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The Dual Log-Brunn-Minkowski Inequalities

Wei Wang* and Lijuan Liu

Abstract. In this article, we establish the dual log-Brunn-Minkowski inequality and

the dual log-Minkowski inequality. Moreover, the equivalence between the dual log-

Brunn-Minkowski inequality and the dual log-Minkowski inequality is demonstrated.

1. Introduction

As a cornerstone of the Brunn-Minkowski theory, the classical Brunn-Minkowski inequality

provides a beautiful and powerful apparatus for conquering all sorts of geometrical prob-

lems involving metric quantities such as volumes, surface area, and mean width (see [3]).

The classical Brunn-Minkowski inequality states that for convex bodies K and L in

Euclidean n-space, Rn, the volume of the bodies and their Minkowski sum K + L =

{x+ y : x ∈ K, y ∈ L}, are related by

V (K + L)
1
n ≥ V (K)

1
n + V (L)

1
n ,

with equality if and only if K and L are homothetic.

The Brunn-Minkowski inequality exposes the crucial log-concavity property of the

volume functional because the Brunn-Minkowski inequality has an equivalent formulations:

for 0 ≤ λ ≤ 1,

(1.1) V ((1− λ)K + λL) ≥ V (K)1−λV (L)λ,

and for 0 < λ < 1, there is equality if and only if K and L are translates.

In the early 1960s, Fiery [2] defined the Minkowski-Fiery Lp-combinations (or simply

Lp-Minkowski combinations) of convex bodies. If K and L be two convex bodies that

Received May 24, 2015; Accepted September 8, 2015.

Communicated by Duy-Minh Nhieu.

2010 Mathematics Subject Classification. 52A40, 53A15.

Key words and phrases. Star body, Radial function, Log radial sum, Dual Brunn-Minkowski inequality,

Dual Minkowski inequality.

A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (11C0542)

and the National Natural Science Foundations of China (NO. 11371239 and 11471206)

*Corresponding author.

909

http://journal.tms.org.tw


910 Wei Wang and Lijuan Liu

contain the origin in their interiors, p ≥ 1, and 0 ≤ λ ≤ 1, then the Lp-Minkowski

combinations, (1− λ) ·K +p λ · L, is defined by

(1.2) (1− λ) ·K +p λ · L =
⋂

u∈Sn−1

{
x ∈ Rn : x · u ≤ ((1− λ)hK(u)p + (λ)hL(u)p)

1
p

}
,

where x · u denotes the standard inner product of x and u in Rn, and hK is the support

function of K.

Fiery also established the Lp-Brunn-Minkowski inequality. If p > 1, then

V ((1− λ)K +p λL) ≥ V (K)1−λV (L)λ,

with equality for 0 < λ < 1 if and only if K = L.

Note that definition (1.2) makes sense for all p > 0. The function ((1− λ)hpK + λhpL)
1
p

is convex if p ≥ 1. Whereas the function ((1− λ)hpK + λhpL)
1
p is not convex if 0 < p < 1.

The limit of ((1− λ)hpK + λhpL)
1
p is h1−λK hλL, as p→ 0+.

Recently, Böröczky et al. [1] defined the log Minkowski combination of convex bodies.

Let K and L be two convex bodies that contain the origin in their interiors, and 0 ≤ λ ≤ 1,

then the log Minkowski combination, (1− λ) ·K +0 λ · L, is defined by

(1.3) (1− λ) ·K +0 λ · L =
⋂

u∈Sn−1

{
x ∈ Rn : x · u ≤ hK(u)1−λhL(u)λ

}
.

It is obviously that the convex body (1− λ) ·K +0 λ ·L is the Wolff shape of the function

hK(u)1−λhL(u)λ.

Böröczky et al. [1] established the log-Brunn-Minkowski inequality and log-Minkowski

inequality for origin-symmetric convex bodies in the plane as follows.

Theorem 1.1. If K and L are two origin-symmetric convex bodies in R2, then for 0 ≤
λ ≤ 1,

(1.4) V ((1− λ) ·K +0 λ · L) ≥ V (K)1−λV (L)λ.

When 0 < λ < 1, equality in the inequality holds if and only if K and L are dilates or K

and L are parallelograms with parallel sides.

Theorem 1.2. If K and L are two origin-symmetric convex bodies in R2, then

(1.5)

∫
S1

log

(
hL(u)

hK(u)

)
dV K(u) ≥ 1

2
log

V (L)

V (K)
,

with equality if and only if, K and L are dilates or K and L are parallelograms with parallel

sides. Here V K is the cone-volume probability measure of K.
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Unfortunately, the log-Brunn-Minkowski inequality (1.4) cannot hold for all convex

bodies (e.g., an origin-centered cube and one of its translates). From the arithmetic-

geometric mean inequality, it is easily seen that the log-Brunn-Minkowski inequality (1.4)

is stronger than the Brunn-Minkowski inequality (1.1) for origin-symmetric convex bodies.

For n ≥ 3, Böröczky et al. [1] conjectured that there exists the log-Brunn-Minkowski

inequality and log-Minkowski inequality for origin-symmetric convex bodies in Rn, and

showed that these two inequalities are equivalent.

Conjecture 1.3. If K and L are two origin-symmetric convex bodies in Rn (n ≥ 3), then

for 0 ≤ λ ≤ 1,

(1.6) V ((1− λ) ·K +0 λ · L) ≥ V (K)1−λV (L)λ.

Conjecture 1.4. If K and L are two origin-symmetric convex bodies in Rn (n ≥ 3), then

(1.7)

∫
Sn−1

log

(
hL(u)

hK(u)

)
dV K(u) ≥ 1

n
log

V (L)

V (K)
.

The dual Brunn-Minkowski theory, was introduced by Lutwak [7] in the 1970s, helped

achieving a major breakthrough in solving the Busemann-Petty problem in 1990s. In

contrast to the Brunn-Minkowski theory, in the dual theory, convex bodies are replaced

by star bodies, Minkowski sum replaced by radial sum, and mixed volumes are replaced

by dual mixed volumes.

Let K and L be two star bodies about the origin in Rn. For p 6= 0 and 0 ≤ λ ≤ 1,

Gardner [4] defined the Lp radial sum (1− λ) ·K+̃pλ · L by

ρ(1−λ)·K+̃pλ·L(u)p = (1− λ)ρK(u)p + λρL(u)p, ∀u ∈ Sn−1.

Note that

lim
p→0

log ρ(1−λ)·K+̃pλ·L = lim
p→0

log(1− λ)ρpK + λρpL
p

= lim
p→0

(1− λ)ρpK log ρK + λρpL log ρL
(1− λ)ρpK + λρpL

= (1− λ) log ρK + λ log ρL.

Let K and L be two star bodies in Rn and 0 ≤ λ ≤ 1, then the log radial sum,

(1− λ) ·K+̃0λ · L, is defined by

(1.8) ρ(1−λ)·K+̃0λ·L(u) = ρK(u)1−λρL(u)λ, ∀u ∈ Sn−1.

In particular, if λ = 0, then (1−λ) ·K+̃0λ ·L = K. If λ = 1, then (1−λ) ·K+̃0λ ·L = L.

The main purpose of this paper is to establish the dual forms of the log-Brunn-

Minkowski inequality (1.6) and the log-Minkowski inequality (1.7) as follows.
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Theorem 1.5. If K and L are two star bodies in Rn, then for 0 ≤ λ ≤ 1,

(1.9) V ((1− λ) ·K+̃0λ · L) ≤ V (K)1−λV (L)λ.

When 0 < λ < 1, equality in the inequality holds if and only if K and L are dilates.

Theorem 1.6. If K and L are two star bodies in Rn, then

(1.10)

∫
Sn−1

log

(
ρL(u)

ρK(u)

)
dṼK(u) ≤ 1

n
log

V (L)

V (K)
,

with equality if and only if K and L are dilates. Here ṼK is the dual cone-volume probability

measure of K (see Section 3 for a precise definition).

2. Notation and background material

For general reference for the theory of convex (star) bodies the reader may wish to consult

the books of Gardner [4], Gruber [5], and Schneider [9].

The unit ball and its surface in Rn are denoted by B and Sn−1, respectively. We write

V (K) for the volume of the compact set K in Rn. The radial function ρK : Sn−1 → [0,∞)

of a compact star-shaped about the origin, K ∈ Rn, is defined, for u ∈ Sn−1, by

(2.1) ρK(u) = max {λ ≥ 0 : λu ∈ K} .

If ρK(·) is positive and continuous, then K is called a star body about the origin. The

set of star bodies about the origin in Rn is denoted by Sn. Obviously, for K,L ∈ Sn,

(2.2) K ⊆ L ⇐⇒ ρK(u) ≤ ρL(u), ∀u ∈ Sn−1.

If ρK(u)/ρL(u) is independent of u ∈ Sn−1, then we say star bodies K and L are dilates.

If s > 0, we have

(2.3) ρsK(u) = sρK(u), for all u ∈ Sn−1.

If φ ∈ GL(n), we have

(2.4) ρφK(u) = ρK(φ−1u), for all u ∈ Sn−1.

The radial Hausdorff metric between the star bodies K and L is

δ̃(K,L) = max
u∈Sn−1

|ρK(u)− ρL(u)| .

A sequence {Ki} of star bodies is said to be convergent to K if

δ̃(Ki,K)→ 0, as i→∞.
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Therefore, a sequence of star bodies Ki converges to K if and only if the sequence of radial

function ρ(Ki, ·) converges uniformly to ρ(K, ·).
Let K and L be are two star bodies about the origin in Rn and 0 ≤ λ ≤ 1. The radial

sum (1− λ)K+̃λL was defined by (see [7])

(2.5) ρ(1−λ)K+̃λL(u) = (1− λ)ρK(u) + λρL(u), ∀u ∈ Sn−1.

The dual quermassintegral W̃i(K) has the following integral representation (see [8]):

(2.6) W̃i(K) =
1

n

∫
Sn−1

ρK(u)n−i dS(u),

where S is the Lebesgue measure on Sn−1. In particular, W̃0(K) = V (K). The dual

mixed quermassintegral W̃i(K,L) has the following integral representation (see [8]):

(2.7) W̃i(K,L) =
1

n

∫
Sn−1

ρK(u)n−i−1ρL(u) dS(u).

By using the Minkowski’s integral inequality, we can obtain the dual Minkowski inequality

for dual mixed quermassintegrals: If K,L ∈ Sn0 , and 0 ≤ i < n− 1, then

(2.8) W̃i(K,L)n−i ≤ W̃i(K)n−i−1W̃i(L),

equality holds if and only if K and L are dilates.

Suppose that µ is a probability measure on a space X and g : X → I ⊂ R is a µ-

intergrable function, where I is a possibly infinite interval. Jessen’s inequality states that

if φ : X → I ⊂ R is a concave function, then

(2.9)

∫
X
φ(g(x)) dµ(x) ≤ φ

(∫
X
g(x) dµ(x)

)
.

If φ is strictly concave, equality holds if and only if g(x) is a constant for µ-almost all

x ∈ X (see [6]).

3. Main results

Lemma 3.1. Let K,L ∈ Sn and 0 ≤ λ ≤ 1, then (1− λ) ·K+̃0λ · L ∈ Sn.

Proof. Since ρK(·) and ρL(·) are positive and continuous on Sn−1, the function ρK(·)1−λ ·
ρL(·)λ is positive and continuous on Sn−1.

Lemma 3.2. Let K,L ∈ Sn and 0 ≤ λ ≤ 1. Then for A ∈ GL(n),

A((1− λ) ·K+̃0λ · L) = (1− λ) ·AK+̃0λ ·AL.
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Proof. For u ∈ Sn−1, by (1.8) and (2.4), we have

ρ(1−λ)·AK+̃0λ·AL(u) = ρAK(u)1−λρAL(u)λ

= ρK(A−1u)1−λρL(A−1u)λ

= ρ(1−λ)·K+̃0λ·L(A−1u)

= ρA((1−λ)·K+̃0λ·L)(u).

Lemma 3.3. Let Ki, Li ∈ Sn and 0 ≤ λ ≤ 1. If Ki → K ∈ Sn, Li → L ∈ Sn, as i→∞,

then

(1− λ) ·Ki+̃0λ · Li → (1− λ) ·K+̃0λ · L, as i→∞.

Proof. For u ∈ Sn−1, by the continuity of the power function, we have

lim
i→∞

ρ(1−λ)·Ki+̃0λ·Li(u) = lim
i→∞

ρKi(u)1−λρLi(u)λ

= ρK(u)1−λρL(u)λ

= ρ(1−λ)·K+̃0λ·L(u).

Lemma 3.4. Let K,L ∈ Sn and 0 ≤ λi ≤ 1. If λi → λ ∈ [0, 1], as i→∞, then

(1− λi) ·K+̃0λi · L→ (1− λ) ·K+̃0λ · L, as i→∞.

Proof. For u ∈ Sn−1, by the continuity of the exponential function, we have

lim
i→∞

ρ(1−λi)·K+̃0λi·L(u) = lim
i→∞

ρK(u)

(
ρL(u)

ρK(u)

)λi
= ρK(u)

(
ρL(u)

ρK(u)

)λ
= ρ(1−λ)·K+̃0λ·L(u).

Lemma 3.5. Let K,L ∈ Sn and 0 ≤ λ ≤ 1, then

(1− λ) ·K+̃0λ · L ⊆ (1− λ) ·K+̃λ · L,

with equality if and only if K = L.

Proof. For u ∈ Sn−1, by the arithmetic-geometric mean inequality and (2.5), we have

ρ(1−λ)·K+̃0λ·L(u) = ρK(u)1−λρL(u)λ

≤ (1− λ)ρK(u) + λρL(u)

= ρ(1−λ)·K+̃λ·L(u).

(3.1)

From the equality conditions of the arithmetic-geometric mean inequality, equality in

inequality (3.1) holds if and only if K = L. Combining (3.1) and (2.2), we obtain the

desired result.
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In fact, we will prove the following dual log-Brunn-Minkowski inequality which is more

general than Theorem 1.5.

Theorem 3.6. If K and L are two star bodies in Rn and 0 ≤ λ ≤ 1, then for 0 ≤ i < n,

(3.2) W̃i((1− λ) ·K+̃0λ · L) ≤ W̃i(K)1−λW̃i(L)λ.

When 0 < λ < 1, equality in the inequality holds if and only if K and L are dilates.

Proof. By (2.6) and Hölder’s inequality, we obtain that

W̃i((1− λ) ·K+̃0λ · L) =

∫
Sn−1

ρ(1−λ)·K+̃λ·L(u)n−i dS(u)

=

∫
Sn−1

(
ρK(u)1−λρL(u)λ

)n−i
dS(u)

≤
(∫

Sn−1

ρK(u)n−i dS(u)

)1−λ(∫
Sn−1

ρL(u)n−i dS(u)

)λ
= W̃i(K)1−λW̃i(L)λ.

(3.3)

When 0 < λ < 1, by the equality conditions of Hölder’s inequality, equality in (3.3)

holds if and only if K and L are dilates.

For K ∈ Sn, we write the measure Ṽi,K(·) =
ρn−iK (·) dS(·)
nW̃i(K)

. Since

(3.4)
1

nW̃i(K)

∫
Sn−1

ρn−iK (u) dS(u) = 1,

we say that the measure Ṽi,K(·) is a dual mixed cone-volume probability measure of K on

Sn−1. If i = 0, the measure Ṽ0,K(·) will be denoted by the dual cone-volume probability

measure, and it will be written simply as ṼK(·).

Theorem 3.7. If K and L are two star bodies in Rn, and 0 ≤ i < n, then

(3.5)

∫
Sn−1

log

(
ρL(u)

ρK(u)

)
dṼi,K ≤

1

n− i
log

W̃i(L)

W̃i(K)
,

with equality if and only if K and L are dilates.

Proof. By (2.9), (2.8), and the fact that the logarithmic function log(·) is concave and
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increasing on (0,∞), we obtain∫
Sn−1

log

(
ρL(u)

ρK(u)

)
dṼi,K =

1

nW̃i(K)

∫
Sn−1

log

(
ρL(u)

ρK(u)

)
ρn−iK (u) dS(u)

≤ log

(
1

nW̃i(K)

∫
Sn−1

ρL(u)

ρK(u)
ρn−iK (u) dS(u)

)

= log

(
W̃i(K,L)

W̃i(K)

)

≤ log

(
W̃i(K)

n−i−1
n−i W̃i(L)

1
n−i

W̃i(K)

)

= log

(
W̃i(L)

W̃i(K)

) 1
n−i

.

(3.6)

This gives the desired inequality. Since log(·) is strictly increasing, from the equality

conditions of the dual Minkowski inequality (2.8), we have that equality in (3.6) holds if

and only if K and L are dilates.

Remark 3.8. The case i = 0 of Theorem 3.6 and Theorem 3.7 are Theorem 1.5 and

Theorem 1.6, respectively.

Lemma 3.9. Let K,L ∈ Sn. Then

lim
λ→0+

ρ(1−λ)·K+̃0λ·L(u)− ρK(u)

λ
= ρK(u) log

(
ρL(u)

ρK(u)

)
,

uniformly for all u ∈ Sn−1.

Proof. For u ∈ Sn−1, we have

lim
λ→0+

ρ(1−λ)·K+̃0λ·L(u)− ρK(u)

λ
= ρK(u) lim

λ→0+

(
ρL(u)
ρK(u)

)λ
− 1

λ

= ρK(u) log

(
ρL(u)

ρK(u)

)
.

Then the pointwise limit has been proved. Moreover, the convergence is uniform for any

u ∈ Sn−1.

Lemma 3.10. Let K,L ∈ Sn. For i = 0, 1, . . . , n− 1, then

lim
λ→0+

W̃i((1− λ) ·K+̃0λ · L)− W̃i(K)

λ
=
n− i
n

∫
Sn−1

log

(
ρL(u)

ρK(u)

)
ρn−iK (u) dS(u).
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Proof. By (2.6) and Lemma 3.9, it follows that

lim
λ→0+

W̃i((1− λ) ·K+̃0λ · L)− W̃i(K)

λ

= lim
λ→0+

1

n

∫
Sn−1

ρn−i
(1−λ)·K+̃0λ·L

(u)− ρn−iK (u)

λ
dS(u))

=
1

n

∫
Sn−1

lim
λ→0+

ρn−i
(1−λ)·K+̃0λ·L

(u)− ρn−iK (u)

λ
dS(u)

=
n− i
n

∫
Sn−1

ρn−i−1K (u) lim
λ→0+

ρK+̃0λ·L(u)− ρK(u)

λ
dS(u)

=
n− i
n

∫
Sn−1

log

(
ρL(u)

ρK(u)

)
ρn−iK (u) dS(u).

Theorem 3.11. Let K and L be two star bodies in Rn. Then the dual log-Brunn-

Minkowski inequality and the dual log-Minkowski inequality are equivalent.

Proof. Let Qλ = (1 − λ) ·K+̃0λ · L, it is obviously that Q0 = K, Q1 = L. We will first

suppose that we have the dual log-Minkowski inequality (3.5). For 0 < λ < 1, by (3.5),

we have

0 =

∫
Sn−1

log

(
ρK(u)1−λρL(u)λ

ρQλ(u)

)
dṼi,Qλ

= (1− λ)

∫
Sn−1

log

(
ρK(u)

ρQλ(u)

)
dṼi,Qλ + λ

∫
Sn−1

log

(
ρL(u)

ρQλ(u)

)
dṼi,Qλ

≤ 1− λ
n− i

log
W̃i(K)

W̃i(Qλ)
+

λ

n− i
log

W̃i(L)

W̃i(Qλ)

=
1

n− i
log

W̃i(K)1−λW̃i(L)λ

W̃i(Qλ)
.

This gives the dual log-Brunn-Minkowski inequality (3.2). From the equality conditions

of the dual log-Minkowski inequality (3.5), we have that equality in (3.2) holds if and only

if K and L are dilates.

Suppose now that the dual log-Brunn-Minkowski inequality (3.2) holds. We define the

function f : [0, 1]→ (0,∞) by f(λ) = W̃i(Qλ).

For given σ, τ ∈ [0, 1], if α ∈ [0, 1] and α = (1− λ)σ + λτ , we have

ρ(1−λ)·Kσ+̃0λ·Kτ = ρKσ(u)1−λρKτ (u)λ

=
(
ρK(u)1−σρL(u)σ

)1−λ (
ρK(u)1−τρL(u)τ

)λ
= ρK(u)1−[(1−λ)σ+λτ ]ρL(u)(1−λ)σ+λτ

= ρK(u)1−αρL(u)α

= ρQα .
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Thus,

(3.7) (1− λ) ·Kσ+̃0λ ·Kτ = (1− α) ·K+̃0α · L.

From (3.7) and (3.2), we have

f(α) = f((1− λ)σ + λτ) = W̃i((1− α) ·K+̃0α · L)

= W̃i((1− λ) ·Kσ+̃0λ ·Kτ )

≤ W̃i(Kσ)1−λW̃i(Kτ )λ

= f(σ)1−λf(τ)λ,

which is the desired log convexity of f . Equivalently, the function λ 7→ log W̃i(Qλ) is a

convex function, and thus

(3.8)
1

W̃i(Q0)

dW̃i(Qλ)

dλ

∣∣∣∣
λ=0

≤ log W̃i(Q1)− log W̃i(Q0) = log W̃i(L)− log W̃i(K).

Combining (3.8) and Lemma 3.10, we obtain the dual log-Minkowski inequality. From

the equality conditions of the dual log-Brunn-Minkowski inequality (3.2), we have that

equality in (3.5) holds if and only if K and L are dilates.
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