The Annals of Statistics

2004, Vol. 32, No. 4, 1533-1555

DOI 10.1214/009053604000000508

© Institute of Mathematical Statistics, 2004

ESTIMATING MARGINAL SURVIVAL FUNCTION BY
ADJUSTING FOR DEPENDENT CENSORING
USING MANY COVARIATES!

BY DONGLIN ZENG
University of North Carolina at Chapel Hill

One goal in survival analysis of right-censored data is to estimate the
marginal survival function in the presence of dependent censoring. When
many auxiliary covariates are sufficient to explain the dependent censoring,
estimation based on either a semiparametric model or a nonparametric
model of the conditional survival function can be problematic due to the
high dimensionality of the auxiliary information. In this paper, we use
two working models to condense these high-dimensional covariates in
dimension reduction; then an estimate of the marginal survival function can
be derived nonparametrically in a low-dimensional space. We show that such
an estimator has the following double robust property: when either working
model is correct, the estimator is consistent and asymptotically Gaussian;
when both working models are correct, the asymptotic variance attains the
efficiency bound.

1. Introduction. Right-censored data with dependent censoring are common
in many epidemiological studies. Such data consistofi.d. copies of the
observationY =T A C,R = I(T < C),L), whereT is the failure time of
interest,C is the right censoring time, antl includes the covariate information.
Usually, the covariate& contain not only subject demographic information and
disease history, but also much other auxiliary information which researchers
are not primarily interested in but which is informative in predicting subjects’
failure time or explaining why subjects drop out, or both. For example, in a
typical medical studyl. may contain the patient’s willingness to participate in the
study, the patient’s accesdibji to hospitals, the sociaupport from the patient’s
family members, or the patient’s genetic information, and so on. When much
auxiliary information has been collected, in practice, it is safe to assumé tisat
sufficient to explain the dependence betw&eandC. Equivalently,7” andC are
independent when conditional dn

The purpose of this article is to estimate the marginal survival functiofi of
using right-censored data. A standard estimate is the Kaplan—Meier estimate.
However, it is well known that, whef@ and C are dependent, this estimator is
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inconsistent. Another intuitive approach to estimate the survival functiofi of

is to estimate the conditional distribution @f given L using a semiparametric
model [e.qg., the Cox proportional hazard model; see Cox (1972)], the proportional
odds model [Bennett (1983), etc.], or via honparametric estimation approaches
such as using a local likelihood function [Tibshirani and Hastie (1987)]. Then
the estimate of the marginal survival function &f is simply the empirical
average of the conditional distribution & given L over all the observed
covariates. However, the above approaches can be problematic when the auxiliary
covariates,L, consist of many variables. This is because wliehas at least
three dimensions, nonparametric estimation of the distributioff @iiven L is
infeasible in a moderate-sized sample due to the curse of dimensionality; and in
any semiparametric model, the parametric functio. of the model ofT" given

L is likely to be misspecified. Consequently, these intuitive approaches bias the
estimation of the survival function &f.

To reduce the limitation in the above intuitive approaches, in this article we
propose two working models for both the lifetinTe and the censoring timé€
given all the covariate&. Then two-dimensional condensed informationZois
extracted from the working models and used as the new covariates in place
of L. The estimator of the survival function is obtained by maximizing a pseudo-
likelihood function nonparametrically in the space with the reduced dimension. It
is shown that if either working model is correct, the estimator of the marginal
survival function is consistent and asymptotically Gaussian; if both working
models are correct, the asymptotic variance of the estimator attains the generalized
Cramér—Rao bound of the full model space [cf. Bickel, Klaassen, Ritov and
Wellner (1993)]. The first property is nhamed “double robustness” by Robins,
Rotnitzky and van der Laan (2000), since the estimator remains consistent if one
working model is misspecified but the other one is correct.

The method of using the condensed information of the high-dimensional
covariates in the estimation dates back to the propensity score approach by
Rubin (1976) in a simple regression, where the propensity score was defined as
the predicted missing probability giverl ghe covariatesLittle (1986) further
combined the propensity score and the mean score, the latter of which was
defined as the predicted mean response given all the covariates, to estimate the
population mean in a survey study. Such methods have been recently developed
and generalized to study dependent censoring in semiparametric regression
and survival analysis by Robins and others [Rotnitzky and Robins (1995),
Robins, Rotnitzky and van der Laan (2000) and Scharfstein and Robins (2002)].
Although all the above mentioned approaches including ours pursue the summary
information of the covariates, sometimes referred to as the propensity score or risk
score, using the working models f@r and C given L, the estimation approach
we take is much different from theirs. Robins, Rotnitzky and van der Laan’'s
approach is to begin with an inverse-weighted estimating equation, where only
the complete observations are used in the estimating equation and each complete
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observation is weighted with the inverse of the probability of not being censored;
a final estimating equation for estimating the marginal survival distribution is
to subtract from the inverse-weighted estimating equation the projection on
the score tangent space. However, the method we propose in this article is a
purely likelihood-based approach: we first obtain the condensed covariates by
optimizing the pseudolikelihood functions based on the working models; we then
optimize another pseudolikelihood function to derive the estima®&ogurvival
function. Therefore, the likelihood-based approach we take only involves simple
optimization steps and the estimate turns out to have a simple expression; by
contrast, the approach in Robins, Rotnitzky and van der Laan (2000) requires a
practical user to have knowledge of the projection on the score space.

This article is organized as follows: In Section 2 we give the details of estimating
the marginal survival function; the asymptotic properties of our estimator are then
given in Section 3, where we also provide an algorithm to estimate the asymptotic
variance; the numerical results from a simulation study are given in Section 4;
finally, the article concludes with some discussion. Most of the proofs in this article
are deferred to the Appendix.

2. Estimation. Under the assumption th@tandC are independent giveh,

the observed likelihood function far observations can be written as

n

[1[hriL (Vi LiyRie= Hne il p o (v Lyt~ Rie HerMilld g (1],

i=1
whereh7|.(-|L) andhc | (-|L) are the hazard rate functions f6randC givenL,
respectively; Hr|.(:|L) and Hc|.(-|L) are their respective cumulative hazard
functions. Our estimation procedure consists of the following steps.

Sep 1. We propose two working models for both the lifetinfe and the
censoring timeC given L. Our working models fof given L andC givenL are
Cox’s proportional hazard models; that is, we tentatively assume that

hrie 1D =ar (e, hep (I =rc(e’”

for some unknown functionsy (-), A¢(-) and some parametefg, ).
Sep 2. We derive the estimator @, ) simply by performing Cox’s regres-

sions, or equivalently, we maximize the following pseudolog partial likelihood
functions:

ig_n)(ﬁ) — %ZRL |:ﬁ/Li _ IOg( Z eﬁ’Lf):|,
i=1

Y;>Y;

j(n 1¢ / .
Lg)(y)= ;Z(l—Ri)[)/ L; —|Og< Z eV L/)i|,

i=1 Yi>Y;
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to estimateg andy, respectively. We denote the estimators(As, 7,). It will
be shown in the next section that there exist two constahtandy* such that
B andy, converge tg8* andy* in probability, respectively.

Sep 3. Acting as if the two limit constantg™ andy* were known, we obtain
the estimator of the hazard rate function Bfgiven (8*'L,y*' L) as follows.
DenoteZ* = (B*'L, y* L). When either of the working models is right, it will
be shown tha?” andC are independent giveA* in Lemma 3.1. In other words,
the two-dimensional covariaté* is sufficient to explain the dependence between
T andC. Therefore, we replace the covariaiedy Z* in the observations and
obtain a reduced datas@f;, R;, Z* = (8*'L;, y*'L;)),i =1,...,n. Clearly, the
likelihood function for this reduced data can be verified to be

n

[T(h712 (Y112 Rie= Hriz= Tl ZD e (v 25) i e~ Hazs WIZD) g (7],

i=1

wherehr z«(-|Z*), hc|z+(-| Z*) are the hazard rate functionsfandC givenZ*,
respectively, anddr|z«(:|Z*), Hc|z+(-|Z*) are their corresponding cumulative
hazard functions. So we can estimatgz«(y|z) by maximizing a local version
of the observed log-likelihood function

2

where K(-,-) is a symmetric two-dimensional kernel function aag is a
bandwidth to be chosen later. Easy calculation shows that the maximizer for
ht|z+(y|z) is an empirical function with a point mass at each obse¥ednd

L) (Syey, K (Ea0)).

)[R,- l0g 717+ (Yil2) — Hryze(Yi12)],

dp

*_
J
dp

the mass is equal t&; K (

Sep4. Therefore, the estimator for the cumulative hazard function is given by

) RiK((Z5 —z)/an)
Do _ . J .
T1z+(y12) szs:y Yyv,zv; KUZy, —2)/an)

The estimator for the conditional survival function @f given Z* is then
ST‘Z*(ﬂz) = [[i<(1 — I{IT|Z*({s}|z)). Finally, the estimator for the marginal
survival function ofT is simply the empirical average c§fr|z* (t]z) over all the
Zr,i=1,...,n.Thatis, itis equal to

1 i ﬁ (1 K((Z} = Z%) Jan) Iy, <(R; )
niz1j=1 m=1 K(Z} = Z}) /an) Iy, <y, .
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Sep5. Since the two constangs® andy ™ are unknown but can be consistently
estimated by, andy,, we replace(g*, y*) with (B,, 7») in the last estimator
obtained in Step 4. Thus, we obtain an estimator for the survival functi@nasf

. 1M K((Zi — zj)/an)lyfssz )
S, () = — E 1- = = : .
n j:]_jl;[l< 21:1 K((Z; — Zm)/an)IYjSYm

3. Mainresults. Before we present the main results of this article, we assume
the following conditions hold.

AssumMPTION3.1. T andC are independent conditional dn

AssuUMPTION 3.2. Lett be the ending time of the study. For ahyn the
support ofL, the conditional density ofT', C) given L =1 is continuously twice-
differentiable in[0, co) x [0, t) and its second derivatives are uniformly bounded.
Moreover,L has bounded second derivative in its support.

AssSUMPTION3.3. There exists an unknown constarguch that for any in
the support of_,

ir)fP(th|L=l)>9>0,

nfP(Czt|L=N)=ifP(C=1]L=)>6>0 as.

ASSUMPTION 3.4. The kernel functionk (x1, x2) is continuously twice
differentiable with bounded second derivatives. Moreover, it satisfies

K(—x1, —x2) = K (x1, x2),

o1
|Vx»K(X1,X2)|S%, j=12
! 14 xf+ x5

2
ASSUMPTION3.5. (Io:_lg%,,) — 0, na,% — 00, na;1 — 0.

n

REMARK 3.1. Assumption 3.3 implies that all the subjects surviving until
T will be right-censored at, due to the end of the study. In Assumption 3.4, an
example of kernel functions satisfying the condition (s1, x2) = exp{—(xf +
x%)} or any symmetric smooth function with bounded support. The conditions in
Assumption 3.5 stipulate the choice of the bandwidth and control the asymptotic
bias of S, () resulting from the kernel estimation. First, based on Dabrowska
(1987),(loga,)?/(na?) — 0 ensures the unform convergencedf z«(7z), atype
of kernel estimator for the cumulative hazard function. Second, it is known that for
a kernel smoothing estimator with bandwidthin the two-dimensional real space,
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the convergence rate is of the ordéra2 and the bias is of the ordef. Such bias
carries into the estimatd, (¢). Thus,naj — 0in Assumption 3.5 ensures that the
asymptotic bias o(/ﬁ(Sn () — So(r)) resulting from the kernel estimation will be
zero. Clearly, one choice of the bandwidthin Assumption 3.5 can b& (1)n™¢
wherea € (;11, %) and we will usea,, = O(n~1/3) in the subsequent simulation
study.

3.1. Asymptotic properties of 8, and 7.

THEOREM 3.1. Under Assumptions 3.1-3.5there exist 8* and y* such that

~ 1 2
V(B — B === Sp(B*. Yi, Ri, L) + 0,(1),
i=1

Ve

1 n
n N ; v p
for someinfluencefunctions Sg and S,,. Thus, both V(B —p*) and /n (P, —y*)
converge weakly to some multinormal distributions.

Theorem 3.1 shows thg8,, 7,,) converges to some constants even though using
Cox’s proportional hazard models as working models may be wrong. Obviously,
if the model of T given L is a Cox’s proportional hazard model, thgii is the
correct coefficient ofL. specified in this model; if the model @ given L is a
Cox’s proportional hazard model, theri is the correct coefficient of specified
in this model. Furthermore, we show that, when either working model is correct,
the condensed variableég*'L, y*' L) are sufficient to explain the dependence
between the lifetime and the censoring time.

LEMMA 3.1. Suppose either of the working models is right, that is, either
the model for T given L is a Cox's proportional hazard model or the model
for C given L isa Cox s proportional hazard model. Let Z* = (8*'L, y* L). Then
T and C areindependent given Z*, and moreover, the cumulative hazard function

i * t dy P(TAC<u.R=1|Z*=z)
of T given Z* isequal 0 [o * 7 csuziey

PROOF We only show that the results are true if the working modeldor
givenL is a Cox’s proportional hazard model. For anqyt, > 0,

P(T <t1,C <12|Z*) = Epz+[P(T <t1]L)P(C < 12|L)]
= Ep1z+[P(T <t1]L)P(C < 12|Z")]
— P(C <1|Z")P(T < 11|Z%).
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Therefore,I' andC are independent conditional &ftf. Hence,
'dy,P(TANC<u,R=1|Z*=72)
/o P(TAC>ulZ*=7)
_ _/’ L [X[P(c>T|Z2*=2)— Pu=T|Z*=2)]dFc(c) du
0 P(C>u,T >ulZ*=72)
"dyP(T <ulZ*=7z)
:/o P(T > u|Z* =z)

= Hrz+(t|2). 0

3.2. Asymptotic properties of the estimator S,(t). The main result is the
asymptotic property fos,, (¢) given below.

THEOREM 3.2. Under Assumptions 3.1-3.5,if either of the two working
models is correct, that is, either the model for 7' given L isa Cox's proportional
hazard model or the model for C given L isa Cox's proportional hazard model,

V(S0 = S1) = G inI>(0, 7)),
where G (+) is a Gaussian process.

REMARK 3.2. Indegd, the covariance 6f(-) has an explicit form. From the
proof of Theorem 3.25,(¢) is an asymptotic linear estimator ¢f(z) and its
influence function, denoted a&(¢; Y, R, L), is equal to

e Hriz+(t1Z%) _ S(t) — R]Y<teHT|z*(Y\Z*)+HC\Z*(Y\Z*)—Hﬂz*(l\z*)
tINY * * "
(3.1) +‘/(; eHr1zxW|Z)+He 7 (| Z7)—Hy 7+ (1|1 Z )duHT|Z*(u|Z*)

+B1(t; Y, R, L)+ B(t; Y, R, L),
where8B1(t; Y, R, L) is

_E[e—anmz*)v ly= */[ duP(YACS%R:lH//L’ﬂ*/L)]
Y= Jo P(T AC=uly’'L,B*L)
X Sy(y*,Y,R,L)

andBy(t;Y,R, L) is

/
_E|:6—HTZ*(IZ*)VIB|IB_IB* /t dyP(T ANC <u,R=1]y*L, ,B/L)]
" Jo P(TAC>u|y*L,B'L)
x Sg(B*,Y,R,L).
Therefore, the covariance function, denoted Ay, ¢), for the limit Gaussian
process is equal to Cos(s; Y, R, L), A(t; Y, R, L)). Interestingly, the covari-

ance of the limiting proces&(-) does not depend on the choice of the kernel
function or the choice of the bandwidth in deriving the estimaigr).
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In the expression of (3.1), the two tern®,(¢; Y, R, L) and B»(¢; Y, R, L)
contribute to the variation in estimatirfy (z) due to the estimation gf* andy *.
Moreover, if the working model df givenL is correct, by repeating the arguments
in proving Lemma 3.1, we easily obtain that for gny

/r d,P(TAC<u,R=1]y'L,B*L)
0 P(TAC>uly'L, B¥L)

= Hrgsp 1 (t1B*'L,y'L).

Therefore,

E[ —Hrz+W1Zy | /’ dyP(TANC <u,R= 1|,8*/L,y’l)}
e ok
" Jo P(T AC>u|B*L,y'L)

—Hpgirp o t1B*'L,y L
=V, lymysEe” ey (LY D — g ) s(r) =0,

Hence, we conclude thaB,(#; Y, R, L) is zero. Similarly,B2(t; Y, R, L) is zero
if the working model forC given L is correct.

COROLLARY 3.1. In the expression of (3.1), if the working model for T
given L is correct, B1(t; Y, R, L) = 0; if the working model for C given L is
correct, Bo(t; Y, R, L) =0.

As a result, when both working models are corre@®;(t;Y,R,L) =
Bo(t; Y, R, L) = 0 and moreoverHrz«(t|Z*) = Hr|(t|L), Hc|z+(t|Z*) =
Hc1(t|L). Hence, simple calculation gives that the influence function in (3.1)
for S,,(¢) is equal to
RUI(T =1)—S())

Sc|L(T|L)
RU(T >1) —
+/E[ (I(T =1)—S(1))
SciL(T|L)
wheredMc(u) = (1 — R)dI(Y <u) — I(Y > u)dHc|.(u|L) is the martingale
process for the censoring time. This turns out to be the efficient influence function
for S(¢) in the full model space, which was derived in an unpublished manuscript

by Gill, van der Laan and Robins (1997). Consequently, we have obtained the
following corollary.

StiL(t|L) — S(1) +

‘L, T>uC> u] dMc(u),

COROLLARY 3.2. When both working models are correct, the asymptotic
variance of S, (¢) is the same as the generalized Cramér—Rao bound for S(z).

3.3. Variance estimation for estimating a Fréchet differentiable functional
of S(r). In survival analysis, practical interest may include the estimation of
some functional ofS(z), such as the survival probability at a fixed timg the
observed mean lifetime&[T|T < ], and median lifetime, and so on. Denote
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such a functional ofS(r) as ¥ (S(t)). Then we can estimate it with (S, (1)).
Furthermore, ifW(.) is Fréchet differentiable with its first derivative along
direction S, (r) — S(t) given by [ (S,(r) — S(1))dy (r) for a bounded variation
function v, then the functional delta theorem concludes tbﬁ(\l!(ﬁ,,(t)) —
Y (S(r))) has an asymptotic normal distribution with mean zero and variance
o2 = Jo Jor(s,)dy(s)dy(t), wherer(s,1) = E[A(s; Y, R, L)A(:; Y, R, L)].
In this section we want to give a general procedure for estimatfng

Denote , as the empirical measure of the i.i.d. observati¢hs R;, L;),
i =1,...,n. Clearly, one consistent estimatoref is given by

/t / PLLA(: Y, R, LYAG: Y, R, L)]d (s) dy (1)
0 JO

iq which #A(#; Y, R, L) is a consistent estimator ofv(¢; Y, R, L). To obtain
A(t; Y, R, L), we estimate each term in the expression (3.1) separately.

First, in (3.1), we substitutéir|z«(t|Z*) and Hc|z+(¢t|Z*) with their corre-
sponding estimatorély|z«(¢|Z) and He|z+(¢|Z) following Step 3 of Section 2;
furthermore, according to the proof of Theorem 3.1, we can consistently estimate
the influence functions fog, andy,, by S(B., Y, R, L) andS(y,, Y, R, L), re-
spectively. SpecificallySs (B, y, r, 1) is

-1
y’:Yi“

{ > [ (Pn[IyZy/LL/e%L] ~ Pn[IyZy/Le%L](@z)
Pully<y LePt] _leﬁ,;lpn[ Rly<y ]

! Pn[IYzy’e);’;L] Pn[IYZy’e);’;L]Z
Plly<yefit] Pully<yePilly_y

(3.2) X {rl —r

Rly<yP, [IngfLeﬁr/lL]b,,:Y i| }
Pn[IYSy’eﬁ'/lL]zbv’:Y

A

(1—R)ly<, }
Pully<yelil]ly—y

+€l§'/’lpn|:

andS, (7, y,r, 1) is

. N
{Pn [(1_ R)<Pn[1yzy’LL’Aej}L’"L] B F’n[lyzy/Le}A"i]® )
Pn[IYzy’ey" ] Pn[IYZy/eVn ]2

Pully<yLePnl]
Pn[lnge};’;L]

n e?n'lp|:(l - R)IySyPn[I}’Sy/Le);’;L]|y’:Y:|}'
Pully <ye’n" 12| y—y

(3.3) x {(1 )l —1—-7) ze?n’lpn[

Additionally, we can estimate

' d,P(TAC<u,R= 1|y/L,ﬁ*/L)]

3.4) —E —HT\Z*(I\Z*)V _*/
(34) [6 vh=r TR AC = L, BL)
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and

/
(35) _E[e_Hrlz*(tlz*)Vﬂlﬁ_ﬁ* /t duP(T ANC <u, R = 1|y* L’ﬂ/L)jI
" Jo T P(TAC>uly*L,BL)

using the following lemma.

LEMMA 3.2. For any constants (8, y), we define an estimator of S(z),
denoted by S, (#; B, v) by repeating Steps 1-4in Section 2 for fixed 8 and . Let
e1, ..., ex bethe canonical basesin RIMY) that is, ¢; has 1 at the ith position
and 0’s elsewhere. Smilarly, let di, ..., d; be the canonical bases in RIM»™).
Moreover, we select a constant ¢, such that s, = o(ay,), /ne, — oo. Then when
one of the working modelsis correct, the two statistics, defined by

Su(t; By Pn + €nd1) — Sp(0)

. 1
(3.6) vy, =— :
& N A A
"\ St By P+ end) — Su(0)
and
1 Sn(t;lén + &peq, );n) _Sn(t)
(3.7) VB == : ,
n 81’1

Sn(t; lén + &nek, Yn) — Sn(t)
are consistent estimators of (3.4)and (3.5), respectively.

So finally, one consistent estimator fa«(¢; Y, R, L) is given by

e—ﬁﬂz*(tli) _ Sn(l) _ R]Y<teﬁr|z*(y\2)+ﬁ6|z*(Yli)—l:lﬂz*(tli)
INY . A N A A A R R
+/0 Mz )+ Heyz W) =Hrz(12) g fo /(| Z)
+ V5,8, G, Y. R, L) + V; S(B,, Y, R, L).

REMARK 3.3. The numerical method for estimating (3.4) and (3.5) is much
more convenient for implementation, compared with the direct estimation of the
conditional probabilities in these two expressions. When the bandwjdtias
ordern—1/3, one choice of, may be of the ordet—>12. Computationally, except
that the final evaluation of the variance requires a numerical double integration,
the computing time in the other steps is only a linear order of the computing time
for computings, (1), which is aboutO(n3a3). The storage in the computation is
the same order as storing arx n numerical array.

REMARK 3.4. As aspecial example, the asymptotic variance/fx_bfﬁ,,(to) —
S(t9)) can be approximated b, [ (to; Y, R, L)]? for any fixed timerg € [0, 7].
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4. Simulation study. We have performed a simulation study to show the ad-
vantages of our approach in small samples. In the simulation, three covariates, de-
noted asX1, X», X3, were independently generated from the uniform distribution
between 0 and 1. The lifetim& was generated from Cox’s proportional hazard
model, whose hazard rate function had the following form:

hr x| X) = A7 (2) eXp{B1 X1+ B2X2+ B3X3+ B12X1 X2+ B13X1 X3+ B23X2 X3}

The values of the parameters in the simulation were taken gy be—1, 8> = 4,
B3 =3, f12=0, B13 =6, Bo3 = 10, A7 (1) = t*¢~>. The censoring tim& was
the minimum ofr = 2 andC*, whereC* was produced using Cox’s proportional
hazard model with the hazard rate function given by

heix (| X) = Ac (@) explyrX1+y2Xo+y3X3+y12X1X2 +y13X1 X3+ y23X2 X3}

We chose the parametersgs= 1,1, =1, y3=1, y12=0, y13=5, y23= 10,
rc(t) = t*¢~*5. The choice of the parameter values demonstrated that the
dependent censoring betweBrandC was significant (theoretically, the marginal
correlation betweeff andC was around 75%) and the censoring proportion was
not too low (the theoretical censoring probability for this setting is 45%).

We followed the procedure in Section 2 to estimate the survival functiof for
with the kernel functiork (x1, x2) = exp{—(x? + x3)} but started with different
working models forT andC given (X1, X», X3). Especially, if we denoted as
(X1, X2, X3) and denoteX? as their two-way interactions, six pairs of working
models could be considered:

Pair 1. We modelled botli andC using all the main effectX and the two-way
interactionsX? as well as an independent variallewhich was generated
from the uniform distribution between 0 and 1.

Pair 2. We modelled botli andC using all the main effectX and the two-way
interactionsx2.

Pair 3. We modelled” usingX andX2; however, we modelled’ using only the
main effectsX. So we misspecified the model for.

Pair 4. We modelled” usingX andX?; however, we modelled using only the
main effectsX. So we misspecified the model for.

Pair 5. We modelled botf and C using only the main effectX. That is, we
misspecified both models.

Pair 6. We did not account for any covariates and the Kaplan—Meier estimate was
used to estimate the survival function.

By comparison of the bias and variation among the above six pairs of working
models, we expected to verify that the estimates accounting for dependent
censoring using covariates in the estimation always perform better than the
Kaplan—Meier estimate, that including an irrelevant variable does not bias the
estimate and that double robustness is evidenced in small samples.
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Moreover, we studied how the estimates varied with the different choices
of the sample size:, the bandwidtha, and the oscillation parametey,. We
thus generated data with sample size- 50 or n = 100. For each generated
sample, we used varied bandwidiys= n—1/3,3,=1/3, 6n=1/3 to calculate the
estimates. In addition, we used different choiegs= n—°/12, 5,-5/12 10,—5/12
to calculate the standard errors and the coverage probabilities in estimating the
survival probabilities for = /5, 2t /5. Such computation was repeated 500 times.
For bothn = 50 andn = 100, the average censoring proportion was about 45%
and the marginal correlation betwe€randC was 77% in the simulated samples.
Tables 1 and 2 report our findings. In Table 1 we give the average mean square
error of the estimates on 50 grid points, which is defined as

120 g (G=Dry _ (G=Dr 2
ﬁ)iﬂ(”( 50 )_< 50 ))

In Table 2 we report the average bias and the 95% confidence interval coverage
probabilities for estimating the survival probabilities at tim¢§ and 2 /5. Since

it has been found that the coverage probabilities vary very little veherries in

our choices, we only report the results fgr=n—12,

From Table 1, it is clear that the Kaplan—Meier estimates have the largest mean
square error and the estimates adjusting for dependent censoring using covariates
can reduce it by 50% for sample size 50 and by over 60% for sample size 100.
Moreover, using the irrelevant covariat in the regression models does not
increase the mean square error, and when either of the regression models is correct

TABLE 1
Mean square error from 500 samples

MSE(x10™3) MSE(x10~3) MSE(x10™3)

n model T model C an =n—1/3 ap = 3n—1/3 ap = 6n=1/3
50 (X,X2,Z) (X,X2,2) 7.2 6.9 6.8
(X, X2 (X, X2 7.2 6.8 6.8
(X, X2) (X)2 7.0 6.7 6.7
(X)2 (X, X2 7.1 6.9 7.0
(X)a (X)a 7.7 74 75
(—)P (—)P 17.4 174 174
100 (X,X2,2) (X.X2,2) 35 34 33
(X, X?) (X, X?) 35 34 33
(X, X?) X)3 3.4 33 33
(X)2 (X, X?) 3.7 35 35
(X)a (X)a 43 40 40
(—)b (—)P 130 130 130

Notation.(- - -)& model is misspecifieot;—)b: the Kaplan—Meier estimate is used.



MARGINAL SURVIVAL ESTIMATION 1545

TABLE 2
Estimate of the survival probability at times¢ = 7 /5 and ¢ = 27 /5 from 500 samples with
&n=n_ 12
S(t/5) S(2t/5)
n an model T  model C  bias(x10™2) 95% cp bias(x10=2) 95% cp
50 n~ Y3  (X,X2,Z) (X,X2 2) 0.94 094 197 092
(X, X2 (X, X?) 0.94 094 195 092
(X, X2 (X)2 0.96 094 203 093
(X)a (X, X2) 1.05 093 223 092
(X)2 (X)2 1.22 093 299 092
(—)b (—)b 5.69 087 1072 070
313 (X, X2,2) (X,X? 2) 0.94 094 195 091
(X, X?) (X, X?) 0.96 094 202 091
(X, X2 (X)a 1.00 093 212 090
(X)2 (X, X2 1.08 092 223 089
(X)a (X)a 1.46 092 302 087
(—)b (—)b 5.69 087 1072 070
en13  (X,X2,Z2) (X,X2 2) 1.30 093 250 090
(X, X2 (X, X2 1.33 093 258 090
(X, X2) (X)a 1.50 093 272 089
(X)a (X, X2 1.54 092 276 089
(X)2 (X)2 2.16 092 358 087
(—)b (—)b 5.69 087 1072 070
100 » Y3 (X,X2,2) (X,X2 2) 0.44 094 137 096
(X, X?) (X, X?) 0.44 094 133 095
(X, X2 (X)2 0.48 093 136 094
(X)a (X, X2) 0.52 092 151 092
(X)a (X)a 0.95 093 273 089
(—)b (—)b 5.44 075 1050 051
313 (X, X2,2) (X,X? 2) 0.45 092 146 093
(X, X?) (X, X?) 0.48 093 142 092
(X, X2) (X)a 0.57 092 148 092
(X)2 (X, X2 0.55 091 152 091
(X)a (X)a 1.13 090 283 089
(—)b (—)b 5.44 075 1050 051
en13  (X,X2,Z2) (X,X2 2) 0.79 092 189 091
(X, X2 (X, X2 0.82 092 189 092
(X, X2) (X)a 0.99 093 209 091
(X)a (X, X2) 0.96 091 198 091
(X)2 (X)2 1.67 090 323 089
(—)b (—)b 5.44 075 1050 051

Notation. (- - -)& model is misspecifiect—)b: the Kaplan—Meier estimate is used.
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(i.e., both the main effects and the two-way interactions amkngX,, X3 are

used in the regression), the mean square errors are, on average, 10% less than
for the case which only uses the main effects in both regressions. The mean
square errors of the estimates are fairly robust to the choice of the bandwidth.
The results displayed in Table 2 further evidence the above findings from the
view of the point estimates df(¢) and the corresponding coverage probabilities.
Table 2 shows that when either regression model is specified correctly, the biases
in the estimates are less than for the cases when both models are misspecified; the
Kaplan—Meier induces the largest biases. Overall, these biases decrease by 50%
when the sample size increases from 50 to 100. With the sample size 50 or 100, the
coverage probabilities using the methods proposed in Section 3 are fairly accurate
for t = t/5 when either regression model is specified correctly; however, they tend
to be smaller for = 2t /5 due to the larger bias caused by high censoring at the
tail. When the bandwidth is large (for instaneg,= 6n~1/3), the biases increase

due to oversmoothing, but the coverage probabilities do not vary much.

Our simulation study indicates that the estimates of the survival function
by adjusting for dependent censoring using auxiliary covariates always induce
smaller mean square errors, fewer biceses more accurate corage probabilities
compared with the Kaplan—Meier estimates. Moreover, the estimates have better
performance when either the model foor the model foiC given the covariates is
used correctly. The overall mean square errors of the consistent estimates are fairly
robust to the choice of the bandwidth; but the point estimates and the inference vary
with the choices of the bandwidth and the location of time points.

5. Discussion. Both our theoretical justification of large samples and simula-
tion studies with small samples conclude that, when right-censored data include
high-dimensional auxiliary covariates, condensing such information by utilizing
working models for both lifetime and censoring time given covariates can make
adjusting for dependent censoring possible and produce an estimator which is ro-
bust to the misspecification of either working model and robust to accidentally
using irrelevant information.

It is observed in our simulations that the choice of the bandwigdthlays an
important role in influencing the bias and the inference for the point estimate.
A large a, may oversmooth the conditional hazard rate estimator (in fact, with
simple calculation, for fixed, if a, is close to infinity, our estimate approximates
the Kaplan—Meier estimate), while a smajl may overfit the conditional hazard
rate estimator, and thus introduce large variation in estimation. So far, wgebet
a constant only depending @rand no general selection rule is followed; however,
the simulation results imply that a data-adaptive and location-adagtiveay
give a better performing estimate. The cross-validation approach may be used to
chooses, or we can use thie nearest neighbor approach in nonparametric hazard
regression. We will explore this issue more in the future.
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Though we hope that our working models are correct, we never know in reality.
To make this hope more likely, we may use more general models other than
Cox proportional hazard models as working models, for example, we can use a
generalized additive model or use splines as covariates in the working models,
and so on. A model selection rule is thus useful in choosing the optimal working
models in terms of the performance of the estimates and the model complexity.
Therefore, a test for goodness of fit as well as a test for comparing two different
sets of working models will be useful in practice.

Finally, whenL includes the time-dependent covariates, our approach is not
obvious to fit this situation. This is because the condensed inform@tidn y'L)
is still time-dependent so their dimension is infinite; then an essential problem is
how to derive a nonparametric estimate of the marginal survival function in the
presence of even a single time-dependent covariate. Further exploration of this
issue is ongoing.

APPENDIX: PROOFS

PROOF OF THEOREM 3.1. We consider only the estimAatcﬁn in the
following. The argument for the estimatgy is similar. Obviously;3, maximizes

n n
M) = 1 STRip'Li — }ZR,- Iog( 3 e*“-f).
iz miz1 Y;>Y;

Note thatZ'{(ﬂ) is a concave function of and its limit, which is equal to
L1(B) = P[RB'L — Rlog E[Iyzye’g/L]ly:y], is a strictly concave function. By
an argument similar to that in Andersen and Gill (1982), we obtain that with
probability 1,3, converges to the unique maximumbf(8), denoted bys*.

After the linearization of the equatidf:\(l”) (Bn) = 0 aroundB*, we obtain that

V(By — B*) = (P, —P)S(B*, Y, R, L) + 0,(1),
where the influence functiof(8*, y, r, [) is equal to

P[IysyLeﬁ:‘"L] —zeﬂ*’lp[ Rly, ]
P[nyYeﬂ* L] P[IYSy/eﬁ* L]ly/:Y

~(VsLap) Hrt

Plly<ye? LRly—y 1" O

PROOF OFTHEOREM 3.2. RecallZz* = (8*L,y* L) andZ = (B,L, p/L).
We assume one of the working models is correctf'sand C are independent
given Z* from Lemma 3.1. The whole proof consists of three steps: In the first
step, we show the uniform consistencyléﬁz* (t)2), thus§n(t); then we write
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ﬁ(ﬁn(t) — S(¢)) as a linear functional of the empirical processes; in the third
step, we apply empirical process theory to obtain the asymptotic properties.
First, the following result holds and the proof is given in Dabrowska (1987).

LEMMA A.1. For any z in the support of Z*,

’P"[K((Z —Afadlved iy sz 2 Lo,
PulK((Z* —z)/an)] 1°°([0,1)

‘ Pu[K((Z" —2)/an)Iy<R] P(Y <t.R=1Z*=2) L)
PulK((Z* — 2)/an)] 1°°([0,])

LEMMA A.2. For any z in the support of Z*,

’ Pu.[K((Z TZ)/an)Ith] _P(Y >1|Z =2) P 0,
PulK((Z —2)/an)] 1°°([0,7])

‘ Pu.[K((Z _AZ)/an)IYStR] _P(Y<t.R=1Z"=2) L)
PulK((Z —2)/an)] 1°°([0,])

PRoOOFE For convenience, we denote
1 (B'L,y'L)—z
R L e |
ag ay

We show that supg ;| 1gn (B, 7n) — gn(B*, y*)| — 0 a.s. By the property of the
kernel function and the mean value theorem, we have that

|gn<x§n,9n>—gn<ﬁ* )l
1 VK((ﬂL VL)—z)‘O(wnanw [P any |)’

na a

where(8, 7) is betweer(B,,, v,) and(B8*, y*). Hence, for any, = (z1, z2) in the
support ofZ*,

180 (Bu. Pn) — 8 (B*. ¥
<00 )|

<0 ( 1 ) 1 2”: 1

= P\ nay ) | na? S 1+ (BY'Li — z0)?/a2 + (v Li — z22)%/a} ||
where the last step follows becausg; log(1 + x2 +x3)|, j =1, 2, is uniformly
bounded anc‘}ﬁ/L;f* Ll Iy L;j’* Ll < 0,(2). Notice that

1
; 14 (B'Li —21)%/a2 + (7'Li — z2)%/a? }

1 1
Pl =
[a,% 14+ (B*'L —z1)?/a + (y*'L - Zz)z/a,%}
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is uniformly bounded. So sug .12+ (Bn. 7n) — g (B*, ¥ )| < Op(ﬁ).

Similarly, we can obtain that
)k (50

ZK(

Combining this result with Lemma A.1, it is clear the first half of Lemma A.2
holds. The second half of Lemma A.2 can be proved similaily.

2o.

te[O r] na2

LEMMA A.3. Denote

' dPulK((Z = 2)/an) Rly <]
PulK ((Z — 2)/an) Iy =s]

I:IT\Z*(”Z) =/0

and

Stiz+(tlz) = [ [ (1 = Hr 2+ (s}12)).

<t
Then for any z in the support of Z*, in probability ||IfIT|Z*(t|z) — Hrz+(t]
Do,z — 0and |87 z+(t12) — Stiz+ (12 120,27 = O.
PrRoOOFE The first result follows from Assumption 3.3, Lemma A.2 and the

following inequality:

| Ery2+(t12) — Hriz+(t12) ] o 0.2

_ H/f dsP,[K ((Z —2)/an)Rly<] tdyE[RIy<s|Z%]
B P.[K(Z = 2)/an)Iy=s] 0 E[ly=s|Z*]
g

[°°([0,7])
P.[K((Z —2)/an)Iy < R]
P.lK((Z —2)/ay)]

{ 0 P.[K((Z —2)/an)Iy=i]
w€l0xll P,[K((Z —2)/an)]

N ’ P.[K((Z —2)/an)ly=]
P.lK((Z —2)/ay)]

{ n P.[K((Z —2)/an)Iy=]

w€l0xll P,[K((Z - 2)/ay)]

—P(Y<t,R=1Z"=7)

-

—P(Y>tZ"=2)

1°°([0,7])

[ ([0,7])

-1
P(Y>t|Z"=7) } 0

For the second result, we use the Duhamel equation and integration by parts:
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for anyr € [0, 7],
|S712+(t12) — ST12+ (112) |

CSrize—1z) o -
Sri2+(112) fo %d(mwum — Hyyz-(ul2)

Siz+(t — 12)(Hr) 2+ (t|2) — Hr|2+(1]2))

to.
_/0 (Hriz+(ulz) — Hr 7+ (u|2))

y (dSTz*w —l2)  Srizeu— |z>dSTz*<u|z>)‘
St1z+(ulz) Stz (u|z)?

2 .
=(1 i max|H * — H % .
_( * min P(T > T|Z*=Z)2)O§s<z| 712+ (52) T|Z (SIZ)|

For the second step, we will WritéT|Z*(l|Z) — Hrz+(t]2), thenS, (t) — S(t)
in terms of the empirical procesB,, — P). First, we obtain

I:IT\Z*(”Z) — Hryz+(t|2)

2 7 J—
P, — P)[ 1/a,K(Z = 2)/an)ly<R }
Pu[1/a2K (Z — 2)/an) Iy>y]ly=y

_ P[l/a,%K((Z —2)/an) Iy < R(P, — P)[1/a2K (Z — z)/an>ly>y]|yzy}
Pu[1/a2K (Z = 2) /an) Iy =, PPly=y

N {p[ 1agK (Z = 2)/an) Iy <R

TR :|_HTZ*(I|Z)}
Pll/afK((Z — 2)/an) Iy >ylly=y
=71+ 4+Ill.

For I, a simple transformation in the integral gives that uniformly;im the
support ofZ* andr € [O, 7],

td,P(R=L1Y <u|Z =
|II:/O M | Z)JFOP(“;)—HT\Z*(HZ)-

P(Y >ulZ=2)

On the other hand, since by Lemma J 2L 2uZ'=0 — fyy5.(1)2), we

perform the Taylor expansion of the above expansion ar@giidy *), and then
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Il becomes

_ AP <u, R=UFLy'D=07;
|||_v,3|,3:,3*[/0 P(Y >ul(B'L,y*L)=2) }(ﬁn_ﬁ)

td,P(Y <u,R=1/(B*L,y'L) =7)
= ,¥'L) =72)
2 1
For convenience, we introduce more notation:
1/a’K 1,y — 1
hi(y, L By, 1,2) = /an2 (B Ly ) Afan)ly=ir
Pul1/aZK ((B'L, y'L) — 2)/an) Iy >y]
l ( /17 /l) —Z
a0, Boyan, ) = ok (05
a ay

n

|G

YaZK(((B'L,y'L) —2)/a)ly<ily<R
[Pn[l/a,%K(((ﬁ/L, y'L) — Z)/an)ly>y]2|y:y]’
"d,P(Y <u,R=1(B'L,y'L)=7)
P(Y zu|(B'L,y'L)=2) '
After substituting this notation into the expressiérmz* (tlz) — Hr|z+(t|2), then

further substituting intcﬁnz*(tlz) — St1z+(t|z) in the Duhamel equation, we have
that, uniformly inz € [0, 7],

Stiz+(t12) — S1)2+(t]2)

BB, v,z 1) = /0

t Spiz¢(u — |2)

= —S(tlz){(Pn - P)[ 0 Sriz+(ulz)

dhg(Y7 R7 L7 3]17 )’/\na ua Z)]

_(Pn_P)|: twd}lg(xlﬁﬁna)}n”%z)}
(A1) A 0 Stiz+(ulz)
" Stiz+ (U — |z) - ] A X
7duv B 9 9 9 n -
S By 0 | =)
fST\Z*(M —12) v x ] . “ }
7duv B 9 9 9 n -
[0 Stz i) yBB v . z,u) (P —v™)
> 1
+ Op(ay) + 01’(;)
Note that

(8, (t) = S(1)) = Vn(PulS712+(t12)] — PLSr |2+ (t|2)))
= (P, — P)[872+(t12)] + /nP[(S712+ (11 2) — S(112))]-



1552 D. ZENG

After using (A.1) and the results of Lemmas A.2 and A.3, we obtain that uniformly
intel0, 7],

«/;(S'n(t) - S(t))
= /n(P, —P)w,y (Y, R, L; Bu, P 1)

(A.2) R

+ P[ST12=(t|1Z*)VB(B*, v*, Z*, 1) |/n(Bn —

+ P[ST12<(t|1Z*)Vy B(B*, v*, Z*, ) ][Vn(Pn — ¥™) + 0, (D),
where

wn(y”’,li Bn’ )’)}’lv t)
= 8712+ (t12) — S()

—P[STIZ*(HZ)/O % 1y L P o, Z)]

! ST|Z*(M —12) J

) a1 e 3 u2>]
Stiz+(u|2) "o

+ P[ST|Z*(T|2)/O

In the third step, empirical process theory is applied to the above expression for
f(Sn(t) — S(¢)) to obtain the asymptotic properties S,f(t) We consider the
empirical process

0 0
{ﬁ(Pn _ P)wn(Y, R.L; B + J—lﬁ v+ \/—Zﬁt) 1[0, 7],

b1 = 0,(1), 6 = op<1>},
which is indexed by, 61, 62). First, we claim that uniformly in,

wn (Y, R, L; Bu, Pns 1)
Rly < St)7+(t|Z%)
P(Y > Y'|Z*)|y—y

— S7iz+(t|1Z7) — S(t) —

tAY . .
+ST\Z*(I|Z*)‘/(; eHT‘Z*(M|Z )+HC\Z*(M|Z )dHT|Z*(M|Z*)

in probability. This is true by using arguments similar to those in the proofs
of Lemmas A.2 and A.3. Second, with technical calculation we can verify
that each function in the class indexed by6;, 62) belongs toBV[O0, ] as

a function oft and is Lipschitz continuous with respect t6,, 62) with the
Lipschitz coefficient bounded b@(ﬁ) in probability. Thus we can check each
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condition of Theorem 2.11.23 in van der Vaart and Wellner (1996) and obtain that,
in 1°°([0, 1),

= \/E(Pn - P)

X [ST|Z*(t|Z*)—S(;) _ Rly<S1z«(t|Z7)

PY = Y'|Z%)|y=y

IAY . .
+ ST|Z*(I|Z*)/O eHrizx W Z)+Hez+ | Z )duHTZ*(M|Z*)]

+0,(2).
Therefore, from (A.2) we obtain that uniformly ire [0, 7],
Vn(8,(0) = S@0))
= (P, = P)

RI < S (1 Z*
X [STZ*(HZ*) —S(1) — —X=oTiz (t1Z*)

P(Y = Y'|Z%)|y=y

INY . .
+ ST‘Z*(”Z*)\/O' eHT|Z*(M‘Z )+HC|Z*(M‘Z )dMHTZ*(M|Z*)]

— P[S712+(t1Z*) Vg B(B*, v*, Z* . )1/n(Bn — B¥)
— PS712+(t|Z*)Vy B(B*, v*, Z*, )0 (D — v*) + 0, (D).

Combining with the result of Theorem 3.1, we obtain Theorem 312.

. PRQOF OF LEMMA 3.2. Obviously, the estimatoﬁn(t) is the same as
S, (t; Bn, V). By repeating the proof of Theorem 3.2, we can obtain that if

1B —B*+ |y —v*|=o0(a,), then
Su(t; B,y) — S()

— (P, - P)[ST|Z* (t12%) - S@)

— Rly< St |7+ (t| Z*)e iz Y120+ Heyz+ (Y1Z7)

INY " "
+ ST\Z*(”Z*)\/O\ eHT‘Z*(M|Z )+HC|Z*(M‘Z )duHTZ*(H|Z*):|

1
— P{S1iz=(t|1Z") BB, v, Z, 1) — Hr|z-(t|1Z")]} + 0”(%)’

duP(Y <, R=1{(B'L.y'L)=
where we recalB(g, y, z,1) = fg LL0 S EL =0
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We especially choosg = 7, and 8 = B, + ¢,v where v is any constant
vector onRYME") with norm 1. After linearizing theB(8, v, Z, r) aroundg = 8*,
y =y*, we find that

Sn(ﬁ Bn +&nv, );n) —-S@)
= _P{STIZ*(HZ*)[B(,B*, V*, Z*, t) — HT|Z* (Z‘|Z*)]}

1
— euP(Sr12- (11Z5)V s B(B*, v*. 2%, 1)) + op(ﬁ) +0(D).

When one of the working models is correct,
—P{S1i2+(t|Z")[B(B*, v*, Z*, 1) — Hr|2+(t| Z*)]} =0.

Moreover,S, (1) — S(t) = Op(%). Therefore,

Sa(t: B L Pn) — Spt
n(t; Bn + €V, Vi) (1) —P>—P{ST|Z*(Z‘|Z*)VﬁB(}3*,)/*,Z*,f)}v.

&n
Similarly, for any constant vectarin R4™>™) with norm 1,

883 Bus 7 + £29) — S, ¢ b
n(t: Bn V"i'env) n(®) L —P{Sriz+(1Z*)V, B(B*, y*, Z*, 1)}D.

So the conclusions in the lemma hold]
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