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Reconstruction of the Sturm–Liouville Operator on a Graph from

Subinterval Nodes

Chuan-Fu Yang* and Sheng-Yu Guan

Abstract. We consider inverse subinterval-nodal problems for the Sturm–Liouville

operator on a star graph with mixed boundary conditions in pendant vertices and the

standard matching conditions at the interior vertex. Can subinterval nodes recognize

star-shaped quantum graphs? In this paper we give a positive answer. It is shown

that the data of subinterval-nodes near the interior vertex can uniquely determine the

potential on a graph and boundary conditions.

1. Introduction

We consider a compact star graph G with the vertex set V = {v0, v1, v2, . . . , vm} and edge

set E = {e1, . . . , em}, where m ≥ 3, v0 is the internal vertex, v1, . . . , vm are the boundary

vertices and each edge is of equal length 1. For convenience, we parameterize each ej by

x ∈ [0, 1] such that x = 0 corresponds to the boundary vertex vj and x = 1 corresponds

to the internal vertex v0. Consider the boundary value problem L := L(q, h) on the graph

G generated by the following Sturm–Liouville equations

(1.1) − y′′j + qj(x)yj = λyj , x ∈ (0, 1), j = 1, 2, . . . ,m,

together with the Robin and/or Dirichlet conditions on the boundary vertices

y′j(0, λ)− hjyj(0, λ) = 0, j = 1, 2, . . . , p,

yj(0, λ) = 0, j = p+ 1, p+ 2, . . . ,m,

and the standard matching conditions at the internal vertex

y1(1, λ) = yj(1, λ), j = 2, . . . ,m,
m∑

j=1

y′j(1, λ) = 0,
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where λ is the spectral parameter, 1 ≤ p < m, h = {hj}j=1,2,...,p are real constants, the

potential q = {qj}j=1,2,...,m is real-valued function in
⊕m

j=1 L2[0, 1].

In this work, we consider the inverse nodal problems on a star graph with mixed

boundary conditions by using subinterval nodal data, which amounts to subinterval nodes

(zeros) of eigenfunctions. These problems are related to some questions in mechanics

and mathematical physics (see, for example, [14]). Inverse nodal problems for Sturm–

Liouville operators on an interval have been studied fairly completely in [5,6,9,11,14,19]

and other papers. Differential operators on graphs (networks, trees) often appear in

natural sciences and engineering (see [8,10,15–17] and the references therein). On inverse

nodal problems for differential operators on graphs there are only a few findings. For

example, the works [2, 18, 20] prove that the set of nodal points, which is dense in the

whole interval considered, uniquely determines the parameters of the boundary conditions

and the potential functions on a graph. As well as in the work [3] the uniqueness of the

potential for given nodal data is proved and authors give a construction of the potential as

a limit of a sequence of functions whose nth term is dependent only on the nth eigenvalue

and its associated nodal data, which is dense in the whole interval considered.

When solving the inverse problem, to avoid over-determinedness of the inverse nodal

problem one hopes to get the expected result with the least/optimal input data. In

the inverse node problem of a finite interval, the node data of subinterval is enough to

determine the uniqueness [5, 6, 19]. Inspired by it, together with the well-known inverse

spectral analysis with partial information on the potential and eigenvalues [4, 7], can the

node data on the subinterval determine the quantum graph? This paper gives a positive

answer.

This work establishes uniqueness theorems of the inverse subinterval nodal problems for

the Sturm–Liouville operator on a star-type graph. We prove that the data of subinterval-

nodes near the interior vertex can uniquely determine the potential on a graph and bound-

ary conditions.

An outline of this paper is as follows. In Section 2, some preliminaries are provided.

Section 3 deals with the inverse nodal problem on the whole interval. Section 4 is devoted

to the statements of the inverse subinterval nodal problems.

2. Preliminaries

In this section, we review some facts about the Sturm–Liouville operator L on the graph

G and the growth of entire functions. Let Ci(x, λ), i = 1, 2, . . . , p and Si(x, λ), i =

p+ 1, p+ 2, . . . ,m be the solutions of equations (1.1) under the initial conditions

Ci(0, λ) = 1, C ′i(0, λ) = hi, Si(0, λ) = 0, S′i(0, λ) = 1.
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Then for large |λ| → ∞, the solutions Ci(x, λ) and Si(x, λ) have the asymptotic formulas,

uniformly in x ∈ [0, 1],

Ci(x, λ) = cos ρx+ (hi + [qi]x)
sin ρx

ρ
+ o

(
eτx

ρ

)
,

Si(x, λ) =
sin ρx

ρ
− [qi]x

cos ρx

ρ2
+ o

(
eτx

ρ2

)
,

(2.1)

where λ = ρ2, τ = | Im ρ|, and [qi]x := 1
2

∫ x
0 qi(t) dt.

As is shown in [1], L has a countable set of real eigenvalues, which can be enumerated

as {λnk}∞n=1, k = 1, 2, . . . ,m (counting with their multiplicities), and satisfy the following

asymptotic formulae

(2.2)

ρn1 = ρ0
n1 +

ω

nπ
+ o(n−1),

ρn2 = ρ0
n2 +

ω

nπ
+ o(n−1),

ρnk =

(
n− 1

2

)
π +O(n−1), k ∈ J3,

ρnk = nπ +O(n−1), k ∈ J4,

where λnk = ρ2
nk, ρ

0
n1 = (n− 1)π + arccos

√
p
m , ρ0

n2 = nπ − arccos
√

p
m ,

ω =
1

p

p∑

j=1

ωj +
1

m− p
m∑

j=p+1

ωj , ωj =




hj + [qj ]1 if j = 1, 2, . . . , p,

[qj ]1 if j = p+ 1, p+ 2, . . . ,m,

J3 and J4 are some fixed sets of indices such that J3 ∪ J4 = {3, 4, . . . ,m}, J3 ∩ J4 = ∅,
|J3| = p− 1, |J4| = m− p− 1. For definiteness, we assume that 3 ∈ J3 and 4 ∈ J4 if these

sets are nonempty.

Let 0 ≤ a ≤ 1. Denote by Lj the Sturm–Liouville problem on each edge ej for

j = 1, 2, . . . ,m defined by

−y′′j + qj(x)yj = λyj , x ∈ (0, a),

y′j(0, λ)− hjyj(0, λ) = yj(a, λ) = 0, j = 1, 2, . . . , p

and
−y′′j + qj(x)yj = λyj , x ∈ (0, a),

yj(0, λ) = yj(a, λ) = 0, j = p+ 1, p+ 2, . . . ,m.

The function Mj(x, λ) defined by

Mj(x, λ) =




−C′

j(x,λ)

Cj(x,λ) if j = 1, 2, . . . , p,

−S′
j(x,λ)

Sj(x,λ) if j = p+ 1, p+ 2, . . . ,m
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is called the Weyl function of Lj . According to [4], the following asymptotic formulae hold

(2.3) Mj(x, λ) = iρ+ o(1)

uniformly in x ∈ [δ, a] for |λ| → ∞ in any sector ε < arg(λ) < π − ε for ε > 0, where

δ ∈ (0, a]. In addition, we need a classical estimate of Levinson in [13] and a Phragmén–

Lindelöf-type result in [12].

Lemma 2.1. Let {zn}n≥1 be a sequence of complex numbers so that

lim
n→∞

n

zn
= d

holds for some d ∈ R and there exists a constant c > 0 such that

|zn − zm| ≥ c|n−m|.

Define

f(z) =

∞∏

n=1

(
1− z2

z2
n

)
.

If zn = 0, we substitute 1− z2/z2
n by z2. Then for some C > 0 there hold

|f(z)| ≤ Ceπd| Im z|+ε|z|, ∀ ε > 0 as |z| → ∞

and ∣∣∣∣
1

f(z)

∣∣∣∣ ≤ Ce−πd| Im z|+ε|z| if |z − zn| ≥
1

8
c.

Lemma 2.2. Let f(z) be an entire function of zero exponential type, i.e.,

lim sup
r→∞

lnM(r)

r
≤ 0, where M(r) = max

ϕ

{∣∣f(reiϕ)
∣∣}.

If f(z) is bounded along a line, then f(z) is a constant. In particular, f(z) → 0 when

|z| → ∞ along a line, then f(z) ≡ 0.

3. Inverse nodal problem on the whole interval

Put

Y (x, λ) = {yi(x, λ)}i=1,2,...,m, yi(x, λ) =




Ai(λ)Ci(x, λ) if i = 1, 2, . . . , p,

Ai(λ)Si(x, λ) if i = p+ 1, p+ 2, . . . ,m.

Then the function Y (x, λ) satisfies equations and the boundary conditions. If λ∗ is an

eigenvalue of the problem then the function Y (x, λ0) is an eigenfunction.
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Using the asymptotic expression (2.2) of the eigenvalue λn1 := ρ2
n1, when n→∞, we

obtain the asymptotics for the components of the eigenfunction Y (x, λn1), uniformly in

x ∈ [0, 1]:

Ci(x, λn1) = cos ρ0
n1x+

βi(x)

2π(n− 1)
sin ρ0

n1x+ o

(
1

n

)
, i = 1, 2, . . . , p,

where βi(x) = 2[qi]x + 2hi − ωx, and for i = p+ 1, p+ 2, . . . ,m− 1,

Si(x, λn1) =
sin ρ0

n1x

ρ0
n1

+
γi(x)

2π2(n− 1)2
cos ρ0

n1x+ o

(
1

n2

)
,

where γi(x) = −2[qi]x + ωx.

Similarly, taking λn2 := ρ2
n2 in (2.2), for large n→∞, we also get the asymptotics for

the components of the eigenfunction Y (x, λn2), uniformly in x ∈ [0, 1]:

Sm(x, λn2) =
sin ρ0

n2x

ρ0
n2

+
γm(x)

2π2n2
cos ρ0

n2x+ o

(
1

n2

)
.

Fix i = 1, 2, . . . ,m. There exists N0 such that for n ≥ N0 the function Ci(x, λn1) (or

Si(x, λn1), Sm(x, λn2)) has exactly n − 1 (simple) zeros inside the interval (0, 1), that

is, 0 < x1
ni < · · · < xn−1

ni < 1. The point sets Xi := {xjni}n≥N0 (i = 1, 2, . . . ,m − 1,

j = 1, 2, . . . , n−1) are called the nodes on the edge ei with respect to the eigenvalues λn1,

Xm := {xjnm}n≥N0 with respect to the eigenvalues λn2.

Denote

αjn :=

(
j − 1

2

)
π

ρ0
n1

, βjn :=
jπ

ρ0
n1

, γjn :=
jπ

ρ0
n2

,

where j = 1, 2, . . . , n−1. Taking asymptotic formula (2.1) for eigenfunctions into account,

for large n, the following asymptotic formulae for the nodes hold uniformly in j:

xjni =





αjn + βi(x)
2π2(n−1)2

+ o
(

1
n2

)
if i = 1, 2, . . . , p,

βjn − γi(x)
2π2(n−1)2

+ o
(

1
n2

)
if i = p+ 1, p+ 2, . . . ,m− 1,

γjn − γm(x)
2π2(n−1)2

+ o
(

1
n2

)
if i = m.

Note that for the fixed i = 1, 2, . . . ,m the nodal set Xi is dense in (0, 1). Without loss of

generality one may assume that ω = 0, which can be achieved by shifting a constant ω.

Analyzing the asymptotic expressions xjni we have the following statements.

Fixed i = 1, 2, . . . ,m and x ∈ [0, 1]. Suppose that X0
i ⊂ Xi is dense on (0, 1) and

choose {xjni
ni } ⊂ X0

i such that limn→∞ x
jni
ni = x. Then the following finite limits hold:

(a) limn→∞ 2π2(n− 1)2(xjni
ni − α

j
n) = gi(x), i = 1, 2, . . . , p, where gi(x) = 2[qi]x + 2hi;

(b) limn→∞ 2π2(n−1)2(xjni
ni −β

j
n) = hi(x), i = p+1, p+2, . . . ,m−1, where hi(x) = 2[qi]x;
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(c) limn→∞ 2π2(n− 1)2(xjni
nm − γjn) = fm(x), where fm(x) = 2[qm]x.

Now we can provide a uniqueness theorem and constructive algorithm for the inverse nodal

problem on the whole interval (0, 1).

Theorem 3.1. Fix i = 1, 2, . . . ,m. Suppose that a set of nodes X0
i ⊂ Xi is dense on

(0, 1). Then the data X0
i can uniquely determine qi(x) a.e. on (0, 1) and hi. And the

constructive algorithm is as follows:

(a) qi(x) = g′i(x), hi = gi(0)/2, i = 1, 2, . . . , p;

(b) qi(x) = h′i(x), i = p+ 1, p+ 2, . . . ,m− 1;

(c) qm(x) = f ′m(x).

4. Inverse nodal problems on the subinterval

Let 0 < a < 1. Denote the node X0
i,a ⊂ Xi ∩ (a, 1) on a subinterval (a, 1) of the edge ei.

From Theorem 3.1 we get the following statement.

Theorem 4.1. Fix i = 1, 2, . . . ,m and a ∈ (0, 1). Suppose that a set of nodes X0
i,a is

dense on (a, 1). Then the data X0
i,a can uniquely determine qi(x) a.e. on (a, 1).

For the node set X0
i,a, set X0

a =
⋃m−1
i=1 X0

i,a, SX0
a

= {n : ∃ j, i, xjni ∈ X0
i,a}, SX0

m,a
= {n :

∃ j, xjnm ∈ X0
m,a}, and

Λ1 := {λn1}n∈S
X0

a
, Λ2 := {λn2}n∈S

X0
m,a

.

Introduce the counting function

Nk(t) := #
{
n | λnk < t2, λnk ∈ Λk

}
, t ∈ R+, k = 1, 2,

and assume that

(4.1) Λ1 ∩ Λ2 = ∅, lim
t→∞

Nk(t)

t
=:

αk
π
, 0 ≤ αk ≤ 1.

Finally, the result that the partial nodes on the subinterval [a, 1] of each edge ei uniquely

determine qi(x) on the whole (0, 1) and hi is described as follows.

Theorem 4.2. Fix a ∈ (0, 1). Suppose that a set of nodes X0
i,a is twin-dense in (a, 1),

i = 1, 2, . . . ,m. If there exist β ∈ [0, 1] and δ > 0 such that for sufficiently large t

(4.2)
2∑

k=1

Nk(t) ≥ 2a

{
β

[
t

π
+

1

2

]
+ (1− β)

([
t

π

]
+

1

2

)
+O(t−δ)

}
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holds, where [x] denotes the largest integer not greater than x, then
⋃m
i=1X

0
i,a uniquely

determines qi(x) (i = 1, 2, . . . ,m) a.e. on [0, 1] and hi (i = 1, 2, . . . , p).

RECONSTRUCTION OF THE STURM-LIOUVILLE OPERATOR ON A GRAPH7

Finally, the result that the partial nodes on the subinterval [a, 1] of each
edge ei uniquely determine qi(x) on the whole (0, 1) and hi is described
as follows.

Theorem 4.2. Fix a ∈ (0, 1). Suppose that a set of nodes X0
i,a is twin-

dense in (a, 1), i = 1, 2, · · · ,m. If there exist β ∈ [0, 1] and δ > 0 such
that for sufficiently large t

2∑

k=1

Nk(t) ≥ 2a

{
β

[
t

π
+

1

2

]
+ (1− β)

([
t

π

]
+

1

2

)
+O

(
t−δ
)}

(4.2)

holds, where [x] denotes the largest integer not greater than x, then
∪mi=1X

0
i,a uniquely determines qi(x) (i = 1, 2, · · · ,m) a.e. on [0, 1] and

hi (i = 1, 2, · · · , p).

v1 vp

vp+1

v0

vm

1
2

1
2

1
2

1
2

. . .
a a

a

a

Fig. 1 Graph with m edges

Take the node set X0
i,a (i = 2, 3, · · · ,m) such that the eigenvalue

sets responding to SX0
i,a

satisfy Λ1 = {λn1}n≥N0 and Λ2 = {λn2}n≥N0 .

Select Λ3 ⊂ {λn3}n≥1 and #Λ3 = 2N0. Assume that Λ1 ∩ Λ2 = ∅
and

∏p
j=1 Cj(1, λnk)

∏m
j=p+1 Sj(1, λnk) 6= 0 for all λnk ∈ Λ1 ∪ Λ2. From

Theorem 4.2, together with Theorem 3.2 in [1], we have the following
Corrolary.

Corollary 4.1. Fix a ∈ (0, 1). Suppose that a set of nodes X0
i,a is

twin-dense in (a, 1), i = 2, 3, · · · ,m. Then ∪mi=2X
0
i,a and Λ3 uniquely

determine qi(x) (i = 1, 2, · · · ,m) a.e. on [0, 1] and hi (i = 1, 2, · · · , p).

Remark 4.1. (1) In Corollary 4.1 one has lim
t→∞

Nk(t)

t
=:

1

π
so the

condition (4.2) is true.
(2) In Theorem 4.2 one need assumption that a set of nodes X0

i,a

is ”twin-dense” in (a, 1). In fact, one may use ”paired dense” defined

Figure 4.1: Graph with m edges.

Take the node set X0
i,a (i = 2, 3, . . . ,m) such that the eigenvalue sets responding to

SX0
i,a

satisfy Λ1 = {λn1}n≥N0 and Λ2 = {λn2}n≥N0 . Select Λ3 ⊂ {λn3}n≥1 and #Λ3 = 2N0.

Assume that Λ1∩Λ2 = ∅ and
∏p
j=1Cj(1, λnk)

∏m
j=p+1 Sj(1, λnk) 6= 0 for all λnk ∈ Λ1∪Λ2.

From Theorem 4.2, together with Theorem 3.2 in [1], we have the following corollary.

Corollary 4.3. Fix a ∈ (0, 1). Suppose that a set of nodes X0
i,a is twin-dense in (a, 1),

i = 2, 3, . . . ,m. Then
⋃m
i=2X

0
i,a and Λ3 uniquely determine qi(x) (i = 1, 2, . . . ,m) a.e. on

[0, 1] and hi (i = 1, 2, . . . , p).

Remark 4.4. (1) In Corollary 4.3 one has limt→∞
Nk(t)
t =: 1

π so the condition (4.2) is true.

(2) In Theorem 4.2 one needs an assumption that a set of nodes X0
i,a is “twin-dense”

in (a, 1). In fact, one may use “paired dense” defined in Definition 1.1 in [6] instead of

“twin-dense”. The conclusion of the theorem still holds.

8 C. F. YANG, X. C. XU, AND F. WANG

in Definition 1.1 in [7] instead of ”twin-dense”. The conclusion of the
theorem still holds.

a
a

a

v0

vm

v1
vp

vp+1

. . .

Fig. 2 Graph with m edges

Proof of Theorem 4.2. For proving the theorem, together with L we
consider a boundary value problem L̃ = L(q̃, h̃) of the same form but
with a different potential q and the parameter h. We agree that if a
certain symbol α denotes an object related to L, then α̃ will denote an
analogous object related to L̃. Consider two boundary value problems
L and L̃ with the assumption that X0

i,a = X̃0
i,a.

STEP 1. To deduce that Mj(a, λnk) = M̃j(a, λnk) for all λnk ∈
Λ1

⋃
Λ2.

Under the assumption of Theorem 4.2, from Theorem 4.1 and Lemma
1 in [23] we know

qi(x) = q̃i(x) for x ∈ [a, 1], λnk = λ̃nk for all λnk ∈ Λ1 ∪ Λ2.

From this the following equalities hold

(CiC̃
′
i − C̃iC ′i)(a, λnk)− (CiC̃

′
i − C̃iC ′i)(xjnk

nk , λnk)

=

∫ a

x
jnk
nk

(q̃i − qi)(t)(CC̃)(t, λnk)dt

≡ 0, i = 1, 2, · · · , p
and

(SiS̃
′
i − S̃iS ′i)(a, λnk)− (SiS̃

′
i − S̃iS ′i)(xjnk

nk , λnk)

=

∫ a

x
jnk
nk

(q̃i − qi)(t)(SS̃)(t, λnk)dt

≡ 0, i = p+ 1, 2, · · · ,m
where xjnk

nk ∈ [a, 1]. Therefore we have

Mi(a, λnk) = M̃i(a, λnk) for all λnk ∈ Λ1 ∪ Λ2. (4.3)

STEP 2. To deduce that Mj(a, λ) = M̃j(a, λ) for all λ ∈ C.

Figure 4.2: Graph with m edges.

Proof of Theorem 4.2. For proving the theorem, together with L we consider a boundary

value problem L̃ = L(q̃, h̃) of the same form but with a different potential q and the
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parameter h. We agree that if a certain symbol α denotes an object related to L, then α̃

will denote an analogous object related to L̃. Consider two boundary value problems L

and L̃ with the assumption that X0
i,a = X̃0

i,a.

Step 1: To deduce that Mj(a, λnk) = M̃j(a, λnk) for all λnk ∈ Λ1 ∪ Λ2. Under the

assumption of Theorem 4.2, from Theorem 4.1 and Lemma 1 in [20] we know

qi(x) = q̃i(x) for x ∈ [a, 1] and λnk = λ̃nk for all λnk ∈ Λ1 ∪ Λ2.

From this the following equalities hold

(CiC̃
′
i − C̃iC ′i)(a, λnk)− (CiC̃

′
i − C̃iC ′i)(xjnk

nk , λnk) =

∫ a

x
jnk
nk

(q̃i − qi)(t)(CC̃)(t, λnk) dt ≡ 0

for i = 1, 2, . . . , p and

(SiS̃
′
i − S̃iS′i)(a, λnk)− (SiS̃

′
i − S̃iS′i)(xjnk

nk , λnk) =

∫ a

x
jnk
nk

(q̃i − qi)(t)(SS̃)(t, λnk) dt ≡ 0

for i = p+ 1, p+ 2, . . . ,m, where xjnk
nk ∈ [a, 1]. Therefore we have

Mi(a, λnk) = M̃i(a, λnk) for all λnk ∈ Λ1 ∪ Λ2.

Step 2: To deduce that Mj(a, λ) = M̃j(a, λ) for all λ ∈ C. For i = 1, 2, . . . , p let us

introduce

Hi(a, λ) = Ci(a, λ)C̃ ′i(a, λ)− C ′i(a, λ)C̃i(a, λ)(4.3)

= Ci(a, λ)C̃i(a, λ)(Mi(a, λ)− M̃i(a, λ)).(4.4)

Together with Step 1, (4.4) shows that

(4.5) Hi(a, λnk) = 0

for all λnk ∈ Λ1 ∪ Λ2. From (2.1) and (4.3) we get

(4.6) |Hi(a, λ)| = O(e2aτ )

for |λ| → ∞. On the other hand, by virtue of (2.1), (2.3) and (4.4), this yields

(4.7) |Hi(a, λ)| = o(e2aτ )

for |λ| → ∞ in any sector ε < arg λ < π − ε for some ε > 0. Define

(4.8) F (λ) :=
Hi(a, λ)∏2
k=1Wk(λ)

,
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where

Wk(λ) :=
∏

λnk∈Λ1∪Λ2

(
1− λ

λnk

)
, k = 1, 2.

If λnk = 0, we substitute 1−λ/λnk by λ. By virtue of (4.5), we see that F (λ) is an entire

function in λ.

Next we will prove F (λ) ≡ 0. Firstly, since Nk(ρnk) = n− 1 as n→∞, it follows from

(4.1) that

(4.9) lim
n→∞

n

ρnk
=
αk
π
, k = 1, 2.

Then Lemma 2.1, together with (4.9), shows that there exist constants c > 0 and C > 0

such that
1

|Wk(λ)| ≤ Ce−αkτ+εr, ∀λ ∈ Gc,

where ε > 0 is arbitrary, and

Gc :=

{
λ : |ρ− ρnk| ≥

1

8
c, λnk ∈ Λk, k = 1, 2

}
.

Therefore we obtain

(4.10)
1

|W1(λ)W2(λ)| ≤ Ce−(α1+α2)τ+2εr, ∀λ ∈ Gc

for sufficiently large λ. Moreover, from (4.2) we deduce that α1 + α2 ≥ 2a. Thus (4.6),

(4.10) and (4.8) imply

|F (λ)| = O(e2εr), ∀λ ∈ Gc
for sufficiently large λ. Consequently the maximum modulus principle shows that

(4.11) |F (λ)| ≤ Ce2ε|λ|, λ ∈ C.

We see that F (λ) is of zero exponential type by the arbitrariness of ε. On the other hand,

by the known method in [7], we get that for large |y|,

(4.12) ln |W1(iy)W2(iy)| =
∫ ∞

1

∑2
k=1Nk(

√
t)

t

y2

y2 + t2
dt+O(1).

Combining these with (4.2) and (4.12) yields

ln |W1(iy)W2(iy)| ≥ 2a

√
|y|
2

+O(1),

which follows

|W1(iy)W2(iy)| ≥ Ce2a
√

|y|
2 , C > 0 is some constant.
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By virtue of (4.7), we get

|Hi(a, iy)| = o

(
e2a

√
|y|
2

)
.

Hence

|F (iy)| = o(1),

which follows

F (λ) ≡ 0, λ ∈ C

by Lemma 2.2 and (4.11). Consequently, for i = 1, 2, . . . , p,

Hi(a, λ) ≡ 0 and Mi(a, λ) ≡ M̃i(a, λ), λ ∈ C,

due to (4.4). Similarly, we also get that for i = p+ 1, p+ 2, . . . ,m,

Mi(a, λ) ≡ M̃i(a, λ), λ ∈ C.

Step 3: To deduce that qi(x) = q̃i(x) (i = 1, 2, . . . ,m) a.e. on [0, 1] and hi = h̃i

(i = 1, 2, . . . , p). From the fact that for i = 1, 2, . . . ,m,

Mi(a, λ) ≡ M̃i(a, λ), λ ∈ C.

By Borg–Marchenko uniqueness theorem [4], we obtain

qi(x) = q̃i(x), i = 1, 2, . . . ,m, a.e. on [0, 1] and hi = h̃i, i = 1, 2, . . . , p.

The proof is finished.
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