0 = Ip−k .
The rest of the equalities follow from the similar argument we used in the
demonstration ofE(eU ⊗ V ) = 0.

Now substitute the definitionV = α0β
T QHZ into the expressionE(e2V V T )⊗

Ip−k :(
βT QH E(e2ZZT )QH β

)
(α0α

T
0 ⊗ Ip−k) = E(eβT QH Z)2(α0α

T
0 ⊗ Ip−k)

≡ C(α0α
T
0 /‖α0‖2) ⊗ Ip−k,

whereC = E(eβT QHZ)2‖α0‖2. It is easy to verify that any matrix of the form
ααT ⊗ Im, whereα is a unit vector, is an idempotent matrix of rankm. Therefore,

√
n�T

0 (B̂ − B)�0/
√

C
L→ N(0,R),

whereR is an idempotent matrix of rankp − k. So we have proved the following
theorem.

THEOREM 2. Let λ̂1 ≥ · · · ≥ λ̂p be the eigenvalues of the matrix nB̂B̂T .
Suppose that conditions (C1)–(C3)hold and that β /∈ Span(H). Then, under the
null hypothesis H0,k :λk+1 = · · · = λp = 0, we have

C−1
p∑

i=k+1

λ̂i
L→ χ2

p−k,

where C = E(eβT QH Z)2‖α0‖2, α0 being the second row of the matrix �0.
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3.4. Case II: β ∈ Span(H). As in the previous case, the special structure of
the matrix�0 underβ ∈ Span(H) plays a critical role in the simplification of the
expansion of

√
n�T

0 (B̂ −B)�0. This structure is described in the next lemma, and
proved in the Appendix.

LEMMA 3. If β ∈ Span(H), then the first row of �0 is not 0.

Now write

�0 =
(

τT
0

�0

)
,

whereτ0 is a vector inRp−k and�0, as before, is ap − 1 byp − k matrix. Since
B�0 = 0, we have

HB0�0 + βτT
0 = 0.

Becauseβ ∈ Span(H), β = Hη for someη in R
p. Hence

HB0�0 + HητT
0 = H(B0�0 + ητT

0 ) = 0.

That is, the columns of the matrixB0�0 + ητT
0 are orthogonal to the rows (and

hence columns) ofH . Consequently,

B0�0 + ητT
0 = QH(B0�0 + ητT

0 ),

where, as before,QH is the projection matrix onto the orthogonal complement of
Span(H). Sinceβ ∈ Span(H), Span(B0) ⊆ Span(H) and thereforeQHB0�0 = 0.
Hence, letting “†” denote the Moore–Penrose generalized inverse,

B0�0 = −ητT
0 + QHητT

0 = −(I − QH )ητT
0

= −H(HH)†HητT
0 = −H(HH)†βτT

0 .

From the definition of the Moore–Penrose generalized inverse of a symmetric
matrix it is easy to see thatH(HH)† = H †. Therefore,

B0�0 = −H †βτT
0 .(12)

Rewrite expansion (8) as
√

n�T
0 (B̂ − B)�0 = √

n
(
En(YU),En(eUV T )

)
�0 + Op(n−1/2),

whereU is the(p − k)-dimensional vector�T
0 Z andV is the(p −1)-dimensional

vectorBT
0 Z. Note that theV here is different from that defined in Section 3.3, but

U denotes the same quantity. Since the columns ofB0 belong to Span(B), V is
measurable with respect toγ T Z, and since the columns of�0 are orthogonal to
Span(B), U andγ T Z are independent. Thus, following the same argument used in
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Section 3.3 for the demonstration ofE(eV ⊗U) = 0, we can show thatE(YU) = 0
andE(eUV T ) = 0. Hence the vector

√
nvec

{(
En(YU), En(eUV T )

)
�0

} = √
n(�T

0 ⊗ Ip−k)

(
En(YU)

En(eV ⊗ U)

)
is asymptotically multivariate normal of dimension(p − k)2 with mean 0 and
variance matrix

(�T
0 ⊗ Ip−k)

(
E(Y 2UUT ) E(eYU(V ⊗ U)T )

E
(
eY (V ⊗ U)UT

)
E

(
e2(V ⊗ U)(V ⊗ U)T

))
(�0 ⊗ Ip−k).(13)

We next simplify this covariance matrix.
By an argument similar to (11), we can show that

E(Y 2UUT ) = E(Y 2)Ip−k,

E
(
e2(V ⊗ U)(V ⊗ U)T

) = E(e2V V T ) ⊗ Ip−k.

To deriveE(eYU(V ⊗ U)T ), note thatU = 1 ⊗ U , where 1 is the scalar one.
Hence

E
(
eYU(V ⊗ U)T

) = E
(
eY (1⊗ U)(V ⊗ U)T

) = E
(
eY (V T ⊗ UUT )

)
.

Now apply the argument leading to (11) to obtain

E
(
eYU(V ⊗ U)T

) = E(eYV T ) ⊗ Ip−k.

Hence the asymptotic variance (13) now becomes

(�T
0 A�0) ⊗ Ip−k whereA =

(
E(Y 2) E(eYV T )

E(eYV ) E(e2V V T )

)
.

Expressing�T
0 as(τ0,�

T
0 ), we can rewrite the matrix�T

0 A�0 as

A = E(Y 2)τ0τ
T
0 + τ0E(eYV T )�0

(14)
+ �T

0 E(eYV )τT
0 + �T

0 E(e2V V T )�0.

Now recall thatB0�0 = −H †βτT
0 . So

�T
0 V = �T

0 BT
0 Z = −τ0β

T H †Z.

Substitute this relation into (14) to obtain

A = {E(Y 2) − 2E(eYZT )H †β + βT H †E(e2ZZT )H †β}τ0τ
T
0

= E(Y − eZT H †β)2 τ0τ
T
0 ≡ C1τ0τ

T
0 /‖τ0‖2,

whereC1 is the constantE(Y − eZT H †β)2‖τ0‖2. Note thatτ0τ
T
0 /‖τ0‖2 is an

idempotent matrix of rank 1, and(τ0τ
T
0 /‖τ0‖2) ⊗ Ip−k is an idempotent matrix of

rankp − k. Therefore
√

n�T
0 (B̂ − B)�0/

√
C1

L→ N(0,R),

whereR is an idempotent matrix of rankp − k. We have proved the following
theorem.
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THEOREM 3. Suppose that conditions (C1)–(C3)hold and that β belongs to
Span(H). Then, under the null hypothesis H0,k :λk+1 = · · · = λp = 0, we have

C−1
1

p∑
i=k+1

λ̂i
L→ χ2

p−k,

where C1 = E(Y − eZT H †β)2‖τ0‖2, with τT
0 being the first row of the matrix �0.

3.5. Synthesis of the two cases. To apply directly the asymptotic results
developed in Sections 3.3 and 3.4, one must determine at the outset whetherβ

belongs to Span(H), which would likely be problematic in practice. In this section
we derive a general result that synthesizes the two cases. This enables us to apply
the test in the constrained case without having to know whetherβ belongs to
Span(H) ahead of time.

Recall from (10) and (12) that

B0�0 =
{

QH βαT
0 , if β /∈ Span(H),

−H †βτT
0 , if β ∈ Span(H).

Using this relation we can rewrite the constantsC andC1 as

C = tr{α0E(e2βT QH ZZT QH β)αT
0 }

(15)
= tr{�T

0 BT
0 E(e2ZZT )B0�0},

C1 = tr{τ0E(Y − eβT H †Z)2τT
0 }

(16)
= tr{E(Y 2)τ0τ

T
0 + 2τ0E(YeZT )B0�0 + �T

0 BT
0 E(e2ZZT )B0�0}.

Now consider the matrix

A = �T
0

(
1 0
0 BT

0

)(
E(Y 2) E(Y eZT )

E(YeZ) E(e2ZZT )

)(
1 0
0 B0

)
�0.(17)

If β /∈ Span(H), then the first row of�0 is 0 and the matrix reduces to that
inside trace(·) on the right-hand side of (15). Ifβ ∈ Span(H), then the first row
of �0 is τ0 and the matrix reduces to that inside trace(·) of (16). Thus if we let
C2 be tr(A), then it automatically normalizes the asymptotic distribution ofTk to
aχ2

p−k distribution in both cases. To further simplify the notation, letW denote the

(p + 1)-dimensional vector(Y, eZT )T , and let diag(1,B0) denote thep + 1 × p

block-diagonal matrix with diagonal blocks 1 (the scalar one) andB0. Then we
can expressC2 as

C2 = tr{�T
0 diag(1,BT

0 )E(WWT )diag(1,B0)�0}.(18)

The next theorem summarizes this general result.
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THEOREM 4. Suppose that conditions (C1)–(C3)hold. Then, under the null
hypothesis H0,k :λk+1 = · · · = λp = 0, we have

C−1
2

p∑
i=k+1

λ̂i
L→ χ2

p−k,

where C2 is defined at (18).

4. Asymptotic distribution for the general case. We now derive the asymp-
totic distribution ofC−1

2
∑p

i=k+1 λ̂i in the general case. The asymptotic result of
this section holds without conditions (C1)–(C3)—in its general form the asymp-
totic distribution is related only to the rank of the matrixB. Thus for clarity we
will not refer to these conditions in the statement of the result. Under the linear
conditional mean condition (A),SIHT is a subspace of the CMS, and the test helps
us to identify a set of significant vectors that belongs to the CMS. Under the cov-
erage condition (C1),SIHT is equal to the CMS, and the test helps us to identify
the CMS itself. The point of this generalization is that (C3) is altogether removed,
(C2) is replaced by the much weaker condition (A), and without (C1) we can still
find vectors in the CMS but without the guarantee that they will span the CMS.

By expansion (3), the leading term of̂B − B, ignoring the error of magnitude
Op(n−1), is (

β̂ − β,H(β̂ − β) + (Ĥ − H)β, . . . ,Hp−1(β̂ − β)

+
p−2∑
j=0

Hj(Ĥ − H)Hp−2−jβ

)
.

This can be written as the sum ofp matrices of simpler structures, as follows:(
β̂ − β, . . . ,Hp−1(β̂ − β)

) + (
0, (Ĥ − H)β, . . . , (Ĥ − H)Hp−2β

)
+ (

0,0,H(Ĥ − H)β, . . . ,H(Ĥ − H)Hp−3β
) + · · ·

+ (
0, . . . ,0,Hp−2(Ĥ − H)β

)
.

Thus, the vector vec(B̂ − B) can be written as
β̂ − β

H(β̂ − β)
...

Hp−1(β̂ − β)

 +


0

(Ĥ − H)β
...

(Ĥ − H)Hp−2β

 + · · · +


0
0
...

Hp−2(Ĥ − H)β

 .
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In other words,

vec(B̂ − B) =


Ip 0 · · · 0 0
H Ip · · · 0 0
...

. . .
...

Hp−1 · · · H Ip

 ×


β̂ − β

(Ĥ − H)β
...

(Ĥ − H)Hp−2β

(19)

≡ M V.

Here, M is a p2 by p2 constant matrix, andV is a random vector consisting
of subvectorsβ̂ − β, . . . , (Ĥ − H)Hp−2β which, according to Lemma 1, can
be approximated by sums of independent and identically distributed vectors. It
follows that

√
nMV converges in distribution to ap2-dimensional multivariate

normal random vector.
To write an explicit form of the asymptotic distribution, let

ξ1 = ZY − β − (ZZT − Ip)β/2− (Y 2 − 1)β/2,

ξi = {e(ZZT − Ip) − H − (ZZT − Ip)H/2(20)

− H(ZZT − Ip)/2− (Y 2 − 1)H/2}Hi−2β, i = 2, . . . , p.

Then, by Lemma 1,

β̂ − β = En(ξ1) + Op(n−1),

(Ĥ − H)Hi−2β = En(ξi) + Op(n−1), i = 2, . . . , p.

Thus, if we letξ be the vector(ξT
1 , . . . , ξT

p )T , thenV = En(ξ) + Op(n−1), and
consequently

√
nV converges in distribution to ap2-dimensional multivariate

normal with mean 0 and covariance matrixE(ξξT ). Therefore,√
n/C2 vec{�T

0 (B̂ − B)�0} L→ N
(
0, (�0 ⊗ �0)

T ME(ξξT )MT (�0 ⊗ �0)/C2
)
.

Thus we have proved the following theorem.

THEOREM 5. In the general case, we have

C−1
2

p∑
i=k+1

λ̂i
L→

(p−k)2∑
i=1

ωiKi,

where K1, . . . ,K(p−k)2 are independent chi-squared random variables with one
degree of freedom and ω, . . . ,ω(p−k)2 are the eigenvalues of the matrix

(�0 ⊗ �0)
T ME(ξξT )MT (�0 ⊗ �0)/C2,(21)

with C2, M and ξ defined by (18), (19)and (20),respectively.



DIMENSION OF ITERATIVE HESSIAN TRANSFORMATION 2517

5. Implementation. In this section we describe how to estimate the various
unknown quantities involved in the asymptotic distribution ofTk = C−1

2
∑p

i=k+1 λ̂i ,
for both the constrained and the general cases. In the constrained case we only need
to estimateC2, whereas in the general case we need also to estimate the coefficients
ω1, . . . ,ω(p−k)2.

To estimateC2, recall that�0 and �0 are derived from the singular value
decomposition ofB. That is, the columns of�0 are the eigenvectors of the
matrix BBT corresponding to its zero eigenvalues, and the columns of�0 are
the eigenvectors ofBT B corresponding to its zero eigenvalues. So, we let�̂0 be the
p×p−j matrix whose columns are thep−j eigenvectors of̂BB̂T corresponding
to its smallest eigenvalues, in a descending order. In a similar manner construct�̂0,
also of dimensionp × p − j , from the matrix B̂T B̂. Furthermore, we will
estimateB0 by its sample version

B̂0 = (β̂, . . . , Ĥ p−2β̂).

By the weak law of large numberŝB and B̂0 consistently estimateB and B0,
and, under the null hypothesisH0,j , the matriceŝ�0 and�̂0 consistently estimate
�0 and�0. We propose to estimateC2 by substituting the estimateŝ�0, �̂0 and
B̂0 for their population values�0, �0 andB0 in (18):

Ĉ2 = tr{�̂T
0 diag(1, B̂T

0 )En(ŴŴT )diag(1, B̂0)�̂0},
whereŴ is the (p + 1)-dimensional vector(Ŷ , êẐT )T . By Slutsky’s theorem,
substitutingĈ2 for C2 in Tj = C−1

2
∑p

i=j+1 λ̂i will not change its asymptotic
distribution.

To estimateω1, . . . ,ω(p−k)2, let

ξ̂1 = ẐŶ − β̂ − (ẐẐT − Ip)β̂/2− (Ŷ 2 − 1)β̂/2,

ξ̂i = {ê(ẐẐT − Ip) − Ĥ − (ẐẐT − Ip)/2

− (ẐẐT − Ip)Ĥ /2− (Ŷ 2 − 1)Ĥ /2}Ĥ i−2β̂, i = 2, . . . , p,

and let ξ̂ be thep2-dimensional vector(ξ̂ T
1 , . . . , ξ̂ T

p )T . We estimateM in (21)
by replacingH in the definition ofM , as given in (19), byĤ . The coefficients
ω1, . . . ,ω(p−k)2 are then estimated by the eigenvalues of

(�̂0 ⊗ �̂0)
T M̂En(ξ̂ ξ̂ T )M̂T (�̂0 ⊗ �̂0)/Ĉ2.

As we can see from its construction, the general test does not reduce
numerically to the constrained case when conditions (C1)–(C3) are satisfied,
though in this case the two asymptotic distributions are first-order equivalent
becauseω̂1, . . . , ω̂(p−k)2 converges in probability toω1, . . . ,ω(p−k)2, which
containp − k 1’s and(p − k)2 − (p − k) 0’s. Because the test for the constrained
case uses this special 0–1 structure of theω’s, it is expected to outperform the
general test when conditions (C1)–(C3) are satisfied.
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6. Simulation results.

6.1. Test levels. In this section we present selected results from a simulation
study to investigate the levels of the chi-squared and weighted chi-squared tests,
one goal being to provide support for the validity of our asymptotic results. The
tests have the same statistic for the hypothesis

dim(SIHT) = j, Tj = Ĉ−1
2

p∑
i=j+1

λ̂i,

but use different reference distributions. Theχ2
p−j reference distribution is

appropriate under conditions (C1)–(C3) of Theorem 4. Otherwise the reference
distribution is the weighted chi-squared of Theorem 5. The scaling constantC2 and
the weightsωi for the weighted chi-squared reference distribution were estimated
as indicated in Section 5. For each simulation run the estimated test levels were
based on 1000 replications and where relevant the chi-squared and weighted chi-
squared tests were performed on the same data. There is a substantial literature on
computing tail areas of distributions of linear combinations of chi-squared random
variables. See Field (1993) for an introduction. For reference, the nominal standard
errors of the estimated levels of nominal 1, 5, 10 and 15 percent tests are about
0.31, 0.69, 0.95 and 1.13.

Table 1 contains results for a null regression with four independent standard
normal predictors and an independent standard normal response. The estimated
levels of the tests seem quite far from the nominal levels forn = 25 observations,
but the agreement seems good for both tests with more than aboutn = 100
observations.

TABLE 1
Estimated level of nominal 1, 5, 10and 15 percent chi-squared
(χ2) and weighted chi-squared (χ̄2) tests based on T0 for a 0D
regression with p = 4 independent standard normal predictors

and an independent standard normal response

Nominal level (%)

n Test 1 5 10 15

25 χ2 0 2.4 8.2 15.3
25 χ̄2 2.4 8.7 15.8 21.6
50 χ2 0.1 2.4 9.4 15.4
50 χ̄2 0.8 6.6 12.1 18.2

100 χ2 0.8 4.6 9.9 15.4
100 χ̄2 1.5 6.4 11.8 17.4
200 χ2 1.1 4.1 9.3 14.5
200 χ̄2 1.3 4.3 10.5 14.8
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TABLE 2
Estimated level of nominal 1, 5, 10and 15 percent chi-squared

(χ2) and weighted chi-squared (χ̄2) tests based on T2 for model
(22) with p = 4 independent standard normal predictors Zj

Nominal level, n = 50

σ Test 1 5 10 15

0 χ2 1.1 4.8 9.5 14.6
0 χ̄2 0.1 3.3 8.3 13.7

0.2 χ2 1.0 5.9 10.4 15.1
0.2 χ̄2 0.3 3.8 8.7 15.4
0.4 χ2 1.1 4.7 10.0 14.6
0.4 χ̄2 0 1.9 5.7 10.6
0.8 χ2 0.5 3.5 7.7 11.4
0.8 χ̄2 0 1.0 3.7 6.3
1.6 χ2 0 0.7 3.1 5.7
1.6 χ̄2 0 0.2 0.7 1.6

Nominal level, σ = 1.6

n Test 1 5 10 15

100 χ2 0.1 2.9 6.3 9.4
100 χ̄2 0.1 0.9 1.9 4.1
200 χ2 1.3 5.7 10.4 14.2
200 χ̄2 0 1.9 5.0 8.6
400 χ2 1.4 4.6 9.4 15.5
400 χ̄2 0.7 4.1 9.5 14.2

Tables 2 and 3 contain results based on the model

Y = Z1 + 0.2(Z1 + Z2)
2 + σN(0,1)(22)

with p = 4 independent standard normal predictors, and various sample sizes and

TABLE 3
Estimated level of nominal 1, 5, 10and 15 percent
chi-squared tests based on T2 for model (22) with

p independent standard normal predictors Zj

Nominal level, n = 100

p 1 5 10 15

4 1.1 4.7 10.0 14.2
6 0.7 4.9 9.9 15.0
8 0.9 4.0 8.6 15.9

12 0.3 4.6 10.2 15.1
16 0.5 3.9 7.6 12.0
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values forσ . Because dim(SIHT) = 2, we studied the behavior ofT2 in each
case. In the first part of Table 2 we held the sample size fixed atn = 50 and
varied σ from 0 to 1.6. Asσ increases the estimated levels of both tests tend
to decrease, ending with quite conservative tests atσ = 1.6. Note, however, that
σ = 1.6 is large compared to the variance ofZ1, with var(ε)/var(Z1) = 2.56. At
this error rate it is not surprising that the percentiles for both tests differ quite a
bit from their nominal value, because the power ofT1 is not much larger than
the nominal error rate. In the second part of Table 2 we heldσ fixed at 1.6 and
increased the sample size. As the sample size increases we see the asymptotic
approximations improving, ending with reasonable results atn = 400. Our general
conclusion from Tables 1 and 2 and other simulation results not reported here is
that the results are behaving as expected, which supports our analytic calculations
and method of implementation suggested in Section 5. Perhaps as expected, the
weighted chi-squared seems to take a larger sample size for the asymptotics to
take hold. Additionally, there is a tendency for the weighted chi-squared test to be
conservative.

In Table 3 we investigate the impact on the chi-squared test of increasing the
number of unimportant predictors, holdingn = 100 andσ = 0.2. Although there
seems to be a little tendency for the estimated levels to decrease asp increases,
overall increasing the number of predictors does not seem to have much of an
impact.

In Table 4 we consider model (22) with the errorσN(0,1) term replaced by
0.5(χ2

2 − 2). Replacing the normal error with a chi-squared error did not seem to
have a notable impact on the results. Because the error does not satisfy (C2) we
have used the weighted chi-squared reference distribution.

Finally, we present a few confirmatory results based onp = 5 standard normal
predictors and a response generated as

Y = e0.3(2Z1+3Z2) + 1.6 sin(Z1 − Z2) + σN(0,1).(23)

Letting SD denote a population standard deviation, the signal-to-noise ratio
SD(E(Y |Z))/σ for model (23) is about 0.4 times that for model (22), so the mean

TABLE 4
Estimated level of nominal 1, 5, 10and 15 percent weighted
chi-squared tests based on T2 for a 2D regression with p = 4

independent standard normal predictors Zj and response

Y = Z1 + 0.2(Z1 + Z2)2 + 0.5(χ2
2 − 2)

Nominal level (%)

n 1 5 10 15

50 0.1 2.5 6.5 11.0
100 0.5 3.8 8.9 13.1
200 1.0 5.8 9.9 14.6
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TABLE 5
Estimated level of nominal 1, 5, 10and 15 percent chi-squared

(χ2) and weighted chi-squared (χ̄2) tests based on T2 for
simulation model (23) with σ = 0.2

Nominal level (%)

n Test 1 5 10 15

50 χ2 0.5 4.1 9.5 13.7
50 χ̄2 0 2.1 4.6 8.7

100 χ2 0.6 3.3 7.2 12.1
100 χ̄2 0.2 1.2 4.5 8.2
200 χ2 1.2 4.5 10.5 14.5
200 χ̄2 0.4 2.4 6.3 11.5

function of (23) should be harder to estimate. Table 5 contains estimated levels
of T2 for model (23) for three sample sizes and four nominal levels. These results
are qualitatively similar to those discussed previously and confirm the conservative
nature of the weighted chi-squared test in smaller samples.

6.2. Estimation of dim(SIHT). In this section we present first results on the
behavior of the sequential testing procedure discussed in Section 2.2 for estimating
k = dim(SIHT). We consider only estimates based on using the same nominal level
for each of the sequential tests, although in a more comprehensive investigation it
might be desirable to include variable levels.

Reasoning in the context of model (22) with dim(SIHT) = 2, if the leading tests
of k = 0 andk = 1 have power 1, then all of the estimation error arises from the
level α of the test ofk = 2, resulting in estimateŝk = 2 with probability 1− α

and k̂ > 2 with probability α. Ideally, we would like to makeα small, while
maintaining high power in the leading tests. Leading tests with small values ofα

will have relatively low power and will tend to result in underestimation ofk. We
can increase the power of the leading tests by increasingα, but this also increases
the probability of overestimation.

For instance, Table 6 gives the empirical distribution ofk̂ out of 1000 trials
based on the sequential chi-squared (χ2) and weighted chi-squared (χ̄2) tests
for model (22). With n = 50 we would prefer a level around 0.1 since the
fraction of correct decisions was observed to change little forα > 0.1 until it
began to decrease. Withn = 100, a level around 0.05 tends to balance over- and
underestimation and produce the best results. With larger sample sizes or smaller
values ofσ , a level less than 0.05 may be preferred. Results for model (23) were
qualitatively similar, but not quite as strong since its mean function is harder to
estimate.

Overall, we found no compelling reason to prefer estimates withα > 0.15. Tests
with α = 0.05 or α = 0.1 tended to produce good results in our simulations, but
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TABLE 6
Distribution of dimension estimates k̂ out of 1000trials based
on the sequential chi-squared (χ2) and weighted chi-squared

(χ̄2) tests with constant nominal level α

k̂ with n = 50 k̂ with n = 100

α 0 1 2 ≥ 3 0 1 2 ≥ 3

χ2

0.001 4 924 72 0 0 322 678 0
0.01 0 631 365 4 0 85 904 11
0.05 0 308 656 36 0 20 931 49
0.10 0 187 731 82 0 9 901 90
0.15 0 136 733 131 0 3 859 138

χ̄2

0.001 171 692 137 0 81 412 507 0
0.01 67 527 404 2 37 149 809 5
0.05 18 284 666 32 9 38 911 42
0.10 5 167 746 82 4 18 899 79
0.15 2 119 755 124 1 7 867 125

The model is (22) withσ = 0.4 and sample sizes 50 and 100.

tests withα < 0.05 might yield better estimates with a significantly larger sample
size or stronger signal.

6.3. Direction estimation. Givenk = 2 for models (22) and (23), we studied
the accuracy of the IHT estimates of the CMS by computing the absolute
correlation betweenZj and the fitted values from the OLS regression ofZj on
the first two IHT predictors,j = 1,2. Shown in Table 7 are three quantiles of the

TABLE 7
Quantiles (q0.05, q0.5 and q0.95) of the empirical distribution of the
absolute correlation between Zj and the fitted values from the OLS

regression of Zj on the first two IHT predictors, j = 1,2, based on 1000
replications from model (22) with three values for σ and two sample sizes

n = 50 n = 100

σ q0.05 q0.5 q0.95 q0.05 q0.5 q0.95

(A) Z1
0.2 0.98 0.995 0.9996 0.99 0.998 0.9998
0.4 0.97 0.993 0.9994 0.98 0.997 0.9997
0.8 0.94 0.99 0.999 0.97 0.994 0.9996

(B) Z2
0.2 0.77 0.95 0.996 0.89 0.98 0.998
0.4 0.71 0.94 0.996 0.86 0.97 0.997
0.8 0.47 0.88 0.992 0.72 0.94 0.995
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empirical distribution of these correlations over 1000 simulations for model (22).
The results for model (23) are qualitatively similar, but as expected the correlations
are smaller at the same sample size and standard deviationσ . For example, the
quantiles forZ1 under model (23) withn = 100 andσ = 0.4 were observed to be
q0.05 = 0.89,q0.5 = 0.97 andq0.95 = 0.996.

7. Ozone data. In addition to simulations with normal predictors, we ana-
lyzed several different simulated and real data sets with nonnormal predictors
using IHT methodology and found that in nearly all cases the chi-squared and
weighted chi-squared reference distributions result in the same estimate of the di-
mension of the CMS. The ozone data [Breiman and Friedman (1985)] considered
briefly in this section is an instance where the estimates of dimension differ.

The responseY is atmospheric ozone concentration, and there are seven pre-
dictors: Daggett pressure gradient (DGPG, mmHg), humidity (HMDT, percent),
visibility (VSTY, miles), wind speed (WDSP, mph), Vandenburg 500 millibar
height (VDHT, m), the logarithms of Sandburg Air Force Base temperature (SBTP,
degrees C), and inversion base temperature (IBTP, degrees F). The logarithm of
the two temperature predictors was used to help to ensure that the linearity condi-
tion (A) hold to a useful approximation. Because we use only IHT methodology,
there is no reason to consider the constant covariance condition (B).

The test results from using the chi-squared and weighted chi-squared reference
distributions for Tj are shown in Table 8. Use of the chi-squared reference
distribution indicates that the dimension of the CMS is 3, while the weighted chi-
squared reference distribution indicates two dimensions.

Shown in Figure 1 is a scatterplot of the response versus the first IHT
predictor v̂T

1 Ẑ, where v̂j is the eigenvector ofnB̂B̂T corresponding to itsj th
largest eigenvaluêλj . A 3D plot (not shown) of the residualŝe versus the first
two IHT predictors (̂vT

1 Ẑ, v̂T
2 Ẑ) exhibits a saddle, confirming that dim(SIHT) is

at least 2. We were unable to find any notable graphical support for a third IHT
predictor and consequently we conjecture that the results of the third chi-squared
test in Table 8 are due to a failure of condition (C2) or (C3). In any event, because
the conditions needed for the weighted chi-squared reference distribution are
considerably less restrictive than those needed for the chi-squared, the weighted
chi-squaredp-values are likely more reliable.

TABLE 8
Test results for the ozone data

j Tj df χ2 p-value χ̄2 p-value

0 179.0 7 0.000 0.000
1 19.08 6 0.004 0.025
2 12.52 5 0.028 0.261
3 2.238 4 0.692 0.721
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FIG. 1. Scatterplot of ozone versus the first IHT predictor with a LOWESS smooth.

8. Discussion. In this article we developed two asymptotic tests for the
dimensionk of the IHT subspaceSIHT. The tests use the same statisticTj =
Ĉ−1

2
∑p

i=j+1 λ̂i for the hypothesis rank(B) = j , but have different reference

distributions depending on characteristics of the regression. Theχ2
p−j reference

distribution is appropriate under conditions (C1)–(C3) of Theorem 4. Otherwise, in
practically full generality, the reference distribution is the weighted chi-squared of
Theorem 5. We typically use both reference distributions in practice, as illustrated
in Table 8.

Both tests are derived under the working coverage condition (C1), which
is typically assumed in similar asymptotic developments in the literature. The
working assumption is supported partly by the fact that IHT incorporates OLS
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and PHD in a way that does not evoke the constant variance condition (B), and
is capable of discovering monotone and nonmonotone trends. Our experience
indicates that IHT often works very well in picking up the patterns in a regression
relation, so long as there is a nonzero vector to initiate the iteration process. Even
if the coverage assumption does not hold, the general test still finds the significant
vectors in the CMS, but the span of these vectors need not cover the CMS. In such
cases, the tests should be viewed as a means of finding significant vectors inSIHT,
which is a subspace of the CMS under the linear conditional mean condition (A).
The issue of coverage is a fundamental and challenging one and deserves careful
and in-depth investigation for IHT as well as other dimension reduction methods.

Cook and Critchley (2000) found that the CS automatically expands to
incorporate regression outliers and mixtures. Consequently, they argued that the
acknowledged sensitivity of CS methods like SIR and SAVE [see, e.g., Gather,
Hilker and Becker (2002)] can be viewed as an advantage, since they have the
ability to identify outliers and mixtures along with the main regression. In effect,
methods for estimating the CS provide their own diagnostics. We conjecture
that IHT is similarly self-diagnosing for outliers that affect the regression mean.
Although we have not performed theoretical work to trace the diagnostic limits of
IHT, various simulation results suggest that they might be fairly wide. For example,
with four standard normal predictors, we generated 50 observations according to
the linear modelY = Z1 + 0.2N(0,1), and then added a 51st observation with
Y = 6 and correspondingZj = 2,j = 1, . . . ,4. IHT estimated the dimension of the
CMS to be 2, and the 3D summary plot clearly showed the linear mean structure
and the outlier. Removal of the outlier resulted in a one-dimensional estimate of
the CMS, as expected. Alternatively, we might deal with outliers by designing a
robust version of IHT, replacing the sample moments by more robust estimators
along the lines that Gather, Hilker and Becker (2001) used to investigate a robust
version of SIR. This, however, is beyond the scope of the present paper.

The availability of these tests means that IHT is now a fully functioning
methodology on a par with PHD. But, unlike PHD, it does not require the constant
covariance condition (B) for either estimation or testing. In situations where PHD
is applicable [conditions (C1)–(C3)], IHT automatically combines PHD with OLS,
taking advantage of the ability of OLS to find linear trends in the mean function,
and the ability of PHD to find nonlinear trends.

APPENDIX: PROOFS OF LEMMAS

Throughout this section the identity matrix of dimensionp will be written asI
rather thanIp.

PROOF OFLEMMA 1. By definition,

β̂ = �̂−1/2σ̂−1En(Z − �Z )(Y − �Y ).(24)
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Let us first expand̂�−1/2. Note that

�̂ = En(ZZT ) − �Z �ZT

= En(ZZT ) + Op(n−1) = I + En(ZZT − I ) + Op(n−1),

whereEn(ZZT − I ) is of the orderOp(n−1/2). We know that̂�−1/2 must be of
the formI + An for some random matrixAn of the orderOp(n−1/2). Therefore,

(I + An)
2(I + En(ZZT − I )

) = I.

The left-hand side is

I + En(ZZT − I ) + 2An + Op(n−1).

ThereforeAn = −En(ZZT − I )/2+ Op(n−1) and

�̂−1/2 = I − En(ZZT − I )/2+ Op(n−1).(25)

By a similar argument one can show that

σ̂−1 = 1− En(Y
2 − 1)/2+ Op(n−1).(26)

It is easy to see that

En(Z − �Z )(Y − �Y ) = En(ZY ) + Op(n−1)
(27)

= β + En(ZY ) − β + Op(n−1).

Now substitute (25), (26) and (27) into (24) and expand the right-hand side of
(24) to obtain expansion (4).

Next let us prove expansion (5). By definition,

Ĥ = �̂−1/2En[ê(Z − �Z )(Z − �Z )T ]�̂−1/2.(28)

We have already expanded̂�−1/2. Now let us expandEn[ê(Z − �Z )(Z − �Z )T ].
We have

En[ê(Z − �Z )(Z − �Z )T ] = En(êZZT ) − �ZEn(êZ
T ) − En(êZ)�ZT + Op(n−1).

Because�Z = Op(n−1/2), we need only expandEn(êZ) so that the error is of the
orderOp(n−1/2). Note that

En(êZ) = En

[(
σ̂−1(Y − �Y ) − β̂T �̂−1/2(Z − �Z )

)
Z

]
= σ̂−1En[(Y − �Y )Z] − En[Z(Z − �Z )T ]�̂−1/2β̂.

It is easy to see that

σ̂−1 = 1+ Op(n−1/2),

En[(Y − �Y )Z] = β + Op(n−1/2),

En[Z(Z − �Z )T ] = I + Op(n−1/2),

�̂−1/2 = I + Op(n−1/2),

β̂ = β + Op(n−1/2).
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Therefore,

En(êZ) = β − β + Op(n−1/2) = Op(n−1/2),

and consequently,

Enê(Z − �Z )(Z − �Z )T = EnêZZT + Op(n−1).(29)

We now expand the right-hand side so that the error is of the orderOp(n−1). We
have

EnêZZT = σ̂−1En[(Y − �Y )ZZT ] − En[β̂T �̂−1/2(Z − �Z )(ZZT )].(30)

The first term on the right-hand side is

σ̂−1En[(Y − �Y )ZZT ]
= σ̂−1En[(Y − �Y )(ZZT − I )]

(31)
= σ̂−1En[Y (ZZT − I )] + Op(n−1)

= (
1− En(Y

2 − 1)/2
)
En[Y (ZZT − I )] + Op(n−1).

The second term on the right-hand side of (30) is expanded as

En[β̂T �̂−1/2(Z − �Z )(ZZT )]
= En[β̂T �̂−1/2(Z − �Z )(ZZT − I )]
= En[β̂T �̂−1/2Z(ZZT − I )] + Op(n−1).

The(i, j)th element of thep × p matrix on the right-hand side is
p∑

k=1

(�̂−1/2β̂)kEn[Zk(ZiZj − δij )],

where(�̂−1/2β̂)k is thekth element of the vector̂�−1/2β̂ andδij is the(i, j)th
element of thep-dimensional identity matrixI . BecauseZ has a standard
multivariate normal distribution, the expectation ofZk(ZiZj − δij ) is zero for
any i, j, k. ThereforeEn(Zk(ZiZj − δij )) = Op(n−1/2), and hence if we replace
the �̂ and β̂ by I andβ, then the error incurred has the magnitudeOp(n−1). It
follows then that

En[β̂T �̂−1/2(Z − �Z )(ZZT )] = En[βT Z(ZZT − I )] + Op(n−1).(32)

Now substitute (31) and (32) into (30) to obtain

En(êZZT ) = En[e(ZZT − I )] − 1
2En(Y

2 − 1)En[Y (ZZT − I )] + Op(n−1).

However, note that

E[e(ZZT − I )] = E(eZZT ) = H.
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Hence,

En(êZZT ) = H + En[e(ZZT − I ) − H ] − 1
2En(Y

2 − 1)H + Op(n−1),

which, combined with (29), implies that

Enê(Z − �Z )(Z − �Z )T

(33)
= H + En[e(ZZT − I ) − H ] − 1

2En(Y
2 − 1)H + Op(n−1).

Now substitute (25) and (33) into (28), and expand the right-hand side of (28) to
obtain the desired expansion (5).�

PROOF OFLEMMA 2. (i) Sinceβ /∈ Span(H) andHβ, . . . ,Hp−1β belong to
Span(H), β /∈ Span{Hβ, . . . ,Hp−1β}. Meanwhile, we know that

(β,Hβ, . . . ,Hp−1β)�0 = 0.

If the first row of �0 is not 0, thenβ can be written as a linear combination of
Hβ, . . . ,Hp−1β, which is a contradiction.

(ii) First, consider the caseβ ⊥ Span(H) (which includes the caseH = 0). Then
B = (β,0, . . . ,0), rank(B) = 1, and�0 is ap by p − 1 matrix. Write

�0 =
(

0T

�0

)
,

where�0 is ap − 1 by p − 1 matrix. Since�0 is an orthonormal matrix, its first
row must contain a nonzero element.

Next, consider the case whereβ is not orthogonal to Span(H). In this case
rank(B) ≥ 2. Suppose first that rank(B) = 2. Then�0 is ap by p − 2 matrix. We
claim thatH 2β �= 0. This is because ifH 2β = H(Hβ) = 0, thenHβ ⊥ Span(H),
but this impliesHβ = 0 sinceHβ belongs to Span(H). This means thatβ ⊥
Span(H), which is a contradiction. Hence

(H 2β, . . . ,Hp−1β) �= 0.

Now suppose that the first row of�0 is 0 and write

�0 =
(

0
�0

)
,

where �0 is a p − 2 by p − 2 matrix. Then(H 2β, . . . ,Hp−1β)�0 = 0. In
other words, the columns of�0 are orthogonal to the rows of the matrix
(H 2β, . . . ,Hp−1β), which contains at least one nonzero row. Consequently the
p − 2 columns of�0 belong to a(p − 3)-dimensional space, so that they cannot
be an orthogonal set. But this contradicts the fact that the columns of�0 are
orthogonal.
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Next, suppose that rank(B) = k > 2. We first prove thatHβ ∈ Span(H 2β, . . . ,

Hp−1β). Fromβ /∈ Span(H) it follows that the vectorsHkβ, . . . ,Hp−1β belong
to the subspace spanned by the vectorsHβ, . . . ,Hk−1β, because otherwise we
have, for somej ∈ {k, . . . , p − 1} and somec1 �= 0,

Hjβ = c1β + c2Hβ + · · · + ckH
k−1β,

contradicting the assumptionβ /∈ Span(H). By the same argument we can deduce
that the vectorsHkβ, . . . ,Hp−1β must belong to the subspace spanned by
H 2β, . . . ,Hk−1β. In particular,

Hkβ = (H 2β, . . . ,Hk−1β)δ

for someδ in Rk−2. Then

H
(
Hk−1β − (Hβ, . . . ,Hk−2β)δ

) = 0.(34)

In other words, the vectorHk−1β − (Hβ, . . . ,Hk−2β)δ is orthogonal to the rows,
and hence columns, ofH . However, both vectors in this difference belong to
Span(H), and so we have

Hk−1β = (Hβ, . . . ,Hk−2β)δ.

ConsequentlyHk−1β, and hence all the subsequent vectorsHk, . . . ,Hp−1β,
belong to the space spanned byHβ, . . . ,Hk−2β, which contradicts the assumption
that rank(B) = k.

However, if Hβ belongs to Span(H 2β, . . . ,Hp−1β), then the matrix(H 2β,

. . . ,Hp−1β) has rank at leastk − 1, because we know thatHβ, H 2β, . . . ,Hk−1β

are linearly independent. Hence the solution space of the matrix(H 2β, . . . ,

Hp−1β)x = 0 has dimension at most(p − 2) − (k − 1) = p − k − 1. Now if
the first two rows of�0 are zero, then there arep − k orthogonal solutions to that
equation, which is impossible.�

PROOF OF LEMMA 3. Sinceβ belongs to Span(H) it can be written as
β = Hη for some η in R

p. First assume that rank(B) = 1. We claim that
H 2η �= 0, otherwiseHη is orthogonal to Span(H), and must therefore be 0
becauseHη belongs to Span(H). If the first row of�0 is 0, then

(H 2η, . . . ,Hpη)�0 = 0.

Therefore thep − 1 columns of�0 are orthogonal to the rows of(H 2η, . . . ,

Hp−1η), which contains a nonzero row. But if so, the columns of�0 belong
to a (p − 2)-dimensional subspace ofR

p−1, and cannot be an orthogonal set—
a contradiction.

Now suppose that rank(B) = k ≥ 2. We first prove thatβ ∈ Span(Hβ, . . . ,

Hp−1β). Otherwise, by an argument similar to that used in Lemma 2, the
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vectorsHkβ, . . . ,Hp−1β all belong to the space spanned byHβ, . . . ,Hk−1β. In
particular, for someδ ∈ R

k−1,

Hkβ = (Hβ, . . . ,Hk−1β)δ,

which implies

Hk+1η = (H 2η, . . . ,Hkη)δ.

But then, as we argued in the proof of Lemma 2, following display (34),

Hkη = (Hη, . . . ,Hk−1η)δ or Hk−1β = (β, . . . ,Hk−2β)δ.

This implies thatHk−1β, and hence all its subsequent vectorsHkβ, . . . ,Hp−1β,
belong to the space spanned byβ, . . . ,Hk−2β, contradicting the assumption that
rank(B) = k.

That β belongs to Span(Hβ, . . . ,Bp−1β) implies that the matrix(Hβ, . . . ,

Hp−1β) has rankk, becauseβ, . . . ,Hk−1β are linearly independent. Therefore
the equation(Hβ, . . . ,Hp−1β)x = 0 has at most(p − 1) − k = p − k − 1
linearly independent solutions. However, if the first row of�0 is zero, then
(Hβ, . . . ,Hp−1β)x = 0 hasp − k orthogonal solutions—a contradiction.�
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