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Anti-invariant Riemannian Submersions: A Lie-theoretical Approach

Peter Gilkey, Mitsuhiro Itoh and JeongHyeong Park*

Abstract. We give a construction which is Lie theoretic of anti-invariant Riemannian

submersions from almost Hermitian manifolds, from quaternion manifolds, from para-

Hermitian manifolds, from para-quaternion manifolds, and from octonian manifolds.

This yields many compact Einstein examples.

1. Introduction

We begin by establishing some notational conventions.

1.1. Riemannian submersions

Let M and N be smooth manifolds of dimension m and n, respectively, and let π : M →
N be a smooth map. We say that π is a submersion if π∗ is a surjective map from

the tangent space TPM to the tangent space TπPN for every point P of M . Let gM

and gN be Riemannian metrics on M and N . If π : M → N is a submersion, then the

vertical distribution is the kernel of π∗ and the horizontal distribution H is V⊥. We may

then decompose TM = V ⊕ H. We say that π is a Riemannian submersion if π∗ is an

isometry from HP to TπPN for every point P of M . We refer to O’Neill [12] for further

details concerning the geometry of Riemannian submersions. If gM and gN are pseudo-

Riemannian metrics, we impose in addition the condition that the restriction of gM to

V is non-degenerate to ensure that V ∩ H = {0}. This gives rise to the notation of a

pseudo-Riemannian submersion.

1.2. Hermitian geometry

An endomorphism J of TM is said to define an almost complex structure onM if J2 = − id,

i.e., J gives a complex structure to TPM for every point P of M . We complexify the

tangent bundle and let

T 1,0 :=
{
X ∈ TM ⊗R C : JX =

√
−1X

}
.
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One says J is integrable if T 1,0 is integrable, i.e., X,Y belong to C∞(T 1,0) implies the

complex Lie bracket [X,Y ] also belongs to C∞(T 1,0). The Newlander-Nirenberg Theorem

[11] is the analogue in the complex setting of the Frobenius theorem in the real setting; J

is integrable if and only if it arises from an underlying holomorphic structure on N . The

Riemannian metric gM is said to be almost Hermitian if J∗gM = gM , i.e., if gM (JX, JY ) =

gM (X,Y ) for all tangent vectors X,Y ∈ TPM and all points P of M ; the triple (M, gM , J)

is then said to be an almost Hermitian manifold ; in the pseudo-Riemannian setting one

obtains the notion of almost pseudo-Hermitian manifold similarly. The notation Hermitian

or pseudo-Hermitian is used if the structure J is integrable.

Let (M, gM , J) be an almost Hermitian manifold and let π be a Riemannian submersion

from (M, gM ) to (N, gN ). Following the seminal work of Sahin [15,16], one says that π is

an anti-invariant Riemannian submersion from an almost Hermitian manifold if

J {V} ⊂ H.

If J {V} = H, then π is said to be Lagrangian. There have been a number of subsequent

papers in this subject extending the work of Sahin [15, 16]; we shall cite just a few rep-

resentative examples. Lee et al. [9] examined the geometry of anti-invariant Riemannian

submersions from a Hermitian and from a Kähler manifold in relation to the Einstein con-

dition and examined when the submersions were Clairant submersions. Ali and Fatima [2]

examined the nearly Kähler setting. We also refer to related work of Ali and Fatima [3],

of Beri et al. [4], and of Murathan and Küpeli-Erken [10].

1.3. Quaternion geometry

We shall restrict to flat quaternion structures as this is sufficient for our purposes. The

quaternion algebra Q := R4 = Span {e0, e1, e2, e3} is defined by the relations:

e0 e1 e2 e3

e0 e0 e1 e2 e3

e1 e1 −e0 e3 −e2
e2 e2 −e3 −e0 e1

e3 e3 e2 −e1 −e0

Table 1.1: Multiplicative table of the quaternion algebra Q.

One says that x ∈ Q is an imaginary quaternion if x ∈ Span {e1, e2, e3}. A flat

quaternion structure on a manifold M is a unital action of Q on TM . If x is a unit

length purely imaginary quaternion, then ξ → x · ξ defines an almost complex structure
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on M . If g is a Riemannian metric on M , we shall assume in addition that ‖x · ξ‖ =

‖x‖ · ‖ξ‖ for any quaternion x and any tangent vector ξ. Let π : (M, gM ) → (N, gN ) be

a Riemannian submersion. Then one says π is an anti-invariant Riemannian submersion

from a quaternion manifold if x · V ⊂ H for any purely imaginary quaternion x. We

have assumed that the roles of {e1, e2, e3} are globally defined (i.e., the structure is flat);

we refer to Alekseevsky and Marchiafava [1] for a discussion of the more general setting.

Anti-invariant Riemannian submersion from a quaternion manifold have been studied by

K. Park [14].

1.4. Para-Hermitian geometry

Instead of considering almost complex structures, one can consider para-complex struc-

tures. Let C̃ := R2 with the para-complex structure Je1 = e2 and Je2 = e1. Let (M, gM )

be a pseudo-Riemannian manifold of neutral signature (`, `). If J is an endomorphism of

M with J2 = Id such that gM (JX, JY ) = −gM (X,Y ) for all X,Y ∈ TPM and all points

P of M , then the triple (M, gM , J) is said to be a para-Hermitian manifold. Let π be

a pseudo-Riemannian submersion from (M, gM ) to (N, gN ) with J {V} ⊂ H. One then

says π is an anti-invariant Riemannian submersion from para-Hermitian manifold ; π is

Lagrangian para-Hermitian if J {V} = H; this is examined by Gündüzalp [6].

1.5. Para-quaternion geometry

In place of the quaternion commutation relations given in Table 1.1, one imposes the

para-quaternion relations to define the para-quaternions Q̃ by setting:

e0 e1 e2 e3

e0 e0 e1 e2 e3

e1 e1 −e0 e3 −e2
e2 e2 −e3 +e0 −e1
e3 e3 e2 +e1 +e0

Table 1.2: Multiplicative table of the para-quaternions Q̃.

If J1 is Hermitian and if J2 and J3 are para-Hermitian, then one obtains the notion of

a para-quaternion manifold. We refer to Ivanov and Zamkovoy [8] for further details.

If π : (M, gM ) → (N, gN ) is a pseudo-Riemannian submersion and if Ji {V} ⊂ H for

1 ≤ i ≤ 3, then π is said to be an anti-invariant Riemannian submersion from a para-

quaternion manifold. To the best of our knowledge, there are no papers on such geometries.
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1.6. Octonian geometry

The octonians O arise from a non-associative and non-commutative bilinear multiplication

on R8. If {e0, . . . , e7} is the standard basis for R8, the multiplication is given by the

following table (see Wikipedia [17]):

e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Table 1.3: Multiplicative table of the octonians O.

The octonians satisfy the identity

‖x · y‖ = ‖x‖ · ‖y‖ for all x, y ∈ R8.

If x ∈ Span {e1, . . . , e7}, then x is said to be a purely imaginary octonian. Such an

octonian satisfies x · y ⊥ y for any y ∈ R8. Let (M, g) be a Riemannian manifold. A

flat octonian structure on a Riemannian manifold (M, g) is a unital octonian action on

TM such that ‖x · ξ‖ = ‖x‖ · ‖ξ‖ for any octonian x and any tangent vector ξ. If π is

a Riemannian submersion from (M, g) to (N,h), then we say that π an anti-invariant

Riemannian submersion from an octonian manifold if x · V ⊥ V for any purely imaginary

octonian x ∈ R7. To the best of our knowledge, there are no papers dealing with anti-

invariant Riemannian submersion from an octonian manifold.

1.7. A Lie theoretic construction

We now outline a Lie theoretic method that we shall use to construct examples. Let H

be a closed and connected subgroup of an even dimensional Lie group G. Let h and g be

the associated Lie algebras, respectively. Let 〈·, ·〉 = 〈·, ·〉g be a non-degenerate symmetric

bilinear form on g which is invariant under the adjoint action of H and whose restriction

to h is non-degenerate as well. We use 〈·, ·〉g to decompose g = h ⊕ h⊥ as an orthogonal

direct sum. The inner product 〈·, ·〉g defines a left-invariant pseudo-Riemannian metric on
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G and, since the inner product is invariant under the adjoint action of H, the restriction of

〈·, ·〉g to h⊥ defines a G-invariant pseudo-Riemannian metric on the coset manifold G/H

so that the natural projection π : G→ G/H is a pseudo-Riemannian submersion.

(1) Complex geometry. Assume 〈·, ·〉 is positive definite. Let J be a Hermitian complex

structure on g; J induces a left-invariant Hermitian almost complex structure on

G. Assume that J {h} ⊂ h⊥. Then π : G → G/H is an anti-invariant Rieman-

nian submersion from an almost Hermitian manifold; π is Lagrangian if and only if

2 dim {h} = dim {g}. More generally, if 〈·, ·〉 is only assumed to be a non-degenerate

inner product and if the restriction to h is assumed to be non-degenerate, then we

obtain an anti-invariant Riemannian submersion from an almost pseudo-Hermitian

manifold.

(2) Quaternion geometry. Assume 〈·, ·〉 is positive definite. Assume given a Hermitian

quaternion structure on g such that x·h ⊂ h⊥ for any purely imaginary quaternion x.

Then π : G → G/H is an anti-invariant Riemannian submersion from a quaternion

manifold.

(3) Para-complex geometry. Assume 〈·, ·〉 has neutral signature and that 〈·, ·〉 is non-

degenerate on h. Let J be a Hermitian para-complex structure on g with J {h} ⊂
h⊥. Then π : G → G/H is an anti-invariant Riemannian submersion from a para-

Hermitian manifold; π is Lagrangian if and only if 2 dim {h} = dim {g}.

(4) Para-quaternion geometry. Assume 〈·, ·〉 has neutral signature and that 〈·, ·〉 is non-

degenerate on h. Assume given a Hermitian para-quaternion structure on g such

that x · h ⊂ h⊥ for any purely imaginary para-quaternion x. Then π : G → G/H is

an anti-invariant Riemannian submersion from a para-quaternion manifold.

1.8. Outline of the paper

Section 2, we will discuss some examples which arise from the construction given above.

We conclude in Section 3 by presenting a different family of examples (including an anti-

invariant Riemannian submersion from an octonian manifold) relating to the Hopf fibration

where the total space is not a Lie group but which are nevertheless Lie theoretic in nature.

It is our hope that having a rich family of examples will inform further investigations in

this field.

2. Examples

In this section, we present examples of anti-invariant Riemannian submersions where the

total space is a Lie group G and the base space is a homogeneous space upon which G acts
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transitively by isometries; H ⊂ G is the isotropy subgroup of the action. Examples 2.1

and 2.2 are flat geometries. Example 2.3 arises from the Hopf fibration S1 → S3 → S2.

In Example 2.4, the total space will be (S3)ν . We will take product metrics and if the

metric on S3 is the usual round metric, these examples will be Einstein. In Example 2.5,

we take G = R× SL(2,R) to construct negative curvature examples.

2.1. Abelian examples

Example 2.1. Let G = Rm and let H = Rn ⊕ 0 ⊂ G for n < m. We identify G/H with

0⊕ Rm−n and π with projection on the last m− n coordinates.

(1) Take the standard Euclidean inner product on G to obtain a bi-invariant Riemannian

metric so that π is a Riemannian submersion.

(a) Suppose m = 2` and n = `. Identify G = C` so that H corresponds to the

purely real vectors in C`. We identify g with G and h with H. Then
√
−1h ⊥

h and we obtain an anti-invariant Riemannian submersion from a Hermitian

manifold which is Lagrangian; the almost complex structure corresponds to

scalar multiplication by
√
−1 and is integrable.

(b) Assume m = 4` and n = `. Identify G = Q` so that H corresponds to the purely

real vectors in Q`. Then x · h ⊥ h if x is a purely imaginary quaternion and we

obtain an anti-invariant Riemannian submersion from a quaternion manifold.

(c) Assume m = 8` and n = `. Identify G = O` so that H corresponds to the purely

real vectors in O`. Then x · h ⊥ h if x is a purely imaginary octonian and we

obtain an anti-invariant Riemannian submersion from an octonian manifold.

(2) Let m = 2` and n = `. Identify G with C̃` so that H = R` corresponds to the purely

real para-complex vectors. More specifically, we take a basis {ei, fi} for R2` where

H = Span {ei}. Set

〈ei, ei〉 = 1, 〈fi, fi〉 = −1, 〈ei, fj〉 = 0, J̃ei = fi, J̃fi = ei.

We obtain an anti-invariant Riemannian from a para-Hermitian manifold which is

Lagrangian. By taking the inner product 〈ei, ei〉 = −〈fi, fi〉 = εi for εi = ±1, we

can ensure that the base has arbitrary signature.

(3) Let m = 4` and n = `. Identify G = Q̃` so that H = R` corresponds to the

purely real vectors in G. We obtain an anti-invariant Riemannian submersion from

a para-quaternion manifold.

The total space G = Rm is non-compact in Example 2.1. We compactify by dividing

by an integer lattice.
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Example 2.2. Let Zk be the integer lattice in Rk and let Tk := Rk/Zk be the k-

dimensional torus S1 × · · · × S1 with the flat product metric. Let G = Tm and let

H = Tn. We can repeat the construction of Example 2.1 to obtain examples which are

compact.

2.2. The Hopf fibration

Examples 2.1 and 2.2 are flat. We can use the Hopf fibration to construct examples which

are not flat. We identify R4 with the quaternions Q; this identifies S3 with the unit

quaternions and gives S3 a Lie group structure. Let

(2.1) e1(x) = x · i, e2(x) = x · j, e3(x) = x · k.

This is then a basis for the Lie algebra g of left-invariant vector fields on S3 and

[e1, e2] = −2e3, [e2, e3] = −2e1, [e3, e1] = −2e2.

Every 1-dimensional Lie subalgebra of S3 corresponds to a 1-dimensional compact Abelian

subgroup S1 of S3. Let G = S1 × S3 and let e0 generate the Lie algebra of S1 so that

g = Span {e0, e1, e2, e3}. If ε 6= 0, define

(2.2) 〈ei, ej〉 =



1 if i = j = 2,

1 if i = j = 3,

ε if i = j = 0,

ε if i = j = 1,

0 otherwise.

These metrics are among the metrics first introduced by Hitchin [7] in his study of harmonic

spinors and are Kaluza-Klein metrics. Let

(2.3)

Je0 = e1, Je1 = −e0, Je2 = e3, Je3 = −e2,

J̌e0 = e2, J̌e2 = −e0, J̌e3 = e1, J̌e1 = −e3,

J̃e0 = e2, J̃e2 = e0, J̃e1 = −e3, J̃e3 = −e1.

Then J is an integrable Hermitian complex structure on S1 × S3 for any ε 6= 0. If ε = 1,

then
{

1, J, J̌ , JJ̌
}

is a Hermitian quaternion structure on S1 × S3. If ε = −1, then J̃ is a

para-Hermitian para-complex structure and
{

1, J, J̃ , JJ̃
}

is a Hermitian para-quaternion

structure on S1×S3. If ε = 1, then 〈·, ·〉 is bi-invariant. If ε 6= 1, then 〈·, ·〉 is right invariant

under the 2-dimensional Lie subgroup H with h = Span {e0, e1} but is not bi-invariant.

Example 2.3. Let G = S1 × S3. Let h be the Lie sub-algebra of a closed subgroup H of

G. Adopt the notation of (2.2) and (2.3).
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(1) Let h = Span {e0, e1}.

(a) Let ε = 1. Then G/H = S2 is a round sphere of a suitably chosen radius in

R3 and has constant sectional curvature. We use J̌ to obtain an anti-invariant

Riemannian submersion from a Hermitian manifold which is Lagrangian. The

fibers of the submersion are minimal and the horizontal distribution is not

integrable (see Park [13]).

(b) Let ε = −1. Then G/H = S2. We use J̃ to obtain an anti-invariant Riemannian

submersion from a para-Hermitian manifold which is Lagrangian.

(2) If h = Span {e0}, set B = S3. If h = Span {e1}, set B = S1 × S2.

(a) Let ε 6= 0 be arbitrary. Then J defines an anti-invariant Riemannian submersion

from the Hermitian manifold G to B.

(b) Let ε = +1. We use J and J̌ to identify g = Q with the quaternions to define

an anti-invariant Riemannian submersion from the quaternion manifold G to

B.

(c) Let ε = −1. We use J̃ to define an anti-invariant Riemannian submersion from

the Hermitian manifold G to B.

(d) Let ε = −1. We use J and J̃ to identify g = Q with the para-quaternions and

obtain anti-invariant Riemannian submersion from para-quaternion manifold

G to B.

2.3. Einstein geometry

Example 2.4. Let gS3 be the standard round metric on S3 defined by 〈ei, ej〉 = δij . Let

G = (S3)ν = S3 × · · · × S3. We take a product metric on G where the metric on each

factor is ±gS3 ; thus this metric is bi-invariant. Let H be a closed subgroup of G and let

π : G→ G/H be the associated Riemannian submersion.

(1) Let G = S3 × S3 and g = Span {e1, e2, e3, f1, f2, f3}.

(a) Let gG = gS3 ⊕ gS3 be the standard bi-invariant Einstein metric on S3 × S3.

(i) Let h = Span {e2, f2}. Let Je1 = f1, Jf1 = −e1, Je2 = e3, Je3 = −e2,
Jf2 = f3, Jf3 = −f2. This almost complex structure is integrable and

using J yields an anti-invariant Riemannian submersion from the Hermitian

manifold S3 × S3 to S2 × S2.

(ii) Let h = Span {e1, e2, e3}. Let Jei = fi and Jfi = −ei where 1 ≤ i ≤ 3. This

almost complex structure is not integrable. Using J yields an anti-invariant
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Riemannian submersion from the almost Hermitian manifold S3 × S3 to

S3.

(b) Let gG = gS3 ⊕ −gS3 be the standard bi-invariant neutral signature metric on

S3 × S3.

(i) Let h = Span {e1, f1}. Let J̃e1 = f2, J̃f2 = e1, J̃f1 = e2, J̃e2 = f1,

J̃e3 = f3, and J̃f3 = e3. Using J̃ yields an anti-invariant Riemannian

submersion from the para-Hermitian manifold S3 × S3 to S2 × S2.

(ii) Let h = Span {e1, e2, e3}. Let J̃ei = fi and J̃fi = ei. Using J̃ yields an

anti-invariant Riemannian submersion from the para Hermitian manifold

S3 × S3 to S3.

(2) Let G = (S3)4, let gG = gS3 ⊕ gS3 ⊕ gS3 ⊕ gS3 , and let dim {H} ≤ 3.

(a) Identify g with Q3 in such a way that h is real and the action of Q is Hermitian.

Then π is an anti-invariant Riemannian submersion from a quaternion manifold.

(b) Identify g with Q̃3 in such a way that h is real and the action of Q̃ is para-

Hermitian. Then π is an anti-invariant Riemannian submersion from a para-

quaternion manifold.

(3) Let G = (S3)8, let gG = gS3 ⊕ · · · ⊕ gS3 , and let dim {H} ≤ 7. Identify g with

O3 in such a way that h is real and the action of O is Hermitian. Then π is an

anti-invariant Riemannian submersion from an octonian manifold

2.4. Negative curvature

Our previous examples have, for the most part, involved the Lie group S3 and the Hopf

fibration S3 → S2. We now turn to the negative curvature dual. Let H2(0, 2) be the

hyperbolic plane with a Riemannian metric of constant sectional curvature −1
4 and let

H2(1, 1) be the Lorentzian analogue. We recall some facts about the Lie group SL(2,R)

and refer to Section 6.8 of Gilkey, Park, and Vázquez-Lorenzo [5]—there are, of course,

many excellent references. SL(2,R) is a 3-dimensional Lie group and the Lie algebra

sl(2,R) is the vector space of trace free 2×2 real matrices. The canonical basis for sl(2,R)

is

f1 :=

 0 1

−1 0

 , f2 :=

0 1

1 0

 , f3 :=

1 0

0 −1

 .

The bracket relations then take the form

[f1, f2] = 2f3, [f2, f3] = −2f1, [f3, f1] = 2f2.
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The Lie algebra s3 of S3 is the Lie algebra of the special unitary group SU(2) in positive

definite signature and the Lie algebra of sl(2,R) of SL(2,R) is the Lie algebra of the special

unitary group SU(1, 1) in indefinite signature; the two are related by complexification. Let

ad(ξ) : η → [ξ, η] be the adjoint action and let K(ξ, η) := Tr {ad(ξ) ad(η)} be the Killing

form. One then has

K(fi, fj) =



−8 if i = j = 1,

+8 if i = j = 2,

+8 if i = j = 3,

0 otherwise.

There is no bi-invariant Riemannian metric on SL(2,R). However, 1
8K is a bi-invariant

Lorentzian metric on SL(2,R). Let

σ1(x) :=

 cos(x) sin(x)

− sin(x) cos(x)

 , σ2(x) :=

cosh(x) sinh(x)

sinh(x) cosh(x)

 , σ3(x) :=

ex 0

0 e−x

 .

These define closed Abelian Lie sub-groups Hi of SL(2,R) whose associated Lie-algebras

are spanned by fi. The natural coset spaces SL(2,R)/Hi have constant negative sectional

curvature −1
4 from the above reason and may be identified with H2(0, 2) if i = 1 and

H2(1, 1) if i = 2, 3.

Let G = R× SL(2,R). Let f0 correspond to the Abelian factor. Define a bi-invariant

neutral signature metric on G by setting:

〈fi, fj〉 =



−1 if i = j = 0,

−1 if i = j = 1,

+1 if i = j = 2,

+1 if i = j = 3,

0 otherwise.

In analogy with (2.2), we set:

Jf0 = f1, Jf1 = −f0, Jf2 = f3, Jf3 = −f2,

J̃f0 = f2, J̃f2 = f0, J̃f1 = −f3, J̃f3 = −f1.

Then J is a Hermitian complex structure onG and J̃ is a Hermitian para-complex structure

on G; J and J̃ generate a Hermitian para-complex structure on G.

Example 2.5. Let G = R× SL(2,R), let H be a closed subgroup of G, and let π be the

natural projection from G to G/H.
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(1) If h = Span {f0}, then π is an anti-invariant Riemannian submersion from the Her-

mitian manifold, from the para-Hermitian manifold, and from the para-quaternion

manifold G to SL(2,R).

(2) If h = Span {f1}, then π is an anti-invariant Riemannian submersion from the Her-

mitian manifold, from the para-Hermitian manifold, and from the para-quaternion

manifold G to R×H2(0, 2).

(3) If h = Span {f2}, then π is an anti-invariant Riemannian submersion from the Her-

mitian manifold, from the para-Hermitian manifold, and from the para-quaternion

manifold G to R×H2(1, 1).

(4) If h = Span {f0, f2}, then π : G→ G/H is an anti-invariant Riemannian submersion

from the Hermitian manifold G to H2(1, 1).

3. Examples where the total space is not a Lie group

In this section, we present examples where the total space is not a Lie group. We identify

R4k with C2k to define an action of S1 on S4k−1; the quotient S4k−1/S1 is complex

projective space CP2k−1 with a Fubini-Study metric of constant positive holomorphic

sectional curvature. We identify R4` with Q` to define an action of S3 on S4`−1; the

quotient S4`−1/S3 is quaternionic projective space QP`−1. Instead of taking the Euclidean

inner product on R2k, we could take an indefinite signature metric. Let

〈x, y〉 := −x1y1 − x2y2 + x3y3 + · · ·+ x2`y2`,

〈〈x, y〉〉 := −x1y1 − · · · − x4y4 + x5y5 + · · ·+ x4`y4`,

S̃2k−1 := 〈x, y〉 = −1,

Š4k−1 :=
{
x ∈ R4` : 〈〈x, x〉〉 = −1

}
.

(3.1)

The pseudo-spheres S̃2k−1 and Š4k−1 inherit indefinite signature metrics of constant sec-

tional curvature. The quotient S̃2k−1/S1 is the negative curvature dual of CPk−1 and the

quotient Š4k−1/S3 is the negative curvature of QPk−1.
Let m = 2k and N = S2k−1 or N = S̃2k−1, or let m = 4k and N = Š4k−1. There

is an orthogonal direct sum decomposition T (Rm)|N = ν ⊕ T (N) where ν is the normal

bundle. Let M = S1 × N with the product metric. Since ν is a trivial line bundle, we

have a natural isometry Ξ : TM ≈ M × Rn. Let ∂θ be the natural unit tangent vector

field on S1. Let x = (θ,Θ) ∈M . Then Ξ(θ,Θ)ν = Θ and Ξ(TN) = Θ⊥.

Example 3.1. Let ` ≥ 3. Adopt the notation of (3.1). Let J be complex multiplication

by i on TM = M × C`. Let H = S1. Since dim {V} = 1, JV ⊥ V.
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(1) Let M = S1 × S2`−1. Let H act on S1 by complex multiplication and trivially on

S2`−1. Then π : M → S2`−1 is an anti-invariant Riemannian submersion from a

Hermitian manifold.

(2) Let M = S1×S2`−1. Let H act on trivially on S1 and by complex multiplication on

S2`−1. Then π : M → S1 ×CP`−1 is an anti-invariant Riemannian submersion from

a Hermitian manifold.

(3) Let M = S1 × S̃2`−1. Let H act on S1 by complex multiplication and trivially on

S̃2`−1. Then π : M → S̃2`−1 is an anti-invariant Riemannian submersion from a

Hermitian manifold.

(4) Let M = S1× S̃2`−1. Let H act on trivially on S1 and by complex multiplication on

S̃2`−1. Then π : M → S1 × C̃P
`−1

is an anti-invariant Riemannian submersion from

a Hermitian manifold.

We have taken ` ≥ 3 since the case ` = 2 recovers the Hopf fibration S3 → S2 or S3 → H2.

Example 3.2. Adopt the notation of (3.1). Let ` ≥ 2. Let H = S1 × S1. Let J be

quaternion multiplication on TM = M ×Q`.

(1) Use the product action to let H act on the first and on the second factor of M =

S1 × S4`−1. Let π be the associated Riemannian submersion from M to CP2`−1.

Then V(θ,Θ) = Span {Θ, i ·Θ}. Since j · V ⊥ V, π is an anti-invariant Riemannian

submersion from a Hermitian manifold.

(2) Use the product action to let H act on the first and on the second factor of M =

S1 × Š4`−1. Let π be the associated Riemannian submersion from M to C̃P2`−1.

Then V(θ,Θ) = Span {Θ, i ·Θ}. Since j · V ⊥ V, π is an anti-invariant Riemannian

submersion from a Hermitian manifold.

We have taken ` ≥ 2 since the case ` = 1 recovers the Hopf fibration S3 → S2 or S3 → H2.
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