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Some Results on Local Cohomology Modules with Respect to a Pair of Ideals

Tran Tuan Nam* and Nguyen Minh Tri

Abstract. We study the finiteness of the sets Ass(Hd
I,J(M)) and Ass(HomR(R/I,

Hd
I,J(M))) concerning Grothendieck’s conjecture. We also show some properties of

local cohomology modules Hi
I,J(M) from the point of view of Serre subcategories.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring and I, J are two ideals of R.

In [6] Takahashi, Yoshino and Yoshizawa introduced the definition of local cohomology

modules with respect to a pair of ideals (I, J) which is a generalization of the definition

of local cohomology modules with respect to an ideal I of Grothendieck. Let M be an

R-module, the (I, J)-torsion submodule ΓI,J(M) of M is

ΓI,J(M) = {x ∈M | Inx ⊆ Jx for some n� 1} .

Thus, there is a covariant functor ΓI,J from the category of R-modules to itself. For an

integer i, the i-th local cohomology functor H i
I,J with respect to a pair of ideals (I, J) is

the i-th right derived functor RiΓI,J of ΓI,J . Note that if J = 0, then H i
I,J coincides with

the ordinary local cohomology functor H i
I of Grothendieck.

In [4] Grothendieck gave a conjecture that: For any ideal I of R and any finitely

generated R-module M , the module HomR(R/I,H i
I(M)) is finitely generated, for all i.

One year later, Hartshorne provided a counterexample to Grothendieck’s conjecture. He

defined an R-module M to be I-cofinite if SuppR(M) ⊆ V (I) and ExtiR(R/I,M) is finitely

generated for all i and asked: For which rings R and ideals I are the modules H i
I(M) I-

cofinite for all i and all finitely generated modules M?

The organization of the paper is as follows. In next section, we will be concerned with

Grothendieck’s conjecture. Denote W (I, J) = {p ∈ Spec(R) | In ⊆ p+J for some positive

integer n}. An R-module M is said to be (I, J)-weakly cofinite if SuppR(M) ⊆ W (I, J)
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and ExtiR(R/I,M) is weakly Laskerian for all i ≥ 0. We prove in Theorem 2.5 that if d

is a non-negative integer, M and H i
I,J(M) are weakly Laskerian R-modules for all i < d,

then AssR(HomR(R/I,Hd
I,J(M))) is a finite set. Next, we will see in Theorem 2.8 that

AssR(Hd
I,J(M)) is a finite set if H i

I,J(M) is a weakly Laskerian R-module for all i < d

provided there is an ideal a of R such that 0 :M a = 0 :ΓI,J (M) a and W (I, J) ⊆ V (a). This

section is closed by Theorem 2.9 which shows that if H i
I,J(M) is (I, J)-weakly cofinite for

all i 6= d, then Hd
I,J(M) is also (I, J)-weakly cofinite.

The last section is devoted to studying some properties of H i
I,J(M) from the point of

view of Serre subcategories. Theorem 3.1 says that if S is a Serre subcategory (of the

category of R-modules) and if H i
I,J(M) ∈ S for all i < d, then ExtiR(R/I,M) ∈ S for all

i < d. In case (R,m) is a local ring and M is a finitely generated R-module we prove that

if H i
I,J(M) ∈ S for all i < d, then HomR(R/m, Hd

I,J(M)) ∈ S (Theorem 3.2).

2. Weakly Laskerian modules and cofinite modules

We begin by recalling the definition of weakly Laskerian modules ( [2, 2.1]). An R-module

M is said to be weakly Laskerian if the set of associated primes of any quotient module

of M is finite.

Lemma 2.1. [2, 2.3]

(i) Let 0 → L → M → N → 0 be an exact sequence of R-modules. Then M is weakly

Laskerian if and only if L and N are both weakly Laskerian. Thus any subquotient

of a weakly Laskerian module as well as any finite direct sum of weakly Laskerian

modules is weakly Laskerian.

(ii) Let M and N be two R-modules. If M is weakly Laskerian and N is finitely gener-

ated, then ExtiR(N,M) and TorRi (N,M) are weakly Laskerian for all i ≥ 0.

An R-module M is said (I, J)-cofinite if SuppR(M) ⊆ W (I, J) and ExtiR(R/I,M) is

finitely generated for all i ≥ 0 [7]. The following definition is an extension of the definitions

of (I, J)-cofinite modules and I-weakly cofinite modules [3].

Definition 2.2. An R-module M is said to be (I, J)-weakly cofinite if SuppR(M) ⊆
W (I, J) and ExtiR(R/I,M) is weakly Laskerian for all i ≥ 0.

We have the following corollary.

Corollary 2.3. (i) Every (I, J)-cofinite module is an (I, J)-weakly cofinite module.

(ii) If SuppR(M) ⊆W (I, J) and M is weakly Laskerian, then M is (I, J)-weakly cofinite.
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(iii) Let 0 → L → M → N → 0 be a short exact sequence. If two of the modules are

(I, J)-weakly cofinite, then so is the third one.

Proof. (i) Let M be an (I, J)-cofinite R-module. Then we have that SuppR(M) ⊆W (I, J)

and ExtiR(R/I,M) is finitely generated for all i ≥ 0. Hence ExtiR(R/I,M) is weakly

Laskerian for all i ≥ 0.

(ii) It should be noted by Lemma 2.1(ii) that ExtiR(R/I,M) is weakly Laskerian for

all i ≥ 0.

(iii) From the short exact sequence, we obtain

SuppR(M) = SuppR(L) ∪ SuppR(N)

and a long exact sequence

· · · → ExtiR(R/I, L)→ ExtiR(R/I,M)→ ExtiR(R/I,N)→ · · · .

Therefore the conclusion follows from the definition of (I, J)-weakly cofinite modules.

Proposition 2.4. Let M be an R-module and d a non-negative integer such that H i
I,J(M)

is (I, J)-weakly cofinite for all i ≤ d. Then ExtiR(R/I,M) is weakly Laskerian for all i ≤ d.

Proof. We now proceed by induction on d. When d = 0, the short exact sequence

0→ ΓI,J(M)→M →M/ΓI,J(M)→ 0

induces an exact sequence

0→ HomR(R/I,ΓI,J(M))→ HomR(R/I,M)→ HomR(R/I,M/ΓI,J(M)).

Since M/ΓI,J(M) is (I, J)-torsion free, it is also I-torsion free and then

HomR(R/I,M/ΓI,J(M)) = 0.

It follows

HomR(R/I,M) ∼= HomR(R/I,ΓI,J(M)).

Hence HomR(R/I,M) is a weakly Laskerian R-module.

Let d > 0. Note that H i
I,J(M) ∼= H i

I,J(M/ΓI,J(M)) for all i > 0 by [6, 1.13(4)].

Let M = M/ΓI,J(M) and E(M) denote the injective hull of M . From the short exact

sequence

0→M → E(M)→ E(M)/M → 0

we get

ExtiR(R/I,E(M)/M) ∼= Exti+1
R (R/I,M)
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and

H i
I,J(E(M)/M) ∼= H i+1

I,J (M)

for all i ≥ 0. It follows from the hypothesis that H i
I,J(E(M)/M) is (I, J)-weakly cofinite

for all i ≤ d − 1. By the inductive hypothesis ExtiR(R/I,E(M)/M) is weakly Laskerian

for all i ≤ d − 1 and then ExtiR(R/I,M) is also weakly Laskerian for all i ≤ d. Now the

short exact sequence

0→ ΓI,J(M)→M →M → 0

gives rise to a long exact sequence

· · · → ExtiR(R/I,ΓI,J(M))→ ExtiR(R/I,M)→ ExtiR(R/I,M)→ · · · .

Since ΓI,J(M) is (I, J)-weakly cofinite, ExtiR(R/I,ΓI,J(M)) is weakly Laskerian for all

i ≥ 0. Finally, it follows from the long exact sequence that ExtiR(R/I,M) is also weakly

Laskerian for all i ≤ d.

The following theorem answers the question concerning Grothendieck’s conjecture:

When is the set AssR(HomR(R/I;Hd
I,J(M))) finite?

Theorem 2.5. Let M be a weakly Laskerian R-module and d a non-negative integer such

that H i
I,J(M) is (I, J)-weakly cofinite for all i < d. Then HomR(R/I,Hd

I,J(M)) is also

weakly Laskerian. In particular, the set AssR(HomR(R/I,Hd
I,J(M))) is finite.

Proof. Let us consider functors F = HomR(R/I,−) and G = ΓI,J(−). It is clear that

FG = HomR(R/I,ΓI,J(−)) = HomR(R/I,−).

Then we have a Grothendieck spectral sequence by [5, 10.47]

Ep,q
2 = ExtpR(R/I,Hq

I,J(M))⇒
p

Extp+q
R (R/I,M).

By the hypothesis Ep,q
2 is weakly Laskerian for all p ≥ 0 and 0 ≤ q < d. Hence so is Ep,q

∞

since Ep,q
∞ is a subquotient of Ep,q

2 . Now we have a filtration Φ of Hd = ExtdR(R/I,M)

0 = Φd+1Hd ⊆ ΦdHd ⊆ · · · ⊆ Φ1Hd ⊆ Φ0Hd = Hd

such that

Ei,d−i
∞

∼= ΦiHd/Φi+1Hd.

The short exact sequence

0→ Φ1Hd → Hd → E0,d
∞ → 0
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implies that E0,d
∞ is weakly Laskerian since Hd = ExtdR(R/I,M) is weakly Laskerian. We

consider homomorphisms of the spectral sequence

E−k,d+k−1
k

d−k,d+k−1

−→ E0,d
k

d0,d−→ Ek,d+1−k
k .

Since E−k,d+k−1
k = 0 for all k ≥ 2, Ker d0,d

k = E0,d
k+1 and Ek,d+1−k

k = 0 for all k ≥ d + 2.

It follows that E0,d
d+2 = E0,d

d+3 = · · · = E0,d
∞ and then E0,d

d+2 is weakly Laskerian. The exact

sequence

0 −→ E0,d
k+2 −→ E0,d

k+1
d0,d−→ Ek+1,d−k

k+1

yields that E0,d
k+1 is weakly Laskerian for all 1 ≤ k ≤ d. In particular,

E0,d
2 = HomR(R/I,Hd

I,J(M))

is weakly Laskerian, which completes the proof.

The following consequence is a stronger result than the one of Theorem 2.5.

Corollary 2.6. Let M be a weakly Laskerian R-module and d a non-negative integer. If

H i
I,J(M) is weakly Laskerian for all i < d, then HomR(R/I,Hd

I,J(M)/N) is also weakly

Laskerian for any weakly Laskerian R-submodule N of Hd
I,J(M). In particular, the set

AssR(HomR(R/I,Hd
I,J(M)/N)) is finite.

Proof. The short exact sequence

0→ N → Hd
I,J(M)→ Hd

I,J(M)/N → 0

gives rise to an exact sequence

HomR(R/I,Hd
I,J(M))→ HomR(R/I,Hd

I,J(M)/N)→ Ext1
R(R/I,N).

It follows from Lemma 2.1(ii) that Ext1
R(R/I,N) is weakly Laskerian. Furthermore,

HomR(R/I,Hd
I,J(M)) is also weakly Laskerian by Theorem 2.5. Therefore HomR(R/I,

Hd
I,J(M)/N) is weakly Laskerian.

Note that finitely generated modules or modules that have finite support are weakly

Laskerian modules. So we have an immediate consequence.

Corollary 2.7. Let M be a finitely generated R-module and d a non-negative integer.

If H i
I,J(M) is finitely generated or SuppR(H i

I,J(M)) is a finite set for all i < d, then

AssR(HomR(R/I,Hd
I,J(M))) is finite.

We now provide a finite result on the associated primes of Hd
I,J(M).
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Theorem 2.8. Let M be a weakly Laskerian R-module and d a nonnegative integer.

Suppose that there is an ideal a of R such that 0 :M a = 0 :ΓI,J (M) a and W (I, J) ⊆ V (a).

If H i
I,J(M) is a weakly Laskerian R-module for all i < d, then AssR(Hd

I,J(M)) is a finite

set.

Proof. Let us consider functors F = HomR(R/a,−) and G = ΓI,J(−). Then FG =

HomR(R/a,ΓI,J(−)). From the hypothesis, there is an isomorphism HomR(R/a,ΓI,J(M))
∼= HomR(R/a,M). By [5, 10.47] we have a Grothendieck spectral sequence

Ep,q
2 = ExtpR(R/a, Hq

I,J(M))⇒
p

Extp+q
R (R/a,M).

We consider homomorphisms of the spectral sequence

E−k,d+k−1
k

d−k,d+k−1

−→ E0,d
k

d0,d−→ Ek,d+1−k
k .

Since E−k,d+k−1
k = 0 for all k ≥ 2, Ker d0,d

k = E0,d
k+1. There exists an exact sequence

0 −→ E0,d
k+1 −→ E0,d

k
d0,d−→ Ek,d+1−k

k .

Hence

AssR(E0,d
k ) ⊆ AssR(E0,d

k+1) ∪AssR(Ek,d+1−k
k ).

By iterating this for all k = 2, . . . , d + 1, we get

AssR(E0,d
2 ) ⊆

(
d+1⋃
k=2

AssR(Ek,d+1−k
k )

)
∪AssR(E0,d

d+2).

It is clear that

E0,d
d+2 = E0,d

d+3 = · · · = E0,d
∞ .

Therefore

AssR(E0,d
2 ) ⊆

(
d+1⋃
k=2

AssR(Ek,d+1−k
k )

)
∪AssR(E0,d

∞ ).

For all k = 2, . . . , d + 1 as Hd+1−k
I,J (M) is a weakly Laskerian R-module, so is Ek,d+1−k

2 =

ExtkR(R/a, Hd+1−k
I,J (M)) by Lemma 2.1(ii). As Ek,d+1−k

k is a subquotient of Ek,d+1−k
2 ,

it follows from Lemma 2.1(i) that Ek,d+1−k
k is a weakly Laskerian R-module. Thus⋃d+1

k=2 AssR(Ek,d+1−k
k ) is a finite set.

To prove the finiteness of AssR(E0,d
2 ), we show that the set AssR(E0,d

∞ ) is finite. Indeed,

there is a filtration Φ of Hp+q = Extp+q
R (R/a,M) with

0 = Φp+q+1Hp+q ⊆ Φp+qHp+q ⊆ · · · ⊆ Φ1Hp+q ⊆ Φ0Hp+q = Extp+q
R (R/a,M)

and

Ek,p+q−k
∞

∼= ΦkHp+q/Φk+1Hp+q, 0 ≤ k ≤ p + q.
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It follows that Ep,q
∞ is a weakly Laskerian R-module, so AssR(Ep,q

∞ ) is finite for all p, q.

In particular, AssR(E0,d
∞ ) is finite. It should be noted by [6, 1.7] that AssR(Hd

I,J(M)) ⊆
W (I, J). Therefore

AssR(E0,d
2 ) = AssR(HomR(R/a, Hd

I,J(M)))

= V (a) ∩AssR(Hd
I,J(M))

⊇W (I, J) ∩AssR(Hd
I,J(M))

= AssR(Hd
I,J(M)),

and the theorem follows.

Theorem 2.9. Let M be an R-module such that ExtiR(R/I,M) is weakly Laskerian for

all i and d a non-negative integer. If H i
I,J(M) is (I, J)-weakly cofinite for all i 6= d, then

Hd
I,J(M) is also (I, J)-weakly cofinite.

Proof. We use induction on d. When d = 0, set M = M/ΓI,J(M), then the short exact

sequence

0→ ΓI,J(M)→M →M → 0

gives rise a long exact sequence

· · · → ExtiR(R/I,ΓI,J(M))→ ExtiR(R/I,M)→ ExtiR(R/I,M)→ · · · .

We have H i
I,J(M) ∼= H i

I,J(M) for all i > 0 and H0
I,J(M) = 0. From the hypothesis,

H i
I,J(M) is (I, J)-weakly cofinite for all i ≥ 0. It follows from Proposition 2.4 that

ExtiR(R/I,M) is weakly Laskerian for all i ≥ 0. Therefore, considering the long exact

sequence and the hypothesis gives that ExtiR(R/I,ΓI,J(M)) is weakly Laskerian. This

implies that H0
I,J(M) is (I, J)-weakly cofinite.

Let d > 0. The short exact sequence

0→M → E(M)→ E(M)/M → 0

yields

ExtiR(R/I,E(M)/M) ∼= Exti+1
R (R/I,M)

and

H i
I,J(E(M)/M) ∼= H i+1

I,J (M)

for all i ≥ 0. Then H i
I,J(E(M)/M) is (I, J)-weakly cofinite for all i 6= d − 1. Note

that ExtiR(R/I,ΓI,J(M)) is weakly Laskerian and then ExtiR(R/I,E(M)/M) is weakly

Laskerian for all i ≥ 0. By the inductive hypothesis, Hd−1
I,J (E(M)/M) is (I, J)-weakly

cofinite. Therefore Hd
I,J(M) is (I, J)-weakly cofinite.
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Combining Lemma 2.1(ii) with Theorem 2.9 we obtain the following consequence.

Corollary 2.10. Let M be a weakly Laskerian R-module and d a non-negative integer. If

H i
I,J(M) is (I, J)-weakly cofinite for all i 6= d, then Hd

I,J(M) is also (I, J)-weakly cofinite.

Corollary 2.11. Let I be a principal ideal of R and M a weakly Laskerian module. Then

H i
I,J(M) is (I, J)-weakly cofinite for all i ≥ 0.

Proof. It follows from [6, 4.11] that H i
I,J(M) = 0 for all i > 1. Moreover, H0

I,J(M) is

a weakly Laskerian R-module, since H0
I,J(M) is a submodule of M . This means that

H i
I,J(M) is (I, J)-weakly cofinite for all i 6= 1. Now the conclusion follows from Theo-

rem 2.9.

3. On Serre subcategory

Recall that a class S of R-modules is a Serre subcategory of the category of R-modules if

it is closed under taking submodules, quotients and extensions. Throughout this section,

let S denote a given Serre subcategory of the category of R-modules.

Theorem 3.1. Let M be an R-module and d a non-negative integer. If H i
I,J(M) ∈ S for

all i < d, then ExtiR(R/I,M) ∈ S for all i < d.

Proof. We begin by considering functors F = HomR(R/I,−) and G = ΓI,J(−). It is clear

that FG = HomR(R/I,ΓI,J(−)) = HomR(R/I,−). Then there is a Grothendieck spectral

sequence by [5, 10.47]

Ep,q
2 = ExtpR(R/I,Hq

I,J(M))⇒
p

Extp+q
R (R/I,M).

Since H i
I,J(M) ∈ S for all i < d, Ep,q

2 ∈ S for all p ≥ 0, 0 ≤ q < d.

We consider homomorphisms of the spectral sequence for all p ≥ 0, 0 ≤ t < d and

i ≥ 2,

Ep−i,t+i−1
i

dp−i,t+i−1
i −→ Ep,t

i

dp,ti−→ Ep+i,t−i+1
i .

Note that Ep,t
i = Ker dp,ti−1/ Im dp−i+1,t+i−2

i−1 and Ep,j
i = 0 for all j < 0. This implies

Ker dp,t−pt+2
∼= Ep,t−p

t+2
∼= · · · ∼= Ep,t−p

∞

for all 0 ≤ p ≤ t. We now have a filtration Φ of Ht = ExttR(R/I,M) such that

0 = Φt+1Ht ⊆ ΦtHt ⊆ · · · ⊆ Φ1Ht ⊆ Φ0Ht = ExttR(R/I,M)

and

ΦiHt/Φi+1Ht ∼= Ei,t−i
∞
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for all 0 ≤ i ≤ t. Then there is a short exact sequence

0→ Φi+1Ht → ΦiHt → Ei,t−i
∞ → 0.

From the proof above we have Ei,t−i
∞ ∼= Ei,t−i

t+2
∼= Ker di,t−it+2 a subquotient of Ei,t−i

2 and

Ei,t−i
2 ∈ S for all 0 ≤ i ≤ t. It follows that Ei,t−i

∞ ∈ S for all 0 ≤ i ≤ t. By induction on i

we get ΦiHt ∈ S for all 0 ≤ i ≤ t. Finally ExttR(R/I,M) ∈ S for all t < d.

Theorem 3.2. Let M be a finitely generated module over a local ring (R,m) and d a

non-negative integer. If H i
I,J(M) ∈ S for all i < d, then HomR(R/m, Hd

I,J(M)) ∈ S.

Proof. The proof is by induction on d. When d = 0, since M is finitely generated, so is

H0
I,J(M). Hence HomR(R/m, H0

I,J(M)) has finite length and then HomR(R/m, H0
I,J(M))

∈ S by [1, 2.11].

Let d > 0. It follows from [6, 1.13(4)] that

H i
I,J(M) ∼= H i

I,J(M/ΓI,J(M))

for all i > 0. Thus we can assume, by replacing M with M/ΓI,J(M), that M is (I, J)-

torsion-free. Since ΓI(M) ⊆ ΓI,J(M) = 0, it follows that M is also I-torsion-free. Hence,

there exists an element x ∈ I which is non-zerodivisor on M . Set M = M/xM , the short

exact sequence

0→M
.x→M →M → 0

gives rise to an exact sequence

Hd−1
I,J (M)

.x→ Hd−1
I,J (M)

f→ Hd−1
I,J (M)

g→ Hd
I,J(M)

.x→ Hd
I,J(M).

As H i
I,J(M) ∈ S for all i < d, H i

I,J(M) ∈ S for all i < d−1. Then HomR(R/m, Hd−1
I,J (M))

∈ S by the inductive hypothesis. Applying the functor HomR(R/m,−) to the short exact

sequence

0→ Im f → Hd−1
I,J (M)→ Im g → 0

we get a long exact sequence

0→ HomR(R/m, Im f)→ HomR(R/m, Hd−1
I,J (M))

→ HomR(R/m, Im g)→ Ext1
R(R/m, Im f)→ · · · .

Note that Ext1
R(R/m, Im f) ∈ S, so HomR(R/m, Im g) ∈ S. Now from the exact sequence

0→ Im g → Hd
I,J(M)

.x→ Hd
I,J(M)

we obtain an exact sequence

0→ HomR(R/m, Im g)→ HomR(R/m, Hd
I,J(M))

.x→ HomR(R/m, Hd
I,J(M)).
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It is clear that

Im(HomR(R/m, Hd
I,J(M))

.x→ HomR(R/m, Hd
I,J(M)) = 0.

Therefore

HomR(R/m, Im g) ∼= HomR(R/m, Hd
I,J(M))

and then HomR(R/m, Hd
I,J(M)) ∈ S.

It should be mentioned that if M is a finitely generated module over a local ring (R,m)

with SuppR(M) ⊆ {m}, then M is artinian. From Theorem 3.2 we obtain the following

consequence.

Corollary 3.3. Let M be a finitely generated module over a local ring (R,m) and d a non-

negative integer. If H i
I,J(M) is finitely generated for all i < d, then HomR(R/m, Hd

I,J(M))

has finite length.

Proof. It follows from Theorem 3.2 that HomR(R/m, Hd
I,J(M)) is finitely generated. More-

over, SuppR(HomR(R/m, Hd
I,J(M))) ⊆ {m}. Therefore HomR(R/m, Hd

I,J(M)) is an ar-

tinian R-module and then it has finite length.
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