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GAME THEORY, MAXIMUM ENTROPY, MINIMUM
DISCREPANCY AND ROBUST BAYESIAN
DECISION THEORY!?

By PETERD. GRUNWALD AND A. PHILIP DAWID
CW Amsterdam and University College London

We describe and develop a close relationship between two problems that
have customarily been regarded as distinct: that of maximizing entropy, and
that of minimizing worst-case expected loss. Using a formulation grounded
in the equilibrium theory of zero-sum games between Decision Maker and
Nature, these two problems are shown to be dual to each other, the solution to
each providing that to the other. Although Topsge described this connection
for the Shannon entropy over 20 years ago, it does not appear to be widely
known even in that important special case.

We here generalize this theory to apply to arbitrary decision problems
and loss functions. We indicate how an appropriate generalized definition of
entropy can be associated with such a problem, and we show that, subject to
certain regularity conditions, the above-mentioned duality continues to apply
in this extended context. This simultaneously provides a possible rationale for
maximizing entropy and a tool for finding robust Bayes acts. We also describe
the essential identity between the problem of maximizing entropy and that of
minimizing a related discrepancy or divergence between distributions. This
leads to an extension, to arbitrary discrepancies, of a well-known minimax
theorem for the case of Kullback—Leibler divergence (the “redundancy-
capacity theorem” of information theory).

For the important case of families of distributions having certain mean
values specified, we develop simple sufficient conditions and methods for
identifying the desired solutions. We use this theory to introduce a new
concept of “generalized exponential family” linked to the specific decision
problem under consideration, and we demonstrate that this shares many of
the properties of standard exponential families.

Finally, we show that the existence of an equilibrium in our game can be
rephrased in terms of a “Pythagorean property” of the related divergence,
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thus generalizing previously announced results for Kullback—Leibler and
Bregman divergences.

1. Introduction. Suppose that, for purposes of inductive inference or choos-
ing an optimal decision, we wish to select a single distributfonto act as rep-
resentative of a clasB of such distributions. The maximum entropy principle
[Jaynes (1989), Csiszéar (1991) and Kapur and Kesavan (1992)] is widely ap-
plied for this purpose, but its rationale has often been controversial [see, e.qg.,
van Fraassen (1981), Shimony (1985), Skyrms (1985), Jaynes (1985), Seidenfeld
(1986) and Uffink (1995, 1996)]. Here we emphasize and generalize a reinterpreta-
tion of the maximum entropy principle [Topsge (1979), Walley (1991), Chapter 5,
Section 12, and Grunwald (1998)]: that the distribut®hthat maximizes the en-
tropy overI” also minimizes the worst-case expected logarithmic score (log loss).
In the terminology of decision theory [Berger (1985)]F is arobust Bayes, or
I'-minimax, act, when loss is measured by the logarithmic score. This gives a
decision-theoretic interpretation of maximum entropy.

In this paper we extend this result to apply to a generalized concept of entropy,
tailored to whatever loss functidnis regarded as appropriate, not just logarithmic
score. We show that, under regularity conditions, maximizing this generalized
entropy constitutes the major step toward finding the robust Bayemfhimax”)
act against” with respect tal. For the important special case thats described
by mean-value constraints, we give theorems that in many cases allow us to
find the maximum generalized entropy distribution explicitly. We further define
generalized exponential families of distributions, which, for the case of the
logarithmic score, reduce to the usugpenential fanlies. We extend generalized
entropy togeneralized relative entropy and show how this is essentially the same
as a general decision-theoretic definitiordadcrepancy. We show that the family
of divergences between probability measures knowrBragman divergences
constitutes a special case of such discrepancies. A discrepancy can also be used
as a loss function in its own right: we show that a minimax result for relative
entropy [Haussler (1997)] can be extended to this more general case. We further
show that a “Pythagorean property” [Csiszar (1991)] known to hold for relative
entropy and for Bregman divergences in fact applies much more generally; and we
give a precise characterization of those discrepancies for which it holds.

Our analysis is game-theoretic, a crucial concern being the existence and
properties of esaddle-point, and its associated minimax and maximin acts, in a
suitable zero-sum game between Decision Maker and Nature.

1.1. Aword of caution. It is not our purpose either to advocate or to criticize
the maximum entropy or robust Bayes approach: we adopt a philosophically
neutral stance. Rather, our aim is mathematical unification. By generalizing the
concept of entropy beyond the standard Shannon framework, we obtain a variety
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of interesting characterizations of maximum generalized entropy and display its
connections with other known concepts and results.

The connection withl'-minimax might be viewed, by those who already
regard robust Bayes as a well-founded principle, as a justification for maximizing
entropy—-but it should be noted th&tminimax, like all minimax approaches,
is not without problems of its own [Berger (1985)]. We must also point out
that some of the more problematic aspects of maximum entropy inference, such
as the incompatibility of maximum entropy with Bayesian updating [Seidenfeld
(1986) and Uffink (1996)], carry over to our generalized setting: in the words of
one referee, rather than resolving this problem, we “spread it to a new level of
abstraction and generality.” Although these dangers must be firmly held in mind
when considering the implications of this work for inductive inference, they do not
undermine the mathematical connections established.

2. Overview. We start with an overview of our results. For ease of exposition,
we make several simplifying assumptions, such as a finite sample space, in this
section. These assumptions will later be relaxed.

2.1. Maximum entropy and game theory. Let X be a finite sample space,
and letI" be a family of distributions oveX. Consider a Decision Maker (DM)
who has to make a decision whose consequences will depend on the outcome
of a random variableX defined onX. DM is willing to assume thatX is
distributed according to some € I', a known family of distributions ovelx,
but he or she does not know which such distribution applies. DM would like to
pick a singleP* € " to base decisions on. One way of selecting suéhras to
apply themaximum entropy principle [Jaynes (1989)], which advises DM to pick
that distributionP* € I' maximizing H(P) over all P € I". Here H(P) denotes
the Shannon entropy of P, H(P) := =Y ,cx p(x)logp(x) = Ep{—log p(X)},
where p is the probability mass function a?. However, the various rationales
offered in support of this advice have often been unclear or disputed. Here we
shall present a game-theoretic rationale, which some may find attractive.

Let 4 be the set of all probability mass functions defined ovér By
the information inequality [Cover and Thomas (1991)], we have that, for any
distribution P, inf,c4 Ep{—logq(X)} is achieved uniquely ay = p, where
it takes the valueH (P). That is, H(P) = inf,e 4 Ep{—logq(X)}, and so the
maximum entropy can be written as
Q) SUpH(P) = supinf Ep{—logqg(X)}.

Pel’ Pel g€

Now consider the “log loss game” [Good (1952)], in which DM has to specify
someq € A, and DM’s ensuing loss if Nature then reveals= x is measured
by —logg(x). Alternatively, we can consider the “code-length game” [Topsge
(1979) and Harremoés and Topsge (2001)], wherein we require DM to specify
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a prefix-free coder, mappingX into a suitable set of finite binary strings, and
to measure his or her loss whéh= x by the lengthe (x) of the codeword (x).
Thus DM's objective is to minimize expected code-length. Basic results of coding
theory [see, e.g., Dawid (1992)] imply that we can associate avighprobability
mass functiory havingg (x) = 2™, Then, up to a constant; logq (x) becomes
identical with the code-lengtl (x), so that the log loss game is essentially
equivalent to the code-length game.

By analogy with minimax results of game theory, one might conjecture that
(2) supinf Ep{—logq(X)} = inf supEp{—logq(X)}.

Pelqeh q€A per
As we have seenP achieving the supremum on the left-hand side of (2) is
a maximum entropy distribution ilr. However, just as important; achieving
the infimum on the right-hand side of (2) israbust Bayes act againsf", or
al'-minimax act [Berger (1985)], for the log loss decision problem.

Now it turns out that, whel is closed and convex, (2) does indeed hold under
very general conditions. Moreover the infimum on the right-hand side is achieved
uniquely forg = p*, the probability mass function of the maximum entropy
distribution P*. Thus, in this game between DM and Nature, the maximum entropy
distribution P* may be viewed, simultaneously, as defining both Nature’s maximin
and—in our view more interesting—DM'’s minimax strategy. In other words,
maximum entropy is robust Bayes. This decision-theoretic reinterpretation might
now be regarded as a plausible justification for selecting the maximum entropy
distribution. Note particularly that we dwt restrict the actg available to DM to
those corresponding to a distribution in the restricted séhat the optimal acp*
does indeed turn out to have this property is a consequence of, not a restriction on,
the analysis.

The maximum entropy method has been most commonly applied in the setting
where I' is described bymean-value constraints [Jaynes (1989) and Csiszar
(1991)]: T = {P:Ep(T) = t}, where T = 1(X) € R* is some given real- or
vector-valued statistic. As pointed out by Grinwald (1998), for such constraints
the property (2) is particularly easy to show. By the general theory of exponential
families [Barndorff-Nielsen (1978)], under some mild conditionszothere will
exist a distributionP* satisfying the constraint & (7') = t and having probability
mass function of the formp*(x) = explag + o "7 (x)} for somea € R¥, ag € R.
Then, foranyP €T,

®3) Ep{—logp*(X)} = —ap — & 'Ep(T) = —ag — 't = H(P*).

We thus see that* is an “equalizer rule” against, having the same expected loss
under anyP € T.
To see thatP*™ maximizes entropy, observe that, for aRy T,

4) H(P)= JQL Ep{—logq(X)} <Ep{—logp*(X)} = H(P¥),

by (3).
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To see thap* is robust Bayes and that (2) holds, note that, for ary,
(5) sung{— logq(X)} = Ep+{—logq(X)} = Ep«{—log p*(X)} = H(P"),
Pe

where the second inequality is the information inequality [Cover and Thomas
(1991)]. Hence

(6) H(P*) < inf SUpEp{—logq(X)}.
q€A per
However, it follows trivially from the “equalizer” property (3) gf* that
(7) SUPEp{—log p*(X)} = H(P").
Pell

From (6) and (7), we see that the choice- p* achieves the infimum on the right-
hand side of (2) and is thus robust Bayes. Moreover, (2) holds, with both sides
equal toH (P*).

The above argument can be extended to much more general sample spaces (see
Section 7). Although this game-theoretic approach and result date back at least to
Topsge (1979), they seem to have attracted little attention so far.

2.2. This work: generalized entropy. The above robust Bayes view of maxi-
mum entropy might be regarded as justifying its use in those decision problems,
such agliscrete coding andKelly gambling [Cover and Thomas (1991)], where the
log loss is clearly an appropriate loss function to use. But what if we are interested
in other loss functions? This is the principal question we address in this paper.

2.2.1. Generalized entropy and robust Bayesacts. We first recall, in Section 3,
a natural generalization of the concept of “entropy” (or “uncertainty inherent in a
distribution”), related to a specific decision problem and loss function facing DM.
The generalized entropy thus associated with the log loss problem is just the
Shannon entropy. More generally, ldétbe some space of actions or decisions and
let X be the (not necessarily finite) space of possible outcomes to be observed. Let
the loss function be given bl : X x A — (—00, o0], and letl” be a convex set of
distributions ovetX. In Sections 4—6 we set up a statistical ggpheased on these
ingredients and use this tb@w that, under a variety of broad regularity conditions,
the distributionP* maximizing, overl", the generalized entropy associated with
the loss functionl. has a Bayes aet* € 4 [achieving inf,c 4 L(P*, a)] that is a
robust BayeslI(-minimax) decision relative td.—thus generalizing the result for
the log loss described in Section 2.1. Some variations on this result are also given.

2.2.2. Generalized exponential families. In Section 7 we consider in detail the
case ofmean-value constraints, of the formI' = {P:Ep(T) = t}. For fixed loss
function L and statistic’, ast varies we obtain a family of maximum generalized
entropy distributions, one for each valuewfror Shannon entropy, this turns out
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to coincide with thexponential family having natural sufficient statistie [Csiszar
(2975)]. In close analogy we define the collection of maximum generalized entropy
distributions, as we vary, to be thegeneralized exponential family determined by

L andT, and we give several examples of such generalized exponential families.
In particular, Lafferty’s “additive models based on Bregman divergences” [Lafferty
(1999)] are special cases of our generalized exponential families (Section 8.4.2).

2.2.3. Generalized relative entropy and discrepancy.  In Section 8 we describe
how generalized entropy extendsymneralized rel ative entropy and show how this
in turn is intimately related to discrepancy or divergence function. Maximum
generalized relative entropy then becomes a special case of the minimum
discrepancy method. For the log loss, the associated discrepancy function is just
the familiar Kullback—Leibler divergence, and the method then coincides with the
“classical” minimum relative entropy method [Jaynes (1989); note that, for Jaynes,
“relative entropy” is the same as Kullback—Leibler divergence; for us it is the
negative of this].

2.2.4. A generalized redundancy-capacity theorem. In many statistical deci-

sion problems it is more natural to seek minimax decisions with respect to the
discrepancy associated with a loss, rather than with respect to the loss directly.
With any game we thus associate a new “derived game,” in which the discrepancy
constructed from the loss function of the original game now serves as a new loss
function. In Section 9 we show that our minimax theorems apply to games of this
form too: broadly, whenever the conditions for such a theorem hold for the original
game, they also hold for the derived game. As a special case, we reprove a minimax
theorem for the Kullback—Leibler divergence [Haussler (1997)], known in infor-
mation theory as the redundancy-capacity theorem [Merhav and Feder (1995)].

2.2.5. The Pythagorean property. The Kullback—Leibler divergence has a
celebrated property reminiscent of squared Euclidean distance: it satisfies an
analogue of the Pythagorean theorem [Csiszar (1975)]. It has been noted [Csiszar
(1991), Jones and Byrne (1990) and Lafferty (1999)] that a version of this property
is shared by the broader class of Bregman divergences. In Section 10 we show
that a “Pythagorean inequality” in fact holds for the discrepancy based on an
arbitrary loss functiorL, so long as the gamg' has a value; that is, an analogue
of (2) holds. Such decision-based discrepancies include Bregman divergences as
special cases. We demonstrate that, even for the case of mean-value constraints,
the Pythagorean inequality for a Bregman divergence may be strict.

2.2.6. Finally, Section 11 takes stock of what has been achieved and presents
some suggestions for further development.
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3. Decision problems. In this section we set out some general definitions and
properties we shall require. For more background on the concepts discussed here,
see Dawid (1998).

A DM has to take some actiom selected from a giveaction space A, after
which Nature will reveal the value € X of a quantityX, and DM will then
suffer alosd.(x, a) in (—o0, 0o]. We suppose that Nature takes no account of the
action chosen by DM. Then this can be considered as a zero-sum game between
Nature and DM, with both players moving simultaneously, and DM paying Nature
L(x, a) after both moves are revealed. We call such a combingtien (X, 4, L)
abasic game.

Both DM and Nature are also allowed to make randomized moves, such a move
being described by a probability distributigh over X (for Nature) or¢ over A
(for DM). We assume that suitabtefields, containing all singleton sets, have been
specified inX; and+, and that any probability distributions considered are defined
over the relevant -field; we denote the family of all such probability distributions
on X by £y. We further suppose that the loss functibiis jointly measurable.

3.1. Expected loss. We shall permit algebraic operations on the extended real
line [—o0, oo], with definitions and exceptions as in Rockafellar (1970), Section 4.

For a functionf: X — [—o0,00], and P € £y, we may denote E{f(X)}

[i.e., Ex~p{f(X)}] by f(P). When f is bounded below,/(P) is construed
as oo if P{f(X) = oo} > 0. When f is unbounded, we interpref(P) as
fH(P) — f~(P) € [—o0, +0o0], where f+(x) := max f(x),0} and f~(x) :=
max{— f (x), 0}, allowing either f(P) or f~(P) to take the valuex, but not
both. In this last casg (P) is undefined, else it idefined (either as a finite number
or as$o00).

If DM knows that Nature is generating from P or, in the absence of such
knowledge, DM is usingP to represent his or her own uncertainty abddt
then the undesirability to DM of any aate A will be assessed by means of its
expected | oss,

(8) L(P,a):=Ep{L(X,a)).

We can similarly extendL to randomized actsL(x,¢) := Ex~{L(x, A)},
L(P,£) =Ex,a)~ pxc L(X, A)}.

Throughout this paper we shall mostly confine attention to probability measures
P € P such thatL (P, a) is defined for allz € A, and we shall denote the family
of all such P by ». We further confine attention to randomized at¢tsuch
that L(P, ¢) is defined for allP € 9, denoting the set of all suchby Z. Note
that any distribution degenerate at a poird X is in &, and soL(x, ¢) is defined
forallx e X,¢ € Z.

LEMMA 3.1. Forall Pe P,¢ € Z,
9) L(P,¢) =Ex~p{L(X,0)}=Ea~{L(P,A)}.
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PROOF WhenL(P, ¢) is finite this is just Fubini’s theorem.

Now consider the casd.(P,¢) = oo. First supposeL > 0 everywhere.
If L(x,¢) = o0 for x in a subset ofX having positive P-measure, then (9)
holds, both sides being-co. Otherwise,L(x, ¢) is finite almost surely{ P].
If Ep{L(X,¢)} were finite, then by Fubini it would be the same B&&P, ¢).
Soonceagain {L(X,¢)}=L(P,¢)=+o0.

This result now extends easily to possibly negafiven noting that.— (P, ¢)
must be finite; a parallel result holds wWhenP, ¢) = —oo.

Finally the whole argument can be repeated after interchanging the roles of
anda and of P andz. 0O

COROLLARY 3.1. Forany P € P,

(10) int L(P.£)= inf L(P.a).

ProoFr.  Clearly infcz L(P,¢) < infyeq L(P,a). If inf e L(P,a) = —c0
we are done. Otherwise, for any € Z, L(P,{) = Ea~(L(P,A) >
infaE:A L(P, a). D

We shall need the fact that, for anye Z, L(P,¢) is linear in P in the
following sense.

LEMMA 3.2. Let Py, P1e P,andlet P, :=(1—A)Po+ AP1. Fix¢ € Z, such
that the pair {L(Pg, ¢), L(P1, ¢)} doesnot contain both the values —oo and +oc.
Then, for any 1 € (0, 1), L(P;, ¢) isfiniteif andonlyif both L(Py, ¢) and L( Py, )
are. Inthiscase L(P,,¢)=(1—A)L(Po, ) + A L(P1, ).

ProOOF Consider a bivariate random varialole X') with joint distribution P *
over{0, 1} x X specified by the following! = 1, 0 with respective probabilitiels,
1— A; and, givenl =i, X has distributionP;. By Fubini we have

Ep{L(X, )} =Ep«[Ep{L(X, O)|I}],

in the sense that, whenever one side of this equation is defined and finite, the same
holds for the other, and they are equal. Noting that, uifethe distribution ofX
is P, marginally, andP; conditional on/ =i (i =0, 1), the result follows. O

3.2. Bayes act. Intuitively, whenX ~ P an actap € A will be optimal if it
minimizesL(P, a) over alla € 4. Any such act:p is aBayesact againstP. More
generally, to allow for the possibility thdt(P, a) may be infinite as well as to take
into account randomization, we cglh € Z a (randomized) Bayes act, or simply
Bayes, againstP (not necessarily i) if

(11) Ep{L(X,?) — L(X,¢p)} € [0, 00]
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for all ¢ € Z. We denote byAp (resp.Zp) the set of all nonrandomized (resp.
randomized) Bayes acts agairst Clearly Ap € Zp, andL(P, {p) is the same
forallcp € Zp.

The loss functionL will be called I'-strict if, for each P € I', there
existsap € 4 that is the unique Bayes act agairat L is I'-semistrict if, for
eachP €T, Ap is nonempty, and,a’ € Ap = L(-,a) = L(-,a’). WhenL is
I'-strict, andP e T, it can never be optimal for DM to choose a randomized act;
whenL is I"-semistrict, even though a randomized act can be optimal there is never
any point in choosing one, since its loss function will be identical with that of any
nonrandomized optimal act.

Semistrictness is clearly weaker than strictness. For our purposes we can replace
it by the still weaker concept ofelative strictness. L is I'-relatively strict if
for all P € I" the set of Bayes actsp is nonempty and, for alk,a’ € Ap,
L(P',a)=L(P',d")forall P' eT.

3.3. Bayeslossand entropy. Whether or not a Bayes act exists, Beyes|oss
H(P) e [—o0, oo] of a distributionP € & is defined by

(12) H(P):= inf L(P.a).

It follows from Corollary 3.1 that it would make no difference if the infimum
in (12) were extended to be oveke Z. We shall mostly be interested in Bayes acts
of distributionsP with finite H(P). In the context of Section 2.1, with(x, ¢g) the

log loss—logg (x), H(P) is just the Shannon entropy &f.

PrRoOPOSITION 3.1. Let P € 2 and suppose H(P) is finite. Then the
following hold:

() ¢p € Z isBayesagainst P if and only if
(13) Ep{L(X,a) — L(X,¢p)} € [0, 00]

for all a € A.

(ii) ¢p isBayesagainst P ifandonlyif L(P,¢p) = H(P).

(i) If P admits some randomized Bayes act, then P also admits some
nonrandomized Bayes act; that is, + p isnot empty.

PrRoOF Items (i) and (ii) follow easily from (10) and finiteness. To prove (iii),
let f(P,a):=L(P,a)— H(P). Then f(P,a) > 0 for all a, while Ex~, f (P,
A)=L(P,¢p) — H(P) =0. We deduce thdlu € A: f (P, a) = 0} has probabil-
ity 1 under¢p and so, in particular, must be nonempty.

We express the well-known concavity property of the Bayes loss [DeGroot
(1970), Section 8.4] as follows.
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PROPOSITION3.2. Let Py, Py e P,andlet P, := (1 — 1) Py + APy1. SUppose
that H(P;) < oo fori =0, 1. Then H(P,) isaconcavefunction of A on [0, 1] (and
thus, in particular, continuous on (0, 1) and lower semicontinuous on [0, 1]). Itis
either bounded above on [0, 1] or infinite everywhereon (0, 1).

PROOF Let 8 be the set of alla € A such thatL(P,,a) < oo for
some i € (0, 1)—and thus, by Lemma 3.2, for all € [0,1]. If 8 is empty,
thenH (P,) = oo for all A € (0, 1); in particular,H (P,) is then concave of0, 1].
Otherwise, taking any fixed € 8 we haveH (P,) < L(P;,a) <max L(P;,a),
so H(P;) is bounded above ofD, 1]. Moreover, as the pointwise infimum of
the nonempty family of concave functiod€. (P;,a):a € A}, H(P,) is itself
a concave function of on[0, 1]. O

COROLLARY 3.2. Ifforall a € A, L(Py,a) < oo for some A € (0, 1), then
for all A €[0,1], H(Py) = lim{H(P,):pn € [0,1], x — A} [it being allowed
that H (P,) isnot finite].

PROOFE In this caseB = «, so thatH (P,) = inf,cg L(P,, a). Each func-
tion L(Py, a) is finite and linear, hence a closed concave functioh ofi [0, 1].
This last property is then preserved on taking the infimum. The result now follows
from Theorem 7.5 of Rockafellar (1970)0

COROLLARY 3.3. If in addition H(P;) is finite for i = 0,1, then H(P,) is
a bounded continuous function of A on [0, 1].

Note that Corollary 3.3 will always apply when the loss function is bounded.

Under some further regularity conditions [see Dawid (1998, 2003) and
Section 3.5.4 below], a general concave function ofercan be regarded as
generated from some decision problem by means of (12). Concave functions have
been previously proposed as general measures of the uncertainty or diversity in a
distribution [DeGroot (1962) and Rao (1982)], generalizing the Shannon entropy.
We shall thus call the Bayes lo$s, as given by (12), thegéneralized) entropy
function or uncertainty function associated with the loss functidn

3.4. Scoringrule.  Suppose the action spadeis itself a set? of distributions
for X. Note we are not here consideritye @ as a randomized act ovég, but
rather as a simple act in its own right (e.g., a decision to q@o#es a description
of uncertainty abou’). We typically write the loss a$S(x, Q) in this case and
refer to S as ascoring rule or score. Such scoring rules are used to assess the
performance of probability forecasters [Dawid (1986)]. We Sais I'-proper
if T C@C & and, for allP € T', the choiceQ = P is Bayes againsk ~ P.
ThenforP €T,

(14) H(P)=S(P, P).
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Suppose now we start from a general decision problem, with loss funktion
such thatzy is nonempty for allQ € @. Then we can define a scoring rule by

(15) S(x, Q) :=L(x,%g),

where for eachQ € @ we suppose we have selected some specific Bayes
act g € Zg. Then for P € @, S(P,Q) = L(P,¢p) is clearly minimized
whenQ = P, so that this scoring rule i@-proper. If L is @-semistrict, then (15)
does not depend on the choice of BayesgctMore generally, ifL is @-relatively
strict, thenS(P, Q) does not depend on such a choice, forRllQ € @.

We see that, forP € @, infpecq S(P, Q) = S(P, P) = L(P,¢p) = H(P).
In particular, the generalized entropy associated with the constructed scoring
rule (15) is identical with that determined by the original loss functionn this
way, almost any decision problem can be reformulated in terms of a proper
scoring rule.

3.5. Some examples.  We now give some simple examples, both to illustrate
the above concepts and to provide a concrete focus for later development. Further
examples may be found in Dawid (1998) and Dawid and Sebastiani (1999).

3.5.1. Brier score. Although it can be generalized, we restrict our treatment
of the Brier score [Brier (1950)] to the case of a finite sample spake=
{x1,...,xn}. Adistribution P overX can be represented by its probability vector
p=(pQ,...,p(N)), wherep(x) := P(X = x). A point x € X may also be
represented by th&¥-vectors* corresponding to the point-mass distribution{oh
having entriess*(j) = 1 if j = x, 0 otherwise. The Brier scoring rule is then
defined by

(16) S(x, Q) =18 —ql?

N
=Y {8 () —q(HY?

j=1
(17) =Y q(HD*—2q(x)+1.
J
Then
(18) S(P,O)=>"q(H*-2> p(Hq(j)+1,
J J

which is uniquely minimized folQ = P, so that this is &-strict proper scoring
rule. The corresponding entropy function is (see Figure 1)

(19) H(P)=1-) p(j>
J
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FIG. 1. Brier, log and zero—one entropies for the case X = {0, 1}.

3.5.2. Logarithmic score. An important scoring rule is thigarithmic score,
generalizing the discrete-case log loss as already considered in Section 2. For
a general sample spacte, let u be a fixedo -finite measure (théase measure)
on a suitabler-algebra inX, and takeA to be the set of all finite nonnegative
measurable real functiomson X for which [ ¢(x)du(x) = 1. Any g € 4 can be
regarded as the density of a distributi@nover ¢ which is absolutely continuous
with respect tou. We denote the set of such distributions By. However,
because deitges are only defing up to a set of measure 0, differeris in A can
correspond to the sam@ € M. Note moreover that the many—one correspondence
betweerny andQ depends on the specific choice of base megsuaned will change
if we changeu.
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We define a loss function by

(20) S(x,q) =—logq(x).

If (and only if) P € M, then S(P, g) will be the same for all versiong of
the density of the same distributio@ € M. Hence for P, 0 € M we can
write S(P, Q) instead of S(P,q), and we can considef to be a scoring
rule. It is well known that, forP, Q, O* € M, Ep{S(X, Q) — S(X, 0%} =
— [ p(x)log{g(x)/q*(x)}dp is nonnegative for allQ if and only if 0* = P.
That is, O* is Bayes againsP if and only if 9Q* = P, so that this scoring rule
is M-strictly proper.
We have, forP € M,

(21) H(P)=— / p(0)log p(x) .,

the usual definition of thentropy of P with respect tou. When X is discrete
and v is counting measure, we recover the Shannon entropy. For the simple
caseX = {0, 1} this is depicted in Figure 1. Note that the whole decision problem,
and in particular the value @ (P) as given by (21), will be altered if we change
(even in a mutually absolutely continuous way) the base measure

Things simplify whenu is itself a probability measure. In this cagecontains
the constant function 1. For any distributi®rwhatsoever, whether or néte M,
we haveL(P, 1) = 0, whence we deducH (P) < 0 (with equality if and only
if P =u). WhenP € M, (21) assertsH (P) = —KL (P, n), where KL is the
Kullback—-Leibler divergence [Kullback (1959)]. [Note that it is possible to have
KL(P, u) = o0, and thusH (P) = —oo, even forP € M.] If P ¢ M, there exist
a measurable s&t andx > 0 suchthap(N) = 0butP(N) = «. Defineg, (x) =1
(x ¢ N), gu(x) =n (x € N). Theng,, € A and L(P, g,) = —«a logn. It follows
that H(P) = —o0. Since the usual definition [@&zar (1975) and Posner (1975)]
has K(P, u) = co whenP « u, we thus haved (P) = —KL (P, ) in all cases.
This formula exhibits clearly the dependence of the entropy on the chojce of

3.5.3. Zero—oneloss. Let X be finite or countable, také& = X and consider
the loss function
(22) Lix.a) {0, if a =x,

xX,a)= .
1, otherwise.

ThenL(P,a) =1— P(X = a), and a nonrandomized Bayes act undéeis any
mode of P. When P has (at least) two modes, say anda,, thenL(x,ap)
andL(x, a})) are not identical, so that this loss function is @tsemistrict. This
means that we may have to take account of randomized strateffie®M. Then,
writing ¢ (x) := ¢(A = x), we have

(23) Lx,0)=1-2¢(x)
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and
(24) L(P,O)=1-) p(x)¢(x).

xeX
A randomized act is Bayes againsP if and only if it puts all its mass on the set
of modes ofP.
We have generalized entropy function

(25) H(P)=1- pmax

With pmax := SUR.cx p(x). For the simple caseX = {0, 1}, this is depicted
in Figure 1.

3.5.4. Bregman score. Suppose that @) = N < oo and that we represent
a distribution P € & over X by its probability mass functiop € A, the unit
simplexinR? , which can in turn be considered as a subséof- 1)-dimensional
Euclidean space. The interiax® of A then corresponds to the subgetC & of
distributions giving positive probability to each point ¥

Let H be a finite concave real function on. For anyg € A°, the set
V H(q) of supporting hyperplanes t& at g is nonempty [Rockafellar (1970),
Theorem 27.3]—having a unigue member wiiéis differentiable at;. Select for
eachy € A° some specific member 8fH (¢), and let the height of this hyperplane
atarbitraryp € A be denoted by, (p): this affine function must then have equation
of the form

(26) ly(p)=H(q) + o) (p—q).

Although the coefficient vectar, € R* in (26) is only defined up to addition of
a multiple of the unit vector, this arbitrariness will be of no consequence. We shall
henceforth reuse the notatiéht (¢) in place ofq,, .

By the supporting hyperplane property,

(27) ly(p) = H(p),
(28) ly(q) = H(q).
Now consider the functiod : X6 x @ defined by
(29) S(x, Q) =H(q) + VH(q) (6" — q),

wheres* is the vector having*(j) = 1 if j = x, O otherwise.

Then we easily see that(P, Q) =1,(p), so that, by (27) and (285(P, Q) is
minimized inQ whenQ = P. ThusS is a@-proper scoring rule.

We note that

0<d(P,Q)=58(P,0)—S(P,P)

(30) T
=H(q)+VH(q)' (p—q)—H(p).
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With further regularity condions (including in partialar differentiability),
(30) becomes thdéregman divergence [Bregman (1967), Csiszar (1991) and
Censor and Zenios (1997)] associated with the convex funetiin We therefore
call S, defined as in (29), Bregman score associated withH . This will be unique
whenH is differentiable om~°. In Section 8 we introduce a more general decision-
theoretic notion of divergence.

We note by (28) that the generalized entropy function associated with this score
is H*(P) = S(P, P) =1,(p) = H(p) (at any rate inside\°). That is to say, we
have exhibited a decision problem for which a prespecified concave funétion
is the entropy. This construction can be extended to the whatearid to certain
concave functiong/ that are not necessarily finite [Dawid (2003)]. Extensions can
also be made to more general sample spaces.

3.5.5. Segparable Bregman score. A special case of the construction of
Section 3.5.4 arises when we taKeq) to have the form- ", . ¥ {g(x)}, with
Y areal-valued differentiable convex function of a nonnegative argument. In this

case we can takéVH (¢))(x) = —¢'{g(x)}, and the associated proper scoring
rule has
(31) S, Q) =—v'{g®)} = Y [W¥ig®)} — ¥ {gD}].

teX

We term this theseparable Bregman scoring rule associated withy. The
correspondingseparable Bregman divergence [confusingly, this special case
of (30) is sometimes also referred to simply as a Bregman divergence] is

(32) dy(P, Q)= ) Ay{p(x),qx)},
xeX
where we have introduced

(33) Ay (a,b):=y (@) =y (b) —¥'(b) (a—b).

The nonnegative functiom\, measures how much the convex functign
deviates au from its tangent ab; this can be considered as a measure of “how
convex”y is.

We can easily extend the above definition to more general sample spaces. Thus
let X, u, A andM be as in Section 3.5.2, and, in analogy with (31), consider the
following loss function:

(34)  S(.q)i=—v'lg)} — / W {g®) — ) ¥ {gON ().

Clearly if g, ¢’ are bothu-densities of the sam@ € M, thenS(x, g) = S(x,q’)
a.e.[u], and so, for anyP € M, S(P,q) = S(P,q’). Thus once again, for
P, Q € M, we can simply writeS(P, Q). We then have

(35) S(P. Q)= f L) — PO} ¥ g} — Yig )} du ).
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whence
(36) s Py == [lp@idu,
and so, ifS(P, P) is finite,

(37) dy(P,Q):=S8(P,Q)—S(P,P)= / Ay{p(®),q®}dun().

Thus, forP, Q € M, if S(P, P) is finite, S(P, P) < S(P, Q). Using the extended
definition (11) of Bayes acts, we can show thRtis Bayes agains? even
when S(P, P) is infinite. That is,S is an.M-proper scoring rule. Iff is strictly
convex,S is M-strict.

The quantitydy (P, Q) defined by (37) is identical with thesdparable)
Bregman divergence [Bregman (1967) and Csiszar (199B), (p, ¢), based onjr
(and 1), between the densities and g of P and Q. Consequently, we shall
term S(x, ¢) given by (34) aseparable Bregman score. For P € M the associated
separable Bregman entropy is then, by (36),

(38) Hy(P)=— / Yip0)}du).

The logarithmic score arises as a special case of the separable Bregman score
on takingy (s) = slogs; and the Brier score arises on takipgto be counting
measure ang (s) = s — 1/N.

3.5.6. More examples. Since every decision problem generates a generalized
entropy function, an enormous range of such functions can be constructed. As
a very simple case, consider tlygadratic loss problem, with X = A = R,

L(x,a) = (x — a)2. Thenap = Ep(X) is Bayes againsP, and the associated
proper scoring rule and entropy &éx, P) = {x —Ep(X)}2andH (P) = varp (X)

— avery natural measure of uncertainty. This cannot be expressed in the form (38),
so it is not associated with a separable Bregman divergence. Dawid and Sebastiani
(1999) characterize all those generalized entropy functions that depend only on the
variance of a (possibly multivariate) distribution.

4. Maximum entropy and robust Bayes. Suppose that Nature may be
regarded as generating from a distributionP, but DM does not knowP. All
that is known is thatP € I', a specified family of distributions oveX. The
consequence DM faces if he or she takesiaet4 when Nature chooses = x is
measured by the logs(x, a). How should DM act?

4.1. Maximum entropy. One way of proceeding is to replace the family
by some “representative” membé&r* € ", and then choose an act that is Bayes
against P*. A possible criterion for choosing®*, generalizing the standard
maximum Shannon entropy procedure, might be:

Maximize, over P € T, the generalized entropy H (P).
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4.2. Robust Bayes rules. Another approach is to conduct a form of “robust
Bayes analysis” [Berger (1985)]. In particular we investigate Theninimax
criterion, a compromise between Bayesian and frequentist decision theory. For
a recent tutorial overview of this criterion, see Vidakovic (2000).

WhenX ~ P €T, the loss of an aci is evaluated by.(P, a). We can form
a newrestricted game, gr = (I, A, L), where Nature selects a distributiagh
from I, DM an acta from 4, and the ensuing loss to DM is taken to beP, a).
Again, we allow DM to take randomized aats= Z, yielding lossL(P, ¢) when
Nature generateX from P. In principle we could also let Nature choose her
distribution P in some random fashion, described by means of a law (distribution)
for a random distribution? over . However, with the exception of Section 10,
where randomization is in any case excluded, in all the cases we shall consider
will be convex, and then every randomized act for Nature can be replaced by a
nonrandomized act (the mean of the lawR)fhaving the identical loss function.
Consequently we shall not consider randomized acts for Nature.

In the absence of knowledge of Nature’s choiceRayf we might apply the
minimax criterion to this restricted game. This leads to the prescription for DM:

Choose ¢ = ¢* € Z, to achieve

(39) inf supL(P,¢).
{€Z per
We shall term any aat™ achieving (39yobust Bayes against", or I'-minimax.
When the basic game is defined in terms a@groper scoring rules(x, Q),
andI” C @, this robust Bayes criterion becomes:
Choose Q0 = 0%, to achieve

(40) inf supS(P, Q).

Q€@ per
Note particularly that in this case there is no reason to reqigeI'; we might
want to take@ larger thanl" (typically, @ = &). Also, we have not considered
randomized acts in (40)—we shall see later that, for the problems we consider,
this has no effect.

Below we explore the relationship between the above two methods. In
particular, we shall show that, in very general circumstances, they produce
identical results. That is, maximum generalized entropy is robust Bayes. This will
be the cornerstone of all our results to come.

First note that from (12) the maximum entropy criterion can be expressed as:

Choose P = P*, to achieve

(41) supinf L(P,¢).
Pel¢€Z

There is a striking duality with the criterion (39).
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In the general terminology of game theory, (41) defines the extended real
lower value,

(42) V= suplnf L(P,?),
peré€z

and (39) theupper value,

(43) V := inf supL(P,¢),

{€Z per
of the restricted gamg' . In particular, the maximum achievable entropy is exactly
the lower value. We always have < V. When these two are equal and finite, we
say the gamg' has avalue, V:=V =V.

DEFINITION 4.1. The pair(P*,¢*) e T x Z is asaddle-point (or equilib-
rium) in the gameg! if H* := L(P*, ¢*) is finite, and the following hold:

(@) L(P*¢*)<L(P*?) forall ¢ € Z;

(44)
(b) L(P*,¢*)=L(P, %) forall P €T.
In Sections 5 and 6 we show for convBsxthe existence of a saddle-pointgh
under a variety of broadly applicable conditions.
In certain important special cases [see, e.g., Section 2.1, (3)], we may be able to
demonstrate (b) above by showing tlgatis an equalizer rule:

DEFINITION 4.2. ¢ € Zis anequalizer rulein g1 if L(P, ¢) is the same finite
constantforallP e T".

LEMMA 4.1. Suppose that there exist both a maximum entropy distribu-
tion P* € I achieving (42), and a robust Bayes act ¢* € Z achieving (43).
Then V < L(P*,¢*) < V. If, further, the game has a value, V say, then
V =H*:=L(P* ¢*),and (P*, ¢*) isa saddle-point in the game §'.

PROOF V =inf, L(P*,¢) < L(P*,¢*), and similarlyL(P*, ¢*) < V. Ifthe
game has a valu&, then L(P*,¢*) =V =inf,cz L(P*,¢), and L(P*,{*) =
V =suppr L(P,¢*). O

Note that, even when the game has a value, either or ba®f ahd¢* may fail
to exist.
Conversely, we have the following theorem.

THEOREM 4.1. Suppose that a saddle-point (P*, ¢*) existsin the game g!.
Then:

() Thegamehasvalue H* = L(P*,¢*).
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(i) ¢* isBayesagainst P*.

(iiiy H(P*)=H*.

(iv) P* maximizestheentropy H(P) over I'.
(v) ¢*isrobust BayesagainstT'.

PrRoOOF.  Part (i) follows directly from (44) and the definitions &t V. Part (ii)
is immediate from (44)(a) and finiteness, and in turn implies (iii). For BryT,
H(P) < L(P,¢*) < H* by (44)(b). Then (iv) follows from (iii). For any € Z,
supp L(P,¢) > L(P*, ¢), so that, by (44)(a),

(45) SUPL(P,¢) > H*.
P

Also, by (44)(b),
(46) SUPL(P,*)=H".
P

Comparing (45) and (46), we see tlgdtachieves (39); that is, (v) holds[

COROLLARY 4.1. Suppose that L is I'-relatively strict, that there is a
unique P* € I maximizing the generalized entropy H and that ¢* € Z is a Bayes
act against P*. Then, if g1 has a saddle-point, ¢* isrobust Bayes against I".

COROLLARY 4.2. Let the basic game § be defined in terms of a @-strictly
proper scoring rule S(x, Q), and let ' € @. If a saddle-point in the restricted
game ¢! exists, it will havethe form (P*, P*). Thedistribution P* will then solve
each of the following problems:

(i) Maximizeover P € I' the generalized entropy H(P) = S(P, P).
(i) Minimize over Q € @ the worst-case expected score, supp- S(P, Q).

It is notable that, when Corollary 4.2 applies, the robust Bayes distribution
solving problem (ii) turns out to belong tb, even though this constraint was
not imposed.

We see from Theorem 4.1 that, when a saddle-point exists, the robust Bayes
problem reduces to a maximum entropy problem. This property can thus be
regarded as an indirect justification for applying the maximum entropy procedure.
In the light of Theorem 4.1, we shall be particularly interested in the sequel
in characterizing those decision problems for which a saddle-point exists in the
gameg’.

4.3. A special case. A patrtial characterization of a saddle-point can be given
in the special case that the family is closed under conditioning, in the sense
that, for all P e I" and B € X a measurable set such thA{B) > 0, Pg, the
conditional distribution undeP for X givenX € B, is also inI". This will hold,
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most importantly, wheir is the set of all distributions supported dhor on some
measurable subset &f.

For the following lemma, we suppose that there exists a saddle-@@int *)
in the gamcﬁr, and writeH* = L(P*, ¢*). In particular, we havé.(P, *) < H*
forall P e I'. We introducel :={x € X: L(x,¢{*) = H*}.

LEMMA 4.2. Supposethat I' is closed under conditioning and that P € T is
suchthat L(P,¢*) = H*. Then P issupportedon U.

ProOR Takeh < H*, and defineB :={x € X:L(x,{*) < h}, m :== P(B).
By linearity, we have H* = L(P,{*) = w L(Pp,¢*) + (1 — ) L(Pgc, %)
(where B¢ denotes the complement d&). However, by the definition ofB,
L(Pg,¢*) < h, while (if 7 # 1) L(Pgc, ¢*) < H*, by Definition 4.1(b) and the
fact thatPgc € T. It readily follows thatr = 0. Since this holds for any < H*,
we musthaveP{L(X, ¢*) > H*} = 1. However, b {L(X, ")} = L(P,¢*) = H*,
and the result follows. OJ

COROLLARY 4.3. L(X,¢*)= H* almost surely under P*.

COROLLARY 4.4. Ifthereexists P € I" that isnot supportedon U, then ¢* is
not an equalizer rulein g1 .

Corollary 4.4 will apply, in particular, wheR is the family of all distributions
supported on a subset of X and (as will generally be the casd) is not a
subset ofU. Furthermore, sinc& then contains the point mass ate A, we
must haveL(x,¢*) < H*, all x € A, so thatU is the subset ofA on which
the functionL(-, ¢*) attains its maximum. In a typical such problem having a
continuous sample space, the maxima of this function will be isolated points, and
then we deduce that the maximum entropy distributisnwill be discrete (and
the robust Bayes agt* will not be an equalizer rule).

5. An elementary minimax theorem. Throughout this section we suppose
that X6 = {x1, ..., xy} is finite and thatL is bounded. In particulad.(P, a) and
H (P) are finite for all distributionsP over X, and the sef of these distributions
can be identified with the unit simplex i®". We endows with the topology
inherited from this identification.

In this case we can show the existence of a saddle-point under some simple
conditions. The following result is a variant of von Neumann’s original minimax
theorem [von Neumann (1928)]. It follows immediately from the general minimax
theorem of Corollary A.1, whose conditions are here readily verified.

THEOREM 5.1. Let I be a closed convex subset of &. Then the restricted
game ¢! has a finite value H*, and the entropy H (P) achievesits maximum H*
over I at somedistribution P* e T".
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Theorem 5.1 does not automatically ensure the existence of a robust Bayes
act. For this we impose a further condition on the action space. This involves the
risk-set S of the unrestricted gamg, that is, the convex subset &" consisting
of all pointsi(¢) := (L(x1,¢), ..., L(xy, ¢)) arising as the risk function of some
possibly randomized agte Z.

THEOREMb5.2. Supposethat I" is convex, and that the unrestricted risk-set S
isclosed. Then there existsa robust Bayesact ¢ * € Z. Moreover, there exists P* in
theclosureT of " suchthat ¢* isBayesagainst P* and (P*, ¢*) isa saddle-point

in the game 9?

PROOF.  First assumd™ closed. By Theorem 5.1 the gangé has a finite
value H*. Then there exists a sequengg) in Z such that lim_, o, SUpp.r L(P,
¢n) =infrezsuper L(P, ¢) = H*. SincesS is compact, on taking a subsequence
if necessary we can fingf* € Z such that(z,) — 1(¢*). Then, forallQ € T,

(47) L(Q,¢") = lim L(Q,¢&) < lim supL(P,¢,) =H",
n—oo n—oo PGF
whence
(48) SUpL(P,c*) < H*.
Pel

However, for P = P*, as given by Theorem 5.1, we hauve(P*, ¢*) >
H(P*)= H*, sothatL(P*, *) = H*. The result now follows.

If T is not closed, we can apply the above argument Witheplaced byl
to obtain¢* € Z and P* € T'. Then sup L(P,¢*) < sug=L(P,¢), all ¢ € Z.
Since L(P,¢) is linear, hence continuous, i® for all ¢, sug-L(P,¢) =
sups L(P, ¢), and the general result follows[]

Note thats is the convex hull ofSg, the set of risk functions of nonrandomized
acts. A sufficient condition fof to be closed is thafg be closed. In particular this
will always hold if A4 is finite.

The above theorem gives a way of restricting the search for a robust Bayes
act¢*: first find a distributionP* maximizing the entropy over, then look for
acts that are Bayes agairiat. In some cases this will yield a unique solution, and
we are done. However, as will be seen below, this need not always be the case, and
then further principles may be required.

5.1. Examples.

5.1.1. Brier score. Consider the Brier score (16) fo¢ = {0, 1} andT" = 2.
Let H be the corresponding entropy as in (19). From Figure 1, or directly, we see
that the entropy is maximized f@* havingp*(0) = p*(1) = 1/2 . Since the Brier
score isP-strictly proper, the unique Bayes act agaiRstis P* itself. It follows
that P* is the robust Bayes act agaiistHence in this case we can find the robust
Bayes act simply by maximizing the entropy.



1388 P. D. GRUNWALD AND A. P. DAWID

5.1.2. Zero—oneloss. Now consider the zero—one loss (22) f6r= {0, 1} and
I' = &. Let H be the corresponding entropy as in (25). From Figure 1, or directly,
we see that the entropy is again maximized for with p*(0) = p*(1) = 1/2.
However, in contrast to the case of the Brier scaPé, now has several Bayes
acts. In factevery distribution¢ over A = {0, 1} is Bayes againsP*—yet only
one of them (namely* = P*) is robust Bayes. Therefore finding the maximum
entropyP* is of no help whatsoever in finding the robust Bayesddtere. As we
shall see in Section 7.6.3, however, this does not mean that the procedure described
here (find a robust Bayes act by first finding the maximum ent®pynd then
determine the Bayes acts Bf*) is never useful for zero—one lossTifz£ 2, it may
help in finding¢ * after all.

6. More general minimax theorems. We are now ready to formulate more
general minimax theorems. The proofs are given in the Appendix.

Let (X, 8B) be a metric space together with its Borelalgebra. Recall
[Billingsley (1999) Section 5] that a family" of distributions on(X, 8B) is called
(uniformly) tight if, for all ¢ > 0O, there exists a compact s€te 8 such that
P(C)>1—c¢forall PeT.

THEOREM 6.1. Let I' € » be a convex, weakly closed and tight set of
distributions. Suppose that for each a € 4 the loss function L(x, a) is bounded
above and upper semicontinuous in x. Then the restricted game g = (T, 4, L)
has a value. Moreover, a maximum entropy distribution P*, attaining

supinf L(P,a),
Perac

exists.

We note that ifX is finite or countable and endowed with the discrete topology,
thenL(x, a) is automatically a continuous, hence upper semicontinuous, function
of x.

Theorem 6.1 cannot be applied to the logarithmic score, which is not bounded
above in general. In such cases we may be able to use the theorems below. Note
that these all refer to possibly randomized Bayes atidut by Proposition 3.1
it will always be possible to choose such acts to be nonrandomized.

THEOREM6.2. LetT C & beconvex, and let P* € ', with Bayesact ¢*, be
such that —oo < H(P*) = H* :==supp. H(P) < oo. Supposethat for all P € T
there exists Pg € & such that, on defining Q; := (1 — A) Py + AP, the following
hold:

(i) P*= Q=+ for somer* € (O, 1).
(i) Thefunction H(Q;) isdifferentiableat » = 1*.
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Then (P*, ¢*) isasaddle-pointin gT.

Theorem 6.2 essentially gives differentiability of the entropy as a condition for
the existence of a saddle-point. This condition is strong but often easy to check.
We now introduce a typically weaker condition, which may, however, be harder
to check.

CoNDITION 6.1. Let (Q,) be a sequence of distributions iR, with
respective Bayes acig,), such that the sequencé&/(Q,)) is bounded below
and(Q;,) converges weakly to some distributi@dy € $o. Then we require that
Qo € #, Qo has a Bayes agh and, for some choice of the Bayes agts) and{o,
L(P,¢o) <liminf, .o L(P,¢,) forall P €T.

One would typically aim to demonstrate Condition 6.1 in its strongefrée”
form, wherein all mentions df' are replaced by?, or bothT" and % are replaced
by some family@ withI" € @ C #. In particular, in the case of@-proper scoring
rule S, Condition 6.1 is implied by the following.

CONDITION 6.2. Let(Q,) be a sequence of distributions é such that the
sequenc€H (Q,)) is bounded below an@?,,) converges weakly t@q. Then we
requireQo € @ andS(P, Qo) <liminf,,_ o S(P, Q,) forall P € Q.

This displays the condition as one of weak lower semicontinuity of the score in
its second argument.
We shall further consider the following possible conditiondon

ConDITION 6.3. T is convex; everyP € " has a Bayes adtp and finite
entropyH (P); and H* := supp . H(P) < oo.

CONDITION 6.4. Furthermore, there exisis* € I" with H(P*) = H*.

THEOREM 6.3. Suppose Conditions 6.1, 6.3 and 6.4 hold. Then there
exists ¢* € Z such that (P*, ¢*) isa saddle-point in the game g .

If H(P) is notupper-semicontinuous oflifis not closed in the weak topology,
then sup. H(P) may not be achieved. As explained in the Appendix, for a
general sample space these are both strong requirements. If they do not hold, then
Theorem 6.3 will not be applicable. In that case we may instead be able to apply
Theorem 6.4:

THEOREM 6.4. Suppose Conditions 6.1 and 6.3 hold and, in addition, I" is
tight. Then there exists ¢ * € Z such that

(49) SUPL(P,¢*) = inf supL(P,¢)=supinf L(P,a)=H".
Pel’ $€Z per Pelr acA

In particular, the game ¢! hasvalue H*, and ¢* is robust Bayes against .
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In the Appendix we prove the more general Theorem A.2, which implies The-
orem 6.4. We also prove Proposition A.1, which shows that (under some restric-
tions) the conditions of Theorem A.2 are satisfied whes the logarithmic score.

The theorems above supply sufficient conditions for the existence of a robust
Bayes act, but do not give any further characterization of it, nor do they assist in
finding it. In the next sections we shall consider the important special caSe of
defined by linear constraints, for which we can develop explicit characterizations.

7. Mean-valueconstraints. Let7 =¢(X), with : X — R¥, be a fixed real-
or vector-valued statistic. An important class of problems arises on imposing
mean-value constraints, where we take

(50) F'=r;:={PeP Ep(T)=r1},

for somer e R¥. This is the type of constraint for which the maximum entropy and
minimum relative entropy principles have been most studied [Jaynes (1957a, b)
and Csiszar (1975)].

We denote the associated restricted gaiiig 4, L) by 7. We call T the
generating statistic.

In some problems of this type (e.g., with logarithmic score on a continuous
sample space), the family; will be so large that the conditions of the theorems of
Section 6 will not hold. Nevertheless, the special linear structure will often allow
other arguments for showing the existence of a saddle-point.

7.1. Duality. Before continuing our study of saddle-points, we note some
simple duality properties of such mean-value problems.

DEFINITION 7.1. Thespecific entropy function 4 : R* — [—o0, o] (associ-
ated with the loss functioh and generating statisti€) is defined by

(51) h(t):= sup H(P).
Pel';

In particular, ifT"; = @, thenh(t) = —o0.
Now define7 :={tr € R¥:h(r) > —oco} andP* :={P € P :Ep(T) € T}.
LEMMA 7.1. Theset 7 C R isconvex, and the function 4 is concaveon 7.

ProOr Taketg,71 € & and A € (0,1), and lett; := (1 — A)19 + A1y,
There existPy, P1 € # with P, e I';; and H(P;) > —oo, i =0,1. Let P, :=
(1 — APy + APy. Then, for anya € A, L(P;,a) > H(P;) > —o0, so that
L(P,,a) =1 — AM)L(Py,a) + AL(P1,a) is defined, that ispP, € . Moreover,
clearly P, e I'y, . We thus havé (t,) > H(P,) > (1—A)H (Po) +AH (P1) > —00.
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Thust, € 7; that is,T is convex. Now lettingPp and P1 vary independently, we
obtaini(ty) > (1 — AM)h(zg) + Ah(t1); thatis,h is concave. [J

Fort € 7, define

(52) P, :=argsupH (P)
Pel';
whenever this supremum is finite and is attained. It is allowedRh& not unique,
in which case we consider an arbitrary such maximizer. THER;) = h(t). By
Theorem 4.1(iv), (52) will hold i P;, ¢;) is a saddle-point ig.”.
Dually, for 8 € R*, we introduce

(53) Qp :=argsupH (P) — BTEp(T))},

Pep*
whenever this supremum is finite and is attained. Agélg,is not necessarily
unique. For any sucl?g we can define a corresponding valuerdfy
(54) T =E@,(T).

ThenQg € I';, and on restricting the supremum in (53)Rce I';, we see that we

can takeQg for P, in (52). More generally, we write <> 8 whenever there is a

common distribution that can serve as béthin (52) andQg in (53) (in cases of

nonuniqueness this correspondence may not define a function in either direction).
It follows easily from (53) that, when < 8,

(55) h(o)—BTo <h(x) - BT,
or equivalently
(56) h(o) <h(t)+ B (0 — 1)

for all o € 7. Equation (56) expresses the fact that the hyperplane through the
point (z, k(7)) with slope coefficient® is a supporting hyperplane to the concave
functionh:75 — R. Thust and g can be regarded as dual coordinates for the
specific entropy function. In particular, if <~ 8 and# is differentiable atr, we

must have

(57) B =h(v).

More generally, ifty <> 81 andt2 <> 82, then on combining two applications
of (55) we readily obtain

(58) (z— )" (B2— B1) <0.

In particular, whenk = 1 the correspondence< 8 is nonincreasing in the
sense thaty > 11 = 82 < B1.
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7.2. Linear loss condition. Theorem 7.1 gives a simple sufficient condition
for an act to be robust Bayes agaimst of the form (50). We first introduce the
following definition.

DEFINITION 7.2. An act; € Z is linear (with respect to loss functioh and
statisticT) if, for someBp € R andB = (B1, ..., Br)' € R¥ and allx € X,

(59) L(x,{)=po+BTt(x).

A distribution P € & is linear if it has a Bayes ad} that is linear. In this case
we call (P, ¢) alinear pair. If Ep(T) = 7 is finite, we then calk alinear point
of 7. In all cases we callBg, 8) the associatelinear coefficients.

Note that, if the problem is formulated in terms oastrictly proper scoring
rule S, and P € @, the conditions P is a linear distribution,” P is a linear act”
and “(P, P) is a linear pair” are all equivalent, holding when we have

k
(60) S(x, P)=Bo+ Y Bjtj(x)

j=1
for all x € X.

THEOREM7.1. Lett € T belinear, with associated linear pair (P, ¢;) and
linear coefficients (8o, 8). Let T'; be given by (50). Then the following hold:

() ¢, isanequalizer ruleagainst I';.
(i) (P,¢;)isasaddle-pointin g’.
(i) ¢ isrobust Bayesagainst I';.

(iv) h(t)=H(P;)=po+ Bt

(V) T+ B.

PROOF ForanyP € #* we have

(61) L(P, &) = Bo+ B Ep(T).

By (61) L(P,¢;) = Bo+ Bt = L(P;, ;) for all P e I'. Thus (44)(b) holds
with equality, showing (i). Sincd (P;, ¢;) is finite and¢, is Bayes againsP;,
(44)(a) holds. We have thus shown (ii). Then (iii) follows from Theorem 4.1(v),
and (iv) follows from Theorem 4.1(i), (iii) and (iv). For (v), we have from (61)
that, forP ¢ $*,

(62) H(P)— B"Ep(T) < L(P, &) — BTEp(T)
(63) = fo
(64) = H(P;) — BTEp,(T)

from (iv). Thus we can tak@g in (53) to beP,. [
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COROLLARY 7.1. Thesame result holdsif (59)is only required to hold with
probability 1 under every P € T';.

We now develop a partial converse to Theorem 7.1, giving a necessary condition
for a saddle-point. This will be given in Theorem 7.2.

DEFINITION 7.3. A pointt € 7 is regular if there exists a saddle-point
(P;, ¢;) in g7, and there exist8 = (81, ..., Br)" € R¥ such that:

(i) Pr canserve agg in (53) (so thatr < B).
(i) With ¢ = ¢, and (necessarily)

(65) o:=h(r) - BT,
the linear loss property (59) holds wiik -probability 1.

If 7 satisfies the conditions of Theorem 7.1 or of Corollary 7.1 it will be regular,
but in general the force of the “almost sure” linearity requirement in (ii) above is
weaker than needed for Corollary 7.1.

We shall denote the set of regular pointsjofby 7", and its subset of linear
points by 7. For discreteX, r € 7" will by (i) be linear wheneverP, gives
positive probability to every € X. More generally, as soon as we kneve 7",
the following property, which follows trivially from (ii), can be used to simplify
the search for a saddle-point:

LEMMA 7.2. If tisregular,thesupport X, of P; issuchthat, for some¢ € Z,
L(x, ¢) isalinear function of #(x) on X;.

The following lemma and corollary are equally trivial.
LEMMA 7.3. Supposet €T .If Pel'; and P « P, then L(P, ¢;) = h(T).

COROLLARY 7.2. Ift € 7" and P « P, for all P € I'y, then ¢; is an
equalizer rulein .

We now show that, under mild conditions, a pointin the relative interior
[Rockafellar (1970), page 447° of 7 will be regular. Fixr € 7°%and consider .,
given by (50). We shall suppose that there exists a saddle-p&int;;) for
the gameg™—this could be established by the theory of Section 5 or 6, for
example. The valué (P;, ¢;) of the game will then bé(t), which will be finite.

Consider the functiony, on 7 defined by
(66) V(o) := sup L(P, &r).

Pel'y

In particular,y; () = k(7).
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PROPOSITION7.1. v isfinite and concaveon 7.

PROOE For o € T there existsP € I', with H(P) > —o0; SO ¥ (o) >
L(P,%r) = H(P) > —o0.

Now takeog, 01 € 7 and A € (0,1), and considew) := (1 — A)og + Ao1.
Thenly, D {(1—A) Po+APy:Poe gy, PL ey}, SO thaty;(0;) > (1 —A) x
Yr¢ (00) + A¥; (01). Thusy, is concave ory .

Finally, if ¢, were to take the valug¢co anywhere oy, then by Lemma 4.2.6
of Stoer and Witzgall (1970) it would do so ate 79, which is impossible
sincey; (t) = h(tr) has been assumed finitel]

For the proof of Theorem 7.2 we need to impose a condition allowing the
passage from (70) to (71). For the examples considered in this paper, we can use
the simplest such condition:

CONDITION 7.1. Forallx e X,1(x) € T.

This is equivalent tor(X) € 77, or in turn to 7 being the convex hull
of #(X). For other applications (e.g., involving unbounded loss functions on
continuous sample spaces) this may not hold, and then alternative conditions may
be more appropriate.

THEOREM 7.2. Supposethat t € 79 and (P;, ¢;) is a saddle-point for the
game . If Condition 7.1 holds, then  isregular.

PROOF T is convex,y,:7 — R is concave, and € 7°. The supporting
hyperplane theorem [Stoer and Witzgall (1970), Corollary 4.2.9] then implies that
there exist$s € R¥ such that, foralb € T,

(67) Ye(D) + BT (0 — 1) = Y (0).

That is, for anyP € £*,

(68) h(t) + BHEP(T) — 7} = ¥ (Ep(T)}.
However, forP € £*,

(69) VelBp (D)) = L(P. &) zinf L(P. §) = H(P).

Thus, for allP € $*,
h(t) + B{Ep(T) — T} > H(P),

with equality whenP = P;. This yields Definition 7.3(i).
For (ii), (68) and (69) imply that

(70) h(t)— L(P, )+ B {Ep(T) —7}>0  forall P € P*.
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Takex € X, and letP, be the point mass an By Condition 7.1,P, € £*, and so

(71) h(t)—L(x, ;) + B {r(x) =t} >0  forallx e X.
On the other hand,

(72) Ep,[h(r) — L(X.2:) + BT {t(X) — }] =0.
Together (71) and (72) imply that

(73) Pelh(t) — L(X, &) + BT {1 (X) — 7} =01 = 1.

The result follows. [

7.3. Exponential families. Here we relate the above theory to familiar proper-
ties of exponential families [Barndorff-Nielsen (1978)].

Let u be a fixedo -finite measure on a suitabte-algebra inX. The set of all
distributionsP <« u having au-densityp that can be expressed in the form

k
(74) p(x) =exp{ao+ Zozj tj(x)}
j=1
for all x € X is theexponential family & generated by the base measurand the
statisticT .
We remark that (74) is trivially equivalent to

k
(75) S(x.p)=PBo+ Y Bjtj(x),

j=1

for all x € X, whereS is the logarithmic score (20), amt} = —«;. In particular,
(P, p) is a linear pair.

Now under regularity conditions om and 7 [Barndorff-Nielsen (1978),
Chapter 9; see also Section 7.4.1 below], for ale 70 there will exist a
unique P, € I'y N §; that is, P, has a densityp, of the form (74), and
Ep, (T) = . Comparing (75) with (59), it follows from Theorem 7.1 that (as
already demonstrated in detail in Section 2(B), p,) is a saddle-point irg.

In particular, as is well known [Jaynes (1989)], the distributiywill maximize

the entropy (21), subject to the mean-value constraints (50). However, we regard
this property as less fundamental than the concomitant dual property: tisthe
robust Bayes act under the logarithmic score when all that we know of Nature’s
distribution P is that it satisfies the mean-value constraint I',. Furthermore,

by Theorem 7.1(i), in this cage will be an equalizer strategy agairist [cf. (3)].

We remark thap, of the form (74) is only one version of the density ey with
respect tqu; any other such density can differ from on a set ofu-measure 0.
However, our game requires DM to specify a density, rather than a distribution, and
from this point of view certain other versions of the densityRaf(which are of
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course still Bayes again#t) will not do: they are not robust Bayes. For example,
let XX = R, let u = Lebesgue measure and consider the constraiptX = 0,
Ep(X?) = 1. Let Py be the standard Normal distributia¥i(0, 1), and letpg be

its usual density formulapo(x) = (27)~Y/2exp—3x2. Then the conditions of
Theorem 7.1 holdPg is maximum entropy (as is well known) and the chojgge
for its density is robust Bayes against the Bgbf all distributionsP—including,
importantly, discrete distributions—that satisfy the constraints. This would not
have been true if instead gfp we had takerpy, identical with pg except for
po(x) = po(x)/2 atx = +1. While p; is still Bayes againsPy, its Bayes loss
against the distribution ifig that puts equal probability/2 at—1 and+1 exceeds
the (constant) Bayes loss pf by log 2. Consequentlyy; is not a robust Bayes
act. It is in fact easy to see that a dengityvill be robust Bayes in this problem
if and only if p(x) > po(x) everywhere (the set on which strict inequality holds
necessarily having Lebesgue measure 0).

We further remark that none of the theorems of Section 6 applies to the above
problem. The boundedness and weak closure requirements of Theorem 6.1 both
fail; condition (ii) of Theorem 6.2 fails; and although Condition 6.2 holds, the
existence of a Bayes act and finite entropy required for Condition 6.3 fail for those
distributions in'; having a discrete component.

7.4. Generalized exponential families. We now show how our game-theoretic
approach supports the extension of many of the concepts and properties of standard
exponential family theory to apply to what we shall tergeaeralized exponential
family, specifically tailored to the relevant decision problem. Although the link
to exponentiation has now vanished, analogues of familiar duality properties of
exponential families [Barndorff-Nielsen (1978), Chapter 9] can be based on the
theory of Section 7.1.

Consider the following condition.

ConDITION 7.2. For allt € 7, h(r) = SUppr, H(P) is finite and is
achieved for a unique; € I';.

In particular, this will hold if (i) X is finite, (i) L is bounded ad (i) H is
strictly convex. For under (i) and (i) Theorem 5.1 guarantees that a maximum
generalized entropy distributioP, exists, which must then be unique by (iii).

Under Condition 7.2 we can introduce the following parametric family of
distributions overx:

(76) M :={P,:teT}

We call & thefull generalized exponential family generated by. and7'; and we
call  its mean-value parameter. Condition 7.2 ensures that the map~> P; is
one-to-one.

Alternatively, consider the following condition:
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CONDITION 7.3. For allg € R¥, supp.p«{H(P) — BTEp(T)} is finite and
is achieved for a unique distributiopg € »*.

Again, this will hold if, in particular, (i)—(iii) below Condition 7.2 are satisfied.
Under Condition 7.3 we can introduce the parametric family

(77) E":={0p: B R*).

We call this family thenatural generalized exponential family generated by the loss
function L and statistic’; we call 8 its natural parameter. This definition extends

a construction of Lafferty (1999) based on Bregman divergence: see Section 8.4.2.
Note that in general the natural parameten &" need not be identified; that is,

the mapg — Qg may not be one-to-one. See, however, Proposition 7.2, which
sets limits to this nonidentifiability.

From this point on, we suppose that both Conditions 7.2 and 7.3 are satisfied.
For any 8 € R¥, (54) yieldst € T with © < g, that is, P, = Qj. It follows
that&” C ™.

We further defineg” := {P,:t € 7"}, the regular generalized exponential
family, and &' := {P,:t € 7'}, the linear generalized exponential family,
generated byl and 7. Then &’ € &" C &”. In general,&' may be a proper
subset ofé”: then for P, € &” \ & we can only assert the “almost sure linear
loss” property of Lemma 7.2.

The following result follows immediately from Definition 7.3(ii).

PROPOSITION7.2. If Qg = Qp, = Q € &", then (B1 — B2)'T = 0 almost
surely under Q.

For t € 7" choosegB as in Definition 7.3. Thenr < g8, and it follows
that&” C &". We have thus demonstrated the following.

PrRoPOSITION7.3. When Conditions 7.2 and 7.3 both apply,
g cetcen.

Now considerg® := {P,:7 € 79}, the open generalized exponential family
generated by. andT. From Theorem 7.2 we have the following:

PROPOSITION7.4. Suppose Conditions 7.1—7.3all apply and a saddle-point
existsin g7 for all r € 7°. Then

(78) g0ce cencem.
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7.4.1. Application to standard exponential families. We now consider more
closely the relationship between the above theory and standard exponential
family theory.

Let &* be the standard exponential family (74) generated by some base
measurew and statisticT. Taking as our loss function the logarithmic scdte
(75) shows thatg! c &* (distributions in&* \ &' being those for which the
expectation ofT does not exist). We can further ask: What is the relationship
between&* and §"? As a partial answer to this, we give sufficient conditions
for &*, & and&” to coincide.

ForB = (B1, ..., Bx) € R¥, define

(79) «(B) = log / e FTO gy,
(80) x(B) = Psup{H(P) — BTEp(T)}.
eP*

Let B denote the convex séB € RX: k(B) < oo}, and letB° denote its relative
interior. ForB € B, let Qj; be the distribution ing* with u-densitng(x) =
exp(—«(B) — BTt(x)}, and letQg, if it exists, achieve the supremum in (80).

PROPOSITION7.5. (i) For all g € 89, the act qg islinear, and Qp = Qj
uniquely. Moreover, x (8) =« (B).

(i) If B8 = R, then Condition 7.3noldsand &* = &/ = &”.

(i) If Condition 7.3 holds, 8 is nonempty and &* is minimal and steep,
then 8 = R¥ and &* = &' = g".

[Note that the condition for (i) will apply whenever the sample space
is finite.]

PROOF OFPROPOSITION7.5. Linearity of the acy; (B € B) is immediate,
the associated linear coefficients beiiflg, 8) with fg = k(8). Supposes € B°.
Thent := EQ;(T) exists [Barndorff-Nielsen (1978), Theorem 8.1]. We may also
write P, for Qj;. Thent is a linear point, with(P;, p;) the associated linear
pair. By Theorem 7.1(ivk(8) = H(P;) — B'z. Also, by Theorem 7.1(v) we can
take P, = Q;} asQg. The supremum in (80) thus being achievediyy we have
X(B)=H(P;) — BTt =k (B).

To show that the supremum in (80) is achieved uniquel@f note that any
P achieving this supremum must satisfy

H(P)—BTEp(T) = H(Qp) — B"Eq;(T)

(81) T
=« () =S(P,qz) — B Ep(T),
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the last equality deriving from the definition qg. It follows thatS(P,qg) =
H(P)=S(P, p), whencef Iog{p(x)/qg (x)} p(x) du = 0. However, this can only
hold if P = Q%.

Part (i) follows immediately.

For part (iii), assume Condition 7.3 holds. Then, forfal R*,

(82) X(B) =sup SUp{H (P) — g7t} = sup{h(v) — 71},

teT Pel'; TeT
with A(7) as in (51). By Lemma 7.1 is convex. It follows thaty is a closed
convex function onRrk.

Steepness of* means thatx (8,)| — oo whenever(8,) is a sequence itB°
converging to a relative boundary poigt of 8. Sincex is convex [Barndorff-
Nielsen (1978), Chapter 8] angd coincides with« on 8°, we must thus have
|x (Bn)| — oo as(B,) — B*. Since by Condition 7.3 the closed convex functjon
is finite on R, B8 cannot have any relative boundary points—hence, under
minimality, any boundary points—imR*. Since 8 is nonempty, it must thus
coincide withR*. Then, by (i)é* =&/ =&". O

To see that even under themde conditions we need not hagé = &, consider
the caseX = {0, 1}, T = X. Theng&™ consists of all distributions of¢, whereas
&* = &' = &" excludes the one-point distributions at 0 and 1.

7.4.2. Characterization of specific entropy. We now generalize a result of
Kivinen and Warmuth (1999). For the case of fini{g they attack the problem
of minimizing the Kullback-Leibler discrepancy KB, Py) over all P such
that Ep(T) = 0. Equivalently (see Section 3.5.2), they are maximizing the entropy
H(P) = —KL (P, Py), associated with the logarithmic score relative to base
measurePy, subject toP € I'g.

Let &* be the standard exponential family (74) generated by base meBsure
and statisticT, with typical memberQ;} (8 € R*) having probability mass
function of the form

(83) g5(x) = po(x) e #1110

and entropy:(t) =k (B) + BTt, wherer = Eg, (T).

Suppose & 7°. By Chapter 9 of Barndorff-Nielsen (1978), there then exists
within I'o a unique membep7. of £*. By Theorem 7.1 the maximum of the
entropy —KL (P, Py) is achieved forP = Q:;*; its maximized value is thus
h(0) =k (B*), where

(84) (B)=log " pox) e #1®.
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Equation (1.5) of Kivinen and Warmuth (1999) essentially states that the
maximized entropy: (0) overI'g can equivalently be obtained as

(85) h(0) = min k(B).
BeRk

By Proposition 7.5(i) this can also be written as
(86) h(0) = min x(B).
BeRk

We now extend the above property to a more general decision problem,
satisfying Conditions 7.2 and 7.3. Let<> 8, 0 <> y (t,0 € 7). Thenx(B) =
Bo=h(r) — B, x(¥) =yo=h(o) — y o, with Bg, and correspondinglyo, as
in (65). From (56) we have

(87) h(o) <o+ B'o.
Moreover, we have equality in (87) when= y . It follows that foro € 7
(88) h(o) = inf {x(8)+B o),

BeRk

the infimum being attained wheh< o . In particular, when & 7 we recover (86)
in this more general context. Equations (82) and (88) express a conjugacy relation
between the convex functign and the concave function

7.5. Support.  Fix x € X. Forany act € Z we term the negative loss(¢) :=
—L(x,¢) the support for act¢ based on data. Likewise,sp(¢) := —L(P,¢)
is the support forz based on a (theoretical or empirical) distributi®nfor X.

If # C Z is a family of contemplated acts, then the function> sp(2) on ¥ is

the support function over ¥ based on “data’P. When the maximum ofp(¢)

over ¢ € ¥ is achieved at € ¥, we may term¢ the maximum support act

(in ¥, based onP). Then? is just the Bayes act against in the game with
loss functionL (x, ¢), when¢ is restricted to the sef.

For the special case of the logarithmic score (20)g) = logg(x) is
the log-likelihood of a tentative explanatioq(-), on the basis of data;
if P is the empirical distribution formed from a sample ofobservations,
sp(q) is (n~! times) the log-likelihood for the explanation whereby these were
independently and identically generated from density. Thus our definition
of the support function generalizes that used in likelihood theory [Edwards
(21992)], while our definition of maximum support act generalizes that of maximum
likelihood estimate. In particular, maximum likelihood is Bayes in the sense of the
previous paragraph.

Typically we are only interested in differences of support (between different
acts, for fixed data or distribution P), so that we can regard this function as
defined only up to an additive constant; this is exactly analogous to regarding
a likelihood function as defined only up to a positive multiplicative constant.
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7.5.1. Maximum support in generalized exponential families. Let T = ¢ (X)
be a statistic, and let” be the regular generalized exponential family generated
by L andT. Fix a distribution P* over X, and consider the associated support
function s*(-) := sp«(-) over the familyF" := {¢;:7 € T"}. It is well known
[Barndorff-Nielsen (1978), Section 9.3] that, in the case of an ordinary exponential
family (when L is logarithmic score and*” = {p.(-):t € 7"} is the set of
densities of distributions ir€"), the likelihood overF" based on data™ (or
more generally on a distributio®*) is under regularity conditions maximized
at p.+, wheret* =r(x*) [or t* = Ep«(T)]. The following result gives a partial
generalization of this property.

THEOREM 7.3. Suppose t* :=Ep«(T) € T". Let € 7" be such that either
of the following holds:
(i) ¢ islinear;
(i) P*<K P;.
Then

(89) S*(fr*) ZS*(G)-

PROOF SinceP* € I'tx and(P;+, ;+) is a saddle-point irg,’*, we have
(90) §*(¢er) = —h(T™).

Under (i), (59) holds everywhere; under (ii), by Definition 7.3(ii) it holds with
P*-probability 1. In either case we obtain

(91) L(P*, &) =h(t) + BT (% — 7).

By (56), the right-hand side is at least as larga@s’), whences*(¢;) < —h(t*).
Combining this with (90), the result follows.

COROLLARY 7.3. Iffor all t € & either ¢; islinear or P* <« P;,then ¢« is
the maximum support act in .

For the case of the logarithmic score (20) over a continuous sample space,
with P* a discrete distribution (e.g., the empirical distribution based on a sample),
Theorem 7.3(ii) may fail, and we need to apply (i). For this we must be sure to
take as the Bayes agi(-) againstP € & the specific choice where (74) holds
everywhere (rather than almost everywhere). Then Corollary 7.3 holds.

See Section 7.6.1 for a case where neither (i) nor (ii) of Theorem 7.3 applies,
leading to failure of Corollary 7.3.
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7.6. Examples. We shall now illustrate the above theory for the Brier score,
the logarithmic score and the zero—one loss. In particular we analyze in detail the
simple case having¢ = {—1,0,1} andT = X. For each decision problem we
(i) show how Theorems 7.1 and 7.2 can be used to find robust Bayes acts, (i) give
the corresponding maximum entropy distributions and (iii) exhibit the associated
generalized exponential family and specific entropy function.

7.6.1. Brier score. Consider the Brier score f&¢ = {x1, ..., xy}. By (17) we
may write this score as

S(x, Q) =1-2¢(x) +Y_q(j)*.
J

To try to apply Theorem 7.1 we search for a linear distributiyne T';. That is,
we must find(g;) such that, for alk € X,

k
(92) 1-2p: () + Y pe(M2=Po+ Y Bjt;(x).
y

j=1
Equivalently, we must finde ;) such that, for alk,

k

(93) pr(x)=ao+ Y ajtj(x).
j=1

The mean-value constraints

Yoti@p) =15, j=1....k
X
together with the normalization constraint
Y =1,
X

will typically determine a unique solution for the+ 1 coefficients(e;) in (93).
As long as this procedure leads to a nonnegative value for @ach), by
Theorem 7.1 and the fact that the Brier score is proper we shall then have obtained
a saddle-pointP;, P;).

However, as we shall see below, for certain values tifis putative “solution”
for P, might have some, (x) negative—showing that it is simply not possible
to satisfy (92). By Theorem 5.2 we know that, even in this case a saddle-point
(P;, P;) exists. We can find it by applying Theorem 7.2: we first restrict the sample
space to som&* € X and try to find a probability distributio#®, satisfying the
mean-value and normalization constraints, suchphét) = 0 for x ¢ X* and for
which, for some(g;) (92) holds for allx € X* [or, equivalently, for soméx ;)
(93) holds for allx € X*]. Among all such restrictionsX* that lead to an
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everywhere nonnegative solution f@y, (x)), we choose that yielding the largest
value of H. Then the resulting distributio®; will supply a saddle-point and so,
simultaneously, (i) will haveld (P;) = h(t), the maximum possible generalized
entropy 1— ¥, p(x)? subject to the mean-value constraints, and (ii) (which we
regard as more important) will be robust Bayes for the Brier score against all
distributions satisfying that constraint.

A more intuitive and more efficient geometric variant of the above procedure
will be given in Section 8.

EXAMPLE 7.1. Supposé& = {—1,0,1} andT = X. Consider the constraint
E(X) =1, for T € [-1, 1]. We first look for linear acts satisfying (93). The mean-
value constraint)_, x p,(x) = r and normalization constraint_, p;(x) =1
provide two independent linear equations for the coefficiéwgse) in (93), so
uniquely determiningao, a1), and hencep,. We easily findag = 3, o1 = 37
and thusp, (x) = 1 + 37x (x = —1,0,1) (whencepy = —7, fo = 3 + 372).
We thus obtain a nonnegative solution gr, (—1), p.(0), p: (1)) only so long
ast € [—2/3,2/3]: in this and only this case the apt is linear. Whenr falls
outside this interval we can proceed by trying the restricted sample spatgs
{0}, {1}, {0, 1}, {—1,0}, {—1, 1}, as indicated above. All in all, we find that the
optimal distributionP; has probabilities, entropy amglsatisfying Definition 7.3,
as given in Table 1.

The family {P;: —1 < t < 1} constitutes the regular generalized exponential
family over X generated by the Brier score and the stati#tie X. The location
of this family in the probability simplex is depicted in Figure 2.

We note thati(t) = Bo + B1t andBy = h'(t) (—1 < T < 1). The functionz(t)
is plotted in Figure 3; Figure 4 shows the correspondence betgeandz.

By Theorem 7.1(i), the robust Bayes @t will be an equalizer rule when is
linear, that is, forr € [—3, 4], and also (trivially) wherr = £1.

The above example demonstrates the need for condition (i) or (ii) in Theo-
rem 7.3 and Corollary 7.3: typically both these conditions fail here f¢)r[—%, %].

TABLE 1
Brier score: maximum entropy distributions

pc(=1) p (0O p:(D h(t) Bo B
t=-1 1 0 0 0 =p1 B1>2
—1<r§—% -1 1+1 0 —2t(1+71) 272 —2—4r
%§r<l 0 1-7 T 2t1(1—1) 272 2—4r
=1 0 0 1 0 =—p1 p1<-2
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0

-1 ~0.25 075 1

-1 —0.25 075 1

-1 ~0.25 075 1

Fic. 2. Brier score, logarithmic score and zero-one loss: the probability simplex for
X ={-1,0, 1}, with entropy contours and generalized exponential family (maximum entropy dis-
tributions for the constraint E(X) = 7, t € [—1, 1]). The set of distributions satisfying E(X) = 7
correspondstoavertical lineintersecting thebase at 7; thisisdisplayed for r = —0.25and r = 0.75.
The intersection of the bold curve and the vertical line corresponding to t represents the maximum
entropy distribution for constraint E(X) = 7.

Thus let P* have probabilities(p*(—1), p*(0), p*(1)) = (0.9,0,0.1), so that
t* = Epx(X) = —0.8 and¢,+ = (0.8,0.2, 0). From (18) we finds*(¢;+) = —0.24.

However, ¢;+ = ¢_gg is not the maximum support act iF" in this case:
it can be checked that this is given lgyg.95 = (0.95, 0.05, 0), having support
s*(¢;) = —0.195.

7.6.2.Log loss. We now specialize the analysis of Section 7.3 to the case
X ={-1,0,1}, T = X, with u counting measure.

For t € (-1,1), the maximum entropy distributior?; will have (robust
Bayes) probability mass function of the forpy (x) = exp—(Bo + B1x). That
is, the probability vectorp, = (p:(—1), p:(0), p: (1)) will be of the form
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e

-1

-1 1

FiG. 3. Specific entropy function A () for Brier score, logarithmic score and zero—one | oss.

(pePr, p, pe=P1), subject to the normalization and mean-value constraints

(94) pA4eft e Fry=1,
(95) plePr—efty=1,
which uniquely determing € (0,1), g1 € R. Thenh(t) = Bo + B1t, Where
Bo=—logp.
We thus have
(96) p=1+er e
(97) T=pe M —eM),

(98) h=—logp + B1irt.
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10

FiG. 4. Correspondence between mean-value parameter t (x-axis) and natural parameter A1
(v-axis) of generalized exponential family, for Brier score, logarithmic score and zero—one | oss.

On varying 1 in (—o0, 00), we obtain the parametric curve, #) displayed in
Figure 3; Figure 4 displays the correspondence betwheand . It is readily
verified thatdh /dt = (dh/dB1)/(dt/dB1) = B1, in accordance with (57).

In the terminology of Section 7.4, the above fam{ily; : ¢ € (0, 1)} constitutes
the natural exponential family associated with the logarithmic score and the
statistic 7. It is also the usual exponential family for this problem. However,
the full exponential family further includes = +1. The family I'y consists
of the single distributionP; putting all its mass on the point 1. Then trivially
P1 is maximum entropy [with specific entrogy(1) = 0], andp; = (0, 0, 1), with
loss vectorL(-, p1) = (oo, 00, 0), is unique Bayes againgt and robust Bayes
against’;. Clearly (59) fails in this case, but even thoughk- 1 is not regular the
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property of Lemma 7.2 does hold there (albeit trivially). Similar properties apply
att =-—1.

7.6.3. Zero-oneloss. We now consider the zero—one loss (22) and seek robust
Bayes acts against mean-value constraihtof form (76). Once again we can
try to apply Theorem 7.1 by looking for an a¢t € Z that is Bayes against
someP; € I';, and such that

k
(99) L(x,t0)=1-:(x)=Po+ Y_Bjtj(x)

j=1
for all x € X. When this proves impossible, we can again proceed by restricting
the sample space and using Theorem 7.2. The distribi@iosill again maximize
the generalized entropy. However, in this problem, in contrast to the log and
Brier score cases, because of nhonsemistrictness the Bayes act &jaimay be
nonunique—and, if we want to ensure that (99) (or its restricted version) holds,
it may matter which of the Bayes acts (including randomized acts) we pick. Thus
the familiar routine “maximize the generalized entropy, and then use a Bayes act
against this distribution” is not, by itself, fully adequate to derive the robust Bayes
act: additional care must be taken to selectrighat Bayes act.

EXAMPLE 7.2. Again takeX ={—1,0,1} andT = X. Consider the con-
straint HX) = r, wheret € [—1,1]. We find that for eachr a unique max-
imum entropy P; exists. By some algebra we can then find the probabilities
(p:(—1), p:(0), p-(1)); they are given in Table 2, together with the corresponding
specific entropy:(t) (also plotted in Figure 3).

The family of distributions{ P, : t € [—1, 1]} thus constitutes the full gener-
alized exponential family oveX generated by the zero—one loss and the sta-

TABLE 2
Zero—one loss. maximum entropy distributions

pe(=1  p (O p (D k()

r=-1 1 0 0 0
—1<r<—§ —T 1+7 0 141
o1 1 1 0 1
- 2 2 2 2
1-t 1-1 1+27 2+t
—3<1<0 =z 3 T3 =
_ 1 1 1 2
=0 3 3 3 3
1 1-2t 141 141 2—1
O<t<3 3 = 3 T
_1 1 1 1
it 0 P P P
§<r<1 0 1-7 T 1—1
r=1 0 0 1 0
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tistic T = X. The location of this family in the probability simplex is depicted
in Figure 2.

How can we determine the robust Bayes agi® We know that any such
¢, is Bayes againsP; and thus puts all its mass on the modesPof As can
be seen, for-0.5 < r < 0.5 the setAp of these modes has more than one
element. We additionally use (99), restrictedxon the support ofP;, to find
out which¢, € 4 p, are robust Bayes. Fare [—3, 3] this requires

—B1+Bo=1-¢(—D),
(100) ,80 =1- e (0)7
/31+ﬂo =1- fr(l),

from which we readily deducgy = % The condition that, put all its mass on the
modes ofP; then uniquely determines for —0.5 <t < 0 and for O< t < 0.5.

If ¢ =0, all acts¢ are Bayes for som@ e I'; (take P uniform), and hence by
Theorem 7.1 all solutions to (100) [i.e., such that0) = %] are robust Bayes acts.
Finally, for r = 0.5 (the case = —0.5 is similar) we must have,(—1) =0, and
we can use the “supporting hyperplane” property (56) to deduce @it < %

Table 3 gives the robust Bayes agtsfor eacht € [—1, 1], together with the
corresponding values @, 81. Thus¢, is a linear act for-0.5 < 7 < 0.5 (where
we must choose = % at the endpoints). Again we see thdt) = 8o + 17, and
that 81 = i/ (t) where this exists.

Figure 4 shows the relationship betwegnandz. In this case the uniqueness
part of Condition 7.3 is not satisfied, with the consequence that neitheor t
uniquely determines the other. However, the full exponential fafily: —1 <
t < 1} is clearly specified by the one-one map> P,, and most of the properties
of such families remain valid.

TABLE 3
Zero—oneloss: robust Bayes acts

& (=D ¢ (0) & (D ﬂO B1
T=-1 1 0 0 =p p1=1
~l<t<-3 1 0 0 1 1
t=-1 l-a a<3} 0 l1-a 1-2a
1 2 1 2 1
—3<t<0 3 3 0 3 3
=0 . af% % %;a % a—l%
O<t<3 0 i, 3 3 —3
T=3 0 a<sy 1—a 1—a 2a —1
f<r<1 0 0 1 1 -1
T= 0 0 1 =—p1 pB1=<-1
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8. Relative entropy, discrepancy, divergence. Analogous to our generalized
definition of entropy, we now introduageneralized relative entropy with respect
to a decision problem, and we show how the negative relative entropy has a natural
interpretation as a measure of discrepancy. This allows us to extend our minimax
results to a more general setting and leads to a generalization of the Pythagorean
property of the relative Shannon entropy [Csiszar (1975)].

We first introduce the concept of tlescrepancy between a distributio® and
a (possibly randomized) a¢t induced by a decision problem.

8.1. Discrepancy. Suppose first thalf (P) is finite. We define, for any € Z,
thediscrepancy D (P, ¢) between the distributio® and the act by

(101) D(P,¢):=L(P,¢t)— H(P).

In the general terminology of decision theol®(P, {) measures DM'segret
[Berger (1985), Section 5.5.5] associated with taking acjomvhen Nature
generateX from P. Also, since—D(P, ¢) differs from—L(P, ¢) by aterm only
involving P, we can use it in place of the support functign(¢): thus maximizing
support is equivalent to minimizing discrepancy.

We note that, if a Bayes a¢p againstP exists, then

(102) D(P,¢) =Ep{L(X,¢) — L(X,¢p)}.

We shall also use (102) as thefinition of D(P, ¢) whenP ¢ &, or H(P) is not
finite, but P has a Bayes act (in which case it will not matter which such Bayes
act we choose). This definition can itself be generalized further to take account of
some cases where no Bayes act exists; we omit the details.

The functionD has the following properties:

(i) D(P,¢) €0, oo].
(i) D(P,¢)=0ifandonlyif¢ is Bayes againsk.
(i) For any a,a’ € A, D(P,a) — D(P,d’) is linear in P (in the sense of
Lemma 3.2).
(iv) D is a convex function oP.

Conversely, under regularity conditions any functidsatisfying (i)—(iii) above
can be generated from a suitable decision problem by means of (101) or (102)
[Dawid (1998)].

8.1.1. Discrepancy and divergence. When our loss function is &-proper
scoring ruleS, we shall typically denote the corresponding discrepancy function
by d. Thus forP, O € @ with H(P) finite,

(103) d(P,Q)=S(P,Q)— H(P).

We now haved(P, Q) > 0, with equality whenQ = P; if § is @-strict,
thend(P, Q) > 0 for Q # P. Conversely, if for any scoring rul§, S(P, Q) —
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S(P, P) is nonnegative for alP, Q € @, then the scoring rul§ is Q-proper. We
refer tod (P, Q) as thedivergence between the distribution8 and Q. As we shall
see in Section 10, divergence can be regarded as analogous to a measure of squared
Euclidean distance.

The following lemma, generalizing Lemmas 4 and 7 of Topsge (1979), follows
easily from (103) and the linearity &f(P, Q) in P.

LEmMmA 8.1. Let S be a proper scoring rule, with associated entropy

function H and divergence function d. Let Py, ..., P, have finite entropies, and
let (p1, ..., pn) beaprobability vector. Then

(104) H(P)=Y piH(P)+)_ pid(P;,P),

(105) d(P,Q)=Y pid(P;,Q)—) pid(P;,P),

where P := Zpi P;.

We can also associate a divergence with a more general decision problem, with
loss functionL such thatZy is nonempty for allQ € @, by

(106) d(P, Q) :=D(P,50) =Ep{L(X,{0) — L(X,¢p)},

where again for eacl) € @ we suppose we have selected some specific Bayes
actggp. This will then be identical with the divergence associated directly [using,
e.g., (103)] with the corresponding scoring rule given by (15), and (104) and (105)
will continue to hold with this more general definition.

8.2. Relative loss. Given a gameg = (X, 4, L), choose, once and for all,
areferenceact ¢p € Z. We can construct a new garge = (X, 4, Lo), where the
new loss functiorLg is given by

(207) Lo(x,a) :=L(x,a) — L(x, ¢o).

This extends naturally to randomized acigj(x, ¢) := L(x,¢) — L(x, o). We
call Lo the relative loss function and o the relative game with respect to the
reference actyp. In order thatLgo > —oo we shall requireL(x, o) < oo for
all x € X. We further restrict attention to distributions i := {P: Lo(P, a)
is defined for alla € A} and randomized acts i&’ := {¢: Lo(P, ¢) is defined
for all P € £'}. In general ' andZ’ may not be identical witt® and Z.

The expected relative lods (P, ¢) satisfies

(108) Lo(P,§)=L(P,¢)— L(P, o)

wheneverL (P, o) is finite. Whether or not this is so, it is easily seen that the
Bayes acts against ariy are the same in both games.
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DEFINITION 8.1. An actg € Z is calledneutral if the loss functionL (x, ¢g)
is a finite constant say, onX.

If a neutral act exists, and we use it as our reference act, th¢R, ¢) =
L(P,¢) — k, all P € . The relative gamejo is then effectively the same
as the original gamg,, and maximum entropy distributions, saddle-points, and
other properties of the two games, or of their restricted subgames, will coincide.
However, these equivalences are typically not valid for more general relative
games.

8.3. Relative entropy. When a Bayes a¢tp againstP exists, thegeneralized
relative entropy Ho(P) := inf,c4 Lo(P, a) associated with the relative logg is
seento be

(109) Ho(P) =Ep{L(X,¢p) — L(X, %0)}.

[In particular, we must have-co < Ho(P) < 0.] When L(P, ¢o) is finite,
this becomes

(110) Ho(P)=H(P)— L(P, %o0).
Comparing (109) with (102), we observe the simple but fundamental relation
(111) Ho(P) =—D(P, ¢0).

The maximum generalized relative entropy criterion thus becomes identical to
the minimum discrepancy criterion:

Choose P € T" to minimize, over P < I, its discrepancy D (P, ¢o) from the
reference act ¢p.

Note that, even though Bayes acts are unaffected by changingZirtonthe
relative lossLg, the corresponding entropy function (110nhis unaffected. Thus
in general the maximum entropy criterion (for the same constraints) will deliver
different solutions in the two problems. Related to this, we can also expect to
obtain different robust Bayes acts in the two problems.

Suppose we construct the relative loss taking as our referencg adBayes
act against a fixedeference distribution Pp. Alternatively, start with a proper
scoring ruleS, and construct directly the relative score with reference to the
act Pg. The minimum discrepancy criterion then becomeshrémum divergence
criterion: chooseP < I' to minimize the divergencé(P, Po) from the reference
distribution Pg.

This reinterpretation can often assist in finding a maximum relative entropy
distribution. If moreover we can choo$g to be neutral, this minimum divergence
criterion becomes equivalent to maximizing entropy in the original game.
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8.4. Relative loss and generalized exponential families.

8.4.1. Invariancerelativeto linear acts. Suppose the reference agtis linear
with respect taL andT, so that we can write

(112) L(x,20) =80+ 8"1(x).

Then if Ep(T) exists,

(113) Lo(P,¢)=L(P,t) — 80— 8 Ep(T),
(114) Ho(P) = H(P) —8g—8"Ep(T).
In particular, for allP € ',

(115) Lo(P.g)=L(P.;)—8— 8",
(116) Ho(P)=H(P)—8y—38'.

We see immediately from the definitions that the full, the natural, the regular
and the linear generalized exponential families generatdgylandT are identical
with those generated by and 7. The correspondence— P; is unaffected; for
the natural case, g arises fromL and Qg g from Lo, we haveQq g = Qp+s.
Suppose in particular that we take aRy € &. In this case we can takg
having property (112) to be the corresponding Bayes;acWe thus see that a
generalized exponential family is unchanged when the loss function is redefined
by taking it relative to some linear member of the family. This property is well
known for the case of a standard exponential family, where every regular member
is linear (with respect to the logarithmic score). In that case, the relative loss can
also be interpreted as the logarithmic score when the base measihanged
to P,; the exponential family is unchanged by such a choice.

8.4.2. Lafferty additive models. Lafferty (1999) defineghe additive model
relative to a Bregman divergence d, reference measure Py and constraint random
variable T : XX — R as the family of probability measuré®g : 8 € R} where
a17) Qp :=argminBEp{T (X)} +d(P, Po).

Pep
We note thatPg = Qg is in this family.

Let S be the Bregman score (29) associated withand let So be the
associated relative scorgy(x, Q) = S(x, Q) — S(x, Pg). Note that by (111)

d(P, Py) = —Hp(P), where Ho(P) is the entropy associated witfy. Lafferty’s
additive models are thus special cases of our natural generalized exponential
families as defined in Section 7.4, being generated by the specific loss fufigtion
and statisticT. As shown in Section 8.4.1, wheR, is linear (with respect to

S andT) the previous sentence remains true on replasiigy S.

These considerations do not rely on any special Bregman properties, and so
extend directly to any loss-based divergence functionf the form given by
(103) or (106).
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8.5. Examples.

8.5.1. Brier score. In the case of the Brier score, the divergence between
P and Q is given by the squared Euclidean distance between their probabil-
ity vectors:

(118) d(P, Q)= ||p—q||2=Z_{p<j> —q(H2

J
Using a reference distributioR, the relative entropy thus becomes

(119) Ho(P) = - {p(j) — po(j)}>.
J

The uniform distribution ovetX is neutral. Therefore the distribution within a
setl” that maximizes the Brier entropy is just that minimizing the discrepancy
from the uniform reference distributiaPy.

To see the consequences of this for the construction of generalized Brier
exponential &milies, letX = {—1, 0, 1} and consider the Brier score picture in
Figure 2. The bold line depicts the maximum entropy distributions for constraints
E(T) = 7, t € [-1,1]. By the preceding discussion, these coincide with the
minimum Pp-discrepancy distributions. For each fixed valuerotthe setl’; =
{P.Ep(X) = t}isrepresented by the vertical line through the simplex intersecting
the base line at the coordinateln Figure 2 the cases= —0.25 andr = 0.75 are
shown explicitly. The minimum discrepancy distribution witHin will be given
by the point on that line within the simplex that is nearest to the center of the
simplex. This gives us a simple geometric means to find the minimum relative
discrepancy distributions far € [—1, 1], involving less work than the procedure
detailed in Section 7.6.1. We easily see that#ar [—2/3, 2/3] the minimizing
point p; is in the interior of the line segment, while foroutside this interval the
minimizing point is at one end of the segment.

8.5.2. Logarithmic score. For P € M (i.e., P < u) any versionp of the
density dP/du is Bayes againstP. Then, with ¢ any version ofdQ/du,
D(P,q) =Ep[log{p(X)/q(X)}] is the Kullback—Leibler divergence KIP, Q)
and does not depend on the choice of the versions of ejitharg. Again, for
P, Q0 € M we can treatS as a proper scoring rul§(x, Q), with d(P, Q) =
KL (P, Q) as its associated divergence. [FBr¢ M there is no Bayes act (see
Section 3.5.2), and so, according to our definition (102), the discrepankyq)
is not defined: we might define it asoo in this case.] Maximizing the relative
entropy is thus equivalent to minimizing the Kullback—Leibler divergence in
this case.

There is a simple relationship between the choice of base measwviich
is a necessary input to our specification of the decision problem, and the use
of a reference distribution for defining relative loss. If we had constructed our
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logarithmic loss using densities starting with a different chpigef base measure,
where g is mutually absolutely continuous with, we should have obtained
instead the loss functiofp(x, Q) = —logqgo(x), with go(x) = (dQ/d o) (x) =
(dQ/du)(x) x (du/dpo)(x). Thus So(x, Q) = S(x, @) + k(x), with k(x) =
—logd(x), whered is some version ofiu/dug. In particular, whenug is a
probability measure, this is exactly the relative loss function (107) with respect
to the reference distributiong, when we start from the problem constructed in
terms ofu (in particular, it turns out that this relative game will not depend on the
starting measurg). As already determined, the corresponding relative entropy
function isHp(P) = —KL (P, o).

8.5.3. Zero-oneloss. Inthis case, the discrepancy betwdeand an act € Z
is given by

(120) D(P,¢) = pmax— »_, P(NL()).
JEX

When X has finite cardinalityN, and ¢ is the randomized act that chooses
uniformly from X, we haveS(x, ¢p) = 1—1/N, so that this choice af is neutral.

Take X = {—1,0,1} and T = X, let o be uniform onX and consider the
minimum zero—oneg-discrepancy distributions shown in Figure 2. Determining
this family of distributions geometrically is easy once one has determined the
contours of constant generalized entropy, since these are also the contours of
constant discrepancy fromg.

8.5.4. Bregman divergence. In a finite sample space, the Bregman score (29)
generates the Bregman divergence (30). Thus minimizing the Bregman divergence
is equivalent to maximizing the associated relative entropy, which is in turn
equivalent to finding a distribution that is robust Bayes against the associated
relative loss function. Minimizing a Bregman divergence has become a popular
tool in the construction and analysis of on-line learning algorithms [Lafferty (1999)
and Azoury and Warmuth (2001)], on account of numerous pleasant properties it
enjoys. As shown by properties (i)—(iv) of Section 8.1 and as will further be seen
in Section 10, many of these properties generalize to an arbitrary decision-based
divergence function as defined by (103) or (106).

In more general sample spaces, the separable Bregman score (34) generates the
separable Bregman divergengg given by (37). When the measugeappearing
in these formulae is itself a probability distributigm will be neutral (uniquely so
if v is strictly convex); then minimizing over the separable Bregman divergence
dy (P, n) of P from u becomes equivalent to maximizing the separable Bregman
entropyH (P) as given by (38).

9. Statistical problems. discrepancy as loss. In this section we apply the
general ideas presented so far to more specifically statistical problems.
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9.1. Parametric prediction problems. In a statistical decision problem, we
have a family{ P,,: w € §2} of distributions for an observablg over X, labelled
by the valuesw of a parametef2 ranging overs2; the consequence of taking
an actiona depends on the value ¢f. We shall show how one can construct a
suitable loss function for this purpose, starting from a general decision préblem
with loss depending on the value &f, and relate the minimax properties of the
derived statistical gan@ to those of the underlying basic garge

In our contextX is best thought of as a future outcome to be predicted, perhaps
after conducting a statistical experiment to learn alseuThe distributions ofY
given Q2 = w would often be taken to be the same as those governing the data in
the experiment, but this is not essential. Our emphasis is thus on statistical models
for prediction, rather than for observed data: the latter will not enter directly.
For applications of this predictive approach to problems of experimental design,
see Dawid (1998) and Dawid and Sebastiani (1999).

9.2. Technical framework. Let (X, 8) be a separable metric space with its
Borelo-field, and let?q be the family of all probability distributions ovéiX, B).
We shall henceforth want to considgg itself (and subsets thereof) as an abstract
“parameter space.” When we wish to emphasize this point of view we shall
denotePy by ®g, and its typical member by; wheno is considered in its original
incarnation as a probability distribution @&, 8), we may also denote it bgy.

®9 becomes a metric space under the Prohorov metejrand the associated
topology is then identical with the weak topology @y [Billingsley (1999),
page 72]. We denote the set of all probability distributiondaars, on the Borel
o-field € in ®g by L. Such a law can be regarded as a “prior distribution” for
a parameter random variabke taking values in®q. For such a law1 € Lo, we
denote byPr € $g its mean, given byPn(A) = En{Pe(A)} (A € B): this is just
the marginal “predictive” (mixture) distribution fak over X, obtained by first
generating a value for ® from I, and then generating from Pj.

9.3. The derived game. Starting from a basic gamg = (X, 4, L), we
construct a newlerived game, 4 := (@, A, L). The new loss functio on ® x A
is just the discrepancy function for the original gaghe

(121) L6, a):= D(Py,a),
and the original sample spabdeis replaced by := {0 € ®g: D(Py, a) is defined
forall a € A}.
We have
(122) L(0,a)=L(Py.a) — H(Py)

when H(FPy) is finite. Properties (121) and (122) then extend directly to
randomized acts € Z for DM. A randomized act for Nature if is a law putting
all its mass or® C ®g. We shall denote the set of such lawsbyC L.
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Note thatZ (6, a) is just the regret associated with taking actiomhenX ~ Py.
It is nonnegative, and it vanishes if and only:ifs Bayes agains®y. Such a regret
function will often be a natural loss function to use in a statistical decision problem.
SinceL > 0, the expected los& (11, ¢) is defined in[0, co] for all T1 € £,
¢ € Z. From (122) we obtain

(123) Z(1'1,4“)=L(1’)n,§“)—/ILI(PQ)G'H(@)

when the integral exists. An agg will thus be Bayes againgt in g if and only
if it is Bayes againstPr; in . More generally, this equivalence follows from
the property B{L(®,¢) — L(©, {o)} = Ep {L(X, ¢) — L(X, {0)}. In particular,
if L is a@-proper scoring rule in the basic garfeand the mixture distribution
Pr € @, then Py will be Bayes againsil in §.

Thederived entropy function is

(124) A(T) = H(Pp) — f H(Py)dT1(6)

(when the integral exists) and is nonnegative. This measures the expected reduction
in uncertainty aboutX obtainable by learning the value @, when initially
® ~ IT: it is the expected value of information [DeGroot (1962)] in® aboutX.

The derived discrepancy is just

(125) D(I1,¢) = D(Pp, ¢).

9.4. A statistical model. Let £2 C ©q: for example £2 might be a parametric
family of distributions forX. We can think ofs2 as the statistical model for the
generation ofX. We will typically write  or P, for a member of2 and use
to denote the paramet@r when it is restricted to taking values i2. We denote
by A C £ the class of laws o®g that give all their mass te&2 and can thus
serve as priors for the paramefeof the model; we denote by C £y the family
{Pr: I € A} of all distributions forX obtainable as mixtures over the mode!|
Clearly bothA andI" are convex.

LEMMA 9.1. Suppose that the family §2 of distributions on (X, 8) is tight.
ThensotooareT” and A [the latter as a family of laws on (@, C)].

PROOF The tightness of follows easily from the definition.

Let 2 denote the closure of2 in @q. Sinces? is tight, so isf2 [use, e.g.,
Theorem 3.1.5(iii) of Stroock (1993)], and then Prohorov’s theorem [Billingsley
(1999), Theorem 5.1] implies tha® is compact in the weak topology. Any
collection (in particularA) of distributions on(®g, C) supported on2 is then
necessarily tight. O
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9.5. Minimax properties. Now consider a statistical model witke € ©
(so thatA C .£). We can tailor the derived ganmg to this model by simply
restricting the domain of. to £2 x 4. We would thus be measuring the loss
(regret) of taking actt € Z, when the true parameter value dse€ $2, by
L, )= D(P,, 7). Alternatively, and equivalently, we can focus attention on the
restricted game Q’,\A as defined in Section 4.2, with the family of laws supported
on the modek2. In the present context we shall denote thisgi.

We will often be interested in the existence and characterization of a value,
saddle-point, maximum entropy (maximin) pribr* or robust Bayes (minimax)
actZ*, in the gamegg. Note in particular that, when we do have a saddle-point
(T1*,2%) in 2, with value H*, we can use Lemma 4.2 to deduce thit must
put all its mass o' := {w € £2: D(P,, £*) = H*}: in particular, with[T*-prior
probability 1 the discrepancy from the minimax act is constant. When, as will
typically hold, T is a proper subset a2, we further deduce from Corollary 4.4
thatZ* is not an equalizer rule ig<.

To investigate further the minimax and related properties of the @?newe
could try to verify directly for this game the requirements of the general theorems
already proved in Sections 5—-7. However, under suitable conditions these required
properties will themselves follow from properties of the basic ggméVe now
detail this relationship for the particular case of Theorem 6.4.

We shall impose the following condition:

CoONDITION 9.1. There existX € R such thati (P,) > K forall w € £2.

By concavity ofH, Condition 9.1 is equivalentt& (Q) > K forall Q e T'.
The following lemma is proved in the Appendix.

LEMMA 9.2, Suppose Condition 9.1 holds. Then if Conditions 6.1 and 6.3
holdfor L and I" (in ), they likewise hold for L and A (in §).

The next theorem now follows directly from Lemmas 9.1 and 9.2 and
Theorem 6.4.

THEOREM 9.1. Suppose Conditions 6.1, 6.3and 9.1 all hold for L and T’
in g and, in addition, the statistical model £2 istight. Then H* :=sup . H(IT)
is finite, the game 39 has value H* and there exists a minimax (robust Bayes)
act 2* in g% such that

(126) supL(w,*) = |nf supL(w, ) = sup |nf L(I,a)=
weR wes [TeAach

We remark that the convexity requirement dnin Condition 6.3 will be
satisfied automatically, while the finite entropy requirement is likewise guaranteed
by Condition 9.1 and the assumed finitenes&6f
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The proof of Theorem A.2 shows that we can tgketo be Bayes irg against
some lawIT* in the weak closure\ of A (or, equivalently, Bayes ii§ against
P* := Pg. in the weak closuré’ of I'). However, in general, i\ is not weakly

closed,Z* need not be a Bayes act Eﬁ against any prior distributioT € A
(equivalently, not Bayes ig against any mixture distributioR € T).

On noting that for any reference agfthe gameg" andg,g induce the same
derived game, and using (111), we have the following.

COROLLARY 9.1. Suppose that there exists ¢p € Z such that Conditions
6.1 and 6.3 hold for Lo and T in the relative game 4{, and, in addition, that
oL is tight. Suppose further that D(P,, &p) is bounded above for w € £2. Then
there exists a minimax (robust Bayes) act ¢ * in the game gQ

If the boundedness condition in Corollary 9.1 fails, we shall have
(127) SupL(w, o) = SUPD(Py, §o) = 00

wes weS
It can thus fail for allfo € Z only when intczsup,c L(w, £) = oo; that is,
the upper value of the gam@Q is oco. In this case the game has no value,
and any¢ € Z will trivially be minimax in 2. In the contrary case, we would
normally expect to be able to find a suitalglec Z to satisfy all the conditions of
Corollary 9.1 and thus demonstrate the existence of a robust Bayes iac@f‘?.

9.6. Kullback-Leibler loss: the redundancy-capacity theorem. An important
special case arises when the mogeils dominated by @ -finite measure:, and
the loss functiorL in § is given by the logarithmic score (20) with respecitdn
this case, for any possible choiceiofthe derived loss is just the Kullback—Leibler
divergencel (w, P) = KL(P,, P). We call such a gamekaullback-Leibler game.
The corresponding derived entropi(I1), as given by (124), becomes thnettual
information, I (X, ), betweenX and, in their joint distribution generated by
the prior distributionIT for @ [Lindley (1956)]. There has been much research,
especially for asymptotic problems, into the existence and properties of a maximin
“reference” prior distributiorTl overs2 maximizing this mutual information, or of
a minimax act (which can be regarded as a distribufdre M over X)) for DM
[Bernardo (1979), Berger and Bernardo (1992), Clarke and Barron (1990, 1994),
Haussler (1997) and Xie and Barron (2000)].

The following result follows immediately from Corollary 9.1 and Proposi-
tion A.1.

THEOREM 9.2. Suppose that loss on 2 x + is measured by L(w, P) =
KL (P,, P),and that the model §2 istight. Then there existsa minimax act P*e M
for 9?9 achieving infpe . Sup,co KL(P,, P). When this quantity is finite it is
the value of the game and equals the maximum attainable mutual information,
I* :=SUpqep In(X, Q).
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Theorem 9.2, a version of the “redundancy-capacity theorem” of information
theory [Gallager (1976), Ryabko (1979), Davisson and Leon-Garcia (1980) and
Krob and Scholl (1997)], constitutes the principal result (Lemma 3) of Haussler
(21997). Our proof techniques are different, however.

If 7* is achieved for somé&l* € A, then (IT*, P*) is a saddle-point ir§*,
whence, sinceP* is then Bayes ir§ againstl*, P* is the mixture distribution
Pr«= [ P, dTT*(w). Furthermore, since Lemma 4.2 applies in this case, we find
that [T* must be supported on the subspate= {w € 2 :KL (P,, P*) =TI"}.

As argued in Section 4.3, for the case of a continuous parameter-5paeél
typically be a discrete distribution. Notwithstanding this, it is known that, for
suitably regular problems, as sample size increases this discrete maximin prior
converges weakly to the absolutely continuous Jeffreys invariant prior distribution
[Bernardo (1979), Clarke and Barron (1994) and Scholl (1998)].

10. The Pythagorean inequality. The Kullback—Leibler divergence satisfies
a property reminiscent of squared Euclidean distance. This property was called
the Pythagorean property by Csiszar (1975). The Pythagorean property leads
to an interpretation of minimum relative entropy inference asirdormation
projection operation. This view has been emphasized by Csiszar and others in
various papers [Csiszar (1975, 1991) and Lafferty (1999)]. Here we investigate
the Pythagorean property in our more general framework and show how it is
intrinsically related to the minimax theorem: essentiallpythagorean inequality
holds for a discrepancy functiab if and only if the loss functior. on whichD is
based admits a saddle-point in a suitable restricted game. Below we formally state
and prove this; in Section 10.2 we shall give several examples.

Let I' € &# be a family of distributions ovef(, and letzg be a reference
act, such thatL(P, ¢p) is finite for all P € T [so that Lo(P,¢) is defined
for all P €T, ¢ € Z]. We impose no further restrictions dn (in particular,
convexity is not required). Consider the relative restricted ggmewith loss
function Lo(P,a), for P € T', a € A. We allow randomization ovewt but
not overI". The entropy function for this game Hy(P) = —D(P, {o) and is
always nonpositive.

THEOREM10.1. Suppose(P*, ¢*)isasaddle-pointin gg.Thenfor alPerl,
(128) D(P,¢*) + D(P*, %) < D(P, £0).
Conversaly, if (128) holds with its right-hand side finite for all P € ', then
(P*,¢*) isasaddle-pointin gf .

PROOF Let Hy := Ho(P*) = —D(P*,¢o). If (P*,¢*) is a saddle-point
in 95, thenHjy = Lo(P*, ¢*) and is finite. Also, for allP € T",
(129) Lo(P,¢") < Hg.
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If Ho(P) = —o0, then D(P, ¢p) = oo, so that (128) holds trivially. Otherwise,
(129) is equivalent to

(130) {Lo(P, ¢¥) — Ho(P)} + {—Hj} < {—Ho(P)},

which is just (128).

Conversely, in the case thBX( P, ¢p) is finite for all P € T", (128) implies (129).
Also, putting P = P* in (128) givesD(P*, ¢*) = 0, which is equivalent t@*
being Bayes againsP*. Moreover, H(P*) = D(P*, ¢o) is finite. By (44),
(P*,¢*) is a saddle-pointig. O

COROLLARY 10.1. If S isa @-proper scoring ruleand I' € @, then in the
restricted relative game gg having loss So(P, Q) (for fixed reference distribution
Po € Q),if (P*, P*) isasaddle-point (in which case P* is both maximum entropy
and robust Bayes), thenfor all P €T,

(131) d(P, P*)+d(P*, Py) <d(P, Po).

Conversely, if (131)holds and d(P, Pg) < oo for all P € T', then (P*, P*) isa
saddle-pointin §{.

We shall term (128), or its special case (131), Bythagorean inequality.
We deduce from (128), together with( P, ¢g) = —Ho(P), thatforallP € T,

(132) Ho(P*) — Ho(P) > D(P, "),

providing a quantitative strengthening of the maximum relative entropy property,
Ho(P*) — Ho(P) > 0, of P*. Similarly, (131) yields

(133) Ho(P*) — Ho(P) > d(P, P").

Often we are interested not in the relative gaggjebut in the original gamg.”.
The following corollary relates the Pythagorean inequality to this original game:

COROLLARY 10.2. Supposethat intherestricted game ¢! there existsan act
fo€ Zsuchthat L(P, ¢o) =k € R, for all P €T (in particular, thiswill hold if ¢g
is neutral ). Then, if (P*, ¢*) isa saddle-point in g!', (128)holds for all P e T;
the converseholdsif H(P) isfinitefor all P € T'.

10.1. Pythagorean equality. Related work to date has largely confined itself
to the case of equality in (128). Thisad long been known to hold for the
Kullback—Leibler divergence of Section 8.5.2 [Csiszar (1975)]. More recently
[Jones and Byrne (1990), Csiszar (1991) and Della Pietra, Della Pietra and Lafferty
(2002)], it has been shown to hold for a general Bregman divergence under certain
additional conditions. This result extends beyond our framework in that it allows
for divergences not defined on probability spaces. On the other hand, when we try
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to apply it to probability spaces as in Section 3.5.4, its conditions are seen to be
highly restrictive, requiring not only differentiability but also, for example, that the
tangent spac® H (¢) of H atq should become infinitely steep aapproaches the
boundary of the probability simplex. This is not satisfied even for such simple cases
as the Brier score: see Section 10.2.1, where we obtain strict inequality in (128).

The following result follows easily on noting that we have equality in (128) if
and only if we have it in (129):

THEOREM 10.2. Suppose (P*,¢*) is a saddle-point in gg. If ¢* is an
equalizer rule in gg [i.e., Lo(P,¢*) = Ho(P*) for all P € I'], then (128)
holds with equality for all P € T". Conversely, if (128) holds with equality, then
Lo(P,¢*) = Ho(P*) for all P €T such that D(P, ¢g) < oo; in particular, if
D(P,) <ooforall PeTl, ¢*isanequalizer rulein gg.

Combining Theorem 10.2 with Theorem 7.1(i) or Corollary 7.2 now gives the
following:

COROLLARY 10.3. Let I' =T; = {P € P:Ep{t(X)} = t}. Suppose
(P*,¢*) := (P, ¢;) is a saddle-point in Gq. If either (P;, &) is a linear pair
or P « P, then (128) holds with equality.

10.2. Examples. We now illustrate the Pythagorean theorem and its conse-
guences for our running examples.

10.2.1.Brier score. Let X be finite. As remarked in Section 8.5.1, the
Brier divergencel(P, Q) between two distribution® and Q is just||p — g||°.
LetI" C & be closed and convex. By Theorem 5.2, we know that there then exists
a P* eT suchthat P*, P*) is a saddle-point in the relative gargé. Therefore,
by Corollary 10.1 we have, for alt € T,

(134) Ip — P2+ 1lp* — poll> < llp — poll®,
or equivalently,
(135) (p— P (p* — po) <O.

The distribution P* within T' that maximizes the Brier entropy relative %,
or equivalently that minimizes the Brier discrepancy Rp, is given by the
point closest toPy in I', that is, the Euclidean projection afy onto T'.
That this distribution is also a saddle-point is reflected in the fact that the angle
Z(p, p*, po) > 90° forall P €T.
Consider again the cas& = {—1,0,1} and constraint k&(X) = t. For
Tt €[—2/3,2/3], where (except for the extreme cases) the minimizing ppint
is in the interior of the line segment, (135), and so (134), holds with equality for
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all P € I';; while for T outside this interval, where the minimizing point is at one
end of the segment, (135) and (134) hold with strict inequality foPa ", \ { P, }.
Note further that in the former cagg is linear; fort € (—2/3,2/3) p, is in the
interior of the simplex, so thaP, has full support. Hence, by Theorem 7.1(i) or
Corollary 7.2, p, is an equalizer rule. In the latter cage does not have full
support, and indeed the strict inequality in (134) implies by Theorem 10.2 that it
cannot be an equalizer rule.

We can also use (135) to investigate the existence of a saddle-point for certain
nonconveX". Thus suppose, for example, tHais represented in the simplex by
a spherical surface. Then the necessary and sufficient condition (135) for a saddle-
point will hold for a reference poing® outside the sphere, but fail fo° inside.
In the latter case Corollary 4.1 does not apply, and the maximum Brier entropy
distribution inT" (the point inT" closest to the center of the simplex) wilbt be
robust Bayes againft

10.2.2. Logarithmic score. In this cased(P, Q) becomes the Kullback—
Leibler divergence KKP, Q) (P, Q € M). This has been intensively studied
for the case of mean-value constrairm# ={P e M:Ep(T) =1} (r € TY),
when the Pythagorean property (131) holds with equality [Csiszar (1975)]. By
Theorem 10.2 this is essentially equivalent to the equalizer property of the
maximum relative entropy densipy, as already demonstrated (in a way that even
extends to distribution® € I'; \ M) in Section 7.3. (Recall from Section 8.5.2
that in this case the relative entropy, with respect to a reference distribRgjos
simply the ordinary entropy under base meastyg

In the simple discrete example studied in Section 7.6.2, the above equalizer
property also extended (trivially) to the boundary points= +1. Such an
extension also holds for more general discrete sample spaces, since the condition
of Corollary 7.2 can be shown to apply wheris on the boundary di". So in all
such cases the Pythagorean inequality (131) is in fact an equality.

10.2.3. Zero—oneloss. Forthe casé& = {—1,0, 1} and constraint E(X) =,
with ¢o uniform onX, we haveHy(P) = H(P)—1+1/N, and then (132) (equiva-
lent to both the Pythagorean and the saddle-point property) asserts: foeall,,

(136) H(Pr) — H(P) = D(P, 7).
Using (25) and (120), (136) becomes
(137) Dr.max = ZP(X) Sz (x).

This can be confirmed for the specificationsfyfand¢; given in Tables 2 and 3.
Specifically, for 0< 7 < % both sides of (137) arél + 7)/3 (the equality
confirming that in this case we have an equalizer rule), WhiIe,%fef T <1,

(137) becomes < p(1), which holds since = p(1) — p(—1) (in particular we
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have strict inequality, and hence do not have an equalizer rule, unteds. For

T = 3, we calculate” p(x)¢; (x) — prmax= (1—3a) p(=1), which is nonnegative
sincea < 1/3, so verifying the Pythagorean inequality, and hence the robust Bayes
property of¢12 = (0,a,1—a) fora < %—although this will be an equalizer rule

only fora = % Similar results hold wher-1 <t < 0.

11. Conclusions and further work.

11.1. What has been achieved. In this paper we started by interpreting the
Shannon entropy of a distributioR as the smallest expected logarithmic loss
a DM can achieve when the data are distributed according.téVe showed
how this interpretation (a) allows for a reformulation of the maximum entropy
procedure as a robust Bayes procedure and (b) can be generalized to supply a
natural extension of the concept of entropy to arbitrary loss functions. Both these
ideas were already known. Our principal novel contribution lies in the combination
of the two: the generalized entropies typically still possess a minimax property,
and therefore maximum generalized entropy can again be justified as a robust
Bayes procedure. For some simple decision problems, as in Section 5, this resultis
based on an existing minimax theorem due to Ferguson (1967); see the Appendix,
Section A.1. For others, as in Section 6, we need more general results, such as
Lemma A.1, which uses a (so far as we know) novel proof technique.

We have also considered in detail in Section 7 the special minimax results
available when the constraints have the form of known expectations for certain
guantities. Arising out of this is our second novel contribution: an extension of
the usual definition of “exponential familyd a more general decision framework,
as described in Section 7.4. We believe that this extension holds out the promise
of important new general statistical theory, such as variations on the concept
of sufficiency.

Our third major contribution lies in relating the above theory to the problem
of minimizing a discrepancy between distributions. This in turn leads to two
further results: in Section 9.5 we generalize Haussler’'s minimax theorem for the
Kullback—Leibler divergence to apply to arbitrary discrepancies; in Section 10
we demonstrate the equivalence between the existence of a saddle-point and a
“Pythagorean inequality.”

11.2. Possible developments. We end by discussing some possible extensions
of our work.

11.2.1. Moment inequalities. As an extension to the moment equalities
discussed in Section 7, one may consider robust Bayes problems for moment
inequalities, of the forml" = {P:Ep(T) € A}, where A is a general (closed,
convex) subset oR¥. A direct approach to (39) is complicated by the combination
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of inner maximization and outer minimization [Noubiap and Seidel (2001)].
Replacement of this problem by a single maximization of entropy éveould
well simplify analysis.

11.2.2. Nonparametric robust Bayes. Much of robust Bayes analysis in-
volves “nonparametric” familied": for example, we might have a reference
distribution Py, but, not being sure of its accurate specification, wish to guard
against anyP in the “c-neighborhood” ofPy, that is,{Pg + c¢(P — Pp):|c| < &,

P arbitrary}. Such a set being closed and convex, a saddle-point will typically ex-
ist, and then we can again, in principle, find the robust Bayes act by maximizing
the generalized entropy. However, in general it may not be easy to determine or
describe the solution to this problem.

11.2.3. Other generalizations of entropy and entropy optimization problems.

It would be interesting to make connections between the generalized entropies and
discrepancies defined in this text and the several other generalizations of entropy
and relative entropy which exist in the literature. Two examples are the Rényi
entropies [Rényi (1961)] and the family of entropies based on expected Fisher
information considered by Borwein, Lewis and Noll (1996).

Finally, very recently, Harremoés and Topsge [Topsge (2002) and Harremoés
and Topsge (2002)] have proposed a generalization of Topsge’s original minimax
characterization of entropy [Topsge (1979)]. They show that a whole range
of entropy-related optimization problems can be interpreted from a minimax
perspective. While Harremoés and Topsge'’s results are clearly related to ours, the
exact relation remains a topic of further investigation.

APPENDIX: PROOFS OF MINIMAX THEOREMS

We first prove Theorem 6.1, which can be used for loss functions that
are bounded from above, and Theorem 6.2, which relates saddle-points to
differentiability of the entropy. We then prove a general lemma, Lemma A.1,
which can be used for unbounded loss functions but imposes other restrictions.
This lemma is used to prove Theorem 6.3. Next we demonstrate a general result,
Theorem A.2, which implies Theorem 6.4. Finally we prove Lemma 9.2.

A.l. Theorem 6.1: L upper-bounded, I' closed and tight. The following
result follows directly from Theorem 2 of Ferguson [(1967), page 85].

THEOREM A.1. Consider a game (X, 4, L). Suppose that L is bounded
below and that there is a topology on Z, the space of randomized acts, such that
the following hold:

(i) Z iscompact.
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(i) L:X x ¢ — Rislower semicontinuousin ¢ for all x € X.

Thenthegamehasavalue, that is, supp. » iNfaen L(P, a) =infrez sUp, oo L(x, 0).
Moreover, aminimax ¢, attaining inf,cz sup.cy L(x, ¢), exists.

Note thatz could be any convex set. By symmetry considerations, we thus have
the following.

COROLLARY A.1l. Consider a game (T", 4, L). Suppose that L is bounded
above and there isa topology on I such that the following hold:

() T isconvexand compact.
(i) L:T x A— Risupper semicontinuousin P for all a € .

Thenthegamehasavalue, that is, inf;cz SUP.cx L(x, ) =SUPpcr iNfien L(P, a).
Moreover, a maximin P, attaining supp . inf,ec.4 L(P, a), exists.

PROOF OFTHEOREM6.1. Sincd is tight and weakly closed, by Prohorov’'s
theorem [Billingsley (1999), Theorem 5.1] it is weakly compact. Also, under the
conditions imposed.(P, a) is, for eacha € 4, upper semicontinuous i® in
the weak topology [Stroock (1993), Theorem 3.1.5(v)]. Theorem 6.1 now follows
from Corollary A.1. O

A.2. Theorems 6.2 and 6.3: L unbounded, sup H(P) achieved. Through-
out this section, we assume tlats convex and thal * := supy .- H (P) is finite
and is achieved for som@* € I" admitting a not necessarily unique Bayes&tt

To prove that P*, ¢*) is a saddle-point, it is sufficient to show thatP, ¢*) <
L(P*, ¢*y=H*forall PeT.

PROOF OFTHEOREM6.2. BylLemma 3.2L(P, ¢*) andL(Py, ¢*) are finite,
and f(A) := L(Q;,¢*) is linear in A € [0, 1]. Also, f(A) = H(Q,) for all A
and f(\*) = H(Q,+) = H*. Thus f (1) must coincide with the tangent to the
curve H(Q;) ata = A*. It follows that

1) Lee=r@=m+a-n](5)He]

However,

A=A*

d  HQ)-H
{(E)H@A)}w = lim 22— <o

sinceH (Q;) < H* for A > A*. We deducd.(P, ¢*) < H*. [

NOTE. If Pginthe statement of Theorem 6.2 can be chosen to betinen we
further haveH (Q;) < H* for A < A*, which implies{(d/dA)H(Q;)}y=+ =0,
and henceL (P, ¢*) = H*. In particular, if this can be done for ait € T" (i.e.,
P* is an “algebraically interior” point of"), then¢™* will be an equalizer rule.
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From this point on, for any’ € I", A € [0, 1] we write P, := AP + (1 — A)P*.
Then, since we are assumifigconvex,P, € I.

LEMMA A.1. Suppose Conditions 6.3 and 6.4 hold. Let ¢, be Bayes
against P, (in particular, ¢* := ¢ is Bayes against P*, and ¢; is Bayes
against P). Then
H(Py) — L(P*, )

(139) L(P,5) — L(P*,5) = .

(140) <0

(0 < & < 1). Moreover, limy o L(P*, &) and lim; 0 L(P, ) both exist as finite
numbers, and

(141) lm L(P*, ;) = H".

PROOF.  First note that, sincél (P,) = L(Ps, ¢;) is finite, by Lemma 3.2 both
L(P, ) andL(P*, ¢,) are finite for 0< A < 1. Also by Lemma 3.2, for alf € Z,
L(P;, ¢) is, when finite, a linear function df € [0, 1]. Then

AL(P,¢)+ (1—X)L(P*,¢)=L(Py,0)
(142) > H(P,) =L(Py, )
(143) =AL(P, &)+ (L—2X)L(P*, ).

On putting¢ = ¢, we have equality in (142); then rearranging yields (139), and
(140) follows fromL(P*, ) > H* andH(P,) < H*.
For generat € Z we obtain (when all terms are finite)

(144) ML(P, &) — L(P,9)} < (L= M{L(P*,§) — L(P™, &)}

Put¢ = ¢1, so thatL(P, ¢1) = H(P) is finite, and first suppose thdt(P*, ¢1)
is finite. Then the left-hand side of (144) is nonnegative, and.6B*, ¢1) >
L(P*, ) (0 <X < 1)—which inequality clearly also holds if(P*, ¢1) = oco.
An identical argument can be applied on first replaginby ¢, (0 <A’ < 1), and
we deduce thak (P*, ¢y) > L(P*, ) (0<A <A’ <1). Thatisto sayL(P*, ¢)
is a nondecreasing function afon [0, 1]. It follows that

(145) Q%L(P*, &) = L(P*, o) =H".
A parallel argument, interchanging the rolesrf and P, shows thatL(P, ¢,)
is nonincreasing i < [0, 1]. Since, by (140), for alh € (0,0.5], L(P, ) <

L(P*, ) < L(P*, ¢o5) < oo, it follows that limy o L(P, ¢;) exists and is finite.
SinceP* maximizes entropy ovdr,

H(P*) — L(P*, &) = H(Py) — L(P*, §3)

=ML(P, &) — L(P*, 5))

(146)



MAXIMUM ENTROPY AND ROBUST BAYES 1427

by (143). On noting.(P*, ¢;) < L(P*, ¢1) sinceL(P*, ¢,) is nondecreasing, and
usingL(P, ¢,) = H(P), (146) impliesH* — L(P*, ) > MH(P) — L(P*, ¢1)).

If L(P*, ¢1) < oo, then lettingx | O we obtainH* > lim; ;o L(P*, ), which,
together with (145), establishes (141). Otherwise, noting ftHa&*, zo5) < oo,
we can repeat the argument withreplaced byPys. [

COROLLARY A.2.

. « . H(P) — L(P*, §)
(147) lim L(P, &) — H* =lim . :

CoROLLARY A.3 (Condition for existence of a saddle-point)L(P, ¢*) <
H(P*) ifand only if

(148) im H(P,) — L(P*, )
A0 A

=< Q%L(P, &) — L(P, 7).

PROOF OF THEOREM 6.3. The conditions of Lemma A.1 are satisfied. By
Corollary A.3 and (140), we see that it is sufficient to prove that, foPadi T",

(149) 0<limL(P. &) = L(P.¢").
However, (149) is implied by Condition 6.1

A.3. If suppr H(P) isnot achieved. In some cases sypr H(P) may not
be achieved i [Topsge (1979)]. We might then think of enlargiigto, say,
its weak closurd”™. However, this can be much bigger thRn For example, for
uncountableX;, the weak closure of a set, all of whose members are absolutely
continuous with respect tp, typically contains distributions that are not. Then
Theorem 6.3 may not be applicable.

EXAMPLE A.1. Consider the logarithmic score, as in Section 3.5.2, with
X = R andu Lebesgue measure, andlete {P: P « u, E(X) =0, E(X?) = 1}.
ThenT contains the distribution? with P(X = 1) = P(X = —1) = 1/2, for
which H(P) = —o0. There is no Bayes act against tlis

This example illustrates that, in case gup H(P) is not achieved [for an
instance of this, see Cover and Thomas (1991), Chapter 9], we cannot simply take
its closure and then apply Theorem 6.3, since Condition 6.3 could still be violated.

The following theorem, which in turn implies Theorem 6.4 of Section 6, shows
that the gamér’, 4, L) will often have a value even whehis not weakly closed.

We need to impose an additional condition:

CoNDITION A.1. Every sequenc@,) of distributions inl" such thatd (Q,,)
converges td{ * has a weak limit point irg.
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THEOREM A.2. Suppose Conditions 6.1, 6.3and A.1 hold. Then there
exists ¢* € Z such that

(150) supL(P M= |nf SUpL(P,¢) = suplnf L(P,a)=H".
{€Z per Perd

In particular, the game ¢! has value H*, and ¢* isrobust Bayes against I".

PROOF Let (Q,) be a sequence ifi such thatH (Q,) converges taH*. In
particular,(H(Q;,)) is bounded below. On choosing a subsequence if necessary,
we can suppose by Condition A.1 th@,,) has a weak limitP*, and further that
foralln H* — H(Q,) < 1/n. By Condition 6.1,P* has a Bayes act®.

Now pick anyP € I'". We will show thatL(P, ¢*) < H*. First fixn and define
R} == AP + (1 - 1N)0Q,, H! := H(R}) (0 <X <1). In particular,Rj = Q,,

R} = P. ThenR] € I', with Bayes actg;’, say. We havefl;’ = L(R},{)) =
AL(P, &+ (1- A)L(Rg, ¢;), while Hy < L(Rp, ;). It follows that

(151) L(P,¢) < Hy + (H}! — Hy) /M.
SinceH) = H(Q,) > H* —1/n andHy, H;' < H*, we obtain
(152) L(P, gf/ﬁ) <H*+1/n+1//n.

Now with Q) := R;N_, (Q,) converges weakly taP*. Moreover, H(Q,) >

A//n)YH(P)+ (1—1/4/n)H(Q,) is bounded below. On apphg Condtion 6.1
to Q),, and using (152), we deduce

(153) L(P,t*)<H*.

It now follows that
(154) Clreﬁ }s)ngL(P ) < ﬁSFL(P ¢*) <H".
However,

(155) H*= suplnf L(P,a)= suplnf L(P,¢) < |nf SUpPL(P,?),

Pel dch per?¢ {€Z per
where the the second equality follows from Proposition 3.1 and the third inequality
is standard. Together, (154) and (155) imply the theorelm.

PROOF OF THEOREM 6.4. If " is tight, then by Prohorov’s theorem any
sequence(Q,) in ' must have a weak limit point, so that, in particular,
Condition A.1 holds. O

It should be noted that, folP* appearing in the above proof, we may
have H(P*) # H*. In the case of Shannon entropy, we haiéP*) < H*;
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a detailed study of the case of strict inequality has been carried out by Harremoés
and Topsge (2001).

We now show, following Csiszar (1978hd Topsge (1979), that the conditions
of Theorem A.2 are satisfied by the logarithmic score. We take S, the
logarithmic score (20) defined with respect to a meagur@his is M-strictly
proper, whereM is the set of all probability distributions absolutely continuous
with respect tqu.

PROPOSITIONA.1. Conditions A.1 and 6.2 are satisfied for the logarithmic
score S relativeto a measure . if eitherof the following holds:

(i) wisaprobability measureand @ = M;
(i) X iscountable, u iscounting measureand @ = {P € P : H(P) < oo}.

PrRoOOF To show Condition A.1, under either (i) or (ii), |é0,) be a sequence
of distributions inT" such thatH (Q,,) converges taH*. Givene > 0, chooseN
such that, fom > N, H* — H(Q,) < ¢. Then forn,m > N, on applying (104)
we have

H*> H{3(0 + Om)}
[H(Qn) + H(Qm) + KL{Qn, 3(Q0 + Om))
+KL{Om, 3(Qn + Om)}]

> H* — &+ 1100 — Onll?,

where || - || denotes total variation and the last inequality is an application of
Pinsker’s inequality KI(P1, Po) > (1/4)||P1 — P>||? [Pinsker (1964)]. That is,
n,m>N = |0, — Onll® < 16¢, so that(Q,) is a Cauchy sequence under].
Since the total variation metric is complet&?,) has a limit Q in the uniform
topology, which is then also a weak limit [Stroock (1993), Section 3.1]. This shows
Condition A.1.

To demonstrate @ndition 6.2 supposeQ,, € @, H(Q,) > K > —oo for
all n, and (Q,) converges weakly to some distributiaPg € . By Posner
(1975), Theorem 1, K{P, Q) is jointly weakly lower semicontinuous in both
arguments. In case (i), the entropf(P) = —KL (P, ) is thus upper semicon-
tinuous in P € &, and it follows that 0> H(Qq) > K > —oo, which implies
Qo€ M =@. In case (ii), the entropy function is lower semicontinuous [Topsge
(2001)], whence & H(Qp) < oo, and againQo € @. In either case, the lower
semicontinuity of KL(P, Q) in Q then implies that, forP € @, S(P, Qp) =
KL(P, Qo)+ H(P) <liminf,, o {KL(P, @n) + H(P)} =liminf,_,ocS(P, On).

O

(156)

Theorem A.2 essentially extends the principal arguments and results of Topsge
(1979) to nonlogarithmic loss functions. In such cases it might sometimes be
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possible to establish the required conditions by methods similar to Proposition A.1,
but in general this could require new techniques.

A.4. Proof of Lemma 9.2. Suppose Condition 9.1 holds, and Conditions
6.1 and 6.3 hold fo. andT" in . We note thatH (P,) is then bounded below
by K and above byH* for w € £2; for I1 € A, the integral in (123) and (124) is
then bounded by the same quantities.

To show Condition 6.1 holds fof. and A in g let IT,, € A, with Bayes
acte, € Z in g be such thatH (I1,,)) is bounded below andrl,,) converges
weakly toTlp € A. Defining Q,, := Py, Qo := Pr,, we then haveD,, € I', with
Bayes actz, € Z in §. Now let f:X — R be bounded and continuous, and
defineg:©®9 — R by g(6) = Ep,{ f(X)}. By the definition of weak convergence,
the function g is continuous. It follows that g {f(X)} = En,{g(®)} —
Engi{g(®)} = Egy{ f(X)}. This shows thatQ,) converges weakly t@q. Also,
by (124) and ©ndition 9.1 the sequencéH (Q,)) is bounded below. It now
follows from Condition 6.1 ing! that Qg has a Bayes adfp in §—any such
act likewise being Bayes againBlp in §. Also, for an appropriate choice of
the Bayes act$¢,) and o, L(P, ¢o) < liminf,_.oc L(P, ¢y), for all P € T'. By
finiteness of the integral in (123) we then obtaifl, Zo) < liminf,_ oo L(I1, ),
forall IT € A.

We now show that Condition 6.3 holds fdr and A in §. First it is clear
that A is convex. Sincdl € A and Py € ' have the same Bayes acts (in their
respective games), iP; € I' has a Bayes act, then so ddésAlso, the integral
in (123) is bounded as a function ©of, whenceH (1) is finite if H(Pp) is, and
SURc A H (1) is finite if supp.- H(P) is.
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