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MEAN ERGODICITY OF REGULARIZED SOLUTION FAMILIES

Yuan-Chuan Li

Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. We study the mean ergodicity of resolvent families and give a
general theorem for nondensely defined generator. In particular, it is applied
to n-times integrated semigroups.

1. INTRODUCTION

Let X be a (complex) Banach space and let B(X) be the unital Banach al-
gebra of all bounded (linear) operators on X with the identity operator I. For a
linear operator 7', we denote N(7) and R(T') the null space and the range of T,
respectively. Let A be a closed linear operator on X. A net {S, }oep 0f bounded
operators on X is said to be an A-ergodic net on X [22, 23] if it satisfies the
following conditions:

(A1) There is a constant M > 0 such that ||S,|| < M for all « € D;

(A2) lim(Spz —x) =0 forall z € N(A) and R(S,—1I) C R(A) forall « € D;
(A3) R(S,) € D(A) for all o, w-lim AS,z = 0 for all x € X, and
s-lim Sp Az = 0 for all x € D(A).

The classical mean ergodic theorems had been studied and applied by many
mathematicians (see [7, 10, 21-23, 25]). Abstract mean ergodic theorems applied
to convergent rate can be found in [4, 24]. Recently, Kantorovitz and Piskarev [11]
condidered A;-mean stability of uniformly bounded (Cp)-semigroups and cosine
operator functions for averaging methods A; more general than the Cesaro means
[11, 16]. Related references refer to [1, 4, 19]
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In [16], we had studied that the mean ergodicity of (a, k)-regularized solution
families (will be defined in section 2) is possible for densely defined generator A
and give some examples for semigroups and cosine functions. In this paper, we shall
deal with the mean ergodicity of (1, k)-regularized solution families and relax the
condition of the generator A (see Theorem 2.2). In particular, we apply to n-times
integrated semigroups (see Corollary 3.7). First, we list an abstract mean ergodic
theorem (see [22, Theorem 1.1]).

Theorem 1.1. (An Abstract Mean Ergodic Theorem). Let {S,}acp be an
A-ergodic net of bounded linear operators on a Banach space X. Define a linear
operator P : D(P)(C X) — X by

D(P) :={z € X;s-lim S,z exists}
(1.1) N

Pr  :=s-lim S,z for x € D(P).
e}

Then

(1) ||P|| < M and P is a projection.
(2) N(P) = R(A), R(P) = N(A) and the domain

D(Q) = N(A) ® R(4)

= {z € X;{S,z} contains a weakly convergent subnet.}

2. A GENERAL CONVERGENCE THEOREM

Let a be a function in L}, ([0, o)) with a(t) > 0 on (0, o) and Iet k be non-
decreasing on [0, co) such that k(¢) > 0 for all ¢ > 0. Thus (a * k)( fo

s)k(s)ds is increasing on [0,00). Let A: D(A) C X — X bea closed Ilnear oper-
ator. A family {R(¢);¢t > 0} in B(X) is called a (a, k)-regularized resolvent family

for A [16, 17, 18, 25] if it has the following properties:
(R1) R(-) is strongly continuous on [0, co) and R(0) = I;
(R2) R(t)D(A) ¢ D(A) and AR(t)x = R(t)Ax for all x € D(A) and t > 0;

(R3) R(S(t)) ¢ D(A) and AS( E R(t)x — Ek(t)x for all x € X and for all
t >0, where S(t)x := [3 a(t — s)R(s)xds for 2 € X and ¢ > 0.

Such A is called the generator of R(-). (a, k)-regularized resolvent families was
first introduced in [17]. As a = 1, R(-) is called a k-convoluted semigroup [5].
(R3) describes an important class of abstract Cauchy problem. Related references

refer to [2, 13]. When k(t) = j.(t) = F(Oté—il) R(-) is called an «a-times integrated
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solution family [25]. In particular, if , in addition a = 1 (resp. a(t) = t), then R(-)
becomes a Cy-semigroup 7'(-) (resp. cosine operator function C(-)) with generator
A [10, 8, 9].

Let {h,} be a net of complex-valued functions in L' [0, o) such that h, (-) R(-)x
is Bachner integrable on [0,0c0) for every x € X. Define, for every «, a linear
operator S, by

oz 1= / ho () R(t)zdt for z € X.
0

Applying a Hille theorem [6, Theorem 11.2.6], we have S, Az = AS,x for all
x € D(A). To prove the next theorem, we need the following lemma.

Lemma 2.1. (cf. [16, Corollary 2.4]). Suppose k& and a are nondecreasing

and positive on (0, co) such that hm (a"“%)(t) =0and a(t) = O((axk)(t))(t —

o0). Let R(-) be an (a, k)- regularlzed solution family with generator A satisfying
[|R(t)|| < M(1+ k(t)) for all t > 0. Define the operator @ by

D(Q) ={zx € X|s- tlim B, x exists}
—00
Qxr = tlim Bz for x € D(Q),
—00

where Bix := ((%},f)(&f))x for all ¢t > 0 and for all z € X. Then {B:}(t — o0) is

an A-ergodic net and @ is a bounded projection with ||Q|| < sup ||.S4|| such that

R(Q)= N(A), N(Q) = R(A), and the domain
D(Q) = N(A)® R(A) = {x € X; {B;z} contains a weakly convergent subnet}.

Proof. Since a(t) = O((a * k)(t))(t — o), there are some » > 0 and some
constant M’ > 0 such that a(t) < M'(a * k)(t) for all ¢ > r. Therefore we have
for every ¢ > r and for every x € X,

[|Biz|| < ((axk)(t IH/ (t—s)R xdsH—i—H/ (t — s)R(s)xds|]]
< ((axk)(1)) " [ra(t) OSUP R (s[| - [l + M'(a+ k) () ]]]]
< ' sup |IR(sl + D)l

Therefore the B, are uniformly bounded on [r, oo) by the assumption. So, {B,}(t >
r) satisfies (Al). (A2) follows from (R2) and (R3). Finally, we have

R(t) - k(1) ()
(M+1)k()+M

(axk)(t)

—0ast— oo.
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Since B;A C ABy, this means that the net {B;}(¢t > r) is an A-ergodic net. The
result follows from Theorem 1.1.

Theorem 2.2. (cf. [16, Theorem 2.2]). Let R(-) be an (a, k)-regularized solu-
tion family and let {h,} be a net of complex-valued functions in L [0, co) such that
ha(-)R(-)z is Bochner integrable for all z € X. Define Sz := [ ho(t)R(t)zdt
for all z € X and for all o.. Suppose the following coditions hold:

(8) sup [[Sal] < co;
b) lim - a dt = 1;
(6 i /0 ho ()k(8)dt = 1

: k() B _
(c) tli>rcr>lo DI 0 and a(t) = O((a*k)(t))(t — o0);

(d) suppose that
(2.1) lim S, (R(t) — k(t)I)xz = 0 for all z € X and for all ¢ > 0.

Define the operator @ : D(Q)(C X) — X by

D(Q) = {x € X | s-lim S,z exists}
Qz =lim S,z for x € D(Q);

Then @ is a bounded projection with ||Q|| < sup ||S,|| such that R(Q) = N(A),
N(Q) = R(A), and the domain

D(Q)=N(A)® R(A) = {z € X;{S,x} contains a weakly convergent subnet}.

Proof. Clearly, ||Q|| < sup||Sa|| < co. So, both D(Q) and N (Q) are closed.

If x € N(A), (R3) implies O]é%(t):c = k(t)z for all ¢t > 0. By (2.1), we have for
every x € D(A) and forevery t > 0, (axk)(t)B Az = R(t)x —k(t)x € N(Q) and
so —Az = lim B;Ax — Az € N(Q) by Lemma 2.1. Therefore R(A) C N(Q). If

o0

reX, the;l_)R(t)x —k(t)r = A(ax R)(t)z € R(A), so

Suz — /0 e (0 k(1) 2t = /0 ha(8)(R(®)2 — k(t)a)dt € R(A).

If {S,x} has a weakly convergent subnet {Sg}, say y := w-liﬁmng, then

(2.2) y—x = w-lién(ng —x) € R(A) C N(Q).
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This means that Q(y — z) = 0. In particular, if x € D(Q), then y € D(Q) and
Q%*r = Qu, that is, @ is a projection. Further, if z € N(Q), then y = 0 and
—x =y —x € R(A). Since R(A) C N(Q), this proves N(Q) = R(A). On the
other hand, since S, R(t) = R(t)S, for all ¢ > 0 and for all o, we obtain from
(2.1) that

[R(t) — k(t)]y = 0 for all ¢ > 0.

Thus Byy = y for all t > 0. This implies y € N(A) by (R2) and (R3). Since
N(A) C R(Q), this implies R(Q)) = N(A). Since @ is a projection, we must have
D(Q) = N(A)® R(A). This completes the proof. n

The assumption in Theorem 2.2 of [16] for D(A) being dense X is not required
here.

Remark. If @ is a nonzero polynomial and & = j. for some r» > 0, then

Jlim “((22)’“(%) = 0. But, if a = 1 and k(t) = ¥, t > 0, for some w > 0, then

e = O((a* k)(t))(t — oo). That is, k(t) in Lemma 2.1 can not increase too
rapidly.

Example 1. (See [16]). Let a, € R, where r := (r1,...,1,) € Nj, |r] :==
n
S rj <k andlet A:= 3 a,il"T1D" be the maximal differential operator on a
Jj=1 [r|<k
function space X which can be any of the spaces

Co(R™), Cy(R™), UC,(R™), LP(R™) for 1 < p < oo,

8_371 Oxnp
ates an m-times integrated semigroup (i.e., an (1, j,,)-regularized solution family)
T(-) satisfying || 7(¢)|| < M(14¢t™) for all ¢ > 0, where m = [n/2]+2. Moreover,

where D" := < o )rl e <i>r". It is shown in [12, Theorem 4.9] that A gener-

(T f)(z) == (#)nﬂ (6= f)(x), f€X, xR, >0,
where
ba) s = 2 [y
— @ (ym — sz_; %tj (@)™, >0,z € R™.

Here ¢, denotes the inverse Fourier transform of ¢.
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3. APPLICATION TO k-CONVOLUTED SEMIGROUPS

In [16], we investigated the ergodic approximation for (Cy)-semigroup. In this
section, we shall apply last results to r-times Integrated semigroups for » > 0. Let
R(-) be an r-times integrated semigroup on X with the generator A, where r > 0.
Suppose & : [0, 00) — [0, co) is nondecreasing with k(¢) > 0 for all ¢ > 0.

Then R(-) is a (1, j,)-regularized resolvent family for A. It is known ([14] for
integer case and [15] for real case) that R(-) can be expressed as

S

s+t
(3.1) R(t)R(s)z = /t dnn (5t — ) R(u)adu — /0 dnr (54t —w) R(w)wdu

for all z € X and for all ¢,s > 0. When n =0, R(-) is a (Cp)-semigroup. It is a
known fact that every n-times integrated semigroup on X is a commutative family.
These still hold for (1, k)-regularized resolvent families. We list the result as the
following:

Lemma 3.1. Let R(-) be a (1, k)-regularized resolvent family for A. Then
() R(t)R(s) = R(s)R(t) for all t,s > 0;
(i) If k(-) is continuously differentiable on [0, c0), then
s+t s t
(3.2) R(OR(s)z = ( / _ / - / V(s + t — 1) R(r)adr + k(0) R(s + )
0 0 0
forall t,s >0 and for all z € X.
Proof. By (R2) and (R3), we have for every ¢, s > 0,

[R(t) = k()I](1« R)(s) = (1% R)(t)[R(s) — k(s)1].
That is,

R(t) (1« R)(s) — (1= R)(t)R(s) = k(t)(1 x R)(s) — k(s)(1 = R)(t).
Therefore we have for every ¢,s > 0 and for every z € X,
)
(I1xR)(t)(1* R)(s)x /0 E[(l*R)(r)(l*R)(s—f—t—r)x]dr

/tR (I«R)(s+t—r)x— (1*xR)(r)R(s+t—r)xdr
0

/tk (I1xR)(s+t—r)x—k(s+t—7r)(1%R)(r)zdr
0

(/ot +/0 ) +t> k(r)(1 R)(s+t — r)adr.
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By symmetry on ¢ and s, this proves (1 R)(¢)(1* R)(s) = (1% R)(s)(1* R)(t)
for all ¢, s > 0. Thus, (i) follows from differentiating to s and ¢, respectively.

(it) Differentiating to ¢ in (3.3), we get
(3.4)

R()(1+ B)(s x—(/ / /> Ris+t— r)adr + k(#) (1 B)(s)z.

Using the change of variables, we have

R()(1+ RB)(s x-(/ / /) (s+ 1t — r)R(r)zdr + k()(1 % R)(s)z.

Differentiating to s again, we get

)z = (/08+t—/08—/0t>k’(s+t—r)R(r)xdr—i—k(O)R(s—i—t)x.

This proves (ii) and the proof is complete.
Remark. From Lemma 3.1(ii), if £(-) = j,(-), we get (3.1).

Let {h,,} be a sequence of complex-valued functions in L'[0, co). We consider
the following conditions:
(€1) K := sup [;° |hn(t)|k(t)dt < o0;

n—oo

(c2) lim f0°° hy () (t)dt = 1;

(c3) There is an 6 > 0 such that hm fo |h(t)|dt = 0 and

lim | (t) — hin(t + 0)|k(t + 0)dt = 0 for every 0 < 0 < ¢.

n—oo 0

(c4) lim ’“(tj)‘” =1 for all 6 > 0.

If § > 0 is such that lim R(H9) — 1 for all 0 < @ < &, then we have for any

—00 k(t)
0<6 <,
lim k(t+20) m k(t+ 20) o k(t+6) L
t—o00 k(t) t—o00 k(t—l—@) t—o0 k(t)

Therefore we have lim *“+% — 1 for all 9 > 0.
t—oo k(t)

Lemma 3.2 Let {h,} be a sequence of complex-valued functions in [0, oo)
satisfying (c1) and (c3).
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(i) Lm [ [hn(t)|(k(s+t) — k(t))dt =0 for all 0 < s < §;

n—oo

(ii) lim fo |hn(t)|dt = 0 for all N > 0;

(iii) If (c4) holds, then
lim | (t) — hy(t + 6)|k(t 4 0)dt = 0 for every 6 > 0.

n—oo 0
(iv) If f:]0,00) — X is strongly measurable such that || f(¢)|| < M (1 + k(¢))
for all ¢ > 0 and some constant A/ > 0. Then

o0

lim hn()[f(t+0) — f(t)]dt =0 for all 0 < 6 < 6.

n—oo 0

Proof. (i) Since k(-) is nondecreasing and k(¢) > 0 on (0, c0), by (c1) and
(c3) we have for every 0 < s < 6,

0 < /OOO o (8)] (ks + 1) — k(8))dt
:/Oo\hn(t)\k(s—i—t)dt—/OO\hn(t—i—s)\k(t—i—s)dt—/S\ha(t)\k(t)dt
0 0 0

S

</0 th(t)\—\hn(t+8)\\k(8+t)dt+k(8)/0 [ha(t)|dt

g/o \hn(t)—h(t+s)\k(s+t)dt—|—k(s)/0 n(£)]dt — 0 a5 7 — oo,

This proves (i).
(ii) Let N > 0 be arbitrary and let m be a positive integer so that 6 :=
Then we have

£+1¢9 m—1 .9
/O ()| dt = Z/ ()]t = 0/0 It + £0)|dt
20
Z/ {{Zh (t+760)— (t+(j1)0)+hn(t+9)”dt+/ | ()|t
=2 0

m—1 ¢ 70

20
ST alt0) = b+ = 1) [ (o)

=2 j—2 7 (G-1)0
1

— / \hn(t+0)—hn(t)\dt+(m—1)/ | (£) |
P 0

m—2 [ 20
< 22 [ e 0) = hat0lg(e+ 0+ (= 1) [ hatola

— 0 as n — oo by (c3).
This proves (ii).

N )
E<§'
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(iii) Assume (c4). Let c > 0 be arbitrary. Then 0 := = <
integer m. By (c4), there is an N > 0 such that 1 < "“%)C) <
Since g is nondecreasing and positive on (0, co), this implies 1 <
forall 0 < j < ¢ <mand for all t > N. Thus, we have

/OO () — B ( + €)[(t + )t
0

_ /OO B (£) — Tt + mB) k(¢ + mb)dt
0

o for some positive

1+eforallt> N.

k(t+46)
k(t+40)

<l+c¢

m

< Z/OOO |hn (t + €0) — by (t + (€ — 1)0)|k(t + mO)dt
1

=
m

N
gz/ (4 £8) — hn(t + (£ — 1)0) k(N +m)dt

Z/ (b 00) — ho(t+ (€ — 1)O)|(1 + ) k(t + 00)dt

— 0 + 0 as n — oo by part (ii) and (c3).
This proves (iii).
(iv) By part (ii), we have
N
lim |h(t)|dt = 0 for any N > 0.

n—oo 0

Since k is nondecreasing and positive on (0, co), there is a constant A/’ > 0 such
that || f(t)]| < M'k(t) for t > $. By (c1), we have

| It ylar
< M(L+k(; / (¢ \dt+/ M [l (1) (t) dt
< M(1+k(; /\h J|di + K.

By the first part of (c3), this implies sup [ || (t) f(t)||dt < oo.
n>1

On the other hand, we have for ev;ry 0<f<?
| s+ 0) ~ s
= /SOO [P (t) — hn(t + 0)] f(t + 0)dt

g 0
+ /0 n(t) — o (t + O)]f (£ + 0)dt — /0 B () (1) dt
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Since || f(t)|| < M'k(t) for all t > 3, we have

[ mise+0) - s ‘

<M /OO |hn(t) — hy(t + 0)|k(t + 0)dt
é

)
) 2 0
+M(1+ k(0 + 5)) / |hn(t) — hp(t+ 0)|dt + M (1 + k(6)) / | (t)|dt
0 0
— 0 as n — oo by (c3).
This proves (iv) and the proof is complete. ]

The proof of Lemma 3.2(ii) had applied the proof of [16, Lemma 2.5] but
Lemma 3.2(iv) is without using the condition tli—glo k(t) = oo which is an important
assumption of [16, Lemma 2.5]. Under the conditions (c1)-(c4), if ||R(¢)| <
M (1 + k(t)) (¢t > 0) for some constant M > 0, then the linear operators S,
n > 1, defined by S,z := [J* hn(t)R(t)xdt for = € X are uniformly bounded
linear operators on X by the proof of Lemma 3.2(iv). The following lemma gives
a sufficient condition for the condition (d) in Theorem 2.2.

Lemma 3.3. Suppose {h,}>>, is a sequence of complex-valued functions in
L0, 00) satisfying (c1)-(c3) Let R(-) be a (1, k)-regularized resolvent family on
X with generator A. Suppose there is a constant A/ > 0 such that ||R(t)|| <

M(1+ k(t)) for all ¢ > 0. If k(-) is continuously differentiable on (0, co), then
lim S, (R(s)z — k(s)x) =0 forall z € X and for all 0 < s < .

Proof. Let0 < s < § and let x € X be arbitrary. By Lemma 3.2(i) and (c1),
we have for every 0 < r < s,
(3.5) / ()] - ||R(t 4+ 7)|]dt < K ::sup/ o (£)[J6(¢ 4+ 8)dt < 0.
0 n>1.J0

By Lemma 3.2(iv), we have

lim hn(t)[R(t + s)x — R(t)x]dt = 0 for all z € X.

n—oo 0

Since ||R(t)|| < M (1 + k(t)) for all ¢ > 0 and k(-) > 0 is nondecreasing on
(0,00), we get from (3.5) that || [i° hy (£)[R(t + )z — R(t)x]dt|| < 2K'||z|| for
all 0 < r < s. From Lemma 3.1(ii), we have for every ¢, s > 0,

R()R(s)z = ( /t . /0 t) K (s +t — r)R(r)adr + k(0)R(s + t)a

_ /0 K (s — ) [R(r + )z — R(t)a]dr — /O K (s +t — r)R(r)adr
+h(0)[R(s + ) — R()a] + k(s)R(t)a.
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By the Fubini’s theorem for Bochner integration, we have
/0 T h(OR()[R(s)x — k(s)aldt
_ / bt / K (s — 1)R(r+ )z — R(t)z]drdt
0 o 0 S
—/0 hin(t) /0 E'(s+t—r)R(r)zdrdt
+(0) / hn(D)[R(s + )z — R(t)ar]dt
0
= /8 K (s—r) /OO hin(£)[R(r + t)z — R(t)x]dtdr
0 o 08
- / o (1) / K (s +t — r)R(r)adrdt
0 0

+(0) /O " hn(B)[R(s + ) — R(t)]dt.

Since k(-) is nondecreasing and continuously differentiable, £'(¢) > 0 on [0, c0).
Thus, we have

| omeincs o

</ K (s —r) / I (O)[R(r + )z — R(t)]dt
/ it \/ F(s -t = r)drdt - sup [|R(r)al

+k(0)/0 ha(0)[R(s + )z — R(1) dtH
g/osk’(s—r) /Ooohn(t)[R(r+t)x—R() 2] dt

+/ [P (Ol[k(s +1) — k()]dt - sup [|R(r)]]
0

7’ S

o [ wonmeso v

Applying Lebesgue dominated convergence theorem and Lemma 3.2(iv), this in-
equality implies that

dr

dr

lim / (O R([R(s)z — k(s)x]dtll _0forallzc X.
n—oo 0

This completes the proof. ]
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The following lemma is useful to find adaptive functions h,, satisfying (c1)-(c3).

Lemma3.4. Leth € L0, c0) satisfy h(-)k(-) € L'[0,00) and [;° h(t)k(t)dt =
1. Suppose k satisfies (c4). Define for every A > 1,
arbitrary value,t = 0

ha(t) = Lt k()
%

for allt > 0.

Then {h,} satisfies (c1)-(c3) for § = occ.

Proof. Since k is positive and nondecreasing on (0, o0), we have |hy(t)] <
AHha(L)| for all ¢ > 0 and for all A > 1. So, we have for every A > 1, Iy €
L0, 00),

/O h,\(t)k(t)dt—/o A h()\)k()\)dt—/o B k(t)dt = 1

and

/0 hk(t)k(t)dt‘g/o A 1\h(x)\k(x)dt:/0 h()|k(D)dt < oc.

This proves that {h,} satisfies (c1) and (c2).
We show that {%,} satisfies the condition (c3). Since k is positive and nonde-
creasing on (0, co), we have for every A > 1

4 3
Jo 1ha(t)]dt =/0 A‘l\h(é)\lz((;))dt

5 3
< / A ()t = /* Ih(t)|dt — 0 as A — oo.
0 0

This proves the first part of (c3).
Now, let e > 0 and 6 > 0 be arbitrary. By (c4), there isan N > 1 such that

k(t + )
k(t)

() 0< —1<e forallt> N.

Using the change of variables, we have for every A > 1,
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/OO IBa(t) — ha(t + 0) [ k(t + 0)dt
0

00 i +6
:)\_1/0 \h(%)lz((%\)) h(tie)kk(i ))\k(t+6?)d

Lttt k(t+0) t+6 t+0
=t [ G = RSl

o k(M + 6) 0
= | ok S~ he+ e+ ;)\dt

< /OOO \h(t)k(t)% — h(t)k(t)|dt
+/0 |h(t)k(t) — h(t + g)k(t + ;)\dt

=11 + I.
Since k(-) is nondecreasing, we get from (*) that

N

L= /0 R \h(t)k(t)% — h(t)k(t)|dt

+ /; \h(t)k(t)%  R(0)k(r)dt

A

E e O [
_/0 () g FON + ) + / h()k(2)|dt

At) ¥
N+0/

Ho+g/ ()| k()dt as A — oo
0

\dt+5/oo | (t)|k(t)dt
0

Since ¢ > 0 is arbitrary, this means that I; — 0 as A — oc.
On the other hand, I, — 0 as A\ — oo is a known fact (cf. [3, exercise 43]).
These means that &) satisfies the second part of (c3). The proof is complete. =

Examples.
(i) If k(-) is a nonzero polynomial, it satisfies (c4).
(i) If k(-) = j,(-), it satisfies (c4). In case, we can take h(t) = e~*, ¢t > 0. Then
ha(t) = X~""1et/A t > 0 and \ > 1, satisfy (c1)-(c3) by Lemma 3.4.
(iii) The exponential functions e, ¢ > 0, do not satisfy (c4).

In fact, (c4) implies the condition (d) in Theorem 2.2.

Lemma 3.5 If £ : [0, 00) — [0, c0) is nondecreasing on [0, co) and is positive

n (0, 00) satisfying lim "“(,f(”:f) = 1 for some 6 > 0, then
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(i) for any >0, there is a constant M >0 such that k(¢) < Me*t for all ¢ >0;
(i) hm (1*2))(70 0.
Proof. Let e’ > 0 and let s > 6 be arbitrary. Let n be the smallest integer
greater than or equal to 5. Then
n> g >n—1>0.

(i) It suffices to show hm (Et) =0 forany € > 0. Lete € (0, 1) be arbitrary
1n(1+6)
—7

and choose an € > 0 such that
such that

< 5. By the assumption, thereisan N > 0

k(t +6)
k(1)

1< <1+e¢e forallt> N.

Therefore we have
E(N + s) < k(N +nf)

< (A4 )k(N+(n—1)0) <--- < (14¢)"k(N)
< (14 &) Fik(N) = A9 0+ g (N)

SE/

<(1+e)k(Nez.
This implies
E(N +s)

(N = (14 ¢) limsupk(N)e N = 0.
e

§—00

lim sup
S§—00

Thus we have lim ((NLH} = 0. This proves (i).
S—
(i) Let £ > O be arbitrary. Then there is an integer N > 0 such that
k(t+ 2
1< 7( i ”)

<1 forall t > N.
S TRy S TE =

Thus, we have

N n N+j2
(L% k)(N + s) :/0 k(u)du—i—Z/ k(u)du

=17/ N+(G-1)
n % s
> E(N ) —1)— d
_;/0 (N + (j )n—i—u)u

> (14 o) PR 40l 1 u)d
_Z/ (1+¢) k( —|—nn—|—u)u

s
n

> Z (14¢&)"H=DE(N +5)

- gkw Fe)e (1- (1)),
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Since s —lass— oo, this means that

lim su —k(N +9)

This proves (ii) and the proof is complete. ]

Lemma 3.5 shows that (c4) implies k() = o(e*)(t — oo) for any ¢ > 0 and
the condition (d) in Theorem 2.2 with « = 1. Combining Theorem 2.2 and these
results of this section, we have the following main result.

Theorem 3.6. Let R(-) be an (1, k)-regularized solution family with generator
A and let h € L]0, 00) be such that hk € L]0, 00). Suppose k satisfies (c4) and
[|R(t)|| < M(1+k(t)), t > 0 for some constant M > 0. Define the functions h y,
A>1 by

arbitrary value, for t =0

halt) = _1h(§)% for all t > 0.
(i) If z € R(A), then Jim_ J3° hA(t) R(t)xdt = 0;
(ii) If z € N(A), then Jim f0°° ha(t)R(t)zdt = [~ h(t)k(t)dtx;
(iii) If [°h t)dt # 0 and {fo ha(t)R(t)xdt} (N — oo) has a weakly con-

vergent subsequence for some x € X, then x € N(A) & R(A).

Proof. By Lemma 3.5, (c4) implies the condition (c) in Theorem 2.2. Let
c:= ["h t)dt. If ¢ # 0, then the net {c 'h)} (A — oo) satisfies (c1)-(c3)
with § = oo by Lemma 3.4. Therefore {[;° ¢ hx(t)R(t)zdt} (A — oo) satisfies
the conditions (a)-(d) by Lemmas 3.3 and 3.5. It follows from Theorem 2.2 that
()-(iii) hold for ¢ # 0.

If ¢ = 0, we choose a function g € L'[0,00) such that [;° g(t)k(t)dt = 1.
Define

gA(t) = k(L

A (3%
By above arguments, we have for every s > 0,

for all ¢ > 0.

{ arbitrary value, for t = 0

/\hm Jo T [ha() + sgr(®)]R(t)xdt =0 for all z € R(A)

and
lim [°[ha(t) + sga(t)|R(t)zdt = sz for all 2 € N(A).

A—00
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These prove that Alim Jo " ha(t)R(t)xzdt = 0 for 2 € N(A) & R(A) Therefore (i)

and

(ii) hold for case ¢ = 0 and the proof is complete. |

Take h(t) = et t > 0 in Theorem 3.6, we have the following special case.

Corollary 3.7. Let n > 0 be an integer. Suppose that R(-) is an n-times
integrated semigroup with generator A and suppose that ||R(t)|| < M (1 + j ,(¢)),
t > 0 for some constant M > 0. Then

(i)
(i)

If z € R(A), then 1/\1?01 AL [0 e=MR(t)xdt = 0;

If x € N(A), then 1/\1?01 AL [ e MR(t)wdt = x;

(iii) If (AT [° e MR(t)adt} (A — 04) has a weakly convergent subsequence

10.

for some z € X, then z € N(A) @ R(A).
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